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Abstract. A new formulation based on Hamiltonian reduction technique using the invariance of generalized
canonical momentum is introduced for the study of relativistic Weibel-type instability. An example of
application is given for the current filamentation instability resulting from the propagation of two counter-
streaming electron beams in the relativistic regime of the instability. This model presents a double
advantage. From an analytical point of view, the method is exact and standard fluid dispersion relations
for Weibel or filamentation instabilies can be recovered. From a numerical point of view, the method allows
a drastic reduction of the computational time. A 1D multi-stream Vlasov-Maxwell code is developed using
such dynamical invariants in the perpendicular momentum space. Numerical comparison with a full Vlasov-
Maxwell system has also been carried out to show the efficiency of this reduction technique.

1. INTRODUCTION

As a fundamental issue, the Weibel instability [1] or the current filamentation instability [2–5] are able
to generate a magnetic field by extracting the free energy from an anisotropy velocity distribution in
an unmagnetized plasma. The propagation of a hot electron beam in a plasma induces a return current
in the background plasma to keep current neutralization of the beam-plasma system, resulting in the
current filamentation instability (CFI). Such a scenario is also met and relevant to the concept of the fast
ignitor [6] of laser inertial confinement fusion.

We develop here a multi-stream model, based on a Hamiltonian reduction technique. For a one-
dimensional spatial plasma, exact transverse canonical invariants are used to construct a broad class of
exact nonlinear solutions of the Vlasov-Maxwell system [7].

The paper is organized as follows. In section 2 we present our kinetic multi-stream model as derived
from the Vlasov-Maxwell system. Then we deduce the (fluid) dispersion relation in the relativistic
regime in section 3. Numerical comparisons of our kinetic multi-stream Vlasov model with the standard
1D2V full-kinetic Vlasov-Maxwell are shown in section 4 for a symetric case of CFI and finally section
5 is reserved for the conclusions and discussion.

2. THE MUTI-STREAM VLASOV-MAXWELL MODEL

In this section we will restrict to plane waves propagating along the x direction and assume that
ions are kept fixed. We have to solve a Vlasov equation for a 4D electron distribution function
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F (x, p, t):
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where the (squared) Lorentz factor has the conventional form: �2 = 1 + p2/m2
ec2.

Let us consider the Hamiltonian of one particle in the electromagnetic field (E, B) in the relativistic

regime, H = mec
2 (� − 1) + e� (x, t) with the Lorentz factor: � = [

1 + (Pc − eA⊥ (x, t))2 /m2
ec2

]1/2

where � and A = A⊥ denote respectively, the electrostatic potential and the vector potential. We have
here introduced the canonical momentum Pc connected to the particle momentum p by: Pc = p + eA⊥.
In the Coulomb gauge divA = 0, A = A⊥. Thus the Hamilton equation dPc/dt = −�H/�q can
be written in the longitudinal and perpendicular directions as: dPcx/dt = −�H/�x and dPc⊥/dt =
−�H/�q⊥ = 0 since the Hamiltonian H does not depend of the transverse spatial coordinates.
Explicitly, it is the invariance of the perpendicular canonical momentum Pc⊥ which allows us to built
the multi-stream model using the Hamiltonian formalism.

Without loss of generality, we can consider a plasma, initially prepared so that particles are divided
into N bunches of particles, each “stream” j (with j = 1, ..., N ) having the same initial perpendicular
momentum Pc⊥ = Cj = const . It is then possible to define, for each stream j a distribution function
fj (x, px , t) which must satisfy the Vlasov equation:
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= 0, f or j = 1, ..., N . (2)

The Lorentz factor �j , for the particle bunch j , is : �j =
[
1 + p2

x/m2
ec2 + (

Cj − eA⊥ (x, t)
)2

/m2
ec2

]1/2
.

Therefore the full distribution function F (x, px , p⊥, t) can now be written in a sum of a Dirac
distributions of kind :

F (x, px , p⊥, t) =
N∑

j=1

fj (x, px , t) �
(
p⊥ − (

Cj − eA⊥ (x, t)
))

(3)

thus, reducing the 4D phase space into a 2D one (plus N values for the corresponding Cj ).
Our kinetic multi-stream model is given by N reduced Vlasov equations of type (2) for each stream

population j , coupled self-consistently with the Maxwell-Gauss and the Maxwell-Ampere equations
through the source terms n (x, t) = ∑

j nj and the total perpendicular current J⊥ = ∑
j J⊥j respectively.

3. THE MULTI-STREAM MODEL IN THE FLUID APPROXIMATION AND STANDARD
DISPERSION RELATION

Our model is applied for the calculation of the standard dispersion relation of the Weibel-type
instabilities. For instance the case N = 2 is straightforward and corresponds exactly to the case of the
current filamentation instability.

By considering the successive moments of the Vlasov equation (2), a multi-fluid model can be then
obtained. By assuming a linearly polarized electromagnetic wave, for each stream j , the continuity and
Euler equations can be derived:
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The Lorentz factor, in the fluid approximation becomes: �̃j = [1 + u2
j /m2

ec2 + (
Cj − eAy (x, t)

)2

/m2
ec2]1/2.
We consider an expansion around an equilibrium characterized by a mean density n0j and a mean

longitudinal momentum u0j = 0 and assume
∑N

j=1 n0j = n0 and
∑N

j=1
Cj n0j

�0j
= 0, corresponding at zero

order to the neutrality condition and to the requirement that the initial net current is zero, respectively.
�0j takes into account, at the zero-order, the pure transverse contribution in the expression of the Lorentz

factor: �0j =
√

1 + C2
j /m2

ec2. By linearizing and performing a time/space Fourier transform, we get the

dispersion relation for Weibel-types instabilities:
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· (6)

The term �2
pj = n0j e2/m�0 is the “plasma frequency" of the particle bunch j . The analytical formulation

of the linear dispersion relation, Eq. (6), as a discrete summation over an assembly of streams provides
a general and exact approach able to take into account any anisotropy of the distribution function, even
in the relativistic regime, in agreement with previous results in ref. [8].

4. NUMERICAL COMPARISON BETWEEN THE 1D2V FULL KINETIC VERSION AND
THE REDUCED VLASOV MODEL

We have checked the efficiency and accuracy of our method in the case of the current filamentation
instability, which corresponds here to take only two streams in the reduced model (R-model hereafter).
We have performed numerical simulations of the 1D2V full kinetic Vlasov equation (V-model) given by
Eq. (1) and then of the 1D reduced Vlasov equations (2), using a phase space code based on a splitting
method and semi-lagrangian scheme [9–11] of the Vlasov equation. Both Vlasov models were solved
in parallel with the Maxwell’s equations.

The initial distribution condition is composed of a two Maxwellians with beam momenta centered at
p01/mec = −0.9ey and p02/mec = 0.9ey . Note that we are in a semi-relativistic regime.We have chosen
a symetric case corresponding to beam densities of n01 = n02 = 0.5n0. Here we focus the attention
on purely transverse initial perturbation (on the magnetic Bz- component) with wave vector of type
k0 = k0ex along the x- direction (here the longitudinal direction), perpendicular to the two counter-
streaming electron beams. We perturb the system using a small perturbation of eB0/me�p = 10−4

and we take k0c/�p = 1. Electron plasma temperature is chosen to Te = 2keV in both the px and
py direction in the V-model while, in the R-model, only the px direction has a non zero temperature.
We keep the same temperature in the R-model. The phase space sampling used here in the 1D2V
version is NxNpx

Npy
= 256 × 2572, i.e. 1.69 × 107 grid points or “particles”. The time step used in

both simulation is here �t�p = 0.003. The phase space sampling, used in the presented simulation is
somewhat higher with NxNpx

given by 5132 grid points.
First we have resolved, for the corresponding physical parameters of simulation, the dispersion

relation (6) in order to obtain an accurate estimation of the growth rate of the instability in the linear
phase. The corresponding result is shown in the left panel in Fig. 1: we have plotted the growth
rate �th/�p as a function of the wave vector kc/�p using two streams, i.e. with the data N = 2 in
Eq. (6). On the right panel, in Fig. 1, we have represented the time evolution of the magnetic energy,
in a logarithmic scale. As expected the magnetic mode is unstable and grows with a linear growth rate
of �num/�p � 0.448, in good agreement with the theoretical value of �th/�p = 0.45, for a value of
kc/�p = 1.

In Fig. 2, we show the electron distribution in the x − px (left panel) phase space, for the V-model
when the instability starts to saturate. The same x − px phase space dynamic, described by the R-model
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Figure 1. On left panel, the growth rate as a function of the wave vector obtained by resolving the dispersion
relation �th/�p = 0.45, for kc/�p = 1. On the right panel, time evolution of the magnetic energy, in a logarithmic
scale �num/�p � 0.448, in good agreement with the theoretical value.

Figure 2. On the left panel, phase space behavior of the electron distribution function in the x − px obtained from
the V-model. On the right panel, x − px obtained from the R-model.

using the sum of the two streams
∑

j fj , is shown in the right panel at the same time of the one obtained
from the V-model. These figures show that the dynamics is correctly described by the R-model where
only two streams are considered.

5. CONCLUSION

This paper is an attempt to reduce the dimension of the phase space while keeping the high level of
accuracy afforded by Vlasov codes. This reduction technique uses the Hamiltonian formulation and the
existence of dynamical invariants. Thus detailed comparison of numerical results obtained by using a
reduced 1D model have been carried out with those obtained with a full kinetic and relativistic 1D2V
version. Good agreement provides full support for the 1D electromagnetic and relativistic Vlasov code
which runs considerably faster than the 1D2V code. However, within the capacity of supercomputers,
a full kinetic 2D version (i.e. with 4D dimensional phase space) is now available and can be of great
interest when the coupling of Weibel-type instability with the purely electrostatic two-stream instability
must be taken into account.

The authors are indebted to the IDRIS computational center, Orsay, France, for computer time allocation on their
computers.
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