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NORMALIZATION IN LIE ALGEBRAS VIA MOULD CALCULUS

AND APPLICATIONS

THIERRY PAUL AND DAVID SAUZIN

Abstract. We establish Écalle’s mould calculus in an abstract Lie-theoretic setting and use it to

solve a normalization problem, which covers several formal normal form problems in the theory

of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to

a mould equation, the solutions of which are remarkably explicit and can be fully described by

means of a gauge transformation group.

The dynamical applications include the construction of Poincaré-Dulac formal normal forms for

a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure

for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff

normal forms both in classical and quantum situations. As a by-product we obtain, in the case of

harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without

any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
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5. Poincaré-Dulac normal forms 33

6. Classical Birkhoff normal forms 36

7. Multiphase averaging 40

8. Quantum Birkhoff normal forms 42

9. Semi-classical limit 45

Date: April 22, 2016.

1



2

References 48

Introduction

We are interested in the following situation: given X0, B P L, where L is a Lie algebra over a

field k of characteristic zero, we look for a Lie algebra automorphism Ψ which maps X0 ` B to

an element of L which commutes with X0. We call such a Ψ a “normalizing automorphism” and

ΨpX0 ` Bq is then called a “normal form” of X0 ` B. Our key assumption will be that B can

be decomposed into a sum B “ ř

Bn of eigenvectors of the inner derivation adX0
: Y ÞÑ rX0, Y s.

We will also assume that L is a “complete filtered Lie algebra” (Definition 1.1 below), which will

allow us to look for Ψ in the form of the exponential of an auxiliary inner derivation.

Our first aim in this article is to introduce Écalle’s “mould calculus” for this situation, in the

simplest possible way, and to use it to find an explicit solution to the normalization problem: we

will obtain Ψ “ exppadY q and ΨpX0 ` Bq “ X0 ` Z with Y,Z P L given by explicit formal series

involving all possible iterated Lie brackets rBnr , r. . . rBn2
, Bn1

s . . .ss. It is the family of coefficients

that one puts in front of these iterated Lie brackets that is called a “mould”; we shall be led to

an equation for the moulds associated with Y and Z, and our second main result will consist

in describing all its solutions, especially all those which are “alternal moulds” (see below), and

giving an algorithm to compute them.

Next, we give applications of our result to perturbation theory in classical and quantum dynam-

ics. Indeed, there are several formal normalization problems for dynamical systems or quantum

systems which can be put in the above form:

– the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium

point with diagonalizable linear part, taking for X0 the linear part of the vector field and for L

the Lie algebra of formal vector fields;

– the construction of Hamiltonian Birkhoff normal forms at an elliptic equilibrium point, tak-

ing for X0 the quadratic part of the Hamiltonian and for L the Poisson algebra of formal

Hamiltonian functions;

– the elimination at every perturbative order (“averaging”) of a fast angular variable ϕ P Td with

fixed frequency ω P Rd in a slow-fast vector field (Hamiltonian or not), taking X0 “
ř

ωj
B

Bϕj
;

– the construction of quantum Birkhoff normal forms in a Rayleigh-Schrödinger-type situation,

taking for X0 the unperturbed part of the quantum Hamiltonian and for L a Lie algebra of

operators of the underlying Hilbert space.
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Nature of the Lie algebra L

and its Lie bracket

Element to be normalized

X “ X0 ` B, B “ ř

Bn

Normalization

eadY X “ X0 ` Z

Poincaré-

Dulac normal

form

Formal vector fields

in z1, . . . , zN with

their natural Lie bracket

X0 “
N
ř

j“1

ωjzjBzj

B “ ř

nPN
Bn

N “ t xk, ωy ´ ωj u Ă C

eadY X “ Φ´1
˚ X,

Φ ¨̈“ formal time-1

map for Y ,

Z resonant

Birkhoff

normal form

Formal Hamiltonians

in x1, y1, . . . , xd, yd

with Poisson bracket

for
ř

dxj ^ dyj

X0 “
d
ř

j“1

1
2
ωjpx2j ` y2j q

B “
ř

nPZd

Bn

λpnq “ i xn, ωy

eadY X “ X ˝ Φ,

Φ ¨̈“ formal time-1 map

for the Hamiltonian

vector field tY, ¨ u,
Z resonant

Multiphase

averaging

Vector fields or Hamiltonians
ř

Fj
B

Bϕj
` ř

Gk
B

BIk or Hpϕ, Iq
trigonometric polyn. in ϕ,

smooth in I, formal in ε

X0 “ ř

ωj
B

Bϕj
or xω, Iy

B “
ř

nPZd

Bn

λpnq “ i xn, ωy

eadY X “ Φ´1
˚ X or X ˝ Φ,

Φ ¨̈“ formal time-1

map for Y or tY, ¨ u,
Z resonant, formal in ε

Quantum

perturbation

theory

LC
e rrεss, operators in a Hilbert

formal in ε, finite-column

w.r.t. an orthonormal basis e,

r¨ , ¨squ ¨̈“ 1
ih̄

ˆ commutator

X0 “
ř

kPI
| ekyEk xek |

B “ ř

nPN
Bn

N “ t 1
ih̄

pEℓ ´ Ekq u Ă C

eadY X “ e
1
ih̄
YX e´ 1

ih̄
Y ,

Z block-diagonal on e

and formal in ε

Quantum

perturbation

theory

uniform in

h̄ Ñ 0

LR
e,fbrrεss, operators in L2pRdq

obtained by

Weyl quantization

r¨ , ¨squ ¨̈“ 1
ih̄

ˆ commutator

X0 “
´ 1

2
h̄2∆Rd ` ř

1
2
ω2
jx

2
j

B “ ř

nPZd

Bn

λpnq “ i xn, ωy

eadY X “ e
1
ih̄
YX e´ 1

ih̄
Y ,

symbol of Z tending

to classical B.N.F.

as h̄ Ñ 0

Table 1. Synthetic overview of applications to dynamics

There is a fifth application, dealing with the way the coefficients of the quantum Birkhoff

normal forms formally converge, as h̄ Ñ 0, to those of the classical Birkhoff normal form.

The reader will find a synthetic overview of the dynamical applications in Table 1 on p. 3

and more explanations in Sections 5–9, particularly about the way one can use “homogeneity” to

decompose a given B into a sum
ř

Bn of eigenvectors of adX0
(the indices n belong to a countable

set depending on the chosen example; the eigenvalue associated with n is denoted by λpnq when

it is not n itself).
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In our view, one of the merits of the Lie-theoretic framework we have devised is its unifying

power. Indeed, the dynamical applications we have mentioned are well-known, but what is new is

the way we obtain each of them as a by-product of one theorem on the normalization problem in a

Lie algebra which itself derives from one theorem on the solutions of a certain mould equation. The

fact that one can use exactly the same moulds in all these applications is in itself remarkable. This

point of view offers a better understanding of the combinatorics involved in these applications.

In particular we shall see that our approach gives a more direct way of relating quantum and

classical normal forms (last line of Table 1).

Normal forms in completed graded Lie algebras have been studied in [Men13], which is dedicated

to logarithmic derivatives associated with graded derivations, motivated by perturbative quantum

field theory. However, we see no obvious way of deducing our main results from [Men13], which

works in a different context and adopts a more Hopf-algebraic point of view without involving

any moulds.

A forthcoming paper [PS16] will be devoted to normal form problems similar to the ones

studied in the present article (including applications to classical and quantum dynamics), but in

the framework of Banach scales of Lie algebras; there, the focus will be on more quantitative

results, which can be obtained thanks to the mould representation of the solution in a more

analytic context.

Our method relies on Écalle’s concept of “alternal mould” ([Eca81], [Eca93]) and owes a lot to

the article [EV95] (particularly the part on the so-called “mould of the regal prenormal form” in

it). Our approach is however slightly different, and it incorporates a more direct introduction of

alternality, because we work in a Lie algebra rather than with an associative algebra of operators

which would themselves act on an associative algebra. We do not require from the reader any

previous knowledge of the mould formalism. We will provide original self-contained proofs, except

for a few elementary facts of Écalle’s theory the proof of which can be found e.g. in [Sau09]; at a

technical level, we shall use crucially the “dimoulds” introduced in [Sau09].

The core of our work consists in finding and describing the alternal moulds solutions to a certain

equation. This is tightly related to algebraic combinatorics. For instance, finite-support alternal

moulds can be identified with the primitive elements of a certain combinatorial Hopf algebra, and

general alternal moulds with the infinitesimal characters of the dual Hopf algebra. Moreover, the

mould counterpart to the grouplike elements of this Hopf algebra and the characters of its dual

is embodied in Écalle’s concept of “symmetrality”. Solving our mould equation will lead us to a

generalisation of the classical character of the combinatorial Hopf algebra QSym related to the

Dynkin Lie idempotent. However, in this article, we shall not use the language of Hopf algebras

but rather stick to Écalle’s mould calculus and its application to our Lie-theoretic problem.
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The article is divided into three parts.

– The part “Main general results” contains two sections. The first is devoted to the statement of

the first main result, Theorem A, in the context of complete filtered Lie algebras. The second

section gives the minimum amount of the mould formalism necessary to state the second main

result, Theorem B, about the set of all alternal solutions to a certain mould equation.

– The part “Lie mould calculus” contains two sections: Section 3 explains the origin of the notion

of alternal mould in relation with computations in a Lie algebra, and then derives the proof

of Theorem A from Theorem B. Section 4 gives the proof of Theorem B with the help of

“dimoulds”.

– The part “Five dynamical applications” contains five sections, each devoted to a particular

application of Theorem A: Section 5 for Poincaré-Dulac normal forms of formal vector fields,

Section 6 for classical Birkhoff normal forms of formal Hamiltonians, Section 7 for the elimi-

nation of a fast angular phase in formal slow-fast vector fields, Section 8 for quantum Birkhoff

normal forms of formal perturbations of certain quantum Hamiltonians, Section 9 for the formal

convergence of quantum Birkhoff normal forms to classical Birkhoff normal forms as h̄ Ñ 0 for

perturbations of harmonic oscillators. To our knowledge, the latter result, valid for arbitrary

frequencies, is new and generalizes earlier ones [GP87] [DGH91], which required a Diophantine

condition. These applications, though more specialized than the main general results, are writ-

ten in a self-contained way so as to be (hopefully) accessible to readers who are not specialists

of the different domains they cover.
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Main general results

1. Normalization in complete filtered Lie algebras (Theorem A)

Throughout the article we use the notations

N “ t0, 1, 2, . . .u, i “
?

´1.

Definition 1.1. A “complete filtered Lie algebra” is a Lie algebra
`

L, r. , .s
˘

together with a

sequence of subspaces

L “ Lě0 Ą Lě1 Ą Lě2 Ą . . . with rLěm,Lěns Ă Lěm`n for all m,n P N

(exhaustive decreasing filtration compatible with the Lie bracket) such that
Ş

Lěm “ t0u (the

filtration is separated) and L is a complete metric space for the distance dpX,Y q ¨̈“ 2´ ordpY ´Xq,

where we denote by ord: L Ñ NY t8u the order function associated with the filtration (function

characterized by ordpXq ě m ô X P Lěm).

The completeness assumption will be used as follows: given a set I, a family pYiqiPI of L is

said to be “formally summable” if, for any m P N, the set t i P I | Yi R Lěm u is finite; one

can then check that the support of this family is countable (if not I itself) and that, for any

exhaustion pIkqkPN of this support by finite sets, the sequence
ř

iPIk Yi is Cauchy, with a limit

which is independent of the exhaustion—this common limit is simply denoted by
ř

iPI Yi.

Here is a simple and useful example of a formally summable series of operators in L: for any

Y P Lě1 and r P N, the operator padY qr maps L in Lěr, hence, for every X P L, the series

eadY pXq ¨̈“
ř8

r“0
1
r!

padY qrpXq is formally summable in L. This allows us to define the operator

eadY , which is a Lie algebra automorphism because adY is a Lie algebra derivation.

Our first main result is

Theorem A. Let k be a field of characteristic zero. There exist families of coefficients

F λ1,...,λr , Gλ1,...,λr P k for r ě 1, λ1, . . . , λr P k, (1.1)

explicitly computable by induction on r, which satisfy the following: given a complete filtered Lie

algebra L over k and X0 P L, given a set N and a formally summable family pBnqnPN of L such

that each Bn has order ě 1 and is an eigenvector of adX0
, one has

rX0, Zs “ 0, eadY

´

X0 `
ÿ

nPN
Bn

¯

“ X0 ` Z, (1.2)
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where Z, Y P Lě1 are defined as the following sums of formally summable families:

Z “
ÿ

rě1

ÿ

n1,n2,...,nrPN

1

r
F λpn1q,λpn2q,...,λpnrqrBnr , r. . . rBn2

, Bn1
s . . .ss (1.3)

Y “
ÿ

rě1

ÿ

n1,n2,...,nrPN

1

r
Gλpn1q,λpn2q,...,λpnrqrBnr , r. . . rBn2

, Bn1
s . . .ss (1.4)

with

λ : N Ñ k, λpnq ¨̈“ eigenvalue of Bn. (1.5)

The proof of Theorem A is in Section 3.4.

As we shall see, the families F ‚ “ pF λ1,...,λrq and G‚ “ pGλ1,...,λrq are not unique, but pF ‚, G‚q
is in one-to-one correspondence with an auxiliary family called gauge generator, which can be

chosen arbitrarily among resonant alternal moulds (see the definitions in Section 2). We will see

that, for any choice of the gauge generator, one has F λ1,...,λr “ 0 whenever λr ` ¨ ¨ ¨ ` λ1 ‰ 0 and

λrpλr ` λr´1q ¨ ¨ ¨ pλr ` ¨ ¨ ¨ ` λ2q ‰ 0, λr ` ¨ ¨ ¨ ` λ1 “ 0 ñ

F λ1,...,λr “ 1

λrpλr ` λr´1q ¨ ¨ ¨ pλr ` ¨ ¨ ¨ ` λ2q . (1.6)

The formulas are much more complicated when the denominator vanishes, but there still is an

explicit algorithm to compute every coefficient F λ1,...,λr or Gλ1,...,λr depending on the chosen gauge

generator: see formulas (2.14)–(2.17) in Section 2.

Remark 1.2. We may accept 0 as an eigenvector, i.e. some of the Bn’s may vanish and λpnq
need not be specified for those values of n. Since the support of a summable family is at most

countable, one can always choose

N “ N˚ (1.7)

without loss of generality (by numbering the support of pBnq and, if this support is finite, setting

Bn “ 0 for the extra values of n). On the other hand, one can decide to group together the eigen-

vectors associated with the same eigenvalue and take for N the countable subset of k consisting

of the eigenvalues which appear in the problem, in which case

N Ă k, λpnq “ n for n P N (1.8)

(this latter choice is the one of [EV95]). In this article we do not opt for any of these two choices

and simply consider a general eigenvalue map (1.5) with arbitrary N (without assuming Bn ‰ 0

for each n).
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Remark 1.3. The factor 1
r
in (1.3)–(1.4) is just a convenient normalization. We shall see in

Section 3.5 that the inner derivation adY itself can be written

adY “
ÿ

rě1

ÿ

n1,n2,...,nrPN

1

r
Gλpn1q,λpn2q,...,λpnrqradBnr

, r. . . radBn2
, adBn1

s . . .ss

“
ÿ

rě1

ÿ

n1,...,nrPN
Gλpn1q,¨¨¨ ,λpnrq adBnr

¨ ¨ ¨ adBn1
(1.9)

(no more factor 1
r
in the last series!—note that in general the individual composite operators

adBnr
¨ ¨ ¨ adBn1

are not derivations of L). We shall also define a family of coefficients S‚ tightly

related to G‚ such that

eadY “ Id`
ÿ

rě1

ÿ

n1,...,nrPN
Sλpn1q,¨¨¨ ,λpnrq adBnr

¨ ¨ ¨ adBn1
. (1.10)

Remark 1.4. If Z, Y P Lě1 solve equation (1.2), then any W P Lě1 such that rX0,W s “ 0 gives

rise to a solution pZ̃, Ỹ q by setting Z̃ ¨̈“ eadWZ and Ỹ ¨̈“ BCHpW,Y q “ W ` Y ` 1
2
rW,Y s ` ¨ ¨ ¨ ,

the Baker-Campbell-Hausdorff series, which is formally summable and satisfies eadỸ “ eadW eadY .

In Section 6, we shall see an example in which Z is unique but Y is not.

We conclude this section with a “truncated version” of Theorem A:

Addendum to Theorem A. Take L, X0, pBnqnPN and λ : N Ñ k as in the assumptions of

Theorem A. Then, for each m P N˚, the set Nm ¨̈“ tn P N | Bn R Lěmu is finite and the finite

sums

Zm ¨̈“
m´1
ÿ

r“1

ÿ

n1,...,nrPNm

1

r
F λpn1q,...,λpnrqrBnr , r. . . rBn2

, Bn1
s . . .ss, (1.11)

Ym ¨̈“
m´1
ÿ

r“1

ÿ

n1,...,nrPNm

1

r
Gλpn1q,...,λpnrqrBnr , r. . . rBn2

, Bn1
s . . .ss (1.12)

define Zm, Ym P Lě1 satisfying rX0, Zms “ 0 and

eadYm

´

X0 `
ÿ

nPN
Bn

¯

“ X0 ` Zm mod Lěm. (1.13)

The proof is in Section 3.6.

2. The mould equation and its solutions (Theorem B)

We now describe the part of Écalle’s mould formalism which will allow us to construct the

aforementioned families of coefficients. This will lead us to an equation, of which we will describe

all solutions.
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2.1 Let k a field and N a nonempty set, considered as an alphabet. We denote by N the

corresponding free monoid, whose elements are called words,

N ¨̈“ tn “ n1 ¨ ¨ ¨nr | r P N, n1, . . . , nr P N u.

The monoid law is word concatenation: a b “ a1 ¨ ¨ ¨ arb1 ¨ ¨ ¨ bs for a “ a1 ¨ ¨ ¨ ar and b “ b1 ¨ ¨ ¨ bs.
Its unit is the empty word, denoted by I, the only word of length 0. The length of a word n is

denoted by rpnq. (Given r P N, we sometimes identify the set of all words of length r with N r.)

We call mould any map N Ñ k. It is customary to denote the value of the mould on a word n

by affixing n as an upper index to the symbol representing the mould, and to refer to the mould

itself by using a big dot as upper index; hence M‚ is the mould, the value of which at n is denoted

by Mn.

For example, the families of coefficients F ‚, G‚ referred to in Theorem A can be considered

as moulds, taking N “ k as alphabet. For that reason, from now on, we will write F λ1¨¨¨λr and

Gλ1¨¨¨λr to denote the individual coefficients rather than F λ1,...,λr or Gλ1,...,λr as in (1.1).

The set kN of all moulds is clearly a linear space over k. It is also an associative k-algebra

(usually not commutative): mould multiplication is induced by word concatenation,

P ‚ “ M‚ ˆ N‚ is defined by n P N ÞÑ Pn ¨̈“
ÿ

n“a b

MaN b (2.1)

(summation over all pairs of words pa, bq such that n “ a b, including pn,Iq and pI, nq, thus there
are rpnq ` 1 terms in the sum).1 The multiplication unit is the elementary mould 1‚ defined by

1I “ 1 and 1n “ 0 for n ‰ I. It is easy to see that a mould M‚ is invertible if and only if

MI ‰ 0; we then denote its multiplicative inverse by invM‚.

The Lie algebra associated with the associative algebra kN will be denoted LiepkN q (same

underlying vector space, with bracketing rM‚, N‚s ¨̈“ M‚ ˆ N‚ ´ N‚ ˆ M‚).

The order function ord: kN Ñ N Y t8u defined by

ordpM‚q ě m ô Mn “ 0 whenever rpnq ă m (2.2)

allows us to view kN as a complete filtered associative algebra (because the distance dpM‚, N‚q ¨̈“
2´ ordpN‚´M‚q makes it a complete metric space and ordpM‚ ˆ N‚q ě ordpM‚q ` ordpN‚q). We

1 The linear space k
N can be identified with the dual of kN , the k-vector space consisting of all linear combi-

nations of words (formal sums of the form
ř

xn n, with finitely many nonzero coefficients xn P k): the mould M‚

gives rise to the linear form x P kN ÞÑ M‚pxq P k defined by M‚p
ř

xn nq “
ř

xnM
n. The associative algebra

structure on k
N is then dual to the coalgebra structure induced on kN by “word deconcatenation”, for which the

coproduct is ∆pnq “
ř

n“a b

a b b.
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can thus define the mutually inverse exponential and logarithm maps by the following summable

series:

MI “ 0 ñ eM
‚ ¨̈“ 1‚ `

ÿ

kě1

1
k!

pM‚qˆk, logp1‚ ` M‚q ¨̈“
ÿ

kě1

p´1qk´1

k
pM‚qˆk.

2.2 Écalle’s notion of “alternality” is of fundamental importance. Its motivation will be made

clear in Section 3.2. The idea is that, since in the situation of Theorem A we will use a mould M‚

as a family of coefficients to be multiplied by iterated Lie brackets (as F ‚ in (1.3) or G‚ in (1.4)),

it is natural to impose some symmetry (or, rather, antisymmetry) on the coefficients so as to

take into account the antisymmetry of the Lie bracket. For instance, the sum over all two-

letter words contains expressions like 1
2
Mn1n2rBn2

, Bn1
s ` 1

2
Mn2n1rBn1

, Bn2
s, which coincide with

1
2
pMn1n2 ´ Mn2n1qrBn2

, Bn1
s, so it is natural to impose

Mn1n2 ` Mn2n1 “ 0 for all n1, n2 P N , (2.3)

so as to reduce to 1 the number of degrees of freedom associated with the words n1n2 and n2n1.

Alternality is a generalisation of (2.3) for all lengths ě 2.

The definition of alternality is based on word shuffling. Roughly speaking, the shuffling of two

words a and b is the set2 of all words obtained by interdigitating the letters of a and b while

preserving their internal order in a or b; the number of different ways a word n can be obtained

out of a and b is called shuffling coefficient. We make this more precise by using permutations as

follows. For r P N, we let Sr (the symmetric group of degree r) act to the right on the set N r of

all words of length r by

n “ n1 ¨ ¨ ¨nr ÞÑ nτ ¨̈“ nτp1q ¨ ¨ ¨nτprq for τ P Sr and n P N r. (2.4)

For 0 ď ℓ ď r, we set

nτ
ďℓ

¨̈“ nτp1q ¨ ¨ ¨ nτpℓq, nτ
ąℓ

¨̈“ nτpℓ`1q ¨ ¨ ¨nτprq.

We also define

Srpℓq ¨̈“ t τ P Sr | τp1q ă ¨ ¨ ¨ ă τpℓq and τpℓ ` 1q ă ¨ ¨ ¨ ă τprq u,

with the conventions Srp0q “ Srprq “ tidu.

Definition 2.1. Given n, a, b P N , the “shuffling coefficient” of n in pa, bq is defined to be

sh
`

a, b
n

˘ ¨̈“ cardt τ P Srpℓq | nτ
ďℓ “ a and nτ

ąℓ “ b u, where ℓ ¨̈“ rpaq. (2.5)

2or rather the sum—see footnote 3
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For instance, if n,m, p, q are four distinct elements of N ,

sh
´ nmp,mq

nmqpm

¯

“ 0, sh
´ nmp,mq

nmmqp

¯

“ 2, sh
´ nmp,mq

mnqmp

¯

“ 1.

Definition 2.2. A mould M‚ is said to be “alternal” if MI “ 0 and

ÿ

nPN
sh
`

a, b
n

˘

Mn “ 0 for any two nonempty words a, b. (2.6)

For instance, (2.6) with a “ n1 and b “ n2 yields (2.3) and, with a “ n1 and b “ n1n2, it yields

2Mn1n1n2 ` Mn1n2n1 “ 0.

Notice that any mould whose support is contained in the set of one-letter words is alternal; so is,

in particular, the elementary mould I‚ defined by

In ¨̈“ 1trpnq“1u for any word n. (2.7)

We denote by Alt‚pN q the set of alternal moulds, which is clearly a linear subspace of kN ; in

fact,3

Alt‚pN q is a Lie subalgebra of LiepkN q

(see e.g. [Sau09, Prop. 5.1]); this will play a role when returning to the situation of Theorem A.

2.3 Given a function ϕ : N Ñ k, we denote by the same symbol ϕ its extension to N as a monoid

morphism: ϕpIq “ 0 and

n “ n1 ¨ ¨ ¨nr P N ÞÑ ϕpnq “ ϕpn1q ` ¨ ¨ ¨ ` ϕpnrq P k if r ě 1. (2.8)

The formula

∇ϕ : M‚ P kN ÞÑ N‚ P kN , Nn ¨̈“ ϕpnqMn for any word n (2.9)

then defines a derivation of the associative algebra kN (the Leibniz rule for ∇ϕ is an obvious

consequence of the identity ϕpa bq “ ϕpaq ` ϕpbq). For example, associated with the constant

function ϕpnq ” 1 is the derivation ∇1, which spells

∇1M
n “ rpnqMn for any M P kN and n P N .

3 Word shuffling gives rise to the “shuffling product”, defined by a� b ¨̈“
ř

τPSrpℓq

pa bqτ
´1

“
ř

sh
`

a, b
n

˘

n P kN

for a pair of words such that rpaq “ ℓ and rpa bq “ r and extended to kN ˆ kN by bilinearity, which makes

the space kN of footnote 1 a commutative associative algebra. Alternal moulds can then be identified with the

infinitesimal characters of the associative algebra pkN ,�q, i.e. when viewed as linear forms they are characterized

by M‚px�yq “ M‚pxq1‚pyq ` 1‚pxqM‚pyq. In that point of view, Alt‚pN q is a Lie subalgebra of LiepkN q because

kN is a bialgebra (i.e. there is some kind of compatibility between the deconcatenation coproduct and the shuffling

product—in fact, kN is even a Hopf algebra).
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In the situation of Theorem A, the derivation ∇λ associated with the map (1.5) will play a

pre-eminent role. We shall need the following

Definition 2.3. Given a map λ : N Ñ k, we call “λ-resonant” any mould M‚ such that ∇λM
‚ “

0 and use the notation

Alt‚
λ“0pN q ¨̈“ tM‚ P Alt‚pN q | ∇λM

‚ “ 0 u.

The “λ-resonant part” of a mould M‚ is denoted by M‚
λ“0 and defined by the formula

M
n
λ“0

¨̈“ 1tλpnq“0u M
n for any word n.

The “gauge generator” of an alternal mould M‚ is defined as

JλpM‚q ¨̈“
”

e´M‚ ˆ ∇1

`

eM
‚˘
ı

λ“0
.

Note that the space Alt‚
λ“0pN q of all λ-resonant alternal moulds is a Lie subalgebra of Alt‚pN q

(being the kernel of a derivation). Clearly, the λ-resonant part of a mould is λ-resonant; a

mould M‚ is λ-resonant if and only if M‚ “ M‚
λ“0 or, equivalently, if and only if Mn “ 0

whenever λpnq ‰ 0. We shall see later that the gauge generator of an alternal mould is always

alternal and, in fact, Alt‚
λ“0pN q coincides with the set of all gauge generators of alternal moulds.

It is worth singling out the particular case of an alphabet contained in k:

Definition 2.4. If N Ă k and λ : N Ñ k is the inclusion map, then we use the word “resonant”

instead of λ-resonant, and we use the notations ∇, Alt‚
0pN q, M‚

0 and J pM‚q instead of ∇λ,

Alt‚
λ“0pN q, M‚

λ“0, and JλpM‚q.

2.4 We are now in a position to state our second main result, describing all the solutions to

a certain mould equation, equation (2.10) below. This result, while being of interest in itself,

will yield the main step in the proof of Theorem A. Recall that I‚ is the alternal mould defined

by (2.7).

Theorem B. Let N be a nonempty set, k a field of characteristic zero, and λ : N Ñ k a map.

(i) For every A‚ P Alt‚
λ“0pN q, there exists a unique pair pF ‚, G‚q of alternal moulds such that

∇λF
‚ “ 0, ∇λ

`

eG
‚˘ “ I‚ ˆ eG

‚ ´ eG
‚ ˆ F ‚, (2.10)

JλpG‚q “ A‚. (2.11)

(ii) Suppose that pF ‚, G‚q P Alt‚pN qˆAlt‚pN q is a solution to equation (2.10). Then the formula

J‚ ÞÑ pF̃ ‚, G̃‚q “
´

e´J‚ ˆ F ‚ ˆ eJ
‚
, log

`

eG
‚ ˆ eJ

‚˘
¯

(2.12)
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establishes a one-to-one correspondence between Alt‚
λ“0pN q and the set of all solutions pF̃ ‚, G̃‚q P

Alt‚pN q ˆ Alt‚pN q of equation (2.10). Moreover,

JλpG̃‚q “ e´J‚ ˆ JλpG‚q ˆ eJ
‚ ` e´J‚ ˆ ∇1

`

eJ
‚˘

. (2.13)

The proof of Theorem B is given in Section 4. It is constructive in the sense that we will obtain

the following simple algorithm to compute the values of F ‚ and S‚ ¨̈“ eG
‚
on any word n by

induction on its length rpnq: introducing an auxiliary alternal mould N‚, one must take

SI “ 1, FI “ NI “ 0 (2.14)

and, for rpnq ě 1,

λpnq ‰ 0 ñ Fn “ 0, Sn “ 1

λpnq
´

S‘n ´
ÿ˚

n“a b

Sa F b
¯

, Nn “ rpnqSn ´
ÿ˚

n“a b

SaN b,

(2.15)

λpnq “ 0 ñ Fn “ S‘n ´
ÿ˚

n“a b

Sa F b, Sn “ 1

rpnq
´

An `
ÿ˚

n“a b

SaN b
¯

, Nn “ An, (2.16)

where we have used the notation ‘n ¨̈“ n2 ¨ ¨ ¨ nr for n “ n1n2 ¨ ¨ ¨ nr and the symbol
ÿ˚

indicates

summation over non-trivial decompositions (i.e. a, b ‰ I in the above sums); we will see that the

mould F ‚ thus inductively defined is alternal and that

GI “ 0, Gn “
rpnq
ÿ

k“1

p´1qk´1

k

ÿ˚

n“a1¨¨¨ak
Sa1 ¨ ¨ ¨Sak for n ‰ I (2.17)

then defines the alternal mould G‚ which solves (2.10)–(2.11).

2.5 A few remarks are in order.

2.5.1. Given alphabets M and N , any map ϕ : N Ñ M induces a map ϕ˚ : M‚ P kM ÞÑ M‚
ϕ P

kN defined by Mn1¨¨¨nr
ϕ

¨̈“ Mϕpn1q¨¨¨ϕpnrq, which is a morphism of associative algebras, mapping

Alt‚pMq to Alt‚pN q and satisfying ∇µ˝ϕ ˝ ϕ˚ “ ∇µ for any µ : M Ñ k. Let λ ¨̈“ µ ˝ ϕ; one can

easily check that, if A‚ P Alt‚
µ“0pMq, then the unique solution pF ‚, G‚q P Alt‚pMq ˆ Alt‚pMq of

∇µF
‚ “ 0, ∇µ

`

eG
‚˘ “ I‚ ˆ eG

‚ ´ eG
‚ ˆ F ‚

such that JµpG‚q “ A‚ is mapped by ϕ˚ to the unique solution in Alt‚pN q ˆ Alt‚pN q of (2.10)

with gauge generator ϕ˚pA‚q.

2.5.2. Let us call “canonical case” the case when N “ k and λ “ the identity map. We shall

see in Section 3.4 that the moulds F ‚, G‚ P kk which are referred to in Theorem A and give rise
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to solutions pZ, Y q of equation (1.2) are the ones given by Theorem B in the canonical case with

arbitrary A‚ P Alt‚
0pkq. The mould S‚ referred to in Remark 1.3 is then eG

‚
.

We shall see that, with the notations of Theorem B(ii), any J‚ P Alt‚
0pkq gives rise to W P Lě1

such that rX0,W s “ 0 and the solution pZ̃, Ỹ q of (1.2) associated with pF̃ ‚, G̃‚q is given by

Z̃ “ eadWZ and Ỹ “ BCHpW,Y q, in line with Remark 1.4.

2.5.3. In part (i) of the statement, one may choose A‚ “ 0; this yields for pF ‚, G‚q what we

call the “zero gauge solution of equation (2.10)”. In the canonical case, the zero gauge solution

corresponds to what is treated in [EV95] under the name “royal prenormal form”. The rest of

the statement and the whole proof given in Section 4 are new.

As a consequence of the remark in Section 2.5.1, the zero gauge solution in the general case

λ : N Ñ k is obtained from the zero gauge solution in the canonical case by applying λ˚.

2.5.4. Another possible normalization aimed at singling out a specific solution of (2.10) in

Alt‚pN q ˆ Alt‚pN q consists in requiring G‚
λ“0 “ 0 (instead of requiring JλpG‚q “ 0). There

is a unique such solution and here is how one can see it.

According to the Baker-Campbell-Hausdorff formula, for arbitrary G‚, J‚ P
`

kN
˘

ě1
(i.e. such

that GI “ JI “ 0), we can write

logpeG‚ ˆ eJ
‚q “ G‚ ` J‚ ` FpG‚, J‚q, FpG‚, J‚q “ 1

2
rG‚, J‚s ` ¨ ¨ ¨ P

`

kN
˘

ě2
,

where the functional F satisfies ord
`

FpG‚, J̃‚q ´ FpG‚, J‚q
˘

ě ordpJ̃‚ ´ J‚q ` 1 for all J̃‚ P
`

kN
˘

ě1
(which is a contraction property for the distance mentioned right after (2.2)) and preserves

alternality. Now, given a solution pF ‚, G‚q P Alt‚pN q ˆ Alt‚pN q to equation (2.10), in view of

part (ii) of Theorem B, we see that finding a solution pF̃ ‚, G̃‚q P Alt‚pN q ˆ Alt‚pN q of (2.10)

such that G̃‚
λ“0 “ 0 is equivalent to finding J‚ P Alt‚

λ“0pN q such that

J‚ “ ´G‚
λ“0 ´

“

FpG‚, J‚q
‰

λ“0
. (2.18)

The fixed point equation (2.18) has a unique solution J‚ in
`

kN
˘

ě1
(because of the contraction

property), which is clearly λ-resonant, and also alternal (because F preserves alternality). The

uniqueness of the mould J‚ entails that the solution pF̃ , G̃q is unique (it does not depend on the

auxiliary solution pF ‚, G‚q we started with).

2.5.5. “Symmetral” moulds can be defined as the elements of

Sym‚pN q ¨̈“ teM‚ | M‚ P Alt‚pN qu (2.19)

and
`

Sym‚pN q,ˆ
˘

is a group, in general non-commutative (see e.g. [Sau09, Prop. 5.1]; see also

Remark 3.10 below).
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Thus, using the change of unknown S‚ “ eG
‚
, it is equivalent to look for a solution pF ‚, G‚q P

Alt‚pN q ˆ Alt‚pN q of equation (2.10) or for a solution pF ‚, S‚q P Alt‚pN q ˆ Sym‚pN q of the

equation

∇λF
‚ “ 0, ∇λS

‚ “ I‚ ˆ S‚ ´ S‚ ˆ F ‚, (2.20)

and the gauge generator will then be

Jλplog S‚q “
“

invS‚ ˆ ∇1S
‚‰

λ“0
. (2.21)

This mould S‚ “ eG
‚
is the one which appears in the algorithm (2.14)–(2.16); there, N‚ is the

auxiliary mould N‚ “ invS‚ ˆ ∇1S
‚.

2.5.6. For any choice of A‚ P Alt‚
λ“0pN q, from (2.15)–(2.16), one easily gets

λpn1n2 ¨ ¨ ¨nrqλpn2 ¨ ¨ ¨nrq ¨ ¨ ¨ λpnrq ‰ 0 ñ

Fni¨¨¨nr “ 0 for i “ 1, . . . , r and Sn1¨¨¨nr “ 1

λpn1n2 ¨ ¨ ¨nrqλpn2 ¨ ¨ ¨nrq ¨ ¨ ¨λpnrq , (2.22)

whence (1.6) follows by (2.16) and Section 2.5.2.

Note that it may happen that λpnq ‰ 0 for every nonempty word n, in which case Alt‚
λ“0pN q “

t0u and there is only one solution pF ‚, G‚q P Alt‚pN qˆAlt‚pN q to equation (2.10), namely F ‚ “ 0

and G‚ “ logarithm of the mould S‚ defined by (2.22).

For instance, this is what happens if N “ N˚ (positive integers), k “ Q and λ “ the inclusion

map N˚
ãÑ Q. Formula (2.22) then reads

Sn1¨¨¨nr “ 1

pn1 ` n2 ` ¨ ¨ ¨ ` nrqpn2 ` ¨ ¨ ¨ ` nrq ¨ ¨ ¨nr
.

In that case, the Hopf algebra kN evoked in footnote 3 is the combinatorial Hopf algebra QSym of

“quasi-symmetric functions” and this mould S‚ is related to the so-called Dynkin Lie idempotent,

of which we thus get interesting generalisations by considering arbitrary maps λ : N˚ Ñ Q and

the corresponding symmetral moulds S‚.

The canonical case defined in Section 2.5.2 is the opposite: Alt‚
0pkq is huge. Choosing a resonant

alternal mould A‚ amounts to choosing an arbitrary constant in k for A0 (only possibly nonzero

value in length 1), an arbitrary odd function k Ñ k for λ1 ÞÑ Aλ1p´λ1q in length 2, etc.

2.5.7. The exponential map induces a bijection from Alt‚
λ“0pN q to the set Sym‚

λ“0pN q consisting

of all λ-resonant symmetral moulds, which is a subgroup of Sym‚pN q.
According to part (ii) of Theorem B, given a solution pF ‚, S‚q P Alt‚pN q ˆ Sym‚pN q of (2.20),

we thus have a bijection

K‚ ÞÑ pF̃ ‚, S̃‚q “
`

invK‚ ˆ F ‚ ˆ K‚, S‚ ˆ K‚˘ (2.23)
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between Sym‚
λ“0pN q and the set of all solutions pF̃ ‚, S̃‚q P Alt‚pN q ˆ Sym‚pN q of (2.20). The

map

pF ‚, S‚q ÞÑ
`

invK‚ ˆ F ‚ ˆ K‚, S‚ ˆ K‚˘

is called the “gauge transformation” associated with K‚ P Sym‚
λ“0pN q.

The group Sym‚
λ“0pN q is called the “gauge group” of equation (2.20); it acts to the right freely

and transitively by gauge transformations on the space of solutions
 

pF ‚, S‚q
(

Ă Alt‚pN q ˆ
Sym‚pN q. Its effect on gauge generators is given by the formula

Jλplog S̃‚q “ invK‚ ˆ Jλplog S‚q ˆ K‚ ` invK‚ ˆ ∇1K
‚. (2.24)

2.5.8. The identities

e´J‚ ˆA‚ ˆeJ
‚ “ pe´ adJ‚ qA‚ “

ÿ

kě0

p´1qk
k!

padJ‚qkA‚, e´J‚ ˆ∇λpeJ‚q “
ÿ

kě0

p´1qk
pk`1q!padJ‚qk ∇λJ

‚

to be seen in Section 3.3 (Propositions 3.8(ii) and 3.9(ii)) show that, for any alternal mould M‚,

the λ-resonant mould JλpM‚q is alternal, as claimed in the paragraph following Definition 2.3,

and that the right-hand side of (2.13) or (2.24) is indeed alternal and λ-resonant (by replacing ∇λ

with ∇1 and observing that Alt‚
λ“0pN q is invariant by adJ‚ for J‚ P Alt‚

λ“0pN q).
One can easily find the gauge transformation which maps the zero gauge solution on any given

solution: if a given solution pF ‚, S‚q P Alt‚pN qˆSym‚pN q has gauge generator A‚ “ Jλplog S‚q,
then one finds the desired gauge transformation in terms of A‚ by solving the equation

∇1K
‚ “ K‚ ˆ A‚

inductively on word length with initial condition KI “ 1 (the unique solution K‚ P kN is clearly

λ-resonant and it turns out that it is also symmetral).
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Lie mould calculus

3. Lie mould calculus and proof of Theorem A

3.1. General setting.

Let us give ourselves a field k and a nonempty set N , so that we can consider the associative

k-algebra kN of Section 2. We suppose that we are also given a Lie algebra L over k and a family

pBnqnPN of L.

Let us consider an associative algebra A over k such that L is a Lie subalgebra of LiepAq
(we denote by LiepAq the Lie algebra over k with the same underlying vector space as A and

bracketing rx, ys ¨̈“ xy ´ yx). For instance, by the Poincaré-Birkhoff-Witt theorem, we may take

for A the universal enveloping algebra of L.

Definition 3.1. The “associative comould” is the family B‚ “ pBnqnPN defined by

Bn ¨̈“ Bnr ¨ ¨ ¨Bn1
P A

for any word n “ n1 ¨ ¨ ¨ nr, with the convention BI ¨̈“ 1A. The “Lie comould” is the family

Br ‚ s “ pBrn sqnPN defined by BrIs ¨̈“ 0 and

Brn s ¨̈“ adBnr
˝ ¨ ¨ ¨ ˝ adBn2

Bn1
“ rBnr , r. . . rBn2

, Bn1
s . . .ss P L

for any nonempty word n “ n1 ¨ ¨ ¨nr, with the convention Brn1s “ Bn1
when r “ 1.

Beware that in general, contrarily to the Lie comould, the associative comould is not a family

of L, but only of A. Écalle’s mould calculus ([Eca81], [Eca93], [Sau09]) deals with finite or infinite

sums of the form
ř

MnBn in the associative algebra A, with arbitrary moulds M‚ P kN . In this

article, we use the phrase “Lie mould calculus” when restricting our attention to finite or infinite

sums of the form
ř

MnBn with alternal moulds M‚ because, as will be shown in a moment, such

expressions can be rewritten
ř

1
rpnqM

nBrn s and thus belong to the Lie algebra L.

The shuffling coefficients of Definition 2.1 allow us to express the Lie comould Br ‚ s in terms of

the associative comould B‚:

Lemma 3.2. For any nonempty word n P N ,

Brn s “
ÿ

pa,bqPNˆN

p´1qrpbqrpaq sh
`

a, b
n

˘

B
b̃ a
,

where, for an arbitrary word b “ b1 ¨ ¨ ¨ bs, we denote by b̃ the reversed word: b̃ “ bs ¨ ¨ ¨ b1.
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Proof. Let us show by induction on r that

ÿ

pa,bqPNˆN

p´1qrpbq sh
`

a, b
n

˘

B
b̃ a

“ 0,
ÿ

pa,bqPNˆN

p´1qrpbqrpaq sh
`

a, b
n

˘

B
b̃ a

“ Brn s (3.1)

for any word n of length r ě 1. We denote the first sum by LHSpnq and the second by LHS1pnq,
and observe that, as a consequence of (2.5),

LHSpnq “
r
ÿ

ℓ“0

ÿ

τPSrpℓq
p´1qr´ℓB

ñτ
ąℓ

nτ
ďℓ

, LHS1pnq “
r
ÿ

ℓ“0

ÿ

τPSrpℓq
p´1qr´ℓℓB

ñτ
ąℓ

nτ
ďℓ

(3.2)

For r “ 1, we find LHSpn1q “ Bn1
´ Bn1

“ 0 and LHS1pn1q “ 1 ¨ Bn1
´ 0 ¨ Bn1

“ Brn1s.

Let us assume that r ě 2 and (3.1) holds for any word n of length r ´ 1. Given an arbitrary

word m of length r, we write it as m “ n c, where n P N r´1 and c P N . When using (3.1) to

compute LHSpmq or LHS1pmq, we see that the last letter of m must either go at the end of b or at

the end of a, or, more precisely, using (3.2), we see that Srpℓq can be written as a disjoint union

Srpℓq “ B \ A, B ¨̈“ t τ P Srpℓq | τprq “ r u, A ¨̈“ t τ P Srpℓq | τprq ă r u

(note that τ P A ñ 1 ď ℓ ă r and τpℓq “ r), and there are bijections τ P B ÞÑ τ 1 P Sr´1pℓq and

τ P A ÞÑ τ˚ P Sr´1pℓ ´ 1q (note that A is empty when ℓ “ 0) so that

mτ
ďℓ “ nτ 1

ďℓ and mτ
ąℓ “ nτ 1

ąℓ c for τ P B, mτ
ďℓ “ nτ˚

ďℓ´1 c and mτ
ąℓ “ nτ˚

ąℓ´1 for τ P A

(namely τ 1piq “ τpiq for 1 ď i ď r ´ 1, and τ˚piq “ τpiq for i ď ℓ ´ 1 while τ˚piq “ τpi ` 1q for

ℓ ď i ď r ´ 1).4 Therefore

LHSpmq “
ÿ

pa,bqPNˆN

p´1qrpb cq sh
`

a, b
n

˘

B
c b̃ a

`
ÿ

pa,bqPNˆN

p´1qrpbq sh
`

a, b
n

˘

B
b̃ a c

and, since B
c b̃ a

“ B
b̃ a
Bc and B

b̃ a c
“ BcB b̃ a

, we get LHSpmq “ ´LHSpnqBc ` Bc LHSpnq “ 0

by the induction hypothesis; on the other hand,

LHS1pmq “
ÿ

pa,bqPNˆN

p´1qrpb cqrpaq sh
`

a, b
n

˘

B
c b̃ a

`
ÿ

pa,bqPNˆN

p´1qrpbqrpa cq sh
`

a, b
n

˘

B
b̃ a c

“ ´LHS1pnqBc ` Bc

`

LHS1pnq ` LHSpnq
˘

“ rBc, Brn ss “ Brn cs “ Brm s.

�

4Another way of seeing this is to consider the “unshuffling coproduct” on the vector space kN of footnote 1: this

is the linear map ∆: kN Ñ kN b kN determined by ∆pnq “
ř

sh
`

a, b
n

˘

a b b, and the above property amounts

to the inductive definition ∆pIq “ 0 and ∆pn cq “ ∆pnqpI b c` cb Iq, where we make use of the non-commutative

associative “concatenation product” on kN or kN bkN (in fact, this gives rise to another Hopf algebra structure

on kN ).



19

3.2. Finite mould expansions.

Let us denote by kpN q the set of finite-support moulds, which is clearly an associative subalgebra

of kN . The finiteness condition allows us to define a map with values in A by means of the

associative comould B‚:

M‚ P kpN q ÞÑ M‚B‚ ¨̈“
ÿ

nPN
MnBn P A. (3.3)

Since Ba b “ BbBa for any two words a, b, it is obvious that the map (3.3) is an associative algebra

anti-morphism, i.e.

pM‚ ˆ N‚qB‚ “ pN‚B‚qpM‚B‚q for any M‚, N‚ P kpN q. (3.4)

We can also define a map with values in L by means of the Lie comould Br ‚ s:

M‚ P kp N q ÞÑ M‚Br ‚ s ¨̈“
ÿ

n‰I

1
rpnqM

nBrn s P L. (3.5)

Lemma 3.3. Let M‚ P Alt‚pN q and let Ω be an orbit of the action (2.4) of Sr for some r P N˚.

Then
ÿ

nPΩ
MnBrn s “ r

ÿ

nPΩ
MnBn. (3.6)

If M‚ P Alt‚pN q X kp N q, then

M‚B‚ “ M‚Br ‚ s. (3.7)

Proof. Lemma 3.2 allows us to rewrite the left-hand side of (3.6) as

LHS “
ÿ

pa,bqPNˆN

p´1qrpbqrpaq
ˆ

ÿ

nPΩ
sh
`

a, b
n

˘

Mn

˙

B
b̃ a
.

In view of (2.5), the sum between parentheses is 0 if a b R Ω, whereas, if a b P Ω, it is

ÿ

nPN
sh
`

a, b
n

˘

Mn.

According to Definition 2.2, the latter sum is 0 when both a and b are nonempty, and it is Ma

when b “ I, hence we end up with LHS “ ř

aPΩ rpaqMa Ba, which coincides with the right-hand

side of (3.6).

To prove (3.7), by linearity we can assume that there is r ě 1 such that the support of M‚ is

contained in N r. Then we can partition N r into orbits:

M‚B‚ “
ÿ

ΩPN r{Sr

ÿ

nPΩ
MnBn “ 1

r

ÿ

ΩPN r{Sr

ÿ

nPΩ
Mn Brn s “ 1

r

ÿ

nPN r

MnBrn s “
ÿ

n‰I

1
rpnqM

nBrn s.

�
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Remark 3.4. An identity more precise than (3.6) is mentioned in Écalle’s works: given a letter c

and an orbit Ω of the action (2.4) ofSr for some r P N˚, let rcpΩq denote the number of occurrences

of the letter c in any word of Ω and let Ωc ¨̈“ tn P Ω | n1 “ c u; then, for any alternal mould M‚,

ÿ

nPΩc

MnBrn s “ rcpΩq
ÿ

nPΩ
MnBn.

This is related to the identity

Brc ns “
ÿ

pa,bqPNˆN

p´1qrpbq sh
`

a, b
n

˘

B
b̃ c a

for any c P N and n P N

and to the following consequence of alternality:

Ma c b “ p´1qrpaq ÿ

nPN
sh
`

ã, b
n

˘

M c n for any c P N and a, b P N

(stated as formula (5.26) in [EV95]).

Recall that, as mentioned in Section 2.2, the set Alt‚pN q of alternal moulds is a Lie subalgebra

of LiepkN q. Let us denote the set of finite-support alternal moulds by

Alt‚
f pN q ¨̈“ Alt‚pN q X kp N q.

It is obvious that Alt‚
f pN q is also a Lie subalgebra. In view of (3.7), there is no need to distinguish

between the maps (3.3) and (3.5) when restricting to Alt‚
f pN q.

Proposition 3.5. The map M‚ ÞÑ M‚Br ‚ s induces a Lie algebra anti-morphism Alt‚
f pN q Ñ L,

i.e.

rM‚, N‚sBr ‚ s “ rN‚Br ‚ s,M
‚Br ‚ ss for any M‚, N‚ P Alt‚

f pN q.

Proof. Using (3.4) and (3.7), we compute rM‚, N‚sBr ‚ s “ rM‚, N‚sB‚ “ pM‚ ˆ N‚qB‚ ´ pN‚ ˆ
M‚qB‚ “ pN‚B‚qpM‚B‚q ´ pM‚B‚qpN‚B‚q “ rN‚B‚,M‚B‚s “ rN‚Br ‚ s,M

‚Br ‚ ss. �

Proposition 3.6. Suppose that there are a function λ : N Ñ k and an X0 P L such that

rX0, Bns “ λpnqBn for each letter n. Then

rX0,M
‚B‚s “ p∇λM

‚qB‚ and rX0,M
‚Br ‚ ss “ p∇λM

‚qBr ‚ s for any M‚ P kpN q. (3.8)

Proof. One easily checks that

rX0, Bns “ λpnqBn and rX0, Br n ss “ λpnqBr n s for any n P N

by induction on rpnq (because rX0, ¨ s is a derivation of the associative algebra A, as well as

derivation of the Lie algebra L), whence (3.8) follows. �
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3.3. Mould expansions in complete filtered Lie algebras.

We now assume that L is a complete filtered Lie algebra and that pBnqnPN is a formally summable

family such that each Bn has order ě 1. We do not need any auxiliary associative algebra A such

that L Ă LiepAq in this section, except at the end of Remark 3.10.

Lemma 3.7. For each M‚ P kN the family p 1
rpnqM

nBrn sqn‰I is formally summable, hence there

is a well-defined extension of the map (3.5) to the set of all moulds (for which we use the same

notation):

M‚ P kN ÞÑ M‚Br ‚ s ¨̈“
ÿ

n‰I

1
rpnqM

nBrn s P L. (3.9)

This is a k-linear map, compatible with the filtrations of kN and L in the sense that, for each

m P N and M‚ P kN ,

ordpM‚q ě m ñ ordpM‚Br ‚ sq ě m (3.10)

(with the notation (2.2) for the order function associated with the filtration of kN ).

Proof. By assumption, Nm ¨̈“ tn P N | ordpBnq ă m u is finite for each m P N and, in view of

Definition 1.1, ordpBr n sq ě rpnq for each n P N . This implies that

tn P N | ordpBrn sq ă m u Ă tn P N | r ¨̈“ rpnq ă m and n1, . . . , nr P Nm u,

which is finite, hence the formal summability follows. The property (3.10) is obvious. �

Note that, if MI “ 0 (as is the case when M‚ is alternal), then eM
‚
is a well-defined mould

and Y ¨̈“ M‚Br ‚ s has order ě 1, hence eadY is a well-defined Lie algebra automorphism.

Proposition 3.8. (i) The map (3.9) induces a Lie algebra anti-morphism Alt‚pN q Ñ L, i.e.

rM‚, N‚sBr ‚ s “ rN‚Br ‚ s,M
‚Br ‚ ss for any M‚, N‚ P Alt‚pN q. (3.11)

(ii) If M‚, N‚ P Alt‚pN q, then the mould e´M‚ ˆ N‚ ˆ eM
‚
can be written

e´M‚ ˆ N‚ ˆ eM
‚ “

`

e´ adM‚
˘

N‚ “
ÿ

kě0

p´1qk
k!

padM‚qkN‚

and is alternal, and Y ¨̈“ M‚Br ‚ s satisfies

eadY pN‚Br ‚ sq “
`

e´M‚ ˆ N‚ ˆ eM
‚˘

Br ‚ s.

Proof. (i) As mentioned in Section (2), the set of all moulds kN is a complete metric space for

the distance dpM‚, N‚q ¨̈“ 2´ ordpN‚´M‚q. The map M‚ ÞÑ M‚Br ‚ s is continuous (and even 1-

Lipschitz) by (3.10), and the set of finite-support alternal moulds Alt‚
f pN q is dense in Alt‚pN q,

so (3.11) follows from Proposition 3.5.
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(ii) Because of (i), the adjoint representations of Alt‚pN q and L are related by

M‚ P Alt‚pN q, Y “ M‚Br ‚ s ñ adY pN‚Br ‚ sq “ ´padM‚ N‚qBr ‚ s for any N‚ P Alt‚pN q,
(3.12)

therefore eadY pN‚Br ‚ sq “
`

e´ adM‚ pN‚q
˘

Br ‚ s, where e´ adM‚ pN‚q P Alt‚pN q is well-defined be-

cause MI “ 0, hence adM‚ increases order in L by at least one unit and e´ adM‚ is a well-defined

k-linear operator of Alt‚pN q.
In fact, Alt‚pN q ãÑ LiepkN q and e´ adM‚ is also a well-defined k-linear operator of kN ; as such,

it can be written

e´ adM‚ “ e´LM‚ `RM‚ “ e´LM‚ ˝ eRM‚ ,

where LM‚ , RM‚ P Endk
`

kN
˘

are the operators of left-multiplication and right-multiplication

by M‚, which commute. Obviously, e´LM‚ and eRM‚ are the operators of left-multiplication and

right-multiplication by e´M‚
and eM

‚
, hence e´ adM‚ pN‚q “ e´M‚ ˆN‚ ˆ eM

‚
(the latter identity

is sometimes called Hadamard lemma; we gave these details because later we will need again the

operators LM‚ and RM‚). �

Proposition 3.9. Suppose that there are a function λ : N Ñ k and an X0 P L such that

rX0, Bns “ λpnqBn for each letter n. If M‚ P Alt‚pN q, then
(i) the mould ∇λM

‚ is alternal and

rX0,M
‚Br ‚ ss “ p∇λM

‚qBr ‚ s, (3.13)

(ii) the mould e´M‚ ˆ ∇λpeM‚ q can be written

e´M‚ ˆ ∇λpeM‚ q “
ÿ

kě0

p´1qk
pk`1q!padM‚qk∇λM

‚

and is alternal, and Y ¨̈“ M‚Br ‚ s satisfies

eadY X0 “ X0 ´
`

e´M‚ ˆ ∇λpeM‚ q
˘

Br ‚ s.

Proof. (i) The identity (3.13) holds for any M‚ P kN , as a consequence of (3.8), by continuity of

M‚ ÞÑ M‚Br ‚ s and density of kp N q in kN . It is obvious that ∇λ preserves alternality.

(ii) We write eadY X0 ´ X0 “
ř

kě0
1

pk`1q!padY qk`1X0 “ ´
ř

kě0
1

pk`1q!padY qkrX0, Y s with

rX0, Y s “ p∇λM
‚qBr ‚ s by (3.13), whence padY qkrX0, Y s “ p´1qk

`

padM‚qk∇λM
‚q
˘

Br ‚ s by (3.12).

Therefore

eadY X0 ´ X0 “ ´pP ∇λM
‚qBr ‚ s with P ¨̈“

ÿ

kě0

p´1qk
pk`1q!padM‚qk P Endk

`

kN
˘

. (3.14)

Note that P is a well-defined k-linear operator of kN which preserves Alt‚pN q, because adM‚

increases order in kN by at least one unit and preserves Alt‚pN q.



23

On the other hand, as ∇λ is a derivation of the associative algebra kN , the Leibniz formula

applied to eM
‚ “ 1‚ ` ř

kě0
1

pk`1q!pM‚qˆpk`1q yields

∇λpeM‚q “
ÿ

kě0

1
pk`1q!

ÿ

p`q“k

pM‚qˆp ˆ ∇λM
‚ ˆ pM‚qˆq “

ÿ

kě0

1
pk`1q!

ÿ

p`q“k

L
p
M‚R

q
M‚p∇λM

‚q,

with the same left- and right-multiplication operators LM‚ and RM‚ as in the end of the proof of

Proposition 3.8. Left-multiplication by e´M‚
coincides with the operator e´LM‚ , therefore

e´M‚ ˆ ∇λpeM‚q “ Q∇λM
‚ with Q ¨̈“ e´LM‚

ÿ

kě0

1
pk`1q!

ÿ

p`q“k

L
p
M‚R

q
M‚ P Endk

`

kN
˘

. (3.15)

Since adM‚ “ LM‚ ´RM‚ , we see that P “ Q in Endk
`

kN
˘

, as a consequence of the following

identity between (commutative) series of two indeterminates:

ÿ

kě0

p´1qk
pk`1q!pL ´ Rqk “ e´L

ÿ

kě0

1
pk`1q!

ÿ

p`q“k

LpRq P QrrL,Rss

(which can be checked, since QrrL,Rss has no divisor of zero, by multiplying both sides by L´R:

the left-hand side yields ´e´L`R`1 and the right-hand side yields e´L
ř

kě0
1

pk`1q!pLk`1´Rk`1q “
e´LpeL ´ eRq).

Since P “ Q, (3.15) shows that e´M‚ ˆ ∇λpeM‚q “ P ∇λM
‚ P Alt‚pN q (because ∇λM

‚ is

alternal and P preserves Alt‚pN q), and (3.14) yields eadY X0´X0 “ ´
`

e´M‚ ˆ∇λpeM‚ q
˘

Br ‚ s. �

Remark 3.10. The set Sym‚pN q Ă kN of symmetral moulds has been defined in (2.19) as the set

of all exponentials of alternal moulds. Here is a characterization more in the spirit of Definition 2.2

(the proof of which can be found e.g. in [Sau09, Prop. 5.1]): A mould M‚ is symmetral if and

only if

MI “ 1 and
ÿ

nPN
sh
`

a, b
n

˘

Mn “ MaM b for any two nonempty words a, b. (3.16)

When identifying kN with the dual of kN as in footnotes 1 and 3, we thus identify the symmetral

moulds with the characters of the associative algebra pkN ,�q, i.e. when viewed as linear forms

of kN they are characterised by M‚px � yq “ M‚pxqM‚pyq. In that point of view, Sym‚pN q is

a group because kN is a bialgebra.

In the case when L ãÑ LiepAq, where A is a complete filtered associative algebra such that

Lěm “ L X Aěm for each m, the map (3.3) extends to an associative algebra anti-morphism

M‚ P kN ÞÑ M‚B‚ P A, compatible with the filtrations of kN and A, whose restriction to

Alt‚pN q coincide with that of M‚ ÞÑ M‚Br ‚ s. Then

MI “ 0 ñ eM
‚B‚ “

`

eM
‚˘

B‚.

In particular, if M‚ is alternal, then eM
‚Br ‚ s “

`

eM
‚˘

B‚ with eM
‚
symmetral.
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3.4. Theorem B implies Theorem A.

In this section, we take Theorem B for granted and show how Theorem A follows from Lie mould

calculus. We thus assume that we are given N a nonempty set, k a field of characteristic zero,

λ : N Ñ k a map, L a complete filtered Lie algebra over k, an element X0 P L, and a formally

summable family pBnqnPN such that ordpBnq ě 1 and rX0, Bns “ λpnqBn for each n P N .

Let us consider any of the many solutions pF ‚, G‚q P Alt‚pkq ˆ Alt‚pkq of equation (2.10) that

Theorem B provides in the canonical case of Section 2.5.2, i.e. with ∇id replacing ∇λ. We thus

have alternal moulds F ‚, G‚, explicitly defined by (2.14)–(2.17) with some A‚ P Alt‚
0pkq, which

satisfy equation (2.10).

Using the map λ˚ : kk Ñ kN of Section 2.5.1, we define F ‚
λ

¨̈“ λ˚pF ‚q and G‚
λ

¨̈“ λ˚pG‚q,
which belong to Alt‚pN q and satisfy equation (2.10) but now with the operator ∇λ associated

with the eigenvalue map λ.

Let Z ¨̈“ F ‚
λBr ‚ s, in accordance with (1.3). We have Z P Lě1 and the first part of (2.10) says

that ∇λF
‚
λ “ 0, hence rX0, Zs “ 0 by Proposition 3.9(i).

Let Y ¨̈“ G‚
λBr ‚ s, in accordance with (1.4). We have Y P Lě1 and the second part of (2.10)

can be rewritten

´e´G‚
λ ˆ

`

∇λpeG‚
λq
˘

` e´G‚
λ ˆ I‚ ˆ eG

‚
λ “ F ‚

λ .

Let us apply the map M‚ ÞÑ M‚Br ‚ s to both sides: because of Proposition 3.8(ii) and Proposi-

tion 3.9(ii), the image of the left-hand side is eadY X0 ´X0 ` eadY pI‚Br ‚ sq, while the image of the

right-hand side is Z, we thus get

eadY
`

X0 ` I‚Br ‚ s
˘

“ X0 ` Z,

which is the desired result, since I‚Br ‚ s “ ř

nPN Bn by (2.7).

3.5. Proof of the formulas (1.9)–(1.10) of Remark 1.3.

We keep the same assumptions and notations as in Section 3.4.

Let us denote by E ¨̈“ EndkpLq the associative algebra consisting of all k-linear operators of

the vector space underlying L (multiplication being defined as operator composition), and by D

the subset of all derivations of the Lie algebra L, which is in fact a Lie subalgebra of LiepEq (Lie

bracket being defined as operator commutator). For each m P N, we set

Eěm ¨̈“ tT P E | T pLěpq Ă Lěp`m for each p P N u, Děm ¨̈“ D X Eěm. (3.17)

It is easy to check that Eě0 Ą Eě1 Ą Eě2 Ą . . . is a complete filtered associative algebra and

Dě0 Ą Dě1 Ą Dě2 Ą . . . is a complete filtered Lie algebra. Moreover, ad : L Ñ Dě0 is a Lie

algebra morphism compatible with the filtrations, in the sense that it maps Lěm to Děm. Thus,
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padBnqnPN is a formally summable family contained in Dě1 and we are in the situation described

at the end of Remark 3.10: with the notation Tn ¨̈“ adBn , we may consider the corresponding

associative comould and Lie comould, defined by

Tn ¨̈“ adBnr
¨ ¨ ¨ adBn1

P Eěr, Trn s ¨̈“ radBnr
, r. . . radBn2

, adBn1
s . . .ss “ adBr n s

P Děr

for any n “ n1 ¨ ¨ ¨nr P N (the identity Trn s “ adBr n s
is due to the Lie algebra morphism

property). It follows that adM‚Br ‚ s
“ M‚Tr ‚ s for any M‚ P kN and, in the case of the alternal

mould G‚
λ,

adY “ adG‚
λ
Br ‚ s

“ G‚
λTr ‚ s “ G‚

λT‚

because the restrictions to Alt‚pN q of the maps M‚ ÞÑ M‚T‚ and M‚ ÞÑ M‚Tr ‚ s coincide. This

is (1.9). Remark 3.10 also says that

eG
‚
λTr ‚ s “

`

eG
‚
λ

˘

T‚

and, setting S‚
λ

¨̈“ λ˚peG‚ q “ eG
‚
λ (recall that λ˚ : kk Ñ kN is a morphism of associative algebras),

we get eadY “ S‚
λT‚, which is (1.10).

3.6. Proof of the addendum to Theorem A.

We keep the same assumptions and notations as in Section 3.4, except that now F ‚, G‚ P Alt‚pN q
are moulds satisfying (2.10) (e.g. the ones denoted by λ˚pF ‚q and λ˚pG‚q in Section 3.4).

Let m P N˚. The set

Nm ¨̈“ tn P N | ordpBnq ă m u

is finite, as a consequence of the formal summability of the family pBnqnPL. We can thus define

a “truncation map” M‚ P kN ÞÑ M‚
ăm P kpN q by the formula

MI
ăm

¨̈“ MI, M
n
ăm ¨̈“ 1trămu 1tn1,...,nrPNmu M

n for any nonempty word n “ n1 ¨ ¨ ¨nr P N

and, in our current notations, the formulas (1.11)–(1.12) become

Zm ¨̈“
m´1
ÿ

r“1

ÿ

n1,...,nrPNm

1

r
Fn1,...,nrBrn s “ F ‚

ămBr ‚ s

Ym ¨̈“
m´1
ÿ

r“1

ÿ

n1,...,nrPNm

1

r
Gn1...,nrBrn s “ G‚

ămBr ‚ s.

Clearly ∇λF
‚ “ 0 entails ∇λF

‚
ăm “ 0, hence rX0, Zms “ 0 by Proposition 3.6. It only remains to

be proved that

Wm ¨̈“ eadYm

´

X0 `
ÿ

nPN
Bn

¯

´ X0 ´ Zm

has order ě m.
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Lemma 3.11. If M‚ P Alt‚pN q, then M‚
ăm P Alt‚

f pN q.

Proof. Let a and b be nonempty words and consider the expression
ř

nN
sh
`

a, b
n

˘

M
n
ăm. We find 0 if

rpa bq ě m or if one of the letters of a or b is outside Nm (because, then, n has the same property

whenever sh
`

a, b
n

˘

‰ 0); otherwise we find
ř

nN
sh
`

a, b
n

˘

Mn, which is also 0 if M‚ is supposed to be

alternal. �

Hence F ‚
ăm and G‚

ăm are alternal and we can use Proposition 3.8(ii) and Proposition 3.9(ii)

with Ym “ G‚
ămBr ‚ s to rewrite Wm “ eadYmX0 ´ X0 ` eadYm pI‚Br ‚ sq ´ F ‚

ămBr ‚ s as

Wm “
`

e´G‚
ăm ˆ E‚˘Br ‚ s, E‚ ¨̈“ ´∇λpeG‚

ămq ` I‚ ˆ eG
‚
ăm ´ eG

‚
ăm ˆ F ‚

ăm. (3.18)

Let C‚ ¨̈“ F ‚ ´ F ‚
ăm, C̃‚ ¨̈“ G‚ ´ G‚

ăm and D‚ ¨̈“ eG
‚ ´ eG

‚
ăm . Since ´∇λ

`

eG
‚˘ ` I‚ ˆ eG

‚ ´
eG

‚ ˆ F ‚ “ 0, we get

E‚ “ ∇λD
‚ ´ I‚ ˆ D‚ ` D‚ ˆ F ‚ ` eG

‚
ăm ˆ C‚. (3.19)

Lemma 3.12. (i) Suppose M‚ P kN and M‚
ăm “ 0. Then M‚Br ‚ s P Lěm.

(ii) Suppose M‚, N‚ P kN and M‚
ăm “ 0. Then pM‚ ˆ N‚qăm “ pN‚ ˆ M‚qăm “ 0.

Proof. Suppose M‚
ăm “ 0.

(i) For any word n “ n1 ¨ ¨ ¨nr, Mn ‰ 0 implies maxtr, ordpBn1
q, . . . , ordpBnrqu ě m, but

ordpBrn sq ě maxtr, ordpBn1
q, . . . , ordpBnrqu, hence ordpMnBrn sq ě m in all cases.

(ii) Suppose n “ n1 ¨ ¨ ¨nr with r ă m and n1, . . . , nr P Nm. We have pM‚ ˆ N‚qn “ ř

MaN b

with summation over all pairs of words such that a b “ n, which entails Ma “ 0 in each term of

the sum, and similarly for N‚ ˆ M‚. �

We have C‚
ăm “ C̃‚

ăm “ 0, and D‚ “ ř

kě0
1

pk`1q!
`

pG‚qˆpk`1q ´ pG‚
ămqˆpk`1q˘ with

pG‚qˆpk`1q ´ pG‚
ămqˆpk`1q “

ÿ

k“p`q

pG‚
ămqˆp ˆ C̃‚ ˆ pG‚qˆq for each k ě 0,

whence D‚
ăm “ 0 by Lemma 3.12(ii). In view of (3.19), it follows, again by Lemma 3.12(ii), that

`

e´G‚
ăm ˆ E‚˘

ăm
“ 0, whence Wm P Lěm by (3.18) and Lemma 3.12(i).

4. Resolution of the mould equation and proof of Theorem B

With the view of proving Theorem B, we now give ourselves a nonempty set N , a field k of

characteristic zero and a map λ : N Ñ k.

Part (i) of the statement of Theorem B requires that, for each A‚ P Alt‚
λ“0pN q, we prove the ex-

istence and uniqueness of a pair pF ‚, G‚q P Alt‚pN qˆAlt‚pN q solving (2.10)–(2.11). As explained

in Section 2.5.5, with the change of unknown mould S‚ ¨̈“ eG
‚
, this is equivalent to proving the
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existence and uniqueness of a pair pS‚, F ‚q P Sym‚pN q ˆ Alt‚pN q solving equation (2.20) and

satisfying
“

invS‚ ˆ ∇1S
‚‰

λ“0
“ A‚. (4.1)

Heuristically, here is what happens: it is easy to see that, apart from the exceptional case in

which λpnq ‰ 0 for every nonempty word n (in which case Alt‚
λ“0pN q “ t0u and there is a unique

solution pS‚, F ‚q to (2.20) in kN ˆkN such that SI “ 1), equation (2.20) has in general infinitely

many solutions pS‚, F ‚q P kN ˆ kN such that SI “ 1 (because one is free to assign an arbitrary

value to Sn whenever λpnq “ 0), but what is not obvious is the existence of at least one solution

with S‚ symmetral and F ‚ alternal ; adding the requirement (4.1) removes the freedom: then we

get a unique solution pS‚, F ‚q in kN ˆkN such that SI “ 1, and we are left with the problem of

proving that this solution is in Sym‚pN q ˆ Alt‚pN q. This will follow from the alternality of A‚

at the price of an excursion in the space of “dimoulds”.

4.1. The associative algebra of dimoulds.

The material in this section is essentially taken from [Sau09].

We call dimould any map N ˆ N Ñ k. We denote by M‚,‚ the dimould whose value on a pair

of words pa, bq is Ma,b. The set kNˆN of all dimoulds is clearly a linear space over k, it is also an

associative k-algebra for the dimould multiplication pM‚,‚, N‚,‚q ÞÑ P ‚,‚ “ M‚,‚ ˆ N‚,‚ defined

by a formula analogous to (2.1):

P a,b ¨̈“
ÿ

pa,bq“pa1,b1qpa2,b2q
M pa1,b1qN pa2,b2q,

where the concatenation in N ˆ N is defined by pa1, b1qpa2, b2q “ pa1 a2, b1 b2q.
Examples of dimoulds are the decomposable dimoulds, namely the dimoulds of the form

P ‚,‚ “ M‚ b N‚,

where it is meant that M‚ and N‚ are (ordinary) moulds and P a,b “ MaN b. Note that

pM‚
1 b N‚

1 q ˆ pM‚
2 b N‚

2 q “ pM‚
1 ˆ M‚

2 q b pN‚
1 ˆ N‚

2 q (4.2)

for any four moulds M‚
1 , N

‚
1 ,M

‚
2 , N

‚
2 .

Using the shuffling coefficients of Definition 2.2, we define a linear map

∆: M‚ P kN ÞÑ P ‚,‚ “ ∆pM‚q P kNˆN (4.3)

as follows:

P a,b ¨̈“
ÿ

nPN
sh
`

a, b
n

˘

Mn for any pa, bq P N ˆ N . (4.4)
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We thus can rephrase the definition of alternality given in Definition 2.2 and the definition of

symmetrality given in (3.16):

A mould M‚ is alternal if and only if ∆pM‚q “ M‚ b 1‚ ` 1‚ b M‚. (4.5)

It is symmetral if and only if MI “ 1 and ∆pM‚q “ M‚ b M‚. (4.6)

It is proved in [Sau09, Sec. 5.2] that5

∆: kN Ñ kNˆN is an associative algebra morphism. (4.7)

We end this section with an example of dimould derivation, i.e. a derivation of the dimould

algebra kNˆN .

Lemma 4.1. Let ϕ : N Ñ k denote an abitrary function, extended to N by (2.8). Then the

formula

∇̃ϕ : P ‚,‚ ÞÑ Q‚,‚, Qa,b ¨̈“
`

ϕpaq ` ϕpbq
˘

P a,b for all a, b P N

defines a k-linear operator ∇̃ϕ of kNˆN which is a dimould derivation and satisfies

∇̃ϕpM‚ b N‚q “ p∇ϕM
‚q b N‚ ` M‚ b ∇ϕN

‚ (4.8)

∆p∇ϕM
‚q “ ∇̃ϕ∆pM‚q (4.9)

for any two moulds M‚ and N‚, where ∇ϕ is the mould derivation defined by (2.9).

The proof of Lemma 4.1 is left to the reader (use sh
`

a, b
n

˘

‰ 0 ñ ϕpaq ` ϕpbq “ ϕpnq for the

last property).

4.2. Proof of Part (i) of Theorem B.

Let A‚ P Alt‚
λ“0pN q. As explained at the beginning of Section 4, the strategy is first to check the

existence and uniqueness of a pair of moulds pS‚, F ‚q P kN ˆ kN satisfying (2.20) and (4.1) and

SI “ 1, and then to prove (with the help of dimoulds) that pS‚, F ‚q P Sym‚pN q ˆ Alt‚pN q.

4.2.1. Let us introduce an extra unknown mould N‚ “ invS‚ ˆ ∇1S
‚, so that finding a solution

pS‚, F ‚q to (2.20) and (4.1) is equivalent to finding a solution pS‚, F ‚, N‚q to the system of

5In this paper we have denoted by ∆ the map which was denoted by τ in [Sau09], because this map is essentially

the coproduct of a Hopf algebra structure that one can define and the notation ∆ is more common for coproducts.
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equations

∇λS
‚ “ I‚ ˆ S‚ ´ S‚ ˆ F ‚ (4.10)

∇1S
‚ “ S‚ ˆ N‚ (4.11)

∇λF
‚ “ 0 (4.12)

N‚
λ“0 “ A‚. (4.13)

The system (4.10)–(4.13), in presence of the condition SI “ 1, amounts to FI “ NI “ 0 and,

for each nonempty word n,

λpnqSn ` Fn “ S‘n ´
ÿ

n“a b, a,b‰I
Sa F b (4.14)

rpnqSn ´ Nn “
ÿ

n“a b, a,b‰I
SaN b (4.15)

λpnq ‰ 0 ñ Fn “ 0 (4.16)

λpnq “ 0 ñ Nn “ An (4.17)

with ‘n denoting the word n deprived from its first letter.

We thus find a unique solution by induction on rpnq: we must take SI “ 1, FI “ NI “ 0

and, for rpnq ě 1,

λpnq ‰ 0 ñ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Fn “ 0

Sn “ 1

λpnq
´

S‘n ´
ÿ

n“a b, a,b‰I
Sa F b

¯

Nn “ rpnqSn ´
ÿ

n“a b, a,b‰I
SaN b

(4.18)

λpnq “ 0 ñ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Fn “ S‘n ´
ÿ

n“a b, a,b‰I
Sa F b

Nn “ An

Sn “ 1

rpnq
´

An `
ÿ

n“a b, a,b‰I
SaN b

¯

.

(4.19)

4.2.2. We now check that, in the unique solution constructed above, S‚ is symmetral and F ‚ is

alternal. Making use of the dimould formalism of Section 4.1, and in particular of the associative
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algebra morphism ∆ defined by (4.3)–(4.4), we set

A‚,‚ ¨̈“ ∆pA‚q, S‚,‚ ¨̈“ ∆pS‚q, F ‚,‚ ¨̈“ ∆pF ‚q, N‚,‚ ¨̈“ ∆pN‚q.

Our assumption amounts to A‚,‚ “ A‚ b 1‚ ` 1‚ b A‚ and we are to prove S‚,‚ “ S‚ b S‚ and

F ‚,‚ “ F ‚ b 1‚ ` 1‚ b F ‚. Note that SI,I “ SI “ 1.

In view of Lemma 4.1, the dimould derivations ∇̃λ and ∇̃1 are defined by

∇̃λM
a,b ¨̈“

`

λpaq ` λpbq
˘

Ma,b and ∇̃1M
a,b ¨̈“

`

rpaq ` rpbq
˘

Ma,b for all a, b P N

for any dimould M‚,‚. Applying ∆ to each equation of the system (4.10)–(4.13), we get

∇̃λS
‚,‚ “ ∆pI‚q ˆ S‚,‚ ´ S‚,‚ ˆ F ‚,‚ (4.20)

∇̃1S
‚,‚ “ S‚,‚ ˆ N‚,‚ (4.21)

∇̃λF
‚,‚ “ 0 (4.22)

N
‚,‚
λ“0 “ A‚,‚. (4.23)

Here we have used the associative algebra morphism property (4.7) of ∆ and the identity (4.9)

with ∇λ and ∇1; moreover, we have denoted by N
‚,‚
λ“0 the resonant part of the dimould N‚,‚

defined by

N
a,b
λ“0

¨̈“ 1tλpaq`λpbq“0u N
a,b for any pa, bq P N ˆ N

and used the obvious identity
`

∆pN‚q
˘

λ“0
“ ∆pN‚

λ“0q (due to the fact that sh
`

a, b
n

˘

‰ 0 ñ
λpaq ` λpbq “ λpnq).

We now observe that the system of dimould equations (4.20)–(4.23) has a unique solution

pS‚,‚, F ‚,‚, N‚,‚q such that SI,I “ 1. Indeed, these equations entail FI,I “ NI,I “ 0 and, by

evaluating them on a pair of words pa, bq ‰ pI,Iq, we get equations analogous to (4.14)–(4.17)

which allow to determine Sa,b, F a,b and Na,b by induction on rpaq ` rpbq (distinguishing the cases

λpaq ` λpbq “ 0 or ‰ 0).

Since ∆pI‚q “ I‚ b 1‚ ` 1‚ b I‚ and A‚,‚ “ A‚ b 1‚ ` 1‚ b A‚, it is easy to check directly that

pS‚ bS‚, F ‚ b 1‚ ` 1‚ bF ‚, N‚ b 1‚ ` 1‚ bN‚q is a solution of the system (4.20)–(4.23) with the

initial condition pS‚ bS‚qI,I “ 1 (one just has to use (4.2), (4.8), (4.10)–(4.13) and the identities

pN‚ b 1‚qλ“0 “ N‚
λ“0 b 1‚, p1‚ b N‚qλ“0 “ 1‚ b N‚

λ“0).

The uniqueness of the solution of the system of dimould equations implies

pS‚,‚, F ‚,‚, N‚,‚q “ pS‚ b S‚, F ‚ b 1‚ ` 1‚ b F ‚, N‚ b 1‚ ` 1‚ b N‚q

in particular S‚ is symmetral and F ‚ is alternal.
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4.2.3. The induction formulas (4.18)–(4.19) that we have obtained for F ‚ and S‚ coincide with

(2.15)–(2.16). Setting G‚ “ log S‚, we get an alternal mould, inductively determined by (2.17).

This ends the proof of Part (i) of Theorem B.

4.3. Proof of Part (ii) of Theorem B.

4.3.1. Recall that the mould exponential G‚ ÞÑ S‚ “ eG
‚
is a bijection between the set of all

moulds G‚ such that GI “ 0 and the set of all moulds S‚ such that SI “ 1, which induces a

bijection Alt‚pN q Ñ Sym‚pN q. There is thus a bijection between the solutions pF ‚, G‚q P kN ˆkN

to equation (2.10) such that GI “ 0 and the solutions pF ‚, S‚q P kN ˆ kN to equation (2.20)

such that SI “ 1. We rewrite equation (2.20) as

F ‚ “ invS‚ ˆ I‚ ˆ S‚ ´ invS‚ ˆ ∇λS
‚, (4.24)

∇λF
‚ “ 0. (4.25)

Starting with a solution pF ‚, G‚q P Alt‚pN q ˆ Alt‚pN q to (2.10) and setting S‚ ¨̈“ eG
‚ P

Sym‚pN q, we get a solution pF ‚, S‚q P Alt‚pN q ˆ Sym‚pN q to (4.24)–(4.25); using the change

K‚ “ eJ
‚
(as in Section 2.5.7), we are asked to prove that the map

K‚ ÞÑ pF̃ ‚, S̃‚q “
`

invK‚ ˆ F ‚ ˆ K‚, S‚ ˆ K‚˘ (4.26)

establishes a one-to-one correspondence between Sym‚
λ“0pN q and the set of all solutions pF̃ ‚, S̃‚q P

Alt‚pN q ˆ Sym‚pN q to (4.24)–(4.25), and that
”

invS̃‚ ˆ ∇1S̃
‚
ı

λ“0
“ invK‚ ˆ JλpG‚q ˆ K‚ ` invK‚ ˆ ∇1K. (4.27)

4.3.2. Suppose that K‚ P Sym‚
λ“0pN q and define pF̃ ‚, S̃‚q by (4.26). Since S̃‚ “ S‚ ˆ K‚, this

mould is symmetral (recall that pSym‚pN q,ˆq is a group—see e.g. [Sau09, Prop. 5.1]); since ∇λ

is a derivation which annihilates K‚, we have ∇λS̃
‚ “ p∇λS

‚q ˆ K‚ and

invS̃‚ ˆ I‚ ˆ S̃‚ ´ invS̃ ˆ ∇λS̃ “ invK‚ ˆ
`

invS‚ ˆ I‚ ˆ S‚ ´ invS ˆ ∇λS
˘

ˆ K‚,

which, by (4.24), is invK‚ ˆ F ‚ ˆ K‚ “ F̃ ‚. Thus, pF̃ ‚, S̃‚q satisfies (4.24).

On the other hand, by (2.19) and Proposition 3.8(ii), F̃ “ invK‚ ˆ F ‚ ˆ K‚ is alternal. It is

easy to check that F̃ ‚ satisfies (4.25) because F ‚ satisfies (4.25): 0 “ invK‚ ˆ∇λF
‚ ˆK‚ “ ∇λF̃ .

It is so because ∇λ is derivation which annihilates both K‚ and invK‚; the fact that also invK‚ is

λ-resonant (i.e. ∇λ
invK‚ “ 0) is an elementary property of λ-resonant moulds, which is part of

Lemma 4.2. Suppose that M‚ is a λ-resonant mould. Then also ∇1M
‚ is λ-resonant, and

rM‚ ˆ N‚sλ“0 “ M‚ ˆ N‚
λ“0, rN‚ ˆ M‚sλ“0 “ N‚

λ“0 ˆ M‚ for any mould N‚.

If moreover M‚ is invertible, then also invM‚ is λ-resonant.
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The proof of Lemma 4.2 is left to the reader.

We now compute the gauge generator of log S̃‚: by Lemma 4.2, the λ-resonant part of

invS̃‚ ˆ ∇1S̃
‚ “ invK‚ ˆ invS‚ ˆ

`

p∇1S
‚q ˆ K‚ ` S‚ ˆ ∇1K

‚˘

is invK‚ ˆ
“

invS‚ ˆ ∇1S
‚‰

λ“0
ˆK‚ ` invK‚ ˆ∇1K

‚ “ invK‚ ˆ JλpG‚q ˆK‚ ` invK‚ ˆ∇1K
‚. This

is (4.27).

4.3.3. Conversely, suppose that pF̃ ‚, S̃‚q P Alt‚pN q ˆ Sym‚pN q is a solution to (4.24)–(4.25). We

define K‚ ¨̈“ invS‚ ˆ S̃‚ P Sym‚pN q. Inserting

S̃‚ “ S‚ ˆ K‚ (4.28)

in F̃ ‚ “ invS̃‚ ˆ I‚ ˆ S̃‚ ´ invS̃‚ ˆ ∇λS̃
‚, we get

F̃ ‚ “ invK‚ ˆ
`

invS‚ ˆ I‚ ˆS‚ ˆK‚ ´ invS‚ ˆ∇λpS‚ ˆK‚q
˘

“ invK‚ ˆ pF ‚ ˆK‚ ´∇λK
‚q, (4.29)

i.e. ∇λK
‚ “ F ‚ ˆ K‚ ´ K‚ ˆ F̃ ‚. We are in a position to apply

Lemma 4.3. Suppose that M‚, N‚, P ‚ P kN , MI “ NI “ 0, M‚ and N‚ are λ-resonant and

∇λP
‚ “ M‚ ˆ P ‚ ´ P ‚ ˆ N‚. (4.30)

Then P ‚ is λ-resonant.

Taking Lemma 4.3 for granted, we thus obtain that K‚ is λ-resonant, hence K‚ P Sym‚
λ“0pN q,

and (4.29) yields F̃ “ invK‚ ˆ F ‚ ˆ K‚, which together with (4.28) gives pF̃ ‚, S̃‚q as the image

of K‚ by the map (4.26). The proof of Theorem B(ii) is then complete.

Proof of Lemma 4.3. Let us show that

λpnqPn “ 0 (4.31)

for every n P N by induction on rpnq. The property holds for n “ I or, more generally, for

λpnq “ 0, we thus suppose that n P N has rpnq ě 1 and λpnq ‰ 0, and that (4.31) holds for all

words of length ă rpnq. It follows from (4.30) that

λpnqPn “
ÿ

n“a b

pMaP b ´ P aN bq “
ÿ˚

n“a b

pMaP b ´ P aN bq, (4.32)

where the symbol
ÿ˚

indicates that we can restrict the summation to non-trivial decompositions

(it is so because Mn “ Nn “ 0, since λpnq ‰ 0, and MI “ NI “ 0). But, in the right-hand side

of (4.32), each term between parentheses vanishes, because either λpaq ‰ 0 and Ma “ P a “ 0

(by the assumption on Ma and the inductive hypothesis), or λpaq “ 0, but then λpbq ‰ 0 and

M b “ P b “ 0 (for similar reasons). �
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Five dynamical applications

We now turn to examples of application of Theorem A. The Lie algebras in these examples

will consist of vector fields with their natural Lie brackets r¨ , ¨svf or, in presence of a symplectic

structure, Hamiltonian functions with the Lie bracket r¨ , ¨sham ¨̈“ t¨ , ¨u (Poisson bracket) or, in

the quantum case, operators of a Hilbert space with the Lie bracket r¨ , ¨squ ¨̈“ 1
ih̄

ˆ commutator.

We will deal with formal objects (i.e. defined by means of formal series, either in the dynamical

variables or in some external parameter), and this gives rise to a natural Lie algebra filtration.

5. Poincaré-Dulac normal forms

5.1 Let N P N˚. A formal vector field is the same thing as a derivation of the algebra of formal

series Crrz1, . . . , zN ss and is of the form

X “
N
ÿ

j“1

vjpz1, . . . , zN qBzj .

We take k ¨̈“ C and L ¨̈“ the Lie algebra of formal vector fields whose components vj have no

constant term. We get a complete filtered algebra by setting X P Lěm if its components vj, as

formal series, have order ě m ` 1.

Let X P L. The formal normalization problem consists in finding a formal change of variables

which simplifies the expression of X as much as possible. We assume that X has a diagonal linear

part:

X0 “
N
ÿ

j“1

ωjzjBzj

with “spectrum vector” ω “ pω1, . . . , ωN q P CN . The components of B ¨̈“ X ´X0 have order ě 2,

hence, introducing

M ¨̈“
 

pj, kq P t1, . . . , Nu ˆ NN | |k| ě 2
(

,

we can write the expansion of X ´ X0 as B “
ř

pj,kqPM
bj,kz

kBzj with coefficients bj,k P C. It turns

out that the monomial vector fields zkBzj are eigenvectors of adX0
:

”

X0, z
kBzj

ı

vf
“
`

xk, ωy ´ ωj

˘

zkBzj for each pj, kq P M (5.1)
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(where x¨ , ¨y denotes the standard scalar product), we thus set

N ¨̈“
 

xk, ωy ´ ωj | pj, kq P M and bj,k ‰ 0
(

Ă C,

Bλ ¨̈“
ÿ

pj,kqPM such that

xk,ωy´ωj“λ

bj,kz
kBzj for each λ P N ,

so that X “ X0 ` ř

λPN
Bλ and rX0, Bλsvf “ λBλ for each λ P N .

5.2 Let us apply Theorem A: with each choice of A‚ P Alt‚
0pN q is associated a pair of alternal

moulds, F ‚ and G‚ explicitly given by (2.14)–(2.17), which give rise to formal vector fields Z

and Y such that (1.2) holds: the automorphism eadY of L maps X “ X0 ` B to X0 ` Z and

rX0, Zsvf “ 0. Moreover, Z and Y are explicitly given by the expansions (1.3)–(1.4) (with the

convention of Definition 2.4: the map λ is to be interpreted as the inclusion map N ãÑ C).

In this context, a formal vector field which commutes with X0 is called “resonant”. According

to (5.1), this means that it is a sum of “resonant monomials”, i.e. multiples of elementary vector

fields of the form zkBzj with

pj, kq P M such that xk, ωy ´ ωj “ 0. (5.2)

It may happen that there exist no resonant monomial at all: one says that the spectrum vector ω

is “non-resonant” if equation (5.2) has no solution (a kind of arithmetical condition). Necessarily

Z “ 0 in that case (although F ‚ might be nonzero).

The first part of (1.2) thus says that Z is a formal resonant vector field; classically, X0 ` Z

is called a Poincaré-Dulac normal form. In [EV95], the particular Poincaré-Dulac normal form

corresponding to the choice A‚ “ 0 (zero gauge solution of equation (2.10)) is called “regal

prenormal form”.

The automorphism eadY of L is nothing but the action of the formal flow Φ of Y at time 1

by pull-back: eadY X “ Φ´1
˚ X, hence the second part of (1.2) says that Φ´1

˚ X “ X0 ` Z, which

corresponds to the formal change of coordinates z ÞÑ Φ´1pzq obtained by flowing at time 1

along ´Y .

We have thus recovered the classical results by Poincaré and Dulac, according to which one

can formally conjugate X to its linear part X0 when ω is non-resonant and, in the general case,

to a formal vector field the expression of which contains only resonant monomials.

It is well known that, in general, there is more than one Poincaré-Dulac normal form.

5.3 For a resonant vector ω, there may be only one resonance relation (5.2) (e.g. for ω “ p2, 1q
in dimension N “ 2) or infinitely many of them (e.g. for ω “ p´1, 1q). A generic vector ω in CN
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is non-resonant, but for certain classes of vector fields like the class of Hamiltonian vector fields

the spectrum vector is necessarily resonant—see Section 6.

As already mentioned, when ω is non-resonant, F ‚ is not necessarily trivial. This is because

the alphabet N Ă C˚ is not necessarily stable under addition and it may happen that there is

a nonempty word λ “ λ1 ¨ ¨ ¨λr P N such that λ1 ` ¨ ¨ ¨ ` λr “ 0, in which case formula (2.22)

fails to define the value of Sλ. In fact, in that case, there is no non-trivial mould S‚ such that

∇S‚ “ I‚ ˆ S‚. However, we repeat that Poincaré’s formal linearization theorem holds in that

situation: we necessarily have Brλ s “ 0 for such a word λ, and Z “ 0, since there are no non-trivial

resonant formal vector fields.

Here is an example in dimension N “ 2: the spectrum vector ω “ p5̟, 2̟q with ̟ P R˚ is non-

resonant but if we assume that, associated with pj, kq “
`

1, p0, 2q
˘

or
`

1, p0, 3q
˘

, there are nonzero

coefficients bj,k, then N contains λ “ ´̟ and µ “ ̟ and (2.14)–(2.17) yield F λµ “ 1
̟

“ ´Fµλ

and Sλµ “ ´ 1
2̟2 “ Sµλ.

Remark 5.1. If ω P CN is “strongly non-resonant” in the sense that

xk, ωy ‰ 0 for any nonzero k P ZN ,

then the sum of the letters is nonzero for every nonempty word, hence F ‚ “ 0 and the symmetral

mould S‚ is entirely determined by the utterly simple formula (2.22). So, in that case, the mould

equation ∇S‚ “ I‚ ˆS‚ has a symmetral solution, which is sufficient to obtain formal linearization

by mould calculus.

Remark 5.2. On the other hand, it may happen that ω is resonant but 0 does not belong to the

additive monoid generated by N (in particular this requires that bj,k “ 0 for every pj, kq P M

such that xk, ωy ´ ωj “ 0). In that case F ‚ is necessarily 0, hence X is formally linearizable.

5.4 The formal flow Φ can be directly computed in terms of the symmetral mould S‚ “ eG
‚
:

viewing the Bλ’s as differential operators which can be composed (and not only Lie-bracketed),

we can define the associative comould λ “ λ1 ¨ ¨ ¨λr P N ÞÑ Bλ1¨¨¨λr “ Bλr ¨ ¨ ¨Bλ1
and, according

to the end of Remark 3.10, we get

Y “
ÿ

rě1

ÿ

λ1,...,λrPN
Gλ1¨¨¨λrBλ1¨¨¨λr

(in general Bλ1¨¨¨λr R L, but the above sum is in L and coincides with Y ), and

eY “ Id`
ÿ

rě1

ÿ

λ1,...,λrPN
Sλ1¨¨¨λrBλ1¨¨¨λr
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(this operator is not in L). Now eY f “ f ˝Φ for any f P Crrz1, . . . , zN ss, hence Φ “ pΦ1, . . . ,ΦN q
with

Φjpz1, . . . , zN q “ zj `
ÿ

rě1

ÿ

λ1,...,λrPN
Sλ1¨¨¨λrBλ1¨¨¨λrzj for j “ 1, . . . , N .

There is a similar formula for Φ´1 involving invS‚.

6. Classical Birkhoff normal forms

6.1 Let d P N˚. We now set

Lk ¨̈“
 

f P krrx1, . . . , xd, y1, . . . , ydss | f has order ě 2
(

, k “ R or C.

The symplectic form
řd

j“1 dxj ^dyj induces the Poisson bracket tf, gu ¨̈“ řd
j“1

` Bf
Bxj

Bg
Byj ´ Bf

Byj
Bg
Bxj

˘

,

which makes Lk a Poisson algebra over k, and thus a Lie algebra over k with r¨ , ¨sham ¨̈“ t¨ , ¨u. We

get a complete filtered Lie algebra by setting X P Lk
ěm if, as a power series, it has order ě m` 2.

Any X P Lk generates a formal Hamiltonian vector field, namely

tX, ¨ u “
d
ÿ

j“1

´BX
Bxj

B
Byj

´ BX
Byj

B
Bxj

¯

viewed as a derivation of the associative algebra krrx1, . . . , xd, y1, . . . , ydss. LetX0 be the quadratic

part of X, so that tX0, ¨ u is the linear part of the formal vector field tX, ¨ u. The corresponding

matrix is Hamiltonian, hence its eigenvalues come into pairs of opposite complex numbers and we

cannot avoid resonances in this case. From now on, we assume that

X0 “
d
ÿ

j“1

1
2
ωjpx2j ` y2j q, hence tX0, ¨ u “

d
ÿ

j“1

ωj

´

xj
B
Byj

´ yj
B

Bxj

¯

, (6.1)

with a “frequency vector” ω “ pω1, . . . , ωdq P kd, so the eigenvalues of the linear part of the vector

field are iω1, . . . , iωd,´iω1, . . . ,´iωd (which corresponds to a totally elliptic equilibrium point at

the origin when k “ R).

The formal Hamiltonian normalization problem consists in finding a formal symplectomor-

phism Φ such that the expression of X ˝ Φ is as simple as possible (so that the expression of the

conjugate Hamiltonian vector field Φ´1
˚ tX, ¨ u is as simple as possible). We will apply Theorem A

in the Lie algebra LC of complex formal Hamiltonian functions so as to recover the classical result

according to which

there exists a formal symplectomorphism Φ (with real coefficients if k “ R) such

that X ˝ Φ Poisson-commutes with X0,
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i.e. X ˝ Φ is a Birkhoff normal form (which implies, at the level of vector fields, that Φ´1
˚ tX, ¨ u

is a Hamiltonian Poincaré-Dulac normal form).

6.2 The series

zjpx, yq ¨̈“ 1?
2
pxj ` i yjq, wjpx, yq ¨̈“ 1?

2
pixj ` yjq, j “ 1, . . . , d, (6.2)

satisfy
ř

dxj ^ dyj “ ř

dzj ^ dwj and

tX0, z
kwℓu “ i xk ´ ℓ, ωy zkwℓ for any k, ℓ P Nd. (6.3)

Using them as a change of coordinates and writing the generic formal series as
ÿ

k,ℓPNd

bk,ℓ x
kyℓ “

ÿ

k,ℓPNd

ck,ℓ z
kwℓ,

we identify the complex Poisson algebras Crrx1, . . . , xd, y1, . . . , ydss and Crrz1, . . . , zd, w1, . . . , wdss.
The real Poisson algebra Rrrx1, . . . , xd, y1, . . . , ydss can be seen as the subspace consisting of the

fixed points of the conjugate-linear involution C which maps
ř

bk,ℓ x
kyℓ to

ř

bk,ℓ x
ℓyk; note that C

maps
ř

ck,ℓ z
kwℓ to

řp´iq|k`ℓ|ck,ℓ z
ℓwk, hence the coefficients bk,ℓ are real if and only if

ck,ℓ “ i|k`ℓ|cℓ,k for all k, ℓ P Nd. (6.4)

Let X P Lk with quadratic part X0 as in (6.1). Introducing

M ¨̈“
 

pk, ℓq P Nd ˆ Nd | |k| ` |ℓ| ě 3
(

,

we can decompose B ¨̈“ X ´ X0 P Lk
1 as B “ ř

pk,ℓqPM
ck,ℓ z

kwℓ with coefficients ck,ℓ P C, and set

Bn ¨̈“
ÿ

pk,ℓqPM such

that k´ℓ“n

ck,ℓ z
kwℓ P LC

1 for n P N ¨̈“ Zd, (6.5)

so that X “ X0 `
ř

Bn and, for each n P N ,

tX0, Bnu “ λpnqBn, λpnq “ i xn, ωy P C. (6.6)

Moreover, if k “ R, then condition (6.4) holds, whence

C pBnq “ B´n for all n P Zd. (6.7)

in that case.

6.3 Let us apply Theorem A to LC. For any complex-valued A‚ P Alt‚
λ“0pN q (recall that N “ Zd

and λ is defined by (6.6)), Theorem B yields alternal moulds F ‚, G‚ P CN , explicitly given by

(2.14)–(2.17), such that Z, Y P LC
ě1 defined by

Z “
ÿ

rě1

ÿ

nPN r

1

r
FnBrn s, Y “

ÿ

rě1

ÿ

nPN r

1

r
Gn Brn s
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satisfy (1.2).

Formulas (2.14)–(2.17) show that, if k “ R and A‚ is real-valued6, then the complex conjugate

of Fn1¨¨¨nr is F p´n1q¨¨¨p´nrq and similarly for G‚ (because λpnq “ λp´nq for each n P N ); on the

other hand, C maps Brn s “ tBnr , t. . . tBn2
, Bn1

u . . .uu to tB´nr , t. . . tB´n2
, B´n1

u . . .uu (because

of (6.7) and because C is a real Lie algebra automorphism7 of LC) and is conjugate-linear, hence

we get Z, Y P LR
ě1 in that case.

So Z, Y P Lk
ě1 whether k “ C or R. The automorphism eadY of Lk is nothing but the action

of the formal flow Φ at time 1 of the formal Hamiltonian vector field tY, ¨ u by composition:

eadY X “ X ˝ Φ, hence the second part of (1.2) says that X ˝ Φ “ X0 ` Z, where Φ is a formal

symplectomorphism with coefficients in k, which implies Φ´1
˚ tX, ¨ u “ tX0 ` Z, ¨ u at the level of

the formal Hamiltonian vector fields. The components of Φ can be directly computed from the

symmetral mould S‚ by means of (1.10):

Φjpx, yq “ xj `
ÿ

rě1

ÿ

n1,...,nrPN
Sn1¨¨¨nr adBnr

¨ ¨ ¨ adBn1
xj

Φd`jpx, yq “ yj `
ÿ

rě1

ÿ

n1,...,nrPN
Sn1¨¨¨nr adBnr

¨ ¨ ¨ adBn1
yj

for j “ 1, . . . , N (the series xj and yj have been excluded from the definition of Lk, but (1.10)

holds as an identity between operators acting in the whole of krrx1, . . . , xd, y1, . . . , ydss).
The first part of (1.2) says that X0`Z is a “Birkhoff normal form”, in the sense that it Poisson-

commutes with X0. According to (6.3), this means that all the monomials in its pz, wq-expansion
are of the form ck,ℓ z

kwℓ with xk ´ ℓ, ωy “ 0.

6.4 Instead of (6.5), one can as well take

N ¨̈“ t i xk ´ ℓ, ωy | pk, ℓq P M and ck,ℓ ‰ 0 u Ă C, Bλ ¨̈“
ÿ

pk,ℓqPM such that

i xk´ℓ,ωy“λ

ck,ℓ z
kwℓ,

so that (6.6) is replaced by tX0, Bλu “ λBλ for each λ P N and one can use the formalism of

Definition 2.4.

When ω is strongly non-resonant in the sense of Remark 5.1, the relation xk´ ℓ, ωy “ 0 implies

k ´ ℓ “ 0, hence

Z “
ÿ

|ℓ|ě2

Cℓ z
ℓwℓ “

ÿ

|ℓ|ě2

i|ℓ|Cℓ I
ℓ1
1 ¨ ¨ ¨ Iℓdd , Ij ¨̈“ 1

2
px2j ` y2j q for j “ 1, . . . , d,

6 In fact it is sufficient that the complex conjugate of An1¨¨¨nr is Ap´n1q¨¨¨p´nrq for any word n1 ¨ ¨ ¨nr.
7 Indeed, C can be viewed as the symmetry f1 ` if2 ÞÑ f1 ´ if2 associated with the direct sum L

C “ L
R ‘ iLR,

it is a real Lie algebra automorphism because L
R is a real Lie subalgebra.
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with certain complex coefficients Cℓ, which satisfy i|ℓ|Cℓ P R when k “ R.

It is easy to check that, when ω is strongly non-resonant, the Birkhoff normal form is unique

(but not the formal symplectomorphism conjugating X to it).

6.5 Remark. Exactly the same formalism would apply to the perturbative situation of a Hamil-

tonian X which is also a formal series in ε (an indeterminate playing the role of a parameter). We

would take Lk ¨̈“ krrx1, . . . , xd, y1, . . . , yd, εss with k “ R or C, with Lie bracket r¨ , ¨sham ¨̈“ t¨ , ¨u
as before, and with filtration induced by the total order in the 2d`1 indeterminates. Then, for any

X “ X0 ` B with X0 as in (6.1) and B P Lk
ě1, Theorem A yields a formal symplectomorphism Φ

such that X ˝ Φ “ X0 ` Z Poisson-commutes with X0.

6.6 The above formalism, as it stands, does not allow us to deal directly with C8 functions

of px, yq, but there is a simple variant which allows for mixed Hamiltonians, formal in ε (as in

Remark 6.5) with coefficients C8 in px, yq. However, to have a decomposition of X ´ X0 as a

formally summable series of eigenvectors of tX0, ¨ u, we must restrict ourselves to a certain kind

of C8 functions. With a view to allowing for comparison with certain quantum Hamiltonians in

Section 9, we denote by S the Schwartz class and set, for k “ R or C,

S k

0
¨̈“

!

f P SpRd ˆ Rd,kq | Df̃ P C8`

pRě0qd,k
˘

such that fpx, yq ” f̃
`x2

1`y21
2

, . . . ,
x2
d

`y2
d

2

˘

)

,

S k ¨̈“
!

ÿ

pk,ℓqPΩ
bk,ℓpx, yqxkyℓ | Ω finite subset of Nd ˆ Nd, bk,ℓ P S k

0 for each pk, ℓq P Ω
)

,

Lk ¨̈“ S krrεss.

We choose ω “ pω1, . . . , ωdq P Rd and consider the same X0 as in (6.1). Theorem A can be applied

to any X P LR of the form X0`rorder ě 1 in εs so as to produce Z, Y P LR such that tX0, Zu “ 0

and eadY X “ X0 ` Z.

Indeed, LR and LC are complete filtered Lie algebras (filtered by the order in ε), and B ¨̈“
X ´ X0 can be decomposed into a formally convergent series as follows: we can write B “
ř

NdˆNd

bk,ℓpx, y, εqxkyℓ with bk,ℓpx, y, εq P S R
0 rrεssě1, hence B “ ř

nPZd Bn with

Bn ¨̈“
ÿ

k1,ℓ1,k2,ℓ2PNd such

that k1`k2“n`ℓ1`ℓ2

p´iq|ℓ1`k2|

p
?
2q|k1`k2`ℓ1`ℓ2|

ˆ

k1 ` ℓ1

k1

˙ˆ

k2 ` ℓ2

k2

˙

bk1`ℓ1,k2`ℓ2 zpx, yqk1`k2
wpx, yqℓ1`ℓ2

with the same zj , wj as in (6.2). This is the result of using px, yq ÞÑ pz, wq as a change of coordi-

nates; notice that the decomposition B “ ř

bk,ℓpx, y, εqxkyℓ is not unique, but the decomposition

B “ ř

Bn is, and we have

tX0, Bnu “ λpnqBn, λpnq “ i xn, ωy P C for each n P N ¨̈“ Zd.
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Note that each Bn P LC, but the realness assumption on X implies that C pBnq “ B´n with

the same conjugate-linear involution C as in Section 6.2. Therefore, for any real-valued A‚ P
Alt‚

λ“0pN q, we get alternal moulds F ‚, G‚ P CN such that

Z “
ÿ

rě1

ÿ

nPN r

1

r
FnBrn s, Y “

ÿ

rě1

ÿ

nPN r

1

r
Gn Brn s

define Z, Y P LR
ě1 with the desired properties (the realness of Z and Y follows from the same

argument as in Section 6.3).

Note that if ω is strongly non-resonant in the sense of Remark 5.1, then Z P S R
0 rrεss.

7. Multiphase averaging

7.1 Let d,N P N˚. We call “slow-fast” a vector field of the form

X “
d
ÿ

j“1

`

ωj ` εfjpϕ, I, εq
˘ B

Bϕj
`

N
ÿ

k“1

εgkpϕ, I, εq B
BIk

, (7.1)

where ω “ pω1, . . . , ωdq P Rd is called the frequency vector, the idea being that, for ε ą 0 “small”,

the time evolution of the variables Ik will be “slow” compared to the “fast” variables ϕj (at least

if ω ‰ 0). We take ϕ P Td, where T ¨̈“ R{2πZ, so the fast variables are angles. When d “ N , this

includes the case of vector field generated by a near-integrable Hamiltonian

Xham “ xω, Iy ` εhpϕ, I, εq (7.2)

for the symplectic form
řd

j“1 dIj ^ dϕj, for which fj “ Bh
BIj and gj “ ´ Bh

Bϕj
.

We will deal with formal series in ε whose coefficients are trigonometric polynomials in ϕ with

complex-valued coefficients smooth in I. More precisely, we take f1, . . . , fd, g1, . . . , gN or h in the

complex associative algebra A C or the real associative algebra A R defined by

A C ¨̈“ S re˘iϕ1 , . . . , e˘iϕdsrrεss, A R ¨̈“ t f P A C | fpϕ, I, εq “ fpϕ, I, εq u (7.3)

with S ¨̈“ C8pD,Cq, where D is an open subset of RN (or D “ D1 ˆ TN2
with D1 open subset

of RN 1
and N 1 ` N2 “ N); in fact, we could as well take for S a linear subspace of C8pD,Cq,

as long as it is stable under multiplication and all the derivations B
BIk , e.g. one could take the

Schwartz space SpRN ,Cq.
Note that A R coincides with the set of fixed points of the conjugate-linear involution C which

maps
ř

bn,ppIq εp eixn,ϕy to
ř

bn,ppIq εp e´ixn,ϕy.

Let X0 ¨̈“ ř

ωj
B

Bϕj
and Xham

0
¨̈“ xω, Iy. The formal averaging problem asks for a formal

conjugacy between X and a vector field X0 ` Z which commutes with X0 or, in the Hamiltonian



41

version, for a formal symplectomorphism Φ such that Xham ˝ Φ Poisson-commutes with Xham
0 .

The reader is referred to [LM88] and [MS02] for the importance of this problem.

Let us set k ¨̈“ C and consider the complete filtered Lie algebra LC consisting of vector fields

whose components belong to A C (with r¨ , ¨s “ r¨ , ¨svf) or, in the Hamiltonian case, LC “ A C

itself (with r¨ , ¨s “ t¨ , ¨u, the Poisson bracket), filtered by the order in ε in both cases. If we

impose furthermore that the components of the vector fields or the Hamiltonian functions belong

to A R, then we get a real Lie subalgebra LR.

7.2 We can apply Theorem A to LC. Indeed, any slow-fast system as above can be written as a

sum of eigenvectors of adX0
“ rX0, ¨ svf or adXham

0
“ tXham

0 , ¨ u,

X “ X0 `
ÿ

nPN
Bn or Xham “ Xham

0 `
ÿ

nPN
Bham

n ,

with N “ Zd corresponding to all possible Fourier modes:

Bn “ eixn,ϕy
ˆ d
ÿ

j“1

b
r1s
n,jpI, εq B

Bϕj
`

N
ÿ

k“1

b
r2s
n,kpI, εq B

BIk

˙

, Bham
n “ eixn,ϕybnpI, εq,

with certain coefficients b
r1s
n,j, b

r2s
n,k, bn P S rrεss. In both cases, the eigenvalue map is

n P Zd ÞÑ λpnq “ i xn, ωy P C. (7.4)

For any choice of A‚ P Alt‚
λ“0pN q, we thus get Y,Z P LC of order ě 1 in ε such that

rX0, Zsvf “ 0 and eadY X “ X0 ` Z, or tXham
0 , Zu “ 0 and eadY Xham “ Xham

0 ` Z.

In the first case, as in Section 5,

eadY X “ Φ´1
˚ X (7.5)

where Φ is the formal flow at time 1 of the formal vector field Y . In the second case, as in

Section 6,

eadY Xham “ Xham ˝ Φ (7.6)

where Φ is the formal symplectomorphism obtained by flowing at time 1 along the formal Hamil-

tonian vector field tY, ¨ u. In both cases,

Z only contains Fourier modes n P N such that xn, ωy “ 0. (7.7)

Therefore, when ω is strongly non-resonant in the sense of Remark 5.1, the components of the

formal vector field Z (in the first case) or the formal series Z (in the second case) do not depend

on ϕ, they are formal series in ε with coefficients depending on I only: the formal change of

coordinates Φ´1 has eliminated the fast phase ϕ from the vector field.
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If the coefficients f1, . . . , fd, g1, . . . , gN or h belong to A R, i.e. if we start with X or Xham

in LR, and we take A‚ real-valued, then one gets Y,Z P LR for the same reason as in Section 6:

LR consists of the fixed points of C which is a real Lie algebra automorphism8 mapping Bn to B´n

and is conjugate-linear, and the complex conjugate of Fn1¨¨¨nr is F p´n1q¨¨¨p´nrq and similarly for G‚

(the condition described in footnote 6 is sufficient for this).

7.3 Remark. In the real Hamiltonian case, Xham
0 `Z can be considered as a Birkhoff normal form

for Xham “ Xham
0 ` εhpϕ, I, εq. If we choose S “ SpRN ,Cq in (7.3), then we get the action-angle

analogue of Section 6.6.

8. Quantum Birkhoff normal forms

8.1 Let H be a complex Hilbert space, with inner product denoted by x¨ | ¨y. In this section, by

“operator”, we mean an unbounded linear operator with dense domain.

Let us consider an operator X0 of H which is diagonal in an orthonormal basis e “ pekqkPI

of H:

X0 ek “ Ek ek, k P I,

with eigenvalues Ek P C, i.e. X0 is a normal operator, or Ek P R, in which case X0 is self-

adjoint. Let A C
e consist of all operators of H whose domain is the dense subspace SpanCpeq and

which preserve SpanCpeq. Let LR
e consist of all symmetric operators among the previous ones. In

particular, the restriction of X0 to SpanCpeq belongs to A C
e , and even to LR

e in the self-adjoint

case.

Notice that an element B of A C
e is determined by a complex “infinite matrix” pβk,ℓqk,ℓPI :

Bek “
ÿ

ℓPI
βk,ℓ eℓ, k P I, (8.1)

with the following “finite-column” property: if βk,ℓ ‰ 0 then ℓ belongs to a finite subset of I

depending on k and B. The domain of the adjoint operator B˚ then contains SpanCpeq, and

B˚ek “
ÿ

ℓPI
βℓ,k eℓ, k P I.

8To see it, first observe that C : pϕ, Iq ÞÑ p´ϕ, Iq is conformal-symplectic with a factor ´1 hence the composition

with C is a complex Lie algebra anti-automorphism ΘC of LC, then note that C “ ΘC ˝S where S is the symmetry

associated with the direct sum A C “ R ‘ iR, with R ¨̈“ C8pD,Rqre˘iϕ1 , . . . , e˘iϕd srrεss real linear subspace,

and S is a real Lie algebra anti-automorphism because the Lie bracket of vector fields with components in R has

its components in iR and, for Hamiltonians, tR,Ru Ă iR.
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Lemma 8.1. (i) For A,B P A C
e , there is a well-defined composite operator AB P A C

e , and for

this product A C
e is an associative algebra over C.

(ii) Let h̄ ą 0 be fixed. The formula

rA,Bsqu ¨̈“ 1
ih̄

pAB ´ BAq, A,B P A C
e ,

makes A C
e a Lie algebra over C, which we denote by LC

e .

(iii) LR
e is a real Lie subalgebra of LC

e , coinciding with the set of the fixed points of the involution

C : B P A C
e ÞÑ B˚

|SpanCpeq P A C
e ,

which is a conjugate-linear anti-homomorphism of the associative algebra A C
e , and a real Lie

algebra automorphism of LC
e .

Proof. Obvious. �

8.2 We want to perturb X0 in LC
e , resp. in LR

e , by a “small” perturbation and work formally, as

in a Rayleigh-Schrödinger-like situation. So, we introduce an indeterminate ε and consider

LC ¨̈“ LC
e rrεss, resp. LR ¨̈“ LR

e rrεss,

as a complete filtered Lie algebra over C, resp. over R, filtered by order in ε.

To decompose an arbitrary perturbation as a sum of eigenvectors of adX0
, we notice that, for

B P LC with matrix
`

βk,ℓpεq
˘

k,ℓPI so that (8.1) holds (with formal series βk,ℓpεq P Crrεss), we can

write

B “
ÿ

pk,ℓqPIˆI

B̃k,ℓ with B̃k,ℓ ¨̈“ | eℓyβk,ℓpεq xek | (8.2)

(here we used the Dirac notation i.e. B̃k,ℓej “ βk,ℓpεq eℓ if j “ k, B̃k,ℓej “ 0 else). The sum in (8.2)

may be infinite, but it is well-defined because its action in SpanCpeq is finitary. One then easily

checks that
”

X0, B̃k,ℓ

ı

qu
“ 1

ih̄
pEℓ ´ EkqB̃k,ℓ.

We thus have B “ ř

λPN Bn with

N ¨̈“
 

1
ih̄

pEℓ ´ Ekq | pk, ℓq P I ˆ I
(

, Bλ ¨̈“
ÿ

pk,ℓq such that

Eℓ´Ek“ih̄λ

| eℓyβk,ℓpεq xek | for λ P N . (8.3)

Note that, if X0, B P LR, then

C pBλq “ B´λ for any λ P N . (8.4)
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We thus suppose that we are given a perturbation B P LC
ě1. We can apply Theorem A to

X “ X0 ` B P LC, with k “ C. For each choice of A‚ P Alt‚
0pN q, we get Z, Y P LC of order ě 1

in ε such that

rX0, Zsqu “ 0, eadY X “ X0 ` Z. (8.5)

Since A C
e rrεss is a complete filtered associative algebra and Y is of order ě 1 in ε, we can define

U ¨̈“ e
1
ih̄
Y by the exponential series: it is an automorphism of SpanCpeq formal in ε, with inverse

U´1 “ e´ 1
ih̄
Y , and eadY X “ UXU´1. So, the second part of (8.5) says that

UpX0 ` BqU´1 “ X0 ` Z, U “ e
1
ih̄
Y .

Mould calculus shows that

1
ih̄
Y “

ÿ

rě1

ÿ

λ1,...,λrPN
p 1
ih̄

qrGλ1¨¨¨λrBλr ¨ ¨ ¨Bλ1
, U “ Id`

ÿ

rě1

ÿ

λ1,...,λrPN
p 1
ih̄

qrSλ1¨¨¨λrBλr ¨ ¨ ¨Bλ1
,

and there is a similar formula for U´1 involving the mould invS‚.

If we assume that each eigenvalue Ek of X0 is simple (an assumption analogous to the strong

non-resonance condition of Remark 5.1), then it is easy to check that the first part of (8.5) says

that Z is diagonal in the basis e. In general, it says that Z is block-diagonal, where the blocks

refer to the partition I “ Ů

Ia, Ia ¨̈“ t k P I | Ek “ a u.
Suppose now that X0 P LR, i.e. it is a self-adjoint operator, and also B P LR. Then, in view

of (8.4), by the same arguments as in Section 6 or 7, we get Z, Y P LR. Note that U is then a

“formal unitary operator”. The formally conjugate operator X0 `Z is called a quantum Birkhoff

normal form for X0 ` B.

8.3 The simplest example is that of the self-adjoint operator X0 “ ´ih̄
ř

ωj
B

Bϕj
of H “ L2pTdq,

which is diagonal in the Fourier basis. We have I “ Zd and, for each k P Zd, ek “ p2πq´d{2 ei xk,ϕy

and the corresponding eigenvalue is Ek “ h̄ xk, ωy for k P Zd. In particular,

1
ih̄

pEℓ ´ Ekq “ i xk ´ ℓ, ωy.

The simplest example for H “ L2pRdq is the quantum harmonic oscillator

X0 “ ´1
2
h̄2∆ `

d
ÿ

j“1

1
2
ω2
jx

2
j (8.6)

(with ω1, . . . , ωd ą 0 given), for which the spectrum is natually indexed by I “ Nd:

Ek “ h̄ xk ` p1
2
, . . . , 1

2
q, ωy, k P Nd, (8.7)

and e is given by the Hermite functions.
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In these cases, one can index the eigenvector decomposition B “
ř

Bn of finite-column opera-

tors by N “ Zd, by a slight modification of (8.3):

Bn ¨̈“
ÿ

pk,ℓqPNdˆNd

k´ℓ“n

| eℓyβk,ℓpεq xek |, n P Zd.

This way, the eigenvalue map is λpnq “ i xn, ωy.
Moreover, in these cases, one may wish to restrict oneself to the “finite-band” case defined by

replacing LR
e with its subspace LR

e,fb consisting of those elements associated with infinite matrices

pβk,ℓqk,ℓPI for which there exists K P N such that βk,ℓ “ 0 for |k ´ ℓ| ă K. Since LR
fb

¨̈“ LR
e,fbrrεss

is a Lie subalgebra of LR, we get Z, Y P LR
fb whenever we start with a perturbation B P LR

fb or

order ě 1 in ε.

9. Semi-classical limit

9.1 In general the dependence of the eigenvalues Ek in the Planck constant h̄ is very complicated,

very often intractable. This makes the set N “ N ph̄q in (8.3) very difficult to follow as h̄ Ñ 0.

Nevertheless, this difficulty is absent in the two examples of X0 of Section 8.3, since we have seen

that in these cases we can choose N “ Zd and λpnq “ i xn, ωy, thus independent of h̄.
We will now consider an operator X “ X0 ` Bqu obtained by Weyl quantization9 from a

classical Hamiltonian σpx, ξ, εq of the type introduced in Section 6.6. For the sake of simplicity,

we choose X0 to be the quantum harmonic oscillator (8.6) on L2pRdq (we could treat as well the

case of the trickier Weyl quantization on Td and choose for X0 the first example of Section 8.3,

starting from a classical Hamiltonian σpx, ξ, εq of the type alluded to in Section 7.3). We take

arbitrary ω1, . . . , ωd ą 0; it will not be necessary to assume that the corresponding frequency

vector ω ¨̈“ pω1, . . . , ωdq is non-resonant.

The quantum harmonic oscillator X0 is the Weyl quantization of the Hamiltonian

σ0px, ξq ¨̈“
d
ÿ

j“1

1
2
pξ2j ` ω2

jx
2
j q, (9.1)

which differs from the quadratic Hamiltonian (6.1) considered in Section 6 only by the conformal-

symplectic change of coordinates induced by ξj “ ωjyj. Let us thus consider a formal Hamiltonian

σ P S Rrrεss of the form

σ “ σ0 ` Bcl, with Bcl “ Bclpx, ξ, εq of order ě 1 in ε, (9.2)

9See e.g. [Fol89] for a general exposition of pseudo-differential operators and Weyl quantization. The few defini-

tions and facts we need will be recalled in Section 9.2.
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exactly as in Section 6.6 except for the change y Ñ ξ. Weyl quantization gives rise to a self-adjoint

operator X “ X0 `Bqu of L2pRdq. We are interested in comparing the quantum Birkhoff normal

form X0 ` Zqu of X and the classical Birkhoff normal form σ0 ` Zcl of σ.

We will see how transparent mould calculus makes the relation between Zqu and Zcl. The point

is that it is the very same mould F ‚ which will appear in the mould expansions Zcl “ F ‚Bcl
r ‚ s

and Zqu “ F ‚Bqu

r ‚ s; the difference lies only in the Lie comould to be used in each expansion, but

the semi-classical limit of the quantum Lie comould B
qu

r ‚ s is easily tractable in this context, with

its symbol tending to Bcl
r ‚ s as h̄ Ñ 0. In fact, all the “difficult” part, that is solving the mould

equation which generates combinatorial difficulties solved only by induction, is exactly the same

in the classical and quantum cases.

9.2 The operator X0 is obtained from σ0 by replacing ξj by ´ih̄ B
Bxj

. More generally, Weyl

quantization associates to a function σ belonging e.g. to the Schwartz class SpRdˆRdq “ SpT ˚Rdq
an operator V which acts on a function ϕ P L2pRdq through the formula

Vϕpxq “
ż

RdˆRd

σ
´x ` y

2
, ξ
¯

ei
ξpx´yq

h̄ ϕpyq dξdy

p2πh̄qd . (9.3)

In other words, the operator V has an integral kernel given by

KVpx, yq ¨̈“
ż

RdˆRd

σ
´x ` y

2
, ξ
¯

ei
ξpx´yq

h̄
dξ

p2πh̄qd .

A straightforward computation shows that this formula is invertible by

σpx, ξq “
ż

Rd

KVpx ` δ, x ´ δq e´2i ξδ
h̄ dδ. (9.4)

In that situation, we use the notation σ “ σV and say that the function σ is the “symbol” of the

operator V. For instance, with the notations of Section 9.1, σ0 “ σX0
.

The following result is the fundamental one concerning the transition quantum-classical. Its

proof is straightforward for symbols in the Schwartz class, by using (9.3) and (9.4). It gives a

mod(h̄q-homomorphism between quantum and classical Lie algebras.

Lemma 9.1. Suppose that the operators V and W are obtained by Weyl quantization from the

symbols σV and σW . Then the symbol of 1
ih̄

rW,V s is

σ 1
ih̄

rW,V s “ ApσW b σV q, (9.5)

where Apf b gqpx, ξq “ 1
h̄
sin

´

h̄p B
Bq

B
Bp1 ´ B

Bp
B

Bq1 q
¯

fpq, pqgpq1, p1q|q“q1“x, p“p1“ξ.

In particular

lim
h̄Ñ0

σ 1
ih̄

rW,V s “ tσW , σV u (9.6)
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and, in the case of a quadratic symbol σX0
like in (9.1),

σ 1
ih̄

rX0,V s “ tσX0
, σV u. (9.7)

9.3 On the one hand, according to Section 6.6, the Hamiltonian (9.2) can be decomposed as

σ “ σ0 `
ÿ

nPN
Bcl

n , tσ0, Bcl
n u “ λpnqBcl

n , λpnq “ i xn, ωy,

with N ¨̈“ Zd. Denoting by Bcl
r ‚ s the Lie comould defined from pBcl

n qnPN by means of Poisson

brackets, we get a Birkhoff normal form of σ in the form σ0 ` Zcl with

Zcl “
ÿ

rě1

ÿ

nPN r

1

r
F λpn1q¨¨¨λpnrq Bcl

rn s, (9.8)

where we choose for F ‚ the first of a pair of alternal moulds pF ‚, G‚q solving (2.10) in the canonical

case of Section 2.5.2 (we may choose any alternal solution, e.g. the zero gauge solution; note that

if ω is strongly non-resonant, then Zcl is uniquely determined, hence this choice is not relevant,

but we make no such hypothesis about ω).

On the other hand, the Weyl quantization of σ “ σ0 ` Bcl is X “ X0 ` Bqu and, for each

n P N , the Weyl quantization B
qu
n of Bcl

n satisfies

σ 1
ih̄

rX0,B
qu
n s “ tσ0, Bcl

n u “ σλpnqBqu
n

because of (9.7), hence Bqu
n is the n-homogeneous component of Bqu. Note that Bqu and the Bqu

n ’s

belong to the space LR
e,fbrrεss defined at the end of Section 8.3. Now, according to Section 8, we

obtain a quantum Birkhoff normal form of X in the form X0 ` Zqu with

Zqu “
ÿ

rě1

ÿ

nPN r

1

r
F λpn1q¨¨¨λpnrq Bqu

rn s, (9.9)

if we take for F ‚ the same mould as in (9.8) and define B
qu

r ‚ s as the Lie comould generated by

pBqu
n qnPN by means of the Lie bracket r¨ , ¨squ of LR

e,fbrrεss (note that, if ω is strongly non-resonant,

then the eigenvalues (8.7) are simple and Zqu is uniquely determined).

For each letter n P N , the symbol of Bqu
n is the Hamiltonian Bcl

n , but in general, for a word

n P N of length ě 2, the symbol of Bqu

rn s is not exactly Bcl
rn s. However, iteration of (9.6) implies

lim
h̄Ñ0

σBqu

r n s
“ Bcl

rn s for each nonempty n P N . (9.10)

Putting together (9.8), (9.9) and (9.10), we thus obtain very simply the following result:

Theorem. One has

σZqu ÝÝÝÑ
h̄Ñ0

Zcl termwise in ε,
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i.e. the coefficients of the ε-expansion of the classical Birkhoff normal form X0`Zcl are the limits,

as h̄ Ñ 0, of the symbols of the coefficients of the ε-expansion of the quantum Birkhoff normal

form X0 ` Zqu.

In the case of a strongly non-resonant frequency vector ω satisfying a Diophantine condition,

this result was first established in [GP87] and later using the Lie method in [DGH91].
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