
HAL Id: hal-01298048
https://hal.science/hal-01298048

Submitted on 5 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving a Real-World Glass Cutting Problem
Jakob Puchinger, Gabriele Koller, Günther R. Raidl

To cite this version:
Jakob Puchinger, Gabriele Koller, Günther R. Raidl. Solving a Real-World Glass Cutting Problem.
Evolutionary Computation in Combinatorial Optimization, Apr 2004, Coimbra, Portugal. pp.Pages
165-176, �10.1007/978-3-540-24652-7_17�. �hal-01298048�

https://hal.science/hal-01298048
https://hal.archives-ouvertes.fr

Solving a Real-World Glass Cutting Problem

Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria
{puchinger|raidl|koller}@ads.tuwien.ac.at

Abstract. We consider the problem of finding two-dimensional cutting
patterns for glass sheets in order to produce rectangular elements re-
quested by customers. The number of needed sheets, and therefore the
waste, is to be minimized. The cutting facility requires three-staged guil-
lotineable cutting patterns, and in addition, a plan for loading produced
elements on transportation wagons. The availability of only three load-
ing docks for wagons imposes additional constraints on the feasibility
of cutting patterns. We describe a greedy first fit heuristic, two branch-
and-bound based heuristics, and different variants of an evolutionary
algorithm for the problem, and compare them on a set of real-world in-
stances. The evolutionary algorithm is based on an order representation,
specific recombination and mutation operators, and a decoding heuris-
tic. In one variant, branch-and-bound is occasionally applied to locally
optimize parts of a solution during decoding.

1 Introduction

In this paper we present methods developed for solving a cutting problem that
appears in real-world glass manufacturing. Customer specified rectangular ele-
ments need to be cut out from raw stock sheets. Due to the mechanics of the
cutting machine, only three-staged guillotine cuts are possible, and additional
constraints regarding the order in which elements are cut, must be obeyed. The
problem falls into the general category of two-dimensional bin packing (2BP)
problems; according to the notation of Lodi et al. [10] it can be classified as
2BP|R|G with additional constraints.

Our problem is enhanced by constraints resulting from the characteristics of
the production process. A robot located at the end of the glass-cutting facility
puts finished elements on wagons located at three different loading docks. The
elements are partitioned in logical groups according to customer orders, and
each wagon may carry elements from the same logical group only. Since the
wagons cannot be exchanged arbitrarily, elements from a maximum of three
logical groups can be produced in an intertwined way. A solution to our problem
must also contain a schedule for loading finished elements onto wagons.

A detailed problem description is given in Sec. 2. Related methods from liter-
ature for solving the classical two-dimensional bin packing problem are summa-
rized in Sec. 3. Sections 4 and 5 present a new greedy heuristic and two branch

This work is supported by the Austrian Science Fund (FWF) under grant P16263-N04.

2 Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

...waste

1

2

3

4

5

6

7

8

14

18

19
21 22

11

10

9

16

15

17

13

12

20

W

L

Stacks of elements:
(1,2,3), (4,5,6),..., (22)

stripe 1

stripe 2

stripe 3

Fig. 1. An example for a three-stage cutting pattern in normal form.

and bound algorithms for our problem. Section 6 describes three variants of an
evolutionary algorithm (EA). The different algorithms are experimentally eval-
uated and compared to each other and to a commercial solver in Sec. 7. In most
cases, the EA yields the best results. More details on this work are given in [?].

2 Problem Description

In the two-dimensional three-staged Bin Packing problem with Wagon Scheduling
(2BP-WS), we are given:

– Identical rectangular stock sheets of width W > 0, length L > 0, and thick-
ness T > 0.

– A set of rectangular element types E = {E1, . . . , Em} requested by cus-
tomers; each element type Ei, i = 1, . . . ,m, is defined by the elements’
width wi (0 < wi ≤ W), length li (0 < li ≤ L), a logical group identifier
gi indicating the customer to whom the elements are to be sent, and the
number ni > 0 of instances needed of this type. Let n =

∑m
i=1 ni be the

total number of elements.
– A minimum fill level Bmin > 0 and a maximum fill level Bmax ≥ Bmin for the

transportation wagons; the fill level of a wagon is given by the cumulated
thickness of the elements loaded on it.

The goal is to find patterns for cutting out all instances of the given element
types from the smallest possible number of stock sheets, thus, minimizing the
waste, and a schedule for loading produced elements to wagons. Elements may be
rotated by 90◦. The production machine and loading robot impose the following
restrictions on feasible cutting patterns.

Orthogonal guillotine cuts. Since glass sheets are cut by scratching and
breaking them over a straight edge, only orthogonal guillotine cuts are possible,
i.e. cuts parallel to a side of the piece being cut, going from one border straight
to the opposite side.

Solving a Real-World Glass Cutting Problem 3

Three stages. The production machine consists of three stages. The first stage
only cuts a whole sheet horizontally into an arbitrary number of stripes. Stripes
are further processed in the second stage where they are cut vertically into
an arbitrary number of so-called stacks. The third stage performs, again, only
horizontal cuts, producing the final elements (and waste) from the stacks. See
Fig. 1 for an example of a three-stage cutting pattern.

Any feasible three-stage cutting pattern can always be reduced into its so-
called normal form by moving each element to its uppermost and leftmost posi-
tion, so that waste may only appear at the bottom of the stacks on the right of
the rightmost stack in each stripe or at the bottom below the last stripe of each
sheet. The pattern shown in Fig. 1 is in normal form. In the rest of the paper,
we only consider cutting patterns in normal form, which reduces the general
infinite search space of arbitrary three-stage cutting patterns to a finite number
of possible solutions.

Wagon restrictions. For a given cutting pattern, elements are always produced
by processing the stripes within each sheet from top to bottom, the stacks within
each stripe from left to right, and the elements within a stack from top to bottom.
The numbering of the elements in Fig. 1 denotes this order.

Finished elements are loaded on wagons in the same order as they are pro-
duced. Initially, three empty wagons are placed at three available loading docks.
The following constraints apply to the loading of elements on wagons.

1. The first element put on a wagon initializes the wagon’s logical group, i.e. it
defines its destination address. Only elements of the same logical group may
further be added.

2. A wagon is immediately closed and replaced by a new, empty one, if the
fill level of a wagon reaches Bmax or if all elements of its associated logical
group have been produced and loaded.

3. A wagon may be closed and replaced earlier if its fill level is at least Bmin.

Only cutting patterns, for which a loading schedule fulfilling the above re-
quirements exists, are considered feasible.

2.1 Objective Function and Continuous Lower Bound

The primary objective is to minimize the number S(x) of sheets needed in a
solution x. A refined objective function F (x) considers the last sheet only partly:

F (x) = S(x)− L− cl

L
, (1)

where cl represents the position of the last stage-1 cut of the last sheet. This
refined objective function allows for a better discrimination of the quality of
solutions needing the same number of sheets: Cutting patterns leaving a larger
unused stripe at the bottom of the last sheet are more promising. In practice,
large unused final stripes may be useful later on and are therefore not necessarily
considered as waste.

4 Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

The continuous lower bound CLB for the objective function (S(x) as well as
F (x)) is given by the total area of all elements divided by a sheet’s area:

CLB =
∑m

i=1 li · wi · ni

L ·W (2)

3 Previous Approaches to Two-Dimensional Bin Packing

In this section we give a brief overview of known algorithms for solving the two-
dimensional bin packing problem on which the new algorithms are based. For
a more complete review we refer to the survey by Lodi et al. [9] and to the
annotated bibliography by Dyckhoff et al. [5].

Most of the simple algorithms for 2BP are of greedy nature. The elements are
placed one by one and never reconsidered again. There are one- and two-phase
algorithms. In one-phase algorithms, the elements are directly placed in the bins.
Two-phase algorithms first partition the elements into levels whose widths do
not exceed W and whose total length is aimed to be minimized. In the second
phase, levels are assigned to bins by heuristically solving a one-dimensional bin
packing problem.

Berkey and Wang [1] described the classical Finite First Fit (FFF) heuristic,
which is a greedy one-phase algorithm. The elements are sorted by decreasing
lengths. The first element initializes the first level in the first bin and defines the
level’s length. Each following element is added to the first level to which it fits
respecting the sheet’s width W . If there is no such level, a new level is initialized
in the first bin into which it fits. If there is no such bin, a new bin is initialized
with the new level. Within a level, elements are never stacked.

For the general 2BP problem, Martello and Vigo [11] describe a branch-and-
bound (B&B) algorithm which is based on a two-level branching-scheme: The
elements are assigned to the bins by an outer decision tree. Possible packing
patterns for the bins are heuristically generated. Only if the heuristic is not able
to place all the elements of a bin, a pattern is tried to be found by an inner enu-
meration scheme. Morabito and Arenales [13] consider a staged and constrained
guillotine cutting problem in which the utilization of only a single sheet is max-
imized. They describe a B&B algorithm whose decision tree corresponds to an
AND/OR graph.

A broad overview of EAs for cutting and packing problems is given by Hop-
per [6]. Most of the EAs used to solve guillotineable 2BP, such as the genetic
algorithm described by Kröger [8], are based on a slicing-tree representation and
specific variation operators. Alternatively, an order-based encoding can be used
indicating the order in which the elements are placed by some FFF-like decod-
ing heuristic. Hwang et al. [7] describe such an approach and compare it to a
slicing-tree representation. They conclude that the order-based method yields
better results in several cases. Corno et al. [3] apply the order-based encoding
successfully to an industrial cutting problem with specific real-time and pattern
constraints. Another effective order-based approach is presented by Monaci [12]
for two-dimensional strip packing.

Solving a Real-World Glass Cutting Problem 5

Lodi et al. [10] describe a more general framework applicable to several vari-
ants of 2BP. Tabu search is used to assign the elements to the sheets, and cutting
patterns for individual sheets are obtained by different inner heuristics.

Conclusions with respect to 2BP-WS. The algorithms presented so far
cannot directly be applied to 2BP-WS because of the constraints imposed by
the required wagon scheduling. Furthermore, several algorithms do not consider
the restriction to three stages. The B&B algorithms, in particular, rely heavily
on several symmetries of the general 2BP problem: Bins within a solution, levels
within a bin, and elements within a level can be arbitrarily permuted. This is
exploited by only considering levels and elements in specific orders. In case of
2BP-WS this simplification is not possible because the production order is a
substantial part of the solution. Order-based EAs, however, do not principally
rely on certain symmetries and can be adapted to our needs by modifying the
decoding heuristic.

4 A Finite First Fit Heuristic for 2BP-WS (FFFWS)

The FFF heuristic from [1] has been modified and extended for 2BP-WS. In
contrast to the classical FFF heuristic and due to the wagon scheduling require-
ments, FFFWS constructs a solution sheet by sheet and stripe by stripe in a
greedy way; i.e. once a new sheet (stripe) is started, previous sheets (stripes) are
never reconsidered.

Let Π = (Π1, . . . ,Πm) be a list of references to the element types sorted
according to decreasing lengths li, and let |Π1|, . . . , |Πm| be the corresponding
numbers of not yet placed elements; initially |Πi| = ni.

The algorithm starts by placing a longest available element, i.e. an element
of type Π1, at the upper left position of the first sheet. This element is said to
initialize the sheet and the first stripe, and it also defines this stripe’s length
l̂. Whenever an element is placed, the corresponding counter |Πi| is decreased;
if |Πi| = 0, Πi is removed from the list Π. The stripe is then iteratively filled
from left to right with a stack of elements from the first type Πi in list Π
fulfilling the following conditions: (a) lΠi ≤ l̂; (b) wi does not exceed the stripe’s
remaining width; (c) a permitted loading dock exists for elements of type Πi

with respect to wagon scheduling (see below). The number of stacked elements
is min(|Πi|, bl̂/lΠic). If no further element fits onto the current stripe, a new
stripe is started with an element of the first type Πi in list Π for which lΠi

does not exceed the sheet’s remaining length and a permitted loading dock is
available. If no such element exists and Π is not empty, a stripe on a new sheet
is started in the same way.

FFFWS tries to determine a permitted loading dock for an element by con-
sidering the element’s logical group gi and the current states of the wagons at
the three loading docks. If gi appears as logical group of one of the wagons at the
loading docks, then this loading dock is a permitted target. Otherwise, we look
for a loading dock whose wagon is either empty or has reached its minimum fill

6 Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

level Bmin. In the latter case, the wagon is closed and replaced by a new one. If
a permitted loading dock could be determined, its identifier is stored as loading
target for the element as part of the solution. Wagon changes need not explicitly
be stored in this kind of greedy solutions, since they can be implicitly derived.

The possible rotation of elements is considered by maintaining for each ele-
ment type two references Πi and Π ′

i in Π with linked counters of not yet placed
elements; hereby, Π ′

i represents the rotated version of the element type.
In the worst-case, FFFWS has to process the complete list Π when looking

for the next element to be placed. Therefore, the worst-case total time complexity
of FFFWS is O(n ·m).

5 Branch-and-Bound Algorithms for 2BP-WS

Two different B&B strategies were devised. Since symmetries cannot be exploited
as in case of the classical 2BP, it seems to be impossible to solve 2BP-WS
instances of practical size to provable optimality. Therefore, the following B&B
strategies also contain heuristics and cannot guarantee optimal solutions.

BB-1. The first B&B variant follows the principle of the greedy two-phase
algorithms for 2BP. In the first phase, BB-1 iteratively generates stripes of width
W and length not exceeding L containing elements not yet placed on previous
stripes. B&B is used to minimize the difference between the stripe’s area and the
total area of the elements on the stripe, i.e. the waste. Subproblems are created
from partially filled stripes by considering any feasible extension by a single
element or a stack of elements of the same type. A breadth-first enumeration
strategy is applied. The waste of the currently best stripe is used as global upper
bound. As local lower bound, the subproblem’s waste reduced by the empty area
to the right of the last stack is used. If during the construction of the stripe a
wagon change involving also a change of the logical group occurs, we consider
the stripe a delimiter.

In the second phase, stripes are arranged on sheets by an adapted first fit de-
creasing algorithm for one-dimensional bin packing [2]. Due to wagon scheduling,
only the order of stripes in sections between delimiters may be permuted.

BB-2. In contrast to BB-1, BB-2 maximizes the utilized area of whole sheets
instead of minimizing the waste of single stripes. The patterns for the sheets
are generated one by one by B&B. New subproblems are created from partially
filled sheets by considering any feasible extension by a single element or a stack of
elements of the same type, if necessary on a new stripe. The FFFWS heuristic is
applied to get an initial global lower bound for the utilized area. The local upper
bound of a subproblem is calculated as the total area of already placed elements
plus an upper bound for the area that might further be utilized. Additional
elements may only be placed to the right of the last stack on the last stripe or
below the last stripe. Again, a breadth-first enumeration strategy is applied.

Solving a Real-World Glass Cutting Problem 7

6 Evolutionary Algorithms for 2BP-WS

The presented algorithms FFFWS, BB-1, and BB-2 yield respectable results in
several cases. Nevertheless, independently optimized stripes or sheets, as in case
of BB-1 and BB-2, do not guarantee an optimal overall solution. In order to
approach the problem in a more global way, we apply evolutionary algorithms.

Representation and Decoding. Two variants of an order-based representa-
tion similar to those in [7,3] were chosen to encode candidate solutions.

Element type representation. Solutions are encoded as ordered vectors of ref-
erences to element types Π = (Π1, . . . , Πm). The phenotypic solution is derived
by applying a modified FFFWS heuristic as decoder. Instead of considering el-
ement types ordered by decreasing length, the order is given by the genotype.
Furthermore, the decoding heuristic allows stacked elements to extend a stripe’s
length if the total waste of the stripe decreases.

Element representation. The element type representation has the disadvan-
tage of placing elements of the same type always next to each other, if space
permits. To allow more flexibility, we also consider an order-based representation
in which a solution is encoded as permutation π = (π1, . . . , πn) of references to
each individual element. This can significantly increase the size of the genotype
and the solution space in general. The element type representation’s decoding
heuristic has been adapted accordingly. In particular, elements of the same type
may only be stacked by the decoding heuristic if they appear directly next to
each other in the encoded solution.

Rotation of elements is in both representations handled by maintaining linked
second references as in FFFWS. For simplicity, we neglect here the resulting
changes in the genotype’s length.

Recombination and Mutation. In principle, any standard recombination
and mutation operator designed for permutations is feasible. Regarding recom-
bination, order 3 crossover (OX3) [4] turned out to be particularly well suited
because it partially respects absolute positions and relative orders, which is a
crucial condition for our problem.

Two mutation operators are used. Reciprocal exchange (RX) chooses two
positions at random and swaps them. Block exchange (BX) swaps two randomly
chosen non-overlapping blocks of length d2Re, with R being a random value in
the interval (0, bld m

2 c] for the element type representation and (0, bld n
2 c] for

the element representation. In this way, shorter blocks are chosen more likely,
but large blocks up to half of the genotype’s length are also possible.

Two additional operators were specifically designed for the element repre-
sentation with the aim to encourage sequences of elements of the same type in
order to exploit stacking more often.

Grouped order crossover (GOX) is an extension of the standard OX3 op-
erator. As in OX3, two crossover points are randomly chosen. However, only
positions inbetween elements of different types are allowed. The crossover region
defined by the two crossover points is transmitted directly from the first parent

8 Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

Algorithm Grouping Mutation (π);
j ← a random value ∈ {1, . . . , n}; // starting position
p← a random value ∈ [0, 1); // element moving probability
left ← j − 1; right ← j + 1;
for i← j − 1, . . . , 1 do

if type of element πi = type of element πj then
with probability p do

swap (πi, πleft); left ← left − 1;
for i← j + 1, . . . , n do

if type of element πi = type of element πj then
with probability p do

swap (πi, πright); right ← right + 1;

Fig. 2. Grouping mutation operator for the element representation.

to the offspring. All remaining positions are filled with the remaining elements
of the first parent in the order given by the second parent.

Grouping mutation (GM) is used to form larger sequences of elements of the
same type. Figure 2 shows the algorithm in detail. A position j of the permuta-
tion π is randomly chosen as starting position. π is scanned and each element of
the same type as πj is incorporated into the sequence around j with a probability
chosen randomly from [0, 1).

The computational effort of both operators, GOX and GM, is linear in the
number of elements.

EA Variants The described operators were integrated in a standard steady-
state EA. Initial solutions are created at random. In each iteration, a new can-
didate solution is created by always applying crossover and mutation. The new
solution replaces the worst solution in the population if it is not identical to an
already existing solution on the genotype level.

We consider the following three EA variants:
– EAet uses the element type representation.
– EAe uses the element representation.
– EAebb corresponds to EAe enhanced by phase 1 of BB-1: In the decoding,

stripes are not just created by the greedy heuristic, but with a certain prob-
ability pbb by applying B&B.

In case of EAe and EAebb the order of the elements in a decoded solution is
reencoded into the genotype in a Lamarckian manner with probability pwb.

7 Computational Results

31 real-world instances were provided by Soglatec GmbH and are available
at http://www.ads.tuwien.ac.at/pub/TestProblems/glasscut. These in-
stances have strongly varying characteristics: 1 to 31 logical groups, 1 to 78
element types, 4 to 651 elements in total, and continuous lower bounds CLB
ranging from 0.34 to 23.90.

Solving a Real-World Glass Cutting Problem 9

Table 1. Summarized results of selected algorithms; CLB = 6.010; * denotes that the
mutation operator was randomly chosen among RX, BX, and GM; the value printed
after the mutation type represents pwb; for EAebb the last value represents pbb.

algorithm F σF F/CLB t[s] best

XOPTS 7.195 n.a. 1.1967 n.a. 15
FFFWS 7.896 n.a. 1.3191 0.02 2
BB-1 8.280 n.a. 1.3213 0.07 6
BB-2 7.711 n.a. 1.2320 285.23 13
EAet OX3 7.132 0.032 1.1857 16.79 14
EAet OX3,RX 7.110 0.023 1.1833 13.88 18
EAe OX3,RX 7.122 0.040 1.1828 46.05 17
EAe OX3,RX,10% 7.089 0.032 1.1813 60.46 17
EAe GOX,RX 7.114 0.032 1.1821 47.54 17
EAe GOX,* 7.108 0.032 1.1815 46.57 17
EAe GOX,RX,10% 7.079 0.025 1.1803 47.62 18
EAe GOX,*,10% 7.080 0.026 1.1802 48.26 18
EAe GOX,*,100% 7.174 0.058 1.1868 37.45 15
EAebb GOX,*,10%,1% 7.079 0.027 1.1796 69.49 19
EAebb GOX,*,10%,10% 7.076 0.019 1.1791 267.18 21

We compare the greedy heuristic FFFWS, the B&B algorithms BB-1 and
BB-2, the EA variants, and the commercial optimizer XOPTS of Albat &
Wirsam GmbH. The new algorithms were implemented in C++ and tested on
a Pentium 4 PC with 2.8 GHz. Results of XOPTS were provided by Soglatec
GmbH and do not respect wagon scheduling. Thus, some of XOPTS’ cutting
patterns are actually infeasible for our specific 2BP-WS problem. Nevertheless,
results from XOPTS provide an important basis for comparison, since 2BP-WS
has not been addressed before.

In BB-2, due to memory and time restrictions, the enumeration for a sheet
was aborted when the subproblem list exceeded 3 000 000 entries; the best cutting
pattern so far was kept.

Strategy parameters of the EAs were determined by extensive preliminary
experiments. A population size of 1 000 has been used, and each run was ter-
minated after 50 000 iterations without improvement of the best solution. The
number of mutations applied to each new candidate solution is chosen as a
Poisson-distributed random variable with expected value 2.

Each EA variant has been tested with different combinations of the pre-
sented recombination and mutation operators. In some experiments more than
one mutation operator was applied with equal probability; for each mutation
the operator to be used was chosen at random. For each EA configuration, 30
independent runs per instance have been carried out.

Average results over all instances obtained by selected algorithm variants
are listed in Table 1. Shown are average solution qualities (F), corresponding
average standard deviations (σ) for the EAs, solution qualities relative to the
continuous lower bounds F/CLB , average total running times t, and the number
of instances for which the algorithm yielded the best solution on average.

10 Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

It can be observed that average solution qualities do in general not differ
very much. FFFWS is the fastest, but usually provides poor results. While BB-1
yields on average the worst results, the solutions of BB-2 are significantly bet-
ter. However BB-2 also suffers from the greedy nature of optimizing each sheet
independently; it is slow and highly memory consuming for larger instances; oc-
casionally, the B&B optimization of some sheets had to be prematurely aborted.
BB-2 yields sometimes better, but on average worse results than XOPTS.

In general, the EA variants obtained the best solutions and needed only mod-
erate running times. As expected, EAet is significantly faster than EAe due to
its smaller search space. EAebb is slower than EAe due to its B&B optimization
of stripes. EAebb with GOX, the combination of all three mutation operators,
Lamarckian write-back with probability pwb = 10% and B&B optimization of
stripes applied with a probability of pbb = 10% performed best with respect to
solution quality.

Table 2 provides more detailed results on each of the 31 instances for FFFWS,
BB-1, BB-2 and a choice of EA configurations. For the EAs, columns Favg list av-
erage solution values over 30 runs per instance, and columns Fmin show solution
values of the best runs.

It turns out that not a single EA configuration is consistently best for all
tested instances. On average, however, the element representation yielded sig-
nificantly better results than the element type representation on 9 instances,
and in case of the element representation, GOX outperformed OX3. Lamarckian
write-back with probability pwb = 10% generally increases the quality of final
solutions. Regarding mutation, the combined application of RX, BX, and GM,
proved to be slightly more robust than only applying RX. The B&B optimization
of stripes as done in EAebb increases the quality of solutions a bit further. A
Wilcoxon rank test indicates a significant improvement between solutions from
EAe and EAebb with pbb = 10% (GOX, pwb = 10%, and combined mutation
used in both cases) on an error level of less than 1% for 6 instances.

Two examples for cutting patterns obtained by FFFWS and EAebb for in-
stance 12 are shown in Fig. 3.

8 Conclusion

We considered different heuristic algorithms for a real-world glass cutting prob-
lem, in which the loading of produced elements imposes difficult constraints on
feasible cutting patterns. Therefore, approaches for 2BP such as XOPTS cannot
be used directly. The proposed FFFWS heuristic is fast and well suited as de-
coder for an order-based EA. For the EA with element representation, GOX and
GM were proposed to encourage sequences of elements of the same type in order
to better exploit the possibility of stacking. Incorporating B&B in the decoding
for occasionally locally optimizing stripes turned out to increase the solution
quality in a few cases. Solutions obtained by the EA are highly satisfactory for
practice.

Solving a Real-World Glass Cutting Problem 11

T
a
b
le

2
.
D

et
a
il
ed

re
su

lt
s

o
f
se

le
ct

ed
a
lg

o
ri

th
m

s.
O

v
er

a
ll

b
es

t
(a

v
er

a
g
e)

so
lu

ti
o
n

va
lu

es
a
re

p
ri

n
te

d
b
o
ld

.
F
o
r

B
B

-2
,
a

m
a
rk

“
a
”

in
co

lu
m

n
F

in
d
ic

a
te

s
th

a
t

in
o
n
e

o
r

m
o
re

ru
n
s

B
&

B
h
a
d

to
b
e

a
b
o
rt

ed
fo

r
o
n
e

o
r

m
o
re

sh
ee

ts
.

C
L
B

X
O

P
T

S
F
F
F
W

S
B

B
H

E
U

B
B

A
L
G

E
A

et
O

X
3
,R

X
E

A
e

G
O

X
,*

,1
0
%

E
A

eb
b

G
O

X
,*

,1
0
%

,1
0
%

in
st

.
g
ro

u
p
s

m
n

F
F

t
F

t
F

t
F

a
v
g

σ
F

m
in

t a
v
g

F
a
v
g

σ
F

m
in

t a
v
g

F
a
v
g

σ
F

m
in

t a
v
g

1
3

3
4

0
.8

3
0
.9

8
1
.3

7
0
.0

1
0
.9

8
0
.0

0
0
.9

8
0
.0

1
0
.9

8
0
.0

0
0
.9

8
2
.9

3
0
.9

8
0
.0

0
0
.9

8
7
.8

7
0
.9

8
0
.0

0
0
.9

8
6
.8

9
2

3
3

4
0
.9

0
0
.9

5
0
.9

7
0
.0

2
0
.9

5
0
.0

0
0
.9

5
0
.0

1
0
.9

5
0
.0

0
0
.9

5
2
.7

0
0
.9

5
0
.0

0
0
.9

5
8
.4

6
0
.9

5
0
.0

0
0
.9

5
7
.6

2
3

3
3

5
0
.5

8
0
.7

4
0
.8

3
0
.0

1
0
.8

6
0
.0

0
0
.7

4
0
.0

1
0
.7

4
0
.0

0
0
.7

4
2
.4

0
0
.7

4
0
.0

0
0
.7

4
4
.1

9
0
.7

4
0
.0

0
0
.7

4
4
.8

8
4

3
3

6
2
.1

7
2
.8

8
2
.8

8
0
.0

2
2
.8

8
0
.0

0
2
.8

8
0
.0

1
2
.8

8
0
.0

0
2
.8

8
5
.0

1
2
.8

8
0
.0

0
2
.8

8
7
.2

1
2
.8

8
0
.0

0
2
.8

8
8
.7

8
5

1
2

7
0
.6

9
0
.8

0
0
.9

9
0
.0

2
0
.8

3
0
.0

1
0
.8

0
0
.0

1
0
.8

1
0
.0

0
0
.8

1
3
.4

1
0
.8

0
0
.0

0
0
.8

0
5
.8

5
0
.8

0
0
.0

0
0
.8

0
6
.1

7
6

2
3

9
2
.6

0
2
.8

7
2
.9

6
0
.0

1
3
.5

4
0
.0

1
2
.8

7
0
.0

1
2
.8

7
0
.0

0
2
.8

7
2
.9

7
2
.8

7
0
.0

0
2
.8

7
4
.7

9
2
.8

7
0
.0

0
2
.8

7
4
.4

3
7

2
7

1
1

0
.3

4
0
.4

0
0
.4

6
0
.0

1
0
.4

1
0
.0

1
0
.4

6
1
5
.3

8
a

0
.3

8
0
.0

0
0
.3

8
4
.1

5
0
.3

8
0
.0

0
0
.3

8
6
.8

4
0
.3

8
0
.0

0
0
.3

8
1
5
.4

1
8

3
1
4

1
4

1
.6

1
1
.9

1
2
.4

8
0
.0

1
2
.5

3
0
.0

1
1
.8

8
8
.7

2
1
.8

5
0
.0

1
1
.8

4
5
.3

9
1
.8

5
0
.0

1
1
.8

4
9
.5

6
1
.8

6
0
.0

2
1
.8

4
1
4
.2

3
9

1
2

1
2

1
5

0
.7

6
0
.8

4
0
.9

9
0
.0

3
0
.8

3
0
.0

1
0
.9

9
2
5
.2

1
a

0
.8

3
0
.0

0
0
.8

3
4
.4

0
0
.8

3
0
.0

0
0
.8

3
7
.6

9
0
.8

3
0
.0

0
0
.8

3
3
4
.4

3
1
0

3
7

1
9

2
.0

8
2
.4

4
2
.4

7
0
.0

0
2
.6

7
0
.0

1
2
.4

4
6
4
.6

7
a

2
.4

4
0
.0

0
2
.4

4
6
.2

5
2
.4

4
0
.0

0
2
.4

4
1
0
.2

1
2
.4

4
0
.0

0
2
.4

4
2
5
.8

7
1
1

3
5

2
2

2
.5

0
5
.5

6
5
.5

6
0
.0

2
5
.5

6
0
.0

0
5
.5

6
1
2
.1

1
a

5
.5

6
0
.0

0
5
.5

6
1
3
.6

4
5
.5

6
0
.0

0
5
.5

6
2
2
.5

7
5
.5

6
0
.0

0
5
.5

6
2
2
.1

4
1
2

1
2

1
2

3
3

3
.5

0
3
.9

8
4
.6

7
0
.0

0
4
.6

0
0
.0

1
3
.9

4
2
8
.2

2
3
.9

6
0
.0

0
3
.9

6
1
0
.4

3
3
.9

5
0
.0

1
3
.9

3
1
9
.0

1
3
.9

4
0
.0

1
3
.9

3
3
0
.5

7
1
3

1
1
6

3
3

3
.6

5
4
.7

0
4
.4

7
0
.0

1
4
.6

6
0
.0

3
4
.2

4
1
4
1
.5

3
a

4
.1

7
0
.0

0
4
.1

6
7
.5

1
4
.1

7
0
.0

1
4
.1

6
1
3
.1

5
4
.1

7
0
.0

1
4
.1

6
5
8
.2

3
1
4

3
2
4

3
4

6
.7

2
8
.7

7
8
.3

9
0
.0

1
8
.3

9
0
.0

2
7
.6

6
4
.4

7
7
.6

6
0
.0

2
7
.6

6
1
2
.0

4
7
.6

9
0
.0

6
7
.6

6
1
8
.6

8
7
.6

6
0
.0

0
7
.6

6
6
0
.1

9
1
5

5
9

3
7

2
.8

0
2
.9

6
3
.4

8
0
.0

1
3
.5

8
0
.0

3
2
.9

6
3
1
.3

5
2
.9

7
0
.0

0
2
.9

7
5
.5

7
2
.9

5
0
.0

0
2
.9

5
1
1
.1

8
2
.9

5
0
.0

0
2
.9

5
5
0
.9

6
1
6

9
9

5
3

7
.8

6
1
0
.5

6
1
0
.7

8
0
.0

2
1
2
.5

6
0
.0

2
1
1
.5

6
2
.4

3
1
0
.2

4
0
.0

0
1
0
.2

4
8
.7

3
1
0
.2

4
0
.0

0
1
0
.2

4
1
5
.5

1
1
0
.2

4
0
.0

0
1
0
.2

4
3
2
.0

7
1
7

1
5

2
3

6
0

6
.8

8
7
.8

9
8
.6

8
0
.0

1
8
.4

1
0
.0

3
7
.8

8
2
5
7
.4

8
7
.8

7
0
.0

8
7
.7

9
2
1
.5

7
7
.8

9
0
.1

1
7
.7

9
4
0
.1

2
7
.8

0
0
.0

4
7
.6

7
2
5
8
.8

1
1
8

1
1

1
1

6
1

4
.4

0
4
.5

8
5
.1

5
0
.0

3
5
.5

7
0
.0

2
4
.8

8
2
6
8
9
.9

7
a

4
.6

4
0
.0

1
4
.5

7
8
.8

0
4
.6

0
0
.0

2
4
.5

6
2
3
.9

2
4
.5

6
0
.0

1
4
.5

5
7
0
.2

6
1
9

7
9

6
9

7
.6

3
8
.2

2
8
.9

4
0
.0

1
9
.5

4
0
.0

2
8
.5

4
1
6
.6

6
8
.3

9
0
.0

1
8
.3

9
9
.6

9
8
.2

5
0
.0

3
8
.2

2
2
8
.8

3
8
.2

7
0
.0

1
8
.2

2
5
1
.4

4
2
0

1
1

7
0

5
.5

6
6
.9

7
8
.6

8
0
.0

2
6
.9

3
0
.0

0
6
.9

3
0
.0

3
6
.9

3
0
.0

0
6
.9

3
8
.2

4
6
.9

3
0
.0

0
6
.9

3
2
6
.4

8
6
.9

3
0
.0

0
6
.9

3
4
3
.3

5
2
1

2
9

3
1

7
2

5
.2

8
5
.6

8
5
.9

6
0
.0

2
6
.6

6
0
.1

4
5
.8

9
2
0
9
.9

2
a

5
.6

8
0
.0

3
5
.6

3
2
9
.1

8
5
.7

5
0
.0

5
5
.6

7
4
5
.6

0
5
.7

3
0
.0

5
5
.6

4
8
3
0
.3

7
2
2

3
1

3
1

7
2

5
.2

8
5
.6

5
5
.9

6
0
.0

0
6
.6

6
0
.1

5
5
.8

9
2
1
5
.7

9
a

5
.6

7
0
.0

2
5
.6

4
2
7
.4

1
5
.7

5
0
.0

5
5
.6

7
4
3
.2

5
5
.7

5
0
.0

4
5
.6

8
1
4
9
3
.9

5
2
3

1
0

1
5

7
7

1
5
.4

2
1
8
.8

4
2
6
.4

9
0
.0

1
2
0
.5

3
0
.0

3
1
9
.2

8
6
2
1
.5

3
a

1
8
.5

3
0
.0

0
1
8
.5

3
1
2
.5

8
1
8
.5

3
0
.0

0
1
8
.5

3
3
0
.7

7
1
8
.5

5
0
.0

1
1
8
.5

3
8
2
.5

7
2
4

4
4

7
8

1
.7

8
1
.9

9
2
.0

9
0
.0

2
2
.0

0
0
.0

2
2
.0

0
4
4
.9

6
a

1
.9

8
0
.0

0
1
.9

8
7
.9

7
1
.9

8
0
.0

0
1
.9

8
1
9
.7

8
1
.9

8
0
.0

0
1
.9

8
1
0
6
.9

0
2
5

2
2

9
1

4
.9

8
5
.4

0
5
.8

9
0
.0

2
5
.5

3
0
.0

1
5
.4

0
2
.8

8
5
.6

6
0
.0

0
5
.6

6
6
.5

7
5
.4

9
0
.0

0
5
.4

9
2
8
.7

3
5
.4

8
0
.0

1
5
.4

5
3
3
.3

2
2
6

1
5

7
8

1
4
0

2
3
.9

0
3
0
.8

7
3
2
.6

9
0
.0

2
3
8
.7

0
0
.9

5
3
6
.5

6
1
2
7
.9

6
3
0
.0

9
0
.4

7
2
9
.5

0
7
8
.4

4
2
9
.8

2
0
.3

5
2
9
.1

9
1
3
1
.7

6
2
9
.8

0
0
.3

0
2
9
.4

5
3
4
8
4
.3

1
2
7

3
4

1
4
7

8
.0

0
8
.8

9
9
.1

6
0
.0

1
9
.6

0
0
.0

3
8
.8

9
3
8
2
.0

9
a

9
.1

5
0
.0

0
9
.1

5
1
2
.8

1
8
.9

2
0
.0

4
8
.8

9
6
9
.1

3
8
.8

9
0
.0

0
8
.8

9
7
8
.4

2
2
8

1
1

4
5

1
4
9

2
2
.8

5
2
8
.6

2
3
2
.6

2
0
.0

2
3
7
.6

2
0
.3

8
3
6
.6

2
9
7
9
.3

4
a

2
8
.6

3
0
.0

2
2
8
.6

2
2
9
.5

3
2
8
.6

3
0
.0

2
2
8
.6

2
6
6
.8

7
2
8
.6

3
0
.0

2
2
8
.6

2
3
1
5
.6

6
2
9

6
1
3

1
5
1

3
.5

3
3
.7

8
4
.0

0
0
.0

2
4
.1

9
0
.0

5
3
.7

5
3
9
8
.5

6
a

3
.7

0
0
.0

1
3
.6

8
1
7
.0

3
3
.7

1
0
.0

1
3
.6

8
6
3
.1

8
3
.7

0
0
.0

1
3
.6

6
1
7
8
.2

1
3
0

8
1
5

1
5
1

9
.6

8
1
0
.4

3
1
0
.9

3
0
.0

3
1
2
.5

9
0
.0

3
1
1
.3

4
3
8
7
.2

5
a

1
0
.6

2
0
.0

2
1
0
.5

8
2
3
.0

0
1
0
.4

9
0
.0

4
1
0
.4

4
1
0
3
.9

5
1
0
.4

9
0
.0

2
1
0
.4

7
3
5
4
.9

3
3
1

7
7

6
5
1

2
1
.5

4
2
3
.8

8
2
3
.7

9
0
.0

5
2
6
.3

2
0
.1

4
2
4
.2

8
2
1
7
3
.6

4
a

2
3
.5

6
0
.0

0
2
3
.5

6
3
9
.8

8
2
3
.4

4
0
.0

1
2
3
.4

4
6
0
0
.9

2
2
3
.5

6
0
.0

1
2
3
.5

3
7
9
6
.3

0

12 Jakob Puchinger, Günther R. Raidl, and Gabriele Koller

(a)

sheet: 4 sheet: 5sheet: 2 sheet: 3sheet: 1

(b)

sheet: 1 sheet: 2 sheet: 3 sheet: 4

Fig. 3. Cutting patterns for instance 12 obtained by FFFWS (a) and EAebb with
GOX, combined RX/BX/GM mutation, pbb = 10%, and pwb = 10%.

References

1. J. O. Berkey and P. Y. Wang. Two-dimensional finite bin packing algorithms.
Journal of the Operational Research Society, 38:423–429, 1987.

2. E. Coffman, Jr., M. Garey, and D. Johnson. Approximation algorithms for bin
packing: A survey. In D. Hochbaum, editor, Approximation Algorithms for NP-
Hard Problems, pages 46–93. PWS Publishing, Boston, 1996.

3. F. Corno, P. Prinetto, M. Rebaudengo, M. S. Reorda, and S. Bisotto. Optimizing
Area Loss in Flat Glass Cutting. In IEEE Int. Conf. on Genetic Algorithms in
Engineering Systems: Innovations and Applications, pages 450–455, 1997.

4. L. Davis, editor. A Handbook Of Genetic Algorithms. Int. Thomson Computer
Press, 1991.

5. H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and packing: An annotated
bibliography. In M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated
Bibliographies in Combinatorial Optimization, pages 393–412. Wiley, 1997.

6. E. Hopper. Two-Dimensional Packing Utilising Evolutionary Algorithms and Other
Meta-Heuristic Methods. PhD thesis, University of Wales, Cardiff, U.K., 2000.

7. S.-M. Hwang, C.-Y. Kao, and J.-T. Horng. On solving rectangle bin packing
problems using GAs. In Proceedings of the 1994 IEEE Int. Conf. on Systems,
Man, and Cybernetics, pages 1583–1590, 1997.

8. B. Kröger. Guillotineable bin packing: A genetic approach. European Journal of
Operational Research, 84:545–661, 1995.

9. A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey.
European Journal of Operational Research, 141:241–252, 2002.

10. A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a
class of two-dimensional bin packing problems. INFORMS Journal on Computing,
11:345–357, 1999.

11. S. Martello and D. Vigo. Exact solutions of the two-dimensional finite bin packing
problem. Management Science, 44:388–399, 1998.

12. M. Monaci. Algorithms for Packing and Scheduling Problems. PhD thesis, Univer-
sity of Bologna, Italy, 2002.

13. R. Morabito and M. N. Arenales. Staged and constrained two-dimensional guillo-
tine cutting problems: An AND/OR-graph approach. European Journal of Oper-
ational Research, 94(3):548–560, 1996.

14. J. Puchinger. Verfahren zur Lösung eines Glasverschnittproblems. Master’s thesis,
Vienna University of Technology, Austria, 2003.

