
HAL Id: hal-01298195
https://hal.science/hal-01298195v1

Submitted on 5 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new multiplication algorithm for extended precision
using floating-point expansions

Jean-Michel Muller, Valentina Popescu, Ping Tak Peter Tang

To cite this version:
Jean-Michel Muller, Valentina Popescu, Ping Tak Peter Tang. A new multiplication algorithm for
extended precision using floating-point expansions. ARITH23, Jul 2016, Santa Clara, United States.
�hal-01298195�

https://hal.science/hal-01298195v1
https://hal.archives-ouvertes.fr

1

A new multiplication algorithm for extended
precision using floating-point expansions

Jean-Michel Muller, Valentina Popescu and Ping Tak Peter Tang

Abstract—Some important computational problems must use a floating-point (FP) precision several times higher than the hardware-
implemented available one. These computations critically rely on software libraries for high-precision FP arithmetic. The representation
of a high-precision data type crucially influences the corresponding arithmetic algorithms. Recent work showed that algorithms for FP
expansions, that is, a representation based on unevaluated sum of standard FP types, benefit from various high-performance support
for native FP, such as low latency, high throughput, vectorization, threading, etc. Bailey’s QD library and its corresponding Graphics
Processing Unit (GPU) version, GQD, are such examples. Despite using native FP arithmetic as the key operations, QD and GQD
algorithms are focused on double-double or quad-double representations and do not generalize efficiently or naturally to a flexible
number of components in the FP expansion.
In this paper, we introduce a new multiplication algorithm for FP expansion with flexible precision, up to the order of tens of FP elements
in mind. The main feature consists in the partial products being accumulated in a special designed data structure that has the regularity
of a fixed-point representation while allowing the computation to be naturally carried out using native FP types. This allows us to easily
avoid unnecessary computation and to present rigorous accuracy analysis transparently. The algorithm, its correctness and accuracy
proofs and some performance comparisons with existing libraries are all contributions of this paper.

Index Terms—floating-point arithmetic, floating-point expansions, high precision arithmetic, multiple-precision arithmetic, multiplication

F

1 INTRODUCTION

MANY numerical problems in dynamical systems
or planetary orbit dynamics require higher pre-

cisions than the standard double-precision (now called
binary64 [1]). Examples include, to list a few, long-term
stability analysis of the solar system [2], finding sinks
in the Henon Map [3] and iterating the Lorenz attrac-
tor [4]. Since quadruple or higher precision is rarely
implemented in hardware, these calculations rely on
software-emulated higher-precision libraries, also called
arbitrary-precision libraries.

A crucial design point of these libraries is the way
higher-precision numbers are represented as this will in-
fluence the choice of arithmetic algorithms and their sub-
sequent performance on various computer architectures,
including highly parallel accelerators such as Graphics
Processing Units (GPUs). There are mainly two ways
of representing numbers in higher precision. The first
one is the multiple-digit representation: each number is
represented by one exponent, followed by a sequence
of possibly high-radix digits. This representation gives
a fixed-point flavor as the radix positions of the digits
follow a very regular pattern. This characteristic greatly

• J.-M. Muller is with LIP Laboratory, ENS Lyon, 46 Allée d’Italie, 69364
Lyon Cedex 07, France
E-mail: jean-michel.muller@ens-lyon.fr

• V. Popescu is with LIP Laboratory, ENS Lyon, 46 Allée d’Italie, 69364
Lyon Cedex 07, France
E-mail: valentina.popescu@ens-lyon.fr

• P. Tak P. Tang is with Intel Corporation
E-mail: peter.tang@intel.com

facilitates rigorous accuracy analysis on the associated
arithmetic algorithms. The GNU package MPFR [5] is
an open-source C library that uses the multiple-digit
representation. Besides arbitrary precision, it also pro-
vides correct rounding for each atomic operation. One
drawback, however, is that full exploitation of highly-
optimized native floating-point (FP) instructions can be
hard to achieve. The more memory intensive nature of
the algorithms render them not a natural fit for GPUs,
to which MPFR has yet to be ported.

The second way is the multiple-term representation in
which each number is expressed as the unevaluated sum
of several standard FP numbers. This sum is usually
called a FP expansion. Because each term of this expan-
sion has its own exponent, the term’s positions can be
quite irregular. Bailey’s library QD [6] uses this approach
and supports double-double and quad-double computa-
tions, i.e. numbers are represented as the unevaluated
sum of 2 or 4 standard double-precision FP numbers. The
FP centric nature allows QD to take great advantage of
optimized native FP infrastructure; and the GPU version,
GQD, is already available. Nevertheless, there are some
drawbacks of FP expansions as implemented in QD.
These algorithms do not straightforwardly generalize to
an arbitrary number of terms, for example, a multipli-
cation of two n-term FP expansion can easily lead to
O(n3) complexity. Moreover, their nature made rigorous
error analysis unnatural, that is why the operations
implemented in QD do not come with any form of
guaranteed error bounds.

In this article we focus on multiplication of FP expan-
sions. Our algorithm accumulates the partial products

2

of a multiplication using a fixed-point structure that
is nevertheless FP friendly. The overall algorithm can
be viewed as a generalized version of the paper-and-
pencil method for long multiplication. The accumulation
is done using a method by Rump, first presented in [7].
The regularity of this algorithm allows us to provide a
thorough error analysis and tight error bound, while its
FP friendliness make it a natural fit for GPUs.

The outline of the paper is the following: after recalling
some basic notions about FP expansions in Section 2, we
detail the new algorithm for multiplying FP expansions
in Section 3. Here we also include a correctness proof, the
computation of the specific error bound (Section 3.1) and
the complexity analysis (Section 3.2). Finally, in Section 4
we assess the performance of our algorithm in terms of
performance comparing to other existing libraries and
we draw the conclusions.

2 FLOATING-POINT EXPANSIONS

A normal binary precision-p floating-point (FP) number
is a number of the form

x =Mx · 2ex−p+1,

with 2p−1 ≤ |Mx| ≤ 2p − 1. The integer ex is called the
exponent of x, and Mx ·2−p+1 is called the significand of x.
We denote accordingly to Goldberg’s definition ulp(x) =
2ex−p+1 [8, Chap. 2].

A natural extension of the notion of double-double or
quad-double is the notion of floating-point expansion.

Definition 2.1. A FP expansion u with n terms is the
unevaluated sum of n FP numbers u0, u1, . . . , un−1,
in which all nonzero terms are ordered by magnitude
(i.e., if v is the sequence obtained by removing all zeros
in the sequence u, and if sequence v contains m terms,
|vi| ≥ |vi+1|, for all 0 ≤ i < m− 1).

Arithmetics on FP expansions have been introduced
by Priest [9], and later on by Shewchuk [10].

To make sure that such an expansion carries signifi-
cantly more information than only one FP number, it is
required that the ui’s do not “overlap”. The notion of
(non-)overlapping varies depending on the authors. We
give here different definitions, using the above intro-
duced notation. The first two, by Priest and Bailey, have
already been presented in the literature, but the third
one introduces a new, weaker condition, that allows for
a more relaxed handling of the FP expansions.

We specify first that even if a FP expansion may
contain interleaving zeros, all the definitions that follow
apply only to the non-zero terms of the expansion (i.e.,
the array v in Definition 2.1).

Definition 2.2. Assuming x and y are normal numbers
with representations Mx ·2ex−p+1 and My ·2ey−p+1 (with
2p−1 ≤ |Mx|, |My| ≤ 2p − 1), they are P-nonoverlapping
(that is, nonoverlapping according to Priest’s defini-
tion [11]) if |ey − ex| ≥ p.

Definition 2.3. An expansion is P-nonoverlapping (that
is, nonoverlapping according to Priest’s definition [11])
if all its components are mutually P-nonoverlapping.

A slightly stronger sense of nonoverlapping was in-
troduced by Hida, Li and Bailey [6]:

Definition 2.4. An expansion u0, u1, . . . , un−1 is B-
nonoverlapping (that is, nonoverlapping according to Bai-
ley’s definition [6]) if for all 0 < i < n, we have
|ui| ≤ 1

2 ulp(ui−1).

Remark 2.5. Note that for P-nonoverlapping expansions
we have |ui| ≤ 2p−1

2p ulp(ui−1).
Intuitively, the stronger the sense of the nonoverlap-

ping definition, the more difficult it is to obtain, implying
extra manipulation of the FP expansions. In order to save
operations we chose to use a slightly weaker sense of
nonoverlapping, referred to as ulp-nonoverlapping , that
we define in what follows.

Definition 2.6. An expansion u0, u1, . . . , un−1 is ulp-
nonoverlapping if for all 0 < i < n, we have |ui| ≤
ulp(ui−1).

In other words, the components are either P-
nonoverlapping or they overlap by one bit, in which case
the second component is a power of two.

Depending on the nonoverlapping type of an expan-
sion, when using standard FP formats for representation,
the exponent range forces a constraint on the number
of terms. The largest expansion can be obtained when
the largest term is close to overflow and the smallest is
close to underflow. We remark that, when using any of
the above nonoverlapping definitions, for the two most
common FP formats, the constraints are:
• for double-precision (exponent range [−1022, 1023])

the maximum expansion size is 39;
• for single-precision (exponent range [−126, 127]) the

maximum is 12.
The majority of algorithms performing arithmetic

operations on FP expansions are based on the so-
called error-free transforms (such as the algorithms 2Sum,
Fast2Sum, Dekker’s product and 2MultFMA presented
for instance in [8]), that make it possible to compute
both the result and the error of a FP addition or multi-
plication. This implies that each such error-free transform
applied to two FP numbers, returns still two FP numbers.
So, when adding two expansions x and y with n and m
terms, respectively, the exact result is going to have at
most n+m terms. Similarly, for multiplication, the exact
product is going to have at most 2nm terms [9]. A po-
tential problem appears when subsequent computations
are done using this results; the size of the exact result
is going to increase more and more. To avoid this, some
“truncation” methods (both on-the-fly or a-posteriori) may
be used to compute only an approximation of the exact
result. Also, so-called (re-)normalization algorithms are
used to render the result nonoverlapping, which implies
also a potential reduction in the number of components.

3

In what follows we will present a new multiplication
algorithm that allows for computing the “truncated”
product of two FP expansions. We also provide a full
correctness proof and error analysis for it.

3 MULTIPLICATION ALGORITHM FOR
FLOATING-POINT EXPANSIONS

In Algorithm 1 we present the multiplication algorithm.
Throughout this paper we assume that no underflow
/ overflow occurs during the calculations. We consider
two ulp-nonoverlapping expansions x and y, with n and
m terms, respectively, and we compute the r most sig-
nificant components of the expansion π = π0, π1, π2, . . .
that represents the product x · y.

Algorithm 1 Algorithm for multiplication of FP expan-
sions. We denote by p, the precision of the used FP
format and by b, the size of the bins. The algorithms
called are going to be detailed later on in this paper.

Input: ulp-nonoverlapping FP expansions x = x0 + . . . +
xn−1; y = y0 + . . .+ ym−1.

Output: ulp-nonoverlapping FP expansion π = π0 + . . .+
πr−1.

1: e← ex0
+ ey0

2: for i← 0 to br · p/bc+ 1 do
3: Bi ← 1.5 · 2e−(i+1)b+p−1

4: end for
5: for i← 0 to min(n− 1, r) do
6: for j ← 0 to min(m− 1, r − 1− i) do
7: (P,E)← 2MultFMA(xi, yj)
8: `← e− exi

− eyj

9: sh← b`/bc
10: `← `− sh · b
11: B ← Accumulate(P,E,B, sh, `)
12: end for
13: if j < m− 1 then
14: P ← xi · yj
15: `← e− exi

− eyj

16: sh← b`/bc
17: `← `− sh · b
18: B ← Accumulate(P, 0., B, sh, `)
19: end if
20: end for
21: for i← 0 to br · p/bc+ 1 do
22: Bi ← Bi − 1.5 · 2e−(i+1)b+p−1

23: end for
24: π[0 : r − 1]← Renormalize(B[0 : br · p/bc+ 1])
25: return FP expansion π = π0 + . . .+ πr−1.

The way we compute the partial products is based
on term-times-expansion products, xi · y, and it follows
the paper-and-pencil technique. In order to gain perfor-
mance we “truncate” the computations by discarding
the partial products that have an order of magnitude

less than πr, meaning that we compute the approximate

result based on the first
r+1∑
k=1

k partial products. The

products with the same order of magnitude as πr are
intended as an extra correction term, that is why we
compute them using only standard FP multiplication.

The main idea of the algorithm is to accumulate num-
bers of size at most b in “containers”, referred to as bins,
that are FP variables whose least significant bit (LSB) has
a fixed weight. This allows for errorless accumulation
provided that we do not add more than 2c numbers to
one bin, where b+ c = p− 1.

Even though in this article we use a general notation,
our implementation is done for standard FP formats.
When using double-precision (p = 53) we defined bins
of size b = 45, that allows for c = 7 bits of carry to
happen; this means that we can add 128 numbers that
satisfy the above condition to each bin and the result is
still going to be exact. For single-precision (p = 24) we
chose bins with b = 18, which implies c = 5, allowing us
to add up to 32 numbers to one bin. In both cases, these
values also satisfy 3b > 2p, a property that we are going
to use later on. We suggest the use of the latter one only
if is the only standard FP format available or if, by any
reason, is much faster than the first one.

The number of allocated bins is computed as b r·pb c+2
and the LSB of each bin is set according to the starting
exponent, e = ex0 + ey0 , at a distance of b bits. We start
the algorithm by initializing each bin Bi with the value
1.5 · 2e−(i+1)·b+p−1.

After the initialization step is done we start the actual
computations. For each partial product computed using
2MultFMA we get the pair (P,E) (line 7 of Algorithm 1)
and, using the formula b(e− exi − eyj)/bc, we determine
the corresponding bins in which we have to accumulate
it.

Fig. 1: Cases for accumulating the partial products into the
bins.

We know that one pair of FP numbers can “fall” into
at most four bins (3b > 2p), and we can deduce three
different cases (see Fig. 1):

• 2:2 case, in which both P and E fall into two bins
each;

• 2:3 case, in which P falls into two bins and E into
three;

4

• 3:2 case, in which P falls into three bins and E into
two.

These cases are dealt with in Algorithm 2 that ac-
cumulates the partial products. Apart from the (P,E)
pair and the bins array, B, the algorithm also receives
two integer parameters. The sh value represents the
first corresponding bin for the pair and `, computed as
e−exi

−eyj
−sh·b, the number of leading bits. This value

gives the difference between the LSB of Bsh−1 and the
sum of the exponents of xi and yj of the corresponding
(P,E) pair.

We determine which one of the three cases apply
depending on the ` value. So, if 2c+1 < b− ` ≤ b we are
in the 2:2 case; if c < b− ` ≤ 2c+ 1 we need to consider
the 2:3 case; and if 0 < b− ` ≤ c the 3:2 case applies.
Remark 3.1. For simplicity, we consider that the extra
error correction partial products, the ones that are com-
puted using standard FP multiplication, are dealt with
the same way, using the pair (P, 0). This is not the case
in our implementation, where we try to save operations
by accumulating only the P term.

Algorithm 2 Accumulate(P,E,B, sh, `).

Input: FP numbers P,E; FP array B;
Integers sh and `.

Output: FP array B.
1: if ` < b− 2c− 1 then
2: (Bsh, Bsh+1)← Deposit(P)
3: // that is, (Bsh, P)← Fast2Sum(Bsh, P), and
4: // Bsh+1 ← Bsh+1 + P
5: (Bsh+1, Bsh+2)← Deposit(E)
6: else if ` < b− c then
7: (Bsh, Bsh+1)← Deposit(P)
8: (Bsh+1, E)← Fast2Sum(Bsh+1, E)
9: (Bsh+2, Bsh+3)← Deposit(E)

10: else
11: (Bsh, P)← Fast2Sum(Bsh, P)
12: (Bsh+1, Bsh+2)← Deposit(P)
13: (Bsh+2, Bsh+3)← Deposit(E)
14: end if
15: return FP array B.

As we stated before, all the bins are initialized with
a constant value depending on their LSB, that is going
to be subtracted before the renormalization step. This
type of addition was first used by Rump (in [7]) for
adding the elements of an array of FP numbers. In his
paper he proved that the result is correct. For the sake
of completeness we also give here a short correctness
proof.

Proof of correctness for Algorithm 2
In what follows we will prove that when accumulating
the numbers as we do in Algorithm 2 no rounding errors
can occur and the result is exact.

We consider all the values that fall into the same bins
Bsh, Bsh+1 as an array of FP numbers x1, . . . , xn that
satisfy |xi| < 2e+b, where 2e is the LSB of Bsh and b is
the size of the bins. The lower part of each xi is denoted
by xli and represents the part that will be accumulated
into Bsh+1.

Proposition 3.2. Let x1, . . . , xn an array of precision-p FP
numbers that satisfy |xi| < 2e+b, for all 0 < i ≤ n, where
b < p−1. We initialize a FP container with s0 = 1.5 ·2e+p−1,
we compute s1 = RN(s0 + x1); . . . ; si = RN(si−1 +
xi); . . . ; sn = RN(sn−1 + xn); and we return the value
RN(sn − s0). For each xi we also compute the lower part
x`i = RN(RN(si−1 − si) + xi). When using this method,
no significant informations is lost in the process, though no
rounding can occur, provided that n ≤ 2p−b−2 − 1 and that
no underflow / overflow occurs during the calculations.

Proof: We first prove by induction that the following
statement holds:

1.5 · 2e+p−1 − i · 2e+b ≤ si ≤ 1.5 · 2e+p−1 + i · 2e+b. (1)

It is easy to see that it holds for i = 0. Now we assume
that is true for i and we try to prove it for i + 1. We
deduce:

1.5·2e+p−1−(i+1)2e+b ≤ si+xi+1 ≤ 1.5·2e+p−1+(i+1)2e+b.

Hence, since rounding is a monotonic function:

RN(1.5 · 2e+p−1 − (i+ 1)2e+b) ≤ si+1

≤ RN(1.5 · 2e+p−1 + (i+ 1)2e+b).

The value 1.5 ·2e+p−1− (i+1)2e+b is an exact FP number
because it is a multiple of 2e and it is less than 2e+p

in absolute value, provided that i ≤ 2p−b−1 · 3.5 − 1,
which holds in all practical cases (with our parameters:
i ≤ 447 for double-precision –p = 53 and b = 45– and
i ≤ 111 for single-precision –p = 24 and b = 18–). The
same holds for 1.5 · 2e+p−1 + (i + 1)2e+b provided that
i ≤ 2p−b−2 − 1, which also holds in all practical cases
(with our parameters: i ≤ 63 for double-precision and
i ≤ 15 for single-precision).

Furthermore, we have (si, x
`
i) = Fast2Sum(si−1, xi),

therefore
∀i, si + x`i = si−1 + xi,

such that, by induction,

si + x`i + x`i−1 + . . .+ x`1 = s0 + x1 + x2 + . . .+ xi,

which implies

(sn − s0) + x`n + x`n−1 + . . .+ x`1 = x1 + x2 + . . .+ xn.

From (1), we easily find that sn and s0 are within
a factor 2 (in practice, much less), such that (from
Sterbenz’ lemma), their difference is exactly computed:
RN(sn − s0) = sn − s0. We therefore conclude that

RN(sn − s0) + x`n + x`n−1 + . . .+ x`1 = x1 + x2 + . . .+ xn.

5

The last part of Algorithm 1 consists in applying a
renormalization algorithm (see Algorithm 3) on the bins
array, in order to render the result ulp-nonoverlapping .
This is a chain of Fast2Sum starting from the two most
significant components and propagating the errors. If
however, the error after a Fast2Sum block is zero, then
we propagate the sum (this is shown in Figure 2).

Algorithm 3 Renormalize(x).

Input: FP array x = (x0, . . . , xn−1);
Output: ulp-nonoverlapping FP expansion r = r0 + . . . +

rk−1.
1: ε← x0
2: j ← 0
3: i← 1
4: while i < n and j < k do
5: (rj , ε)← Fast2Sum(ε, xi)
6: if ε = 0 then
7: ε← rj
8: else
9: j ← j + 1

10: end if
11: i← i+ 1
12: end while
13: if ε 6= 0 and j < k then
14: rj ← ε
15: end if
16: return FP expansion r = r0 + . . .+ rk−1.

Fig. 2: Renormalize with n terms. Each Fast2Sum box
performs an error-free transform; the sum is outputted

downwards and the error to the right. If the error is zero, the
sum is propagated to the right, otherwise the error is

propagated and the sum is outputted.

Proof of correctness for Algorithm 3
In what follows we will prove the correctness of Algo-
rithm 3 by using the notations seen in Figure 2.

Proposition 3.3. Let an input array x = (x0, . . . , xn−1) that
satisfies: xi is multiple of 2e0−ib = 2ei and |xi+1| < 2ei+c+1,
for all 0 ≤ i < n − 1, where b + c = p − 1 (c << b). Also
|x0| > |x1| and |x0| < 2e0+p+1. After applying Algorithm 3,
the output array r = (r0, . . . , rk−1), with 0 ≤ k ≤ n−1 is an
ulp-nonoverlapping expansion, provided that no underflow
/ overflow occurs during the calculations.

Proof: The case when x contains 1 or 2 elements is
trivial. Consider now at least 3 elements. By the input

type we know that:

x0 = X0 · 2e0 ,
x1 = X1 · 2e1 with e1 = e0 − b.

Hence, r0 and ε1 are both multiples of 2e0−b. Two
possible cases may occur:

(i) ε1 = 0. If we choose to propagate directly ε1, then
r1 = x2 and ε2 = 0. This implies, by induction, that
ri = xi+1,∀i ≥ 1. So, directly propagating the error poses
a problem, since the whole remaining chain of Fast2Sum
is executed without any change between the input and
the output. So, as shown in Algorithm 3, line 7, when
εi = 0 we propagate the sum rj , so ε′i ← rj .

(ii) ε1 6= 0. By definition of Fast2Sum, we have
|ε1| ≤ 1

2 ulp(r0). We also have |x0| > |x1|, so |r0| =
|RN(x0 + x1)| ≤ 2 |x0|. Hence: |ε1| < 2e0+2.

We now prove by induction the following statement:
at each step i ≥ 1 of the loop in Algorithm 3, both ri−1
and εi are multiples of 2ei and εi = 0 or |εi| < 2ei+b+2,
meaning that εi fits in at most b+1 bits. We proved above
that for i = 1 this holds. Suppose now it holds for i and
prove it for i+ 1.

At this step we have ε′i + xi+1 = ri + εi+1. Since ε′i
is a multiple of 2ei and xi+1 is a multiple of 2ei+1 , with
ei+1 = ei−b, then both ri and εi+1 are multiples of 2ei+1 .
Two cases may occur:
– if |ε′i| < 2ei+c+1 then ε′i + xi+1 is a FP number, which
implies ri = ε′i+xi+1 exactly and εi+1 = 0, in which case
we propagate ri < 2ei+c+2.
– if |ε′i| > 2ei+c we have |ri| ≤ 2 |ε′i| and we get (by
definition of Fast2Sum):

|εi+1| ≤
1

2
ulp(ri)

< 2−p · 2 · 2ei+b+2

< 2ei−c+2

(2)

This condition is even stronger than what we were trying
to prove, so the induction holds.

Finally, we prove the relation between ri−1 and ri. If
εi = 0, we propagate ri−1, i.e. ε′i ← ri−1. Otherwise |ri| =
|RN(ε′i + xi+1)| ≤ 2 |ε′i| and since ε′i ≤ 1

2 ulp(ri−1), then
|ri| ≤ ulp(ri−1) and the proposition is proven.
Remark 3.4. After using Algorithm 3, the result π =
π0+ . . .+πr−1 (of Algorithm 1) cannot have interleaving
zeros; zeros may appear only at the end of the expansion.

3.1 Error analysis for multiplication
The multiplication algorithm explained in the above
section returns only an approximation of the exact result,
but the maximum error that can occur is bounded. We
give here the error bound that we computed and we
prove its correctness.

Proposition 3.5. Let x and y be two ulp-nonoverlapping
FP expansions, with n, and m terms, respectively. If, for
computing the product xy we use Algorithm 1, the result π,

6

with r terms, satisfies: |xy − π| ≤ |x0y0| 2−(p−1)r[1 + (r +

1)2−p + 2−(p−1)
(
−2−(p−1)

(1−2−(p−1))2
+ m+n−r−2

1−2−(p−1)

)
], provided that

no underflow / overflow occurs during the calculations.

For simplicity, we will first prove an intermediate
proposition, and only after that we proceed to the proof
on the final bound.

Proposition 3.6. Let x and y be two ulp-nonoverlapping
FP expansions, with n, and m terms, respectively. If, when
computing the product xy we “truncate” the operations

by adding only the first
r+1∑
k=1

k partial productsproducts,

where r is the required size of the final result, then

the generated error satisfies:

∣∣∣∣∣xy − r∑
k=0

∑
i+j=k

xiyj

∣∣∣∣∣ ≤

|x0y0| 2−(p−1)(r+1)
(
−2−(p−1)

(1−2−(p−1))2
+ m+n−r−2

1−2−(p−1)

)
, provided

that no underflow / overflow occurs during the calculations.

Proof: From the definition of the ulp-nonoverlapping
expansion we have x1 ≤ ulp(x0) ≤ 2−p+1 |x0| and, by
induction, we get xi ≤ 2−pi+i |x0|, for all 0 < i < n. The
same goes for y.

The discarded partial products satisfy:

m+n−2∑
k=r+1

∑
i+j=k

aibj ≤
m+n−2∑
k=r+1

∑
i+j=k

2−p(i+j)+i+j |x0y0|

≤ |x0y0|
m+n−2∑
k=r+1

∑
i+j=k

2−(p−1)k

≤ |x0y0|
m+n−2∑
k=r+1

(m+ n− 1− k)2−(p−1)k

≤ |x0y0|
m+n−r−3∑

k′=0

(m+ n− k′ − r − 2)2−(p−1)(k
′+r+1)

≤ |x0y0| 2−(p−1)(r+1)

×
m+n−r−3∑

k′=0

(m+ n− r − 2− k′)2−(p−1)k
′
.

(3)

We define the function φ(e) =
∞∑
k=0

(m+n− r− 2−k)ek

that satisfies:

φ(e) =

∞∑
k=0

−kek +

∞∑
k=0

(m+ n− r − 2)ek

= −e
∞∑
k=1

kek−1 + (m+ n− r − 2)

∞∑
k=0

ek

= −e d
de

(∞∑
k=1

ek

)
+ (m+ n− r − 2)

1

1− e

= −e d
de

(
1

1− e

)
+
m+ n− r − 2

1− e

=
−e

(1− e)2
+
m+ n− r − 2

1− e
.

When applying function φ(2−(p−1)) in equation (3) we
get:

m+n−2∑
k=r+1

∑
i+j=k

xiyj ≤ |x0y0| 2−(p−1)(r+1)·

·
(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)
,

which concludes the proof.
We are now able to prove Prop. 3.5.

Proof: (of Prop. 3.5) When using Algorithm 1 we
“truncate” the result by discarding the partial products
with an order of magnitude less than πr. From Prop. 3.6
we know that this causes a maximum error that is less
or equal to

|x0y0| 2−(p−1)(r+1)

(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)
.

(4)
Also, in the algorithm we do not use error-free trans-

forms for computing the last r + 1 partial products, the
ones with the same order of magnitude as πr, for which
i + j = r. We know that |xiyj | ≤ 2−(p−1)(i+j) |x0y0|,
from where |xiyj − RN(xiyj)| ≤ 2−(p−1)r |x0y0| 2−p. This
implies that the maximum error caused doing this is less
or equal to:

(r + 1) |x0y0| 2−(p−1)r · 2−p. (5)

Apart from these two possible errors we also need to
account for the error caused by the renormalization step.
We already showed that Algorithm 3 returns an ulp-
nonoverlapping expansion, in which case the maximum
error is less or equal to ulp(πr−1). This implies that is
less or equal to:

|x0y0| 2−(p−1)r. (6)

To get the final error bound we have to add the bounds
on all the possible errors that can occur, Eq. (4), (5) and
(6), and we get:

|x0y0|2−(p−1)r[1 + (r + 1)2−p+

+ 2−(p−1)
(
−2−(p−1)

(1− 2−(p−1))2
+
m+ n− r − 2

1− 2−(p−1)

)
]

This concludes our proof.

3.2 Complexity analysis for multiplication
As presented before our algorithm has the advantage of
computing “truncated” expansions on the fly, by taking
into account only the significant terms of the input
expansions.

We present here the worst case FP operation count
of our algorithm, by taking ([8]) 3 FP operations for
Fast2Sum and 2 for 2MultFMA. For the sake of simplicity,
we will consider that the input expansions and the result
have the same number of terms, say k.

Proposition 3.7. When using Algorithm 1 for computing
the product of two FP expansions with k terms, we perform
13
2 k

2 + 33
2 k + 6(bk·pb c+ 2) + 55 FP operations.

7

Proof: During a preprocessing step we need to get
the exponents of each term of the input expansions. We
do this using the math.h library function, frexp, that uses
only one FP operation, which we call 2k times.

The first step of the algorithm consists in initializing
the bins; as mentioned in Sec. 3, we allocate binNr =
bk·pb c + 2 bins. For this we use twice the math.h library
function, ldexp (that can take up to 34 FLOPS, depend-
ing on the exponent’s size), and after that we perform
binNr − 1 FP multiplications.

During the main loop of the algorithm we compute∑k
i=1 i partial products using 2MultFMA, which we ac-

cumulate into the bins using 3 Fast2Sum calls and 2 FP
additions. During this same loop we also compute k− 1
correction terms using simple FP multiplication, which
we can accumulate using only 2 Fast2Sum calls and one
FP addition.

In the last part of the algorithm we first unbias the
bins, by subtracting their initial values from each one of
them, followed by the renormalization of the result. This
accounts for a total of binNr FP subtractions followed by
binNr − 1 calls to Fast2Sum and comparisons.

When adding all the operations accounted for above,
we conclude that Algorithm 1 requires a total of 13

2 k
2 +

33
2 k + 6(bk·pb c+ 2) + 55 FP operations.

4 COMPARISON AND DISCUSSION

In Table 1 we give effective values of the worst case
FP operation count for our algorithm (see Sec. 3.2)
vs. Priest’s multiplication algorithm ([9]), which, when
multiplying two P-nonoverlapping expansions with n and
respectively m terms, it requires 81mn2+747nm+2m−
233n FP operations.

We chose to use it for comparison because it is more
general than the QD/GQD one, which is limited to
double-double and quad-double precision, plus, from
our knowledge, is the only algorithm in the literature
of FP expansions provided with a complete correctness
proof and error analysis. This algorithm is not tuned for
obtaining “truncated” results on the fly, meaning that it
computes the result fully and only then truncates, which
allows for a straightforward error analysis, but makes it
more costly.

TABLE 1: Effective values of the worst case FP operation
count for Algorithm 1 and Priest’s multiplication algo-
rithm [9] when the input and output expansions are of
size r.

r 2 4 8 16
Algorithm 1 138 261 669 2103

Priest’s mul. ([9]) 3174 16212 87432 519312

In practice however, Baileys QD/GQD and MPFR
libraries are very often used, so we present the per-
formance results comparing to these. We do this for
completeness reasons, even though the comparison is

not completely fair since we target different things. To
be exact:
(i) MPFR uses a different representation for extended
precision and is limited to CPU use;
(ii) QD and GQD libraries are limited to double-double
and quad-double precisions, plus the algorithm used in
the implementation of quad-double are not provided
with any correctness proof and there is no specific error
bound given.

This algorithm is part of the CAMPARY (CudA Multi-
ple Precision ARithmetic librarY) software that is avail-
able at: http://homepages.laas.fr/mmjoldes/campary/.
Our implementation was done using CUDA C – an
extension of the C language developed by NVIDIA [12]
for their GPUs. Algorithm 1 is suitable for GPU use,
since all basic operations (+,−, ∗, /,√) conform to the
IEEE 754-2008 standard for FP arithmetic for single- and
double-precision, support for the four rounding modes
is provided and dynamic rounding mode change is
supported without any penalties. The fma instruction is
supported for all devices with Compute Capability at least
2.0, which allows us to use the 2MultFMA algorithm.

In the implementation we use templates for the num-
ber of terms in the expansions, meaning that we allow
static generation of any input-output precision combi-
nations (e.g. add a double-double with a quad-double
and store the result on triple-double). All the functions
are defined using host device specifiers, which
allows for the library to be used on both CPU and
GPU. We would like to stress here the fact that the
algorithm is not itself parallelized; our intention is to
provide a multiple precision alternative for problems
that are suitable for GPU use.

In Table 2 we give some CPU performance measure-
ments obtained on an Intel(R) Xeon(R) CPU E5-2609 v3
@ 1.90GHz computer. The values are given in MFlops/s
and by one Flop we understand one operation using
extended precision.

TABLE 2: Performance in MFlops/s for multiplying two
FP expansions on the CPU; dx and dy represent the
number of terms in the input expansions and dr is the
size of the computed result. ∗ precision not supported

dx, dy , dr Algorithm 1 QD MPFR
2, 2, 2 11.69 99.16 18.64
1, 2, 2 14.96 104.17 19.85
3, 3, 3 6.97 ∗ 12.1
2, 3, 3 8.62 ∗ 13.69
4, 4, 4 4.5 5.87 10.64
1, 4, 4 8.88 15.11 14.1
2, 4, 4 6.38 9.49 13.44
8, 8, 8 1.5 ∗ 6.8
4, 8, 8 2.04 ∗ 9.15

16, 16, 16 0.42 ∗ 2.55

Table 3 contains the performance values obtained on
a GPU, in comparison to the GQD library. The tests
were performed on a Tesla K40c GPU, using CUDA
7.5 software architecture, running on a single thread of
execution.

8

TABLE 3: Performance in MFlops/s for multiplying two
FP exansions on the GPU; dx and dy represent the
number of terms in the input expansions and dr is the
size of the computed result. ∗ precision not suported

dx, dy , dr Algorithm 1 QD
2, 2, 2 0.027 0.1043
1, 2, 2 0.365 0.1071
3, 3, 3 0.0149 ∗
2, 3, 3 0.0186 ∗
4, 4, 4 0.0103 0.0174
1, 4, 4 0.0215 0.0281
2, 4, 4 0.0142 ∗
8, 8, 8 0.0034 ∗
4, 8, 8 0.0048 ∗

16, 16, 16 0.001 ∗

From the above mentioned tables we deduce that for
small size expansions (2 up to 4 terms) the algorithm
is too complex to be efficient. In these cases we sug-
gest the use of a different algorithm, presented shortly
in [13] (Algorithm 5 and Figure 4), that takes advan-
tage of the processor’s pipeline by avoiding branches.
That algorithm is a generalized version of the QD’s
multiplication combined with a proven renormalization
algorithm. It allows for a tight error bound when small
expansion results are needed (just slightly larger than the
one obtained when using Algorithm 1), but it becomes
exponentially worst as the size of the result increases,
which limits its practical interest to expansions with at
most 4 terms.

ACKNOWLEDGMENTS

The Authors would like to thank Région Rhône-Alpes
and ANR FastRelax Project for the grants that supports
this activity.

REFERENCES

[1] IEEE Computer Society, IEEE Standard for Floating-Point Arith-
metic. IEEE Standard 754-2008, Aug. 2008, available at http:
//ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[2] J. Laskar and M. Gastineau, “Existence of collisional trajectories
of Mercury, Mars and Venus with the Earth,” Nature, vol.
459, no. 7248, pp. 817–819, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1038/nature08096

[3] M. Joldes, V. Popescu, and W. Tucker, “Searching for sinks for
the hénon map using a multipleprecision gpu arithmetic library,”
SIGARCH Comput. Archit. News, vol. 42, no. 4, pp. 63–68, Dec.
2014. [Online]. Available: http://doi.acm.org/10.1145/2693714.
2693726

[4] A. Abad, R. Barrio, and A. Dena, “Computing periodic orbits
with arbitrary precision,” Phys. Rev. E, vol. 84, p. 016701, Jul 2011.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.
84.016701

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-Precision Binary Floating-Point Library with
Correct Rounding,” ACM Transactions on Mathematical Software,
vol. 33, no. 2, 2007, available at http://www.mpfr.org/.

[6] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic (ARITH-16), N. Burgess and
L. Ciminiera, Eds., Vail, CO, Jun. 2001, pp. 155–162.

[7] S. M. Rump, “Ultimately Fast Accurate Summation,” SIAM
Journal on Scientific Computing, vol. 31, no. 5, pp. 3466–3502, Jan.
2009. [Online]. Available: http://dx.doi.org/10.1137/080738490

[8] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010,
ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[9] D. M. Priest, “Algorithms for arbitrary precision floating point
arithmetic,” in Proceedings of the 10th IEEE Symposium on Computer
Arithmetic (Arith-10), P. Kornerup and D. W. Matula, Eds. IEEE
Computer Society Press, Los Alamitos, CA, Jun. 1991, pp. 132–
144.

[10] J. R. Shewchuk, “Adaptive precision floating-point arithmetic
and fast robust geometric predicates,” Discrete Compu-
tational Geometry, vol. 18, pp. 305–363, 1997. [Online].
Available: http://link.springer.de/link/service/journals/00454/
papers97/18n3p305.pdf

[11] D. M. Priest, “On properties of floating-point arithmetics: Nu-
merical stability and the cost of accurate computations,” Ph.D.
dissertation, University of California at Berkeley, 1992.

[12] NVIDIA, NVIDIA CUDA Programming Guide 5.5, 2013.
[13] M. Joldes, O. Marty, J.-M. Muller, and V. Popescu, “Arithmetic al-

gorithms for extended precision using floating-point expansions,”
IEEE Transactions on Computers, vol. PP, no. 99, p. 1, 2015.

