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ABSTRACT

Canonical correlation analysis (CCA) is a well-known technique
used to characterize the relationship between two sets of multi-
dimensional variables by finding linear combinations of variables
with maximal correlation. Sparse CCA or regularized CCA are two
widely used variants of CCA because of the improved interpretabil-
ity of the former and the better performance of the later. So far the
cross-matrix product of the two sets of multidimensional variables
has been widely used for the derivation of these variants. In this
paper a new algorithm for sparse CCA is proposed. This algorithm
differs from the existing ones in their derivation which is based on
penalized rank one matrix approximation and the orthogonal pro-
jectors onto the space spanned by the two sets of multidimensional
variables instead of the simple cross-matrix product. The perfor-
mance and effectiveness of the proposed algorithm are tested on
simulated experiments. On these results it can be observed that they
outperform the state of the art sparse CCA algorithms.

Index Terms— Canonical correlation analysis (CCA), Sparse
representation, Rank-1 matrix approximation.

1. INTRODUCTION

Canonical correlation analysis (CCA) [1] is a multivariate analysis
method, the aim of which is to identify and quantify the associa-
tion between two sets of variables. The two sets of variables can
be associated with a pair of linear transforms (projectors) such that
the correlation between the projections of the variables in lower-
dimensional space through these linear transforms are mutually max-
imized. The pair of canonical projectors are easily obtained by solv-
ing a simple generalized eigenvalue decomposition problem, which
only involves the covariance and cross-covariance matrices of the
considered random vectors. CCA has been widely applied in many
important fields, for instance, facial expression recognition [2], de-
tection of neural activity in functional magnetic resonance imag-
ing (fMRI) [3, 4], machine learning [5, 6] and blind source separa-
tion [7,8]. In the context of high-dimensional data, there are usually
a large portion of features that are not informative in data analy-
sis. When the canonical variables involve all features in the original
space, the canonical projectors are in general not sparse. There-
fore, it is not easy to interpret canonical variables in such high-
dimensional data analysis. These problems may be tackled by se-
lecting sparse subsets of variables, i.e. obtaining sparse canoni-
cal projectors in the linear combinations of variables of each data
set [6, 9–11]. For example, in [10] the authors propose a new crite-
rion for sparse CCA and applied a penalized matrix decomposition
approach to solve the sparse CCA problem and in [9] the presented

sparse CCA approach computes the canonical projectors from pri-
mal and dual representations.
In this paper, we adopt an alternative formulation of CCA problem
which is based on rank-1 matrix approximation of the orthogonal
projectors of data sets [12]. Based on this new formulation of CCA
problem, we developed a new sparse CCA based on penalized rank-1
matrix approximation which aims to overcome the drawback of CCA
in the context of high-dimensional data and improve interpretability.
The proposed sparse CCA seeks to obtain iteratively a sparse pair-
wise of canonical projectors by solving a penalized rank-1 matrix
approximation via sparse coding method. This proposed algorithm
differs from the existing ones in their derivation which is based on
penalized rank one matrix approximation and the orthogonal pro-
jectors onto the space spanned by the two sets of multidimensional
variables instead of the simple cross-matrix product [6, 9–11].

2. CANONICAL CORRELATION ANALYSIS

In this section, we present briefly a review of CCA and its optimiza-
tion problem. Let x ∈ Rdx and y ∈ Rdy be two random vectors
and we assume, without loss of generality, that both x and y have
zero mean, i.e. E[x] = 0 and E[y] = 0 where E[·] is the expecta-
tion operator. CCA seeks a pair of linear transform wx ∈ Rdx and
wy ∈ Rdy , such that correlation between wT

x x and wT
y y is max-

imized. Mathematically, the objective function to be maximized is
given by:

ρ(wx,wy) =
cov(wT

x x,w
T
y y)√

var(wT
x x) var(wT

y y)
. (1)

Then, the objective function ρ can be rewritten as:

ρ(wx,wy) =
wT

x Cxywy√
(wT

x Cxxwx)(wT
y Cyywy)

, (2)

where Cxx = E[xxT ], Cyy = E[yyT ] and Cxy = E[xyT ] are the
covariance matrices. Since the value of ρ(wx,wy) is invariant with
the magnitude of the projection direction, we can turn to solve the
following optimization problem

arg max
wx,wy

wT
x Cxywy

subject to wT
x Cxxwx = 1, wT

y Cyywy = 1.

One way to solve this problem is as proposed in [5] by assuming
Cyy is invertible, we can write

wy =
1

λ
C−1

yy CT
xywx, (3)



where λ is the Lagrangian parameter and by substituting and assum-
ing Cxx is invertible gives

C−1
xx CxyC

−1
yy CT

xywx = λ2 wx. (4)

It has been shown in [5] that we can choose the associated eigenvec-
tors corresponding to the top eigenvalues of the generalized eigen-
value problem in (4) and then use (3) to find the corresponding wy .
A number of existing methods for sparse CCA have used the descrip-
tion provided above of CCA and focused on the use of the cross ma-
trix Cxy for the derivation of new CCA variant algorithms [6,9–11].
For the derivation of the proposed CCA variants we adopt an alterna-
tive description of CCA which is based on the orthogonal projectors
onto the space spanned by the two sets of multidimensional vari-
ables [12].

3. CANONICAL CORRELATION ANALYSIS BASED ON
RANK-1 MATRIX APPROXIMATION

In practice, the covariance matrices Cxx, Cyy and Cxy are usually
not available. Instead, the estimated covariance matrices are con-
structed based on given sample data. Let X = [x1, . . . ,xN ] ∈
Rdx×N and Y = [y1, . . . ,yN ] ∈ Rdy×N are two sets of instances
of x and y, respectively. Then, the optimization problem for CCA
based on estimated covariance matrices is given by

arg max
wx,wy

wT
x XY Twy (5)

subject to wT
x XXTwx = 1, wT

y Y Y Twy = 1,

and the generalized eigenvalue problem can be rewritten as

XY Twy = λXXTwx (6)

Y XTwx = λY Y Twy. (7)

Then, by multiplying the both side of equations (6) and (7) by
XT (XXT )−1 and Y T (Y Y T )−1 respectively, we obtain:

XT (XXT )−1XY Twy = PxY
Twy = λXTwx (8)

Y T (Y Y T )−1Y XTwx = PyX
Twx = λY Twy, (9)

where Px = XT (XXT )−1X and Py = Y T (Y Y T )−1Y are the
orthogonal projectors onto the linear spans of the rows of X and Y
respectively. So substituting XTwx in equation (9) and Y Twy in
equation (8) gives

PxPyX
Twx = λ2 XTwx

PyPxY
Twy = λ2 Y Twy,

Therefore, the rank-1 matrix approximation of Kxy = PxPy can
be formulated as solving the following optimization from:

arg min
wx,wy

‖Kxy −XTwxw
T
y Y ‖2F (10)

where ‖·‖2F is the squared Frobenius norm. Consequently, the pro-
jected data wT

x X and wT
y Y consist on the eigenvectors associated

to the largest eigenvalue of the matrix Kxy . Hence, for multiple
projected data the solution consist on the associated eigenvectors
corresponding to the top eigenvalues of the matrix Kxy . One dis-
advantage of the above approach is the restriction that XXT and
Y Y T must be nonsingular. In order to prevent overfitting and avoid
the singularity of XXT and Y Y T [5], two regularization terms
γxIdx and γyIdy , with γx > 0, γy > 0 are added in (5). Therefore,
the regularized version solves the generalized eigenvalue problem
with Px = XT (XXT + γxIdx)

−1X and Py = Y T (Y Y T +
γyIdy )

−1Y .

4. SPARSE CCA ALGORITHM BASED ON RANK-1
MATRIX APPROXIMATION

In this section, we will propose the sparse CCA method based on
rank-1 matrix approximation by penalizing the optimization problem
(10). Then, we propose an efficient iterative algorithm to solve the
sparse solution of the proposed criterion. In general cases, the canon-
ical projectors wx and wy solutions of equation (10) are not sparse,
i.e., the entries of both wx and wy are nonzeros. To obtain the sparse
solution, we adopt the similar trick used in [6, 10, 11] by imposing
penalty functions on the optimization problem (10). Therefore, we
can write the new optimization problem as:

arg min
wx,wy

‖Kxy −XTwxw
T
y Y ‖2F (11)

subject to Fx(wx) ≤ βx and Fy(wy) ≤ βy,

where Fx(·) and Fy(·) are penalty functions, which can take on
a variety of forms. Useful examples are: `0-quasi-norm F(z) =
‖z‖0 which count the nonzero entries of a vector; Lasso penalty with
`1-norm F(z) = ‖z‖1 and so on. The optimization problem (11)
can be alternatively solved by optimizing wx and wy . Specifically,
we first fix wy and solve wx by minimizing (11). Then, we fix
wx and minimize (11) to obtain wy . The above two procedures are
repeated until convergence. The straightforward approach to solve
this problem is to formulate it as an ordinary sparse coding task.
Then, for a fix wy the problem (11) is equivalent to much simpler
sparse coding problem

arg min
wx

‖KxyY
Twy −XTwx‖22 subject to Fx(wx) ≤ βx

which can be solved by using any sparse approximation method. In
the same way, we can solve the problem (11) regarding wy for a fix
wx by minimizing the following criterion:

arg min
wy

‖KT
xyX

Twx − Y Twy‖22 subject to Fy(wy) ≤ βy

Based on the above description, we can obtain the first pairwise of
sparse projectors wx and wy . For multiple projection vectors, we
propose to use a deflation procedure where the second pairwise of
sparse projectors are defined by using the corresponding residual
matrices Kxy − wT

x XKxyY
TwyX

Twxw
T
y Y . Using the same

way, we can define the other pairwise of sparse projectors. Then, we
summarized the method of solving the entire Sparse rank-1 matrix
approximation CCA in Algorithm 1

5. EXPERIMENTS

In this section, we present several computer simulations to demon-
strate the effectiveness of the proposed algorithm. We compare the
performance of the proposed algorithm with existing state of the art
sparse CCA methods:

• The sparse CCA presented in [10], relying on a penal-
ized matrix decomposition denoted PMD. An R package
implementing this algorithm, called PMA, is available at
http://cran.r-project.org/web/packages/
PMA/index.html. Sparsity parameters are selected using
the permutation approach presented in [13] of which the code
is provided in PMA package.

• The sparse CCA presented in [6] where the CCA is re-
formulated as a least-squares problem denoted LS CCA.

http://cran.r-project.org/web/packages/PMA/index.html
http://cran.r-project.org/web/packages/PMA/index.html


Algorithm 1 Sparse rank-1 matrix approximation CCA algorithm

Input: Training data X ∈ Rdx×N and Y ∈ Rdy×N .
Output: The r pairs of canonical projector Wx ∈ Rdx×r and

Wy ∈ Rdy×r .
1: Compute Px = XT (XXT + γxIdx)

−1X , Py =
Y T (Y Y T + γyIdy )

−1Y and Kxy = PxPy;
2: for i = 1, 2, . . . , r do
3: Perform the SVD of Kxy : Kxy = UDV T ;
4: Initialize ũ = u1 and ṽ = v1;
5: repeat
6: Update the i-th column of Wx : Wx(:, i) =

arg min
Wx(:,i)

‖Kxyṽ − XTWx(:, i)‖22 subject to Fx(Wx(:

, i)) ≤ βx;
7: Update ũ = XTWx(:,i)

‖XTWx(:,i)‖2
;

8: Update the i-th column of Wy : Wy(:, i) =
arg min
Wy(:,i)

‖KT
xyũ − Y TWy(:, i)‖22 subject to Fy(Wy(:

, i)) ≤ βy;

9: Update ṽ =
Y TWy(:,i)

‖Y TWy(:,i)‖2
;

10: until convergence
11: Update Kxy : Kxy ←Kxy − ũTKxyṽũṽ

T ;
12: end for

A Matlab package implementing this algorithm is avail-
able at http://www.public.asu.edu/~jye02/
Software/CCA/.

• The sparse CCA presented in [11] where the sparse canoni-
cal projectors are computed by solving two `1-minimization
problems by using Linearized Bregman iterative method [14].
This algorithm is denoted CCA LB (Linearized Bregman).
We re-implemented the sparse CCA algorithm proposed [11]
in Matlab.

For proposed sparse CCA algorithm, we have used Fx(z) =
Fy(z) = ‖z‖0 as penalty functions. We solve the sparse coding
problem by using orthogonal matching pursuit algorithm [15, 16].

5.1. Synthetic data

This simulation setup is inspired from [17]. The synthetic data X
and Y were generating according to multivariate normal distribu-
tion, with covariance matrices described in Table 1. The number of
simulations with each configuration was Nr = 1000. We compare
the performance of our algorithm to methods of the state of the art
by estimating the precision accuracy of the space spanned by esti-
mated canonical projectors. Then, we compute for each simulation
run r the angle θr(Ŵ r

x ,Wx) between the subspace spanned by the
estimated canonical projectors contained in the columns of Ŵ r and
the subspace spanned by the true canonical projectors contained in
the columns of Wx solution of the eigenproblem (4). The same cri-
terion is used for the canonical projectors Wy . The average angles
are estimated over Nr Monte-Carlo run such that:

θx =
1

Nr

Nr∑
r=1

θr(Ŵ r
x ,Wx) and θy =

1

Nr

Nr∑
r=1

θr(Ŵ r
y ,Wy)

For each algorithm, we used the following parameters; LS CCA al-
gorithm with λx = λy = 0.5, CCA LB algorithm with µx = µy =
2 and Algorithm 1 with βx = βy = 3. The simulation performance

on the estimated angle between the subspace spanned by the true
canonical projectors and the estimated one by the different methods
are reported in Table 2. We can observe that the simulation accuracy

Table 2. Simulation results with synthetic data
θx θy θx θy θx θy

Method N = 50 N = 100 N = 200
Scen 1:

CCA 0.539 0.503 0.346 0.347 0.227 0.238
LS CCA 0.416 0.369 0.264 0.265 0.178 0.187
CCA LB 0.517 0.515 0.331 0.334 0.225 0.222

PMD 0.220 0.242 0.090 0.050 0.020 0.017
Algo 1 0.201 0.219 0.049 0.027 0.004 0.005

Scen 2:
CCA 0.509 0.668 0.310 0.412 0.208 0.277

LS CCA 0.348 0.508 0.228 0.324 0.160 0.218
CCA LB 0.300 0.376 0.022 0.022 0.001 0.001

PMD 0.2061 0.306 0.023 0.070 0.004 0.044
Algo 1 0.116 0.150 0.001 0.001 10−4 10−4

Scen 3:
CCA 0.812 0.995 0.560 0.667 0.339 0.448

LS CCA 0.527 0.730 0.355 0.471 0.241 0.344
CCA LB 0.760 0.920 0.278 0.516 0.014 0.315

PMD 0.611 0.827 0.203 0.461 0.039 0.337
Algo 1 0.399 0.685 0.017 0.323 10−4 0.303

Scen 4:
CCA 1.379 1.376 0.887 0.874 0.470 0.472

LS CCA 0.853 0.829 0.523 0.518 0.337 0.337
CCA LB 1.368 1.365 0.726 0.734 0.047 0.041

PMD 1.397 1.354 1.131 1.034 0.408 0.382
Algo 1 1.118 1.098 0.027 0.027 10−4 10−4

of the proposed sparse CCA method is significantly better compared
to other CCA methods, especially for a large number of observations
N . In the case of low number of observations the proposed sparse
CCA method is still doing well and where the performance gain in-
creases with increasing number of observations. This demonstrates
the robustness of our sparse CCA method with respect to the num-
ber of available observations and the benefit of using our sparse CCA
method in the context of a relatively low number of observations

5.2. Blind source separation for fMRI signals

In this section we evaluate the performance of the proposed CCA
variant algorithms on a problem of functional magnetic resonance
imaging (fMRI) resting state experiment. In this case we are inter-
ested in functional connectivity and recovering a resting state net-
work; i.e., the default mode network from a data matrix Y formed
by vectorizing each time series observed in every voxel creating a
matrix n × N where n is the number of time points and N the
number of voxels (≈ 10, 000 − 100, 000) [18]. To estimate func-
tionally connected brain voxels, response signal strength known as
coefficient matrix estimated as X is considered [19]. According to
the neural dynamics of interest, coefficient rows can be converted to
z-scores to obtain sparsely distributed and clustered origin of the dy-
namics. The neural dynamics of interest can be obtained by correlat-
ing the modulation profile with the time-series representing average

http://www.public.asu.edu/~jye02/Software/CCA/
http://www.public.asu.edu/~jye02/Software/CCA/


Table 1. Simulation settings
Parameters dx dy N Cxx Cyy Cxy

Scenario 1 4 4 {50, 100, 200} I4 I4


9
10

0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 0


Scenario 2 4 6 {50, 100, 200} I4 I6


3
5

0 0 0 0 0
0 1

2
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


Scenario 3 6 10 {50, 100, 200} I6

[
M 0
0 I7

]
with M(i, j) = 0.3|i−j|

1
2

[
I2 0
0 0

]
Scenario 4 20 20 {50, 100, 200} I20 I20

7
10

[
I10 0
0 0

]

(a) Reference (b) CCA (c) LS CCA, λ = 0.5

(d) CCA LB, µ = 10 (e) PMD (f) Algorithm 1, β = 4

Fig. 1. The functional connectivity results of a single subject for default mode network (DMN) using different CCA variant algorithms.

neural dynamics for regions of interest (ROIs). The representative
time-series for cortical, subcortical, and cerebellum regions in the
brain were obtained by parcellating the whole brain into 116 ROIs
using automated anatomical labelling [20]. Only the first functional
run from the first subject was used for functional connectivity anal-
ysis of a default mode network (DMN). The functional connectivity
results of a single subject for DMN using eight different CCA vari-
ant algorithms are shown in Figure 1. To obtain these results the
modulation profile that was most correlated with posterior cingulate
cortex (PCC) representative time-series is used. Using the different
CCA variant algorithms, the connected regions obtained for DMN
are mostly PCC, medial pre-frontal cortex (MFC), and right inferior
parietal lobe (IPL), where as for rest of the proposed algorithms. As
there is no gold standard reference for DMN connectivity available,
therefore, we relied on the similarity of temporal dynamics of DMN
based modulation profile with PCC representative time-series. The
similarity measure used was correlation and estimated as > 0.9 for

all the algorithms.

6. CONCLUSION

In this paper, we have developed a new variant of CCA; more specif-
ically we have introduced new algorithm for sparse CCA. The pro-
posed algorithm is based on penalized rank one approximation and
differs from existing ones in the matrices they use for their deriva-
tion. Indeed instead of focusing on the cross-matrix product of the
two sets of multidimensional variables we have used the product of
the orthogonal projectors onto the space spanned by the two sets of
multidimensional variables. Using this approach the sparse CCA al-
gorithm proposed differs only the penalty used in the penalized rank
one matrix approximation. Simulation results illustrating the effec-
tiveness of the proposed CCA variant algorithm are provided where
we can observe that proposed sparse CCA outperforms state of the
art methods.
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