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NORMALIZATION IN LIE ALGEBRAS VIA MOULD CALCULUS
AND APPLICATIONS

THIERRY PAUL AND DAVID SAUZIN

ABSTRACT. We establish Ecalle’s mould calculus in an abstract Lie-theoretic setting and use it to
solve a normalization problem, which covers several formal normal form problems in the theory
of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to
a mould equation, the solutions of which are remarkably explicit and can be fully described by
means of a gauge transformation group.

The dynamical applications include the construction of Poincaré-Dulac formal normal forms for
a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure
for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff
normal forms both in classical and quantum situations. As a by-product we obtain, in the case of
harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without

any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
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Introduction

We are interested in the following situation: given X, B € L, where L is a Lie algebra over a
field k of characteristic zero, we look for a Lie algebra automorphism ¥ which maps Xg + B to
an element of £ which commutes with Xg3. We call such a ¥ a “normalizing automorphism” and
U(Xo + B) is then called a “normal form” of Xy + B. Our key assumption will be that B can
be decomposed into a sum B = ) B,, of eigenvectors of the inner derivation ady,: ¥ — [Xo,Y].
We will also assume that £ is a “complete filtered Lie algebra” (Definition [[L1] below), which will
allow us to look for ¥ in the form of the exponential of an auxiliary inner derivation.

Our first aim in this article is to introduce Ecalle’s “mould calculus” for this situation, in the
simplest possible way, and to use it to find an explicit solution to the normalization problem: we
will obtain U = exp(ady) and V(X + B) = Xo + Z with Y, Z € £ given by explicit formal series
involving all possible iterated Lie brackets [By,.,[. .. [Bny; Bny] - --]]- It is the family of coefficients
that one puts in front of these iterated Lie brackets that is called a “mould”; we shall be led to
an equation for the moulds associated with Y and Z, and our second main result will consist
in describing all its solutions, especially all those which are “alternal moulds” (see below), and
giving an algorithm to compute them.

Next, we give applications of our result to perturbation theory in classical and quantum dynam-
ics. Indeed, there are several formal normalization problems for dynamical systems or quantum

systems which can be put in the above form:

— the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium
point with diagonalizable linear part, taking for X the linear part of the vector field and for £
the Lie algebra of formal vector fields;

— the construction of Hamiltonian Birkhoff normal forms at an elliptic equilibrium point, tak-
ing for Xg the quadratic part of the Hamiltonian and for £ the Poisson algebra of formal
Hamiltonian functions;

— the elimination at every perturbative order (“averaging”) of a fast angular variable ¢ € T? with
fixed frequency w € R? in a slow-fast vector field (Hamiltonian or not), taking Xy = wj%;

— the construction of quantum Birkhoff normal forms in a Rayleigh-Schrodinger-type situation,
taking for Xy the unperturbed part of the quantum Hamiltonian and for £ a Lie algebra of
operators of the underlying Hilbert space.



Nature of the Lie algebra £
and its Lie bracket

Element to be normalized
X=Xo+B, B=> B,

Normalization
ey X = Xo+ Z

N
XO = Z UJ]'Z]‘@ZJ.
j=1

v X = o 1X,

Poincaré- Formal vector fields )
Dul 1 ) h ® := formal time-1
ulac norma inzy,...,zy wi =
. ' N B Tg\/ Bn map for Y,
form their natural Lie bracket
N ={(kwy—w;j}cC Z resonant
Formal Hamiltoni L, v X = X o,
ormal Hamiltonians = Lioi(2? .
_ _ Xo El 35 (5 + ;) ® := formal time-1 map
Birkhoff inx1,y1,. .-, 4, Yd ) )
) ] B= Y B for the Hamiltonian
normal form with Poisson bracket ~d "
for T q ne vector field {Y; -},
or i A dy; —j
! vi An) = i{n, w) Z resonant

Vector fields or Hamiltonians

XO = ij‘aa—w or <w,[>

Y X = d;1X or X o ®,

. 2 i o .
Multiphase ZFM—W + 2 G- or H(p,I) B— Y B, ® := formal time-1
averaging trigonometric polyn. in ¢, nezd map for Y or {Y,-},
smooth in I, formal in € A(n) =i{n,w) Z resonant, formal in ¢
C . . adYX — %YX 7%Y
Quantum Ls[[€]], operators in a Hilbert X, = kZI e E, (ex | e e e )
. . c
perturbation formal in e, finite-column B= Y B Z block-diagonal on e
. - n
theory w.r.t. an orthonormal basis e, X neN and formal in e
[, ~]Olu = % x commutator N ={ (B —Ep)}cC
t _ ady X = oY X oY
Quantum L2 [[€]], operators in L2(RY) Xo = VX =ein’ Xe ",
i ’ 142 1
perturbation obtained by — zh Aga + X 5""32‘37? symbol of Z tending
th .
oLy Weyl quantization B= > B, to classical B.N.F.
uniform in ) nezd 0
50 [, ]qu 7= 7 X commutator A(n) = i{n,w) as

TABLE 1. Synthetic overview of applications to dynamics

There is a fifth application, dealing with the way the coefficients of the quantum Birkhoff

normal forms formally converge, as i — 0, to those of the classical Birkhoff normal form.

The reader will find a synthetic overview of the dynamical applications in Table [ on p. Bl

and more explanations in Sections BHI particularly about the way one can use “homogeneity” to

decompose a given B into a sum Y, B, of eigenvectors of adx, (the indices n belong to a countable

set depending on the chosen example; the eigenvalue associated with n is denoted by A(n) when

it is not n itself).
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In our view, one of the merits of the Lie-theoretic framework we have devised is its unifying
power. Indeed, the dynamical applications we have mentioned are well-known, but what is new is
the way we obtain each of them as a by-product of one theorem on the normalization problem in a
Lie algebra which itself derives from one theorem on the solutions of a certain mould equation. The
fact that one can use exactly the same moulds in all these applications is in itself remarkable. This
point of view offers a better understanding of the combinatorics involved in these applications.
In particular we shall see that our approach gives a more direct way of relating quantum and
classical normal forms (last line of Table [I).

Normal forms in completed graded Lie algebras have been studied in [Men13], which is dedicated
to logarithmic derivatives associated with graded derivations, motivated by perturbative quantum
field theory. However, we see no obvious way of deducing our main results from [Menl13], which
works in a different context and adopts a more Hopf-algebraic point of view without involving
any moulds.

A forthcoming paper [PS16] will be devoted to normal form problems similar to the ones
studied in the present article (including applications to classical and quantum dynamics), but in
the framework of Banach scales of Lie algebras; there, the focus will be on more quantitative
results, which can be obtained thanks to the mould representation of the solution in a more

analytic context.

Our method relies on Ecalle’s concept of “alternal mould” ([Eca81], [Eca93]) and owes a lot to
the article [EV95] (particularly the part on the so-called “mould of the regal prenormal form” in
it). Our approach is however slightly different, and it incorporates a more direct introduction of
alternality, because we work in a Lie algebra rather than with an associative algebra of operators
which would themselves act on an associative algebra. We do not require from the reader any
previous knowledge of the mould formalism. We will provide original self-contained proofs, except
for a few elementary facts of Ecalle’s theory the proof of which can be found e.g. in [San09); at a
technical level, we shall use crucially the “dimoulds” introduced in [Sau09].

The core of our work consists in finding and describing the alternal moulds solutions to a certain
equation. This is tightly related to algebraic combinatorics. For instance, finite-support alternal
moulds can be identified with the primitive elements of a certain combinatorial Hopf algebra, and
general alternal moulds with the infinitesimal characters of the dual Hopf algebra. Moreover, the
mould counterpart to the grouplike elements of this Hopf algebra and the characters of its dual
is embodied in Ecalle’s concept of “symmetrality”. Solving our mould equation will lead us to a
generalisation of the classical character of the combinatorial Hopf algebra QSym related to the
Dynkin Lie idempotent. However, in this article, we shall not use the language of Hopf algebras

but rather stick to Ecalle’s mould calculus and its application to our Lie-theoretic problem.



The article is divided into three parts.

— The part “Main general results” contains two sections. The first is devoted to the statement of
the first main result, Theorem [A] in the context of complete filtered Lie algebras. The second
section gives the minimum amount of the mould formalism necessary to state the second main
result, Theorem [Bl about the set of all alternal solutions to a certain mould equation.

— The part “Lie mould calculus” contains two sections: Section [Blexplains the origin of the notion
of alternal mould in relation with computations in a Lie algebra, and then derives the proof
of Theorem [Al from Theorem [Bl Section M gives the proof of Theorem [Bl with the help of
“dimoulds”.

— The part “Five dynamical applications” contains five sections, each devoted to a particular
application of Theorem [Al Section [ for Poincaré-Dulac normal forms of formal vector fields,
Section [@] for classical Birkhoff normal forms of formal Hamiltonians, Section [1 for the elimi-
nation of a fast angular phase in formal slow-fast vector fields, Section 8 for quantum Birkhoff
normal forms of formal perturbations of certain quantum Hamiltonians, Section [9 for the formal
convergence of quantum Birkhoff normal forms to classical Birkhoff normal forms as o — 0 for
perturbations of harmonic oscillators. To our knowledge, the latter result, valid for arbitrary
frequencies, is new and generalizes earlier ones [GP87] [DGH91], which required a Diophantine
condition. These applications, though more specialized than the main general results, are writ-
ten in a self-contained way so as to be (hopefully) accessible to readers who are not specialists

of the different domains they cover.



MAIN GENERAL RESULTS

1. Normalization in complete filtered Lie algebras (Theorem [A])

Throughout the article we use the notations
N=1{0,1,2,...}, i=+-1.

Definition 1.1. A “complete filtered Lie algebra” is a Lie algebra (L,[.,.]) together with a

sequence of subspaces
L=LsgDLs1DLsyD... with [Lsm, Lon] © Lsmn for all myn e N

(exhaustive decreasing filtration compatible with the Lie bracket) such that () Ls,, = {0} (the
filtration is separated) and L is a complete metric space for the distance d(X,Y) := 2~ ord(Y—X)
where we denote by ord: £ — Nu {00} the order function associated with the filtration (function

characterized by ord(X) > m < X € Lo,).

The completeness assumption will be used as follows: given a set I, a family (Y;);er of L is
said to be “formally summable” if, for any m € N, the set {i € I | Y; ¢ L=, } is finite; one
can then check that the support of this family is countable (if not I itself) and that, for any
exhaustion (/j)gen of this support by finite sets, the sequence ;. 1, Yi is Cauchy, with a limit
which is independent of the exhaustion—this common limit is simply denoted by >.._; Y;.

Here is a simple and useful example of a formally summable series of operators in £: for any
Y € L5 and r € N, the operator (ady)” maps £ in Ls,, hence, for every X € L, the series
ey (X) 1= 3 ) L(ady)"(X) is formally summable in £. This allows us to define the operator

e®dy | which is a Lie algebra automorphism because ady is a Lie algebra derivation.

Our first main result is
Theorem A. Let k be a field of characteristic zero. There exist families of coefficients
FAdr QA e ko forr =1, Ay, A\ €K, (1.1)

explicitly computable by induction on r, which satisfy the following: given a complete filtered Lie
algebra L over k and Xg € L, given a set N and a formally summable family (Bp)nen of L such

that each By, has order > 1 and is an eigenvector of adx,, one has

[Xo,Z] =0, v (Xo + ) Bn> — Xo+ 7, (1.2)
neN



where Z,Y € Ls1 are defined as the following sums of formally summable families:

1 n n n
Z = Z Z ;F)\( VAM2) AR [Bpy, B, -] (1.3)
rzl nl?”Qv"'?”TGN
1 n n2),..., A (Nr
Y =) > —GAM)Am2) A (BT (B, By ] (1.4)

r
r=1 ni,ng,...,nreN

with

A N -k, A(n) := eigenvalue of By,. (1.5)

The proof of Theorem [Alis in Section 3.4

As we shall see, the families F'* = (F*1*) and G* = (G ) are not unique, but (F*, G*)
is in one-to-one correspondence with an auxiliary family called gauge generator, which can be
chosen arbitrarily among resonant alternal moulds (see the definitions in Section [2l). We will see

that, for any choice of the gauge generator, one has FAt* = (0 whenever A, + --- + A\; # 0 and

MM+ X—1) A+ A) #0, A+ + A1 =0 =
1

A = :
MM+ A1) (A + -+ A2)

(1.6)

The formulas are much more complicated when the denominator vanishes, but there still is an

explicit algorithm to compute every coefficient F 1A or GAM*r depending on the chosen gauge

generator: see formulas (2.14)—-(2I7) in Section 21

Remark 1.2. We may accept 0 as an eigenvector, i.e. some of the B,’s may vanish and A(n)
need not be specified for those values of n. Since the support of a summable family is at most

countable, one can always choose
N = N* (1.7)

without loss of generality (by numbering the support of (B,,) and, if this support is finite, setting
B,, = 0 for the extra values of n). On the other hand, one can decide to group together the eigen-
vectors associated with the same eigenvalue and take for N the countable subset of k consisting

of the eigenvalues which appear in the problem, in which case
N ck, A(n) =n forne N (1.8)

(this latter choice is the one of [EV95]). In this article we do not opt for any of these two choices
and simply consider a general eigenvalue map (5] with arbitrary A/ (without assuming B,, # 0

for each n).
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Remark 1.3. The factor 2 in (L3)—(L4) is just a convenient normalization. We shall see in
Section that the inner derivation ady itself can be written
1
ady — Z Z _Gk(m),)\(m)v---,)\(nr)[adBnT’ [... [adBn2 , a‘dBnl] ]

r
r=1 ni,na,..,nreN

= Z Z GA(n1)77>‘(n’l‘) a‘dBnr P adBnl (1.9)
r=1 ny,...n.eN
(no more factor % in the last series!—mnote that in general the individual composite operators
adp, ---adp, are not derivations of £). We shall also define a family of coefficients S* tightly
related to G* such that
N —Id+ ) Y S ady adp, (1.10)
r=1 ny,...,n.eN
Remark 1.4. If Z,Y € L solve equation (L2)), then any W € L= such that [ Xy, W] = 0 gives

rise to a solution (Z,Y) by setting Z := e®" Z and Y := BCHW,Y) = W + Y + 3[W, Y] + -+,

the Baker-Campbell-Hausdorff series, which is formally summable and satisfies e?dy = e2dw eady |

In Section [6, we shall see an example in which Z is unique but Y is not.
We conclude this section with a “truncated version” of Theorem [Al

Addendum to Theorem [Al Take L, Xg, (Bp)nen and X\: N — k as in the assumptions of
Theorem [AlL Then, for each m € N*, the set Ny, := {n e N | B, ¢ L=} is finite and the finite

sums

m—1
1
Ii= Y)Y ARPAed00[B, [ (B, Bl . (1.11)
r=1 ni,...,nreENm
m—1 1
Vo= Y8 2@, (8,8, (1.12)
r=1 ni,...,n-eENm
define Zy,, Y € Lx1 satisfying [Xo, Zm] = 0 and
eadym <X0 + Z Bn) = XO + Zm mod E)m- (113)
neN

The proof is in Section

2. The mould equation and its solutions (Theorem [B])

We now describe the part of Ecalle’s mould formalism which will allow us to construct the
aforementioned families of coefficients. This will lead us to an equation, of which we will describe

all solutions.
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2.1 Let k a field and N a nonempty set, considered as an alphabet. We denote by A the

corresponding free monoid, whose elements are called words,
N:i={n=ny--n.|reN, ny,....n. e N}

The monoid law is word concatenation: ab = ay---a;by---bs for a = a1---a, and b = by ---bs.
Its unit is the empty word, denoted by @, the only word of length 0. The length of a word n is
denoted by r(n). (Given r € N, we sometimes identify the set of all words of length r with N'".)

We call mould any map N — k. It is customary to denote the value of the mould on a word n
by affixing n as an upper index to the symbol representing the mould, and to refer to the mould
itself by using a big dot as upper index; hence M*® is the mould, the value of which at n is denoted
by M™.

For example, the families of coefficients F'*,G* referred to in Theorem [A] can be considered
as moulds, taking N = k as alphabet. For that reason, from now on, we will write F*1"* and
G2 to denote the individual coefficients rather than FA 1A or GMAr as in ().

The set kX of all moulds is clearly a linear space over k. It is also an associative k-algebra

(usually not commutative): mould multiplication is induced by word concatenation,

P* = M* x N* is defined by ne N — P2 := Z MEeNL (2.1)

n=ab

(summation over all pairs of words (a, b) such that n = ab, including (n,) and (2,n), thus there
are r(n) + 1 terms in the sum)H The multiplication unit is the elementary mould 1° defined by
12 = 1 and 1% = 0 for n # o. It is easy to see that a mould M?* is invertible if and only if
M? # 0; we then denote its multiplicative inverse by ™A/®.

The Lie algebra associated with the associative algebra k% will be denoted Lie(kXY) (same
underlying vector space, with bracketing [M*®, N®] := M* x N®* — N* x M*®).

The order function ord: k% — N U {oo} defined by

ord(M®*)>m <  M"™ =0 whenever r(n) <m (2.2)

allows us to view k& as a complete filtered associative algebra (because the distance d(M*®, N*®) :=
2~ ord(N*=M*) makes it a complete metric space and ord(M® x N*) = ord(M*®) + ord(N*)). We

1 The linear space kX can be identified with the dual of k N, the k-vector space consisting of all linear combi-
nations of words (formal sums of the form Yz, n, with finitely many nonzero coefficients =, € k): the mould M*
gives rise to the linear form z € kA — M*(z) € k defined by M*(> znn) = Yz, M™. The associative algebra
structure on k&L is then dual to the coalgebra structure induced on k N by “word deconcatenation”, for which the

coproduct is A(n) = >, a®b.
b
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can thus define the mutually inverse exponential and logarithm maps by the following summable
series:

M2=0 = M =1"4 Y L), log(1t+ M%) = ) EU (o)<,
k=1 k>1

2.2 Ecalle’s notion of “alternality” is of fundamental importance. Its motivation will be made
clear in Section The idea is that, since in the situation of Theorem [A]l we will use a mould M*®
as a family of coefficients to be multiplied by iterated Lie brackets (as F** in (I.3]) or G* in (I.4),
it is natural to impose some symmetry (or, rather, antisymmetry) on the coefficients so as to
take into account the antisymmetry of the Lie bracket. For instance, the sum over all two-
letter words contains expressions like 3 M™"2[B,,,, By, | +3M™™[B,,,, By, ], which coincide with

T(Mmn2 — Mm2™)[B,,, By, ], so it is natural to impose
M™M"2 4 M™™M =0 for all ny,ng €N, (2.3)

so as to reduce to 1 the number of degrees of freedom associated with the words nino and non;.
Alternality is a generalisation of (2.3)) for all lengths > 2.

The definition of alternality is based on word shuffling. Roughly speaking, the shuffling of two
words g and b is the setH of all words obtained by interdigitating the letters of a and b while
preserving their internal order in g or b; the number of different ways a word n can be obtained
out of a and b is called shuffling coefficient. We make this more precise by using permutations as
follows. For r € N, we let &, (the symmetric group of degree r) act to the right on the set N of
all words of length r by

n=mny-np—>n" =0,y Ny for e, andne N (2.4)
For 0 </ < r, we set
Nlg =Ny No(e), DLy i=No(epn) - Nr(r)-
We also define
S (0):={7e6, |t(1)<---<7() and T(L+1)<---<7(r)},

with the conventions &,(0) = &,(r) = {id}.
Definition 2.1. Given n,a,be N, the “shuffling coefficient” of n in (a,b) is defined to be

sh(%2) := card{T € &,(¢) [nZ, = a and nl, =b}, where {:=r(a). (2.5)

20r rather the sum—see footnote Bl
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For instance, if n, m,p, g are four distinct elements of N,
nmp, mq nmp, mq nmp, mq
sh( ) ~0, sh< ) — 2, h< ) ~ 1L
nmgqpm nmmgqp mngmp

Definition 2.2. A mould M* is said to be “alternal” if M? = 0 and

w0

Z sh(ﬁﬁb) % =0 for any two nonempty words a, b. (2.6)
neN

For instance, ([2.6]) with a = ny and b = ng yields (23] and, with a = n; and b = nina, it yields
QN2 L | ),

Notice that any mould whose support is contained in the set of one-letter words is alternal; so is,

in particular, the elementary mould I* defined by
I* = 1 (n)=1y for any word n. (2.7)

We denote by Alt*(N) the set of alternal moulds, which is clearly a linear subspace of kY; in
fact

Alt*(N) is a Lie subalgebra of Lie(k™)
(see e.g. [Sau09, Prop. 5.1]); this will play a role when returning to the situation of Theorem [Al

2.3 Given a function ¢: N — k, we denote by the same symbol ¢ its extension to A/ as a monoid

morphism: (o) = 0 and

n=ni--n € N o) =epn)+- - +ephn,)ek ifr>1. (2.8)
The formula

Ve: M* e KY > N* e kY, N%:= p(n)M"™ for any word n (2.9)

then defines a derivation of the associative algebra ki (the Leibniz rule for V, is an obvious
consequence of the identity ¢(ab) = p(a) + ¢(b)). For example, associated with the constant

function ¢(n) =1 is the derivation V1, which spells
ViM™ = r(n)M™ for any M € kY and ne N.

3 Word shuffling gives rise to the “shuffling product”, defined by a Ab:= > (29)771 = Zsh(%g) nekN
T€S& (L)
for a pair of words such that 7(a) = ¢ and r(ab) = r and extended to kN x k A by bilinearity, which makes

the space k AV of footnote [I] a commutative associative algebra. Alternal moulds can then be identified with the
infinitesimal characters of the associative algebra (kA A), i.e. when viewed as linear forms they are characterized
by M*®(z Ay) = M*(z)1*(y) + 1°()M*(y). In that point of view, Alt*(N) is a Lie subalgebra of Lie(k’) because
k N is a bialgebra (i.e. there is some kind of compatibility between the deconcatenation coproduct and the shuffling

product—in fact, k A is even a Hopf algebra).
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In the situation of Theorem [A] the derivation V) associated with the map (LH) will play a

pre-eminent role. We shall need the following

Definition 2.3. Given a map A\: N — k, we call “A-resonant” any mould M*® such that V\M*® =

0 and use the notation
AltS_o(N) :={M* € Alt*(N) | V. M* =0}.
The “A-resonant part” of a mould M* is denoted by M3_, and defined by the formula
M)%:o = Lnm)=0y M™ for any word n.
The “gauge generator” of an alternal mould M* is defined as
AN i= [ % vy (M) ]

Note that the space Alt}_,(N) of all A\-resonant alternal moulds is a Lie subalgebra of Alt*(N\)

A=0

(being the kernel of a derivation). Clearly, the A-resonant part of a mould is A-resonant; a
mould M* is A-resonant if and only if M*®* = M3 _, or, equivalently, if and only if M™ = 0
whenever A(n) # 0. We shall see later that the gauge generator of an alternal mould is always
alternal and, in fact, Alt3_q(N) coincides with the set of all gauge generators of alternal moulds.

It is worth singling out the particular case of an alphabet contained in k:

Definition 2.4. If N < k and A\: A/ — k is the inclusion map, then we use the word “resonant”
instead of A-resonant, and we use the notations V, Altg(N), M and ¢ (M?®) instead of Vj,
Alt5_o(N), M3_, and Zx(M*).

2.4 We are now in a position to state our second main result, describing all the solutions to
a certain mould equation, equation (2.I0) below. This result, while being of interest in itself,

will yield the main step in the proof of Theorem [Al Recall that I*® is the alternal mould defined

by 2.7).

Theorem B. Let N be a nonempty set, k a field of characteristic zero, and \: N'— k a map.
(1) For every A® € AltS_o(N), there exists a unique pair (F*,G*) of alternal moulds such that

VoF* =0, Va(ef") =1° x e — e x F*, (2.10)
ING*) = A°. (2.11)
(it) Suppose that (F*,G*) € Alt*(N) x Alt*(N) is a solution to equation (ZI0). Then the formula

J*— (F*,G*) = (ef“]. x F* x e’ log (eG. X eJ.)) (2.12)
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establishes a one-to-one correspondence between AltS_y(N) and the set of all solutions (F*,G*) €
Alt*(N) x Alt*(N) of equation (2I0)). Moreover,

NG =T x _7\(G*) x e+ x Vl(e‘j.). (2.13)

The proof of Theorem [Blis given in Section [ It is constructive in the sense that we will obtain
the following simple algorithm to compute the values of F* and S® := ¢“* on any word n by
induction on its length 7(n): introducing an auxiliary alternal mould N*, one must take

S?2 =1, F?=N?9=0 (2.14)

and, for r(n) > 1,

1

r(n)

An)=0 = Fr=gn_SNVgeph gn_

n=a

(Aﬂ + 57 SQNQ>, NZ— A2 (2.16)

n=ab

IS

*
where we have used the notation ‘n := nsy---n, for n = ning---n, and the symbol Z indicates
summation over non-trivial decompositions (i.e. a,b # @ in the above sums); we will see that the

mould F'* thus inductively defined is alternal and that

) (—1)k71 * 1 k
G? =0, GQZZT Z St ...8% forn#o (2.17)

k=1 n=a!--a*

then defines the alternal mould G* which solves (2.10)-(2.11).
2.5 A few remarks are in order.

2.5.1. Given alphabets M and N, any map ¢: N — M induces a map ¢*: M* e kM — M e
kY defined by Mzt " = M ¢(m)e(nr) wwhich is a morphism of associative algebras, mapping
Alt* (M) to Alt*(N) and satisfying Ve, 0 ¢* =V, for any p: M — k. Let A := p1 0 ¢; one can
easily check that, if A* € Alt;_((M), then the unique solution (F'*,G*) € Alt*(M) x Alt*(M) of

VuF* =0, V() =1"xe% —e% x F*

such that #,(G*) = A*® is mapped by ¢* to the unique solution in Alt*(N) x Alt*(N) of (Z10)
with gauge generator ¢*(A*).

2.5.2. Let us call “canonical case” the case when NV = k and A\ = the identity map. We shall

see in Section B4 that the moulds F*, G* € kX which are referred to in Theorem [Al and give rise
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to solutions (Z,Y) of equation (L2) are the ones given by Theorem [Blin the canonical case with
arbitrary A® € Altd(k). The mould S* referred to in Remark [[3] is then e©*.

We shall see that, with the notations of Theorem [Bfii), any J* € Alty(k) gives rise to W € L3
such that [Xo, W] = 0 and the solution (Z,Y) of (L2 associated with (F*,G*) is given by
Z =W Z and Y = BCH(W,Y), in line with Remark [l

2.5.8. In part (i) of the statement, one may choose A®* = 0; this yields for (F'*,G*) what we
call the “zero gauge solution of equation (2I0)”. In the canonical case, the zero gauge solution
corresponds to what is treated in [EV95] under the name “royal prenormal form”. The rest of
the statement and the whole proof given in Section M are new.

As a consequence of the remark in Section 2Z5.1] the zero gauge solution in the general case

A: N — k is obtained from the zero gauge solution in the canonical case by applying A\*.

2.5.4. Another possible normalization aimed at singling out a specific solution of (2I0) in
Alt*(NV) x Alt*(N) consists in requiring G3_, = 0 (instead of requiring #»(G*) = 0). There
is a unique such solution and here is how one can see it.

According to the Baker-Campbell-Hausdorff formula, for arbitrary G*,J® € (k/\—[)21 (i.e. such

that G2 = J? = 0), we can write
log(e®" x e’y = G* + J* + F(G*,J*),  F(G*,J*)=1L[G*, ]+ - e (kY

where the functional F satisfies ord (F(G*®,J*) — F(G*,J*)) = ord(J* — J*) + 1 for all J* €
(k/\—[) >1 (which is a contraction property for the distance mentioned right after (2.2])) and preserves
alternality. Now, given a solution (F*,G*) € Alt*(N) x Alt*(N) to equation (ZI0), in view of
part (i) of Theorem [Bl we see that finding a solution (F*,G*) € Alt*(N) x Alt*(N) of (ZIN)
such that é;\=0 = 0 is equivalent to finding J* € Alt3_,(N) such that

J' = =G5y — [F(G*, T,y (2.18)

The fixed point equation (2.I8]) has a unique solution J* in (k/\—[)>1 (because of the contraction
property), which is clearly A-resonant, and also alternal (because F preserves alternality). The
uniqueness of the mould J* entails that the solution (F , é) is unique (it does not depend on the

auxiliary solution (F'*,G*) we started with).
2.5.5. “Symmetral” moulds can be defined as the elements of
Sym®*(N) := {eM" | M* € Alt*(N)} (2.19)

and (Sym' (N), ><) is a group, in general non-commutative (see e.g. [Sau09, Prop. 5.1]; see also

Remark B.10] below).
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Thus, using the change of unknown S® = ¢@", it is equivalent to look for a solution (F*,G*) €
Alt*(N) x Alt*(N) of equation (ZI0) or for a solution (F*,S*) € Alt*(N) x Sym*(N) of the
equation

VAF*® =0, VaS®=1°xS*—5°xF°, (2.20)
and the gauge generator will then be

Ia(log §%) = [™S* x V15°],_, - (2.21)

This mould S* = %" is the one which appears in the algorithm (@.I4)-(ZI8); there, N* is the
auxiliary mould N*® = ™VS*® x VS°.

2.5.6. For any choice of A* € Alt}_,(N), from (2I5)—([2.16]), one easily gets

AMning - n)A(ng---ny) - A(ny) #0 =
1
)\(nan .. nr))\(nZ .. nr) o A(nr)’

Fvwr =0 fori=1,...,r and S™"" =

(2.22)

whence (LG) follows by (2Z.I6]) and Section

Note that it may happen that A(n) # 0 for every nonempty word n, in which case Alt_o(N) =
{0} and there is only one solution (F*,G*®) € Alt*(N) x Alt*(N) to equation ([Z.10), namely F'* =0
and G* = logarithm of the mould S* defined by (222]).

For instance, this is what happens if N/ = N* (positive integers), k = Q and A = the inclusion
map N* < Q. Formula (2.22]) then reads

1
(mi+ng+---4+n)(na+---+ng)---np

gnine

In that case, the Hopf algebra k A evoked in footnote Blis the combinatorial Hopf algebra QSym of
“quasi-symmetric functions” and this mould S* is related to the so-called Dynkin Lie idempotent,
of which we thus get interesting generalisations by considering arbitrary maps A: N* — Q and
the corresponding symmetral moulds S°.

The canonical case defined in Section 2.5.2]is the opposite: Altg(k) is huge. Choosing a resonant
alternal mould A® amounts to choosing an arbitrary constant in k for A° (only possibly nonzero

value in length 1), an arbitrary odd function k — k for A; — AMEA) ip Jength 2, ete.

2.5.7. The exponential map induces a bijection from Alt3_,(N) to the set Sym}_,(N) consisting
of all A-resonant symmetral moulds, which is a subgroup of Sym*®(N).
According to part (ii) of Theorem [B], given a solution (F*,S*) € Alt*(N) x Sym*(N) of (220,

we thus have a bijection

K® — (F*,5%) = ("™K* x F* x K*, S* x K*) (2.23)
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between Sym$_,(A) and the set of all solutions (F'*,S*) € Alt*(NV) x Sym®(N) of 20). The
map
(F*,S%) — (™K* x F* x K*, S$* x K*)
is called the “gauge transformation” associated with K*® e Sym$_,(N).
The group Sym$}_,(N) is called the “gauge group” of equation (2.20)); it acts to the right freely
and transitively by gauge transformations on the space of solutions { (F ‘,S')} < Alt*(NV) x
Sym®(N). Its effect on gauge generators is given by the formula

I(log §°) = K* x _#3(log S*) x K* + ™K* x V1 K*. (2.24)

2.5.8. The identities

. . _1\k . _Te . _1\k .
e x A xel" = (em2diyA0 = Z ( kl!) (ad o)k A°, e x V() = Z —((k:%)!(adJ.)k Vad
k=0 k=0

to be seen in Section B.3] (Propositions B.8|(ii) and B.9(ii)) show that, for any alternal mould M*,
the A-resonant mould _#)(M?*) is alternal, as claimed in the paragraph following Definition 2.3}
and that the right-hand side of ([2I3]) or (Z24)) is indeed alternal and A-resonant (by replacing V
with V and observing that Alt}_,(N) is invariant by adje for J® € Alt3_,(N)).

One can easily find the gauge transformation which maps the zero gauge solution on any given

solution: if a given solution (F'*,S*) € Alt*(N) x Sym®(N) has gauge generator A* = #,(log S*),

then one finds the desired gauge transformation in terms of A® by solving the equation
ViK*=K*®*x A*

inductively on word length with initial condition K? = 1 (the unique solution K* € kY is clearly

A-resonant and it turns out that it is also symmetral).
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LIE MOULD CALCULUS

3. Lie mould calculus and proof of Theorem [A]

3.1. General setting.

Let us give ourselves a field k and a nonempty set A, so that we can consider the associative
k-algebra k& of Section 2l We suppose that we are also given a Lie algebra £ over k and a family
(Bp)nen of L.

Let us consider an associative algebra A over k such that £ is a Lie subalgebra of Lie(A)
(we denote by Lie(A) the Lie algebra over k with the same underlying vector space as A and
bracketing [z,y] := xy — yx). For instance, by the Poincaré-Birkhoff-Witt theorem, we may take

for A the universal enveloping algebra of L.
Definition 3.1. The “associative comould” is the family B, = (By,)nen defined by

B,:i=B, - B, €A

for any word n = ni---n,, with the convention By := 14. The “Lie comould” is the family

Bie] = (B[n])nen defined by Big) := 0 and
B[@] = adBm 0---0 adBn2 Bn1 = [Bnm [ .. [BnQ, Bnl] .. ]] eL
for any nonempty word n = ny ---n,, with the convention By, | = By, when r = 1.

Beware that in general, contrarily to the Lie comould, the associative comould is not a family
of £, but only of A. Ecalle’s mould calculus ([Eca81], [Eca93], [San09]) deals with finite or infinite
sums of the form ), M™B,, in the associative algebra A, with arbitrary moulds M* € k. In this
article, we use the phrase “Lie mould calculus” when restricting our attention to finite or infinite
sums of the form Y M®B,, with alternal moulds M* because, as will be shown in a moment, such
expressions can be rewritten @M “B[,] and thus belong to the Lie algebra L.

The shuffling coefficients of Definition 2.1l allow us to express the Lie comould B, in terms of

the associative comould B,:

Lemma 3.2. For any nonempty word n € N,

Buy= Y, (-1)®r(a) sh(%2) By,
(a,b)EN XN

where, for an arbitrary word b = by - - - bs, we denote by E the reversed word: E =bg---by.
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Proof. Let us show by induction on r that
> (1) Wsh(%t) By =0, > (=1)®r(a) sh(%2) By, = By (3.1)
(a.D)EN XN (a.D)EN XN

for any word n of length 7 > 1. We denote the first sum by LHS(n) and the second by LHS'(n),

and observe that, as a consequence of (2.5l),
Lty B~
LHS(n Z d(= o, LHS' (n Z >, (1) %B 7 ur, (3.2)
=0 7€6,(¢) =0 76, (£)

For r = 1, we find LHS(n;1) = By, — Bp, = 0 and LHS'(ny) = 1- By, —0- By, = By
Let us assume that r > 2 and (B holds for any word n of length » — 1. Given an arbitrary

ni|:

word m of length r, we write it as m = nc, where n € N"~! and ¢ € N. When using BI) to
compute LHS(m) or LHS'(m), we see that the last letter of m must either go at the end of b or at

the end of a, or, more precisely, using ([B.2]), we see that &,.(¢) can be written as a disjoint union
S, () =B uA, B:={7eS,. ) |7(r)=r}, A:={1e€6&.(0)]|7(r)<r}

(note that 7€ A = 1< /¢ <r and 7(¢) = r), and there are bijections 7 € B — 7’ € &,_1(¢) and

TeEUA— 7€ G,_1(£ — 1) (note that A is empty when £ = 0) so that
mi, = ng and mZ, = nZ, ¢ for T € B, mi, = ﬂg;_l c and ml, = Qg_l forred

(namely 7/(i) = 7(i) for 1 < i <r—1, and 7%(¢) = 7(i) for i < £ — 1 while 7%(¢) = 7(i + 1) for

¢ < i <r—1)[ Therefore
LHS(m) = >, (—1)®9sh(%) By, + >, (—1)"®sh(%2) By,
(a,b)eN x N (@ b)eN x N o
and, since B 7y = By B and By = B.Bj , we get LHS(m) = —LHS(n)B. + B.LHS(n) = 0
by the induction hypothesis; on the other hand,

LHS'(m) = 3, (=1)"®r(@) sh(%2) Bz, + 3, (~1)®r(ac) sh(%#) By,

(2.)EN XN (2.)eEN XN
U

4 Another way of seeing this is to consider the “unshuffling coproduct” on the vector space k N of footnote[I} this
is the linear map A: kN — kN @ kN determined by A(n) = Ysh(%?) a®b, and the above property amounts
to the inductive definition A(z) = 0 and A(nc) = A(n)(z2®c+ c® @), where we make use of the non-commutative

associative “concatenation product” on k N or k A @ k A (in fact, this gives rise to another Hopf algebra structure

on kN).
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3.2. Finite mould expansions.

Let us denote by k(™) the set of finite-support moulds, which is clearly an associative subalgebra
of k¥~. The finiteness condition allows us to define a map with values in A by means of the

associative comould B,:

M*ekN) s M*B,:= Y M" B, € A. (3.3)
neN

Since B,y = BB, for any two words a, b, it is obvious that the map (3.3 is an associative algebra

anti-morphism, i.e.
(M* x N*)B, = (N*B,)(M*B,) for any M*, N* € k(&) (3.4)

We can also define a map with values in £ by means of the Lie comould B, :
[ N o .— 1 L2
M* e kM) o M*Broy o= ) S M™ B, € L. (3.5)
n#<@

Lemma 3.3. Let M* € Alt*(N) and let Q be an orbit of the action 24) of &, for some r € N*.
Then

DI M™Bp, =71 ) M"B,. (3.6)
ne ne)
If M* € Alt*(N) n kYY) then
M*B, = M*By,). (3.7)

Proof. Lemma allows us to rewrite the left-hand side of (B.6]) as
LHS = )] (—1)”<9>7~(Q)< > sh(gﬁé)Mﬂ> %o
(a,b)eN x N neQ o
In view of (2.1]), the sum between parentheses is 0 if ab ¢ 2, whereas, if ab € Q, it is
Z sh(QﬁQ)Mﬂ.
neN
According to Definition [Z2] the latter sum is 0 when both a and b are nonempty, and it is M2
when b = @, hence we end up with LHS = }] 0c r(a)M% B,, which coincides with the right-hand
side of (3.6).
To prove ([B1), by linearity we can assume that there is r > 1 such that the support of M* is
contained in N". Then we can partition N into orbits:
on _ np _ 1 n _ 1 n _ 1 am
M*By= Y Y M"By=1 Y Y M"Byy=1) M"Byj= ) 55 M" B
QeNT /G, neQ QeENT /S, neQ neN” n#QD

O
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Remark 3.4. An identity more precise than (3.6]) is mentioned in Ecalle’s works: given a letter ¢
and an orbit Q of the action ([24)) of &, for some r € N*, let 7.(£2) denote the number of occurrences

of the letter ¢ in any word of 2 and let Q. := {n € Q| n; = c}; then, for any alternal mould M*,

> M2 Biy) =71(Q) ). M2 By,

neQc nes)
This is related to the identity
Blen) = Z (—1)"® sh(%2) By for any ce N and ne N/
(@,D)eN xN -

and to the following consequence of alternality:

Mect — (fl)r(g) Z Sh(:éé)Mcﬂ for any ce N and a,be N
neN

(stated as formula (5.26) in [EV95]).

Recall that, as mentioned in Section 2.2 the set Alt*(N) of alternal moulds is a Lie subalgebra
of Lie(kX). Let us denote the set of finite-support alternal moulds by

ALEH(N) = Alt* (V) n k(D).

It is obvious that Alt}(N) is also a Lie subalgebra. In view of (3.1)), there is no need to distinguish
between the maps ([3.3) and (3.3]) when restricting to Alt(N).

Proposition 3.5. The map M*® — M*®B[,| induces a Lie algebra anti-morphism Alt3(N) — L,
i.€.
[M.,N.]B[.] = [N.B[.],M.B[.]] fm’ any M',N' € Alt}(N)

Proof. Using (3.4) and (3.17), we compute [M*, N*|B[,} = [M*, N*|B, = (M* x N*)B, — (N* x
M*)B. = (N*B.)(M*B.) — (M*B.)(N*B.) = [N*B., M*B.] = [N*Bj.1, M* B.1]. O

Proposition 3.6. Suppose that there are a function \: N — k and an Xo € L such that
[ X0, Bn] = A(n)By, for each letter n. Then

[Xo, M*B.] = (VAM®)B, and [Xo,M*Bpaj] = (VAM®)Bray for any M* e k&), (3.8)
Proof. One easily checks that
[X0, Bp] = An)B, and [Xo, Bn] = Mn) B[, for any ne N

by induction on r(n) (because [Xp,-] is a derivation of the associative algebra A, as well as
derivation of the Lie algebra L), whence (B.8) follows. O
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3.3. Mould expansions in complete filtered Lie algebras.

We now assume that £ is a complete filtered Lie algebra and that (B, ),ens is a formally summable
family such that each B,, has order > 1. We do not need any auxiliary associative algebra A such

that £ < Lie(\A) in this section, except at the end of Remark B.10

Lemma 3.7. For each M* € XN the family (A M Bin))nzo is formally summable, hence there

r(n)

is a well-defined extension of the map (B35 to the set of all moulds (for which we use the same
notation):

. N ° L 1 n
M® ek > M* By = ) oM™ B
n#QD

eL. (3.9)

n]

This is a k-linear map, compatible with the filtrations of kX and £ in the sense that, for each
meN andM'ekM,
ord(M®*) =m = ord(M*Bj,)) =m (3.10)

(with the notation [22l) for the order function associated with the filtration of k/i).

Proof. By assumption, N;,, := {n € N | ord(B,,) < m} is finite for each m € N and, in view of
Definition [T}, ord(B[,]) = r(n) for each n € NV. This implies that

{neN|ord(B,)) <m}c{neN|r:=r(n) <mandny,...,n, € Ny},
which is finite, hence the formal summability follows. The property (B.I0) is obvious. O

Note that, if M? = 0 (as is the case when M* is alternal), then ¢M" is a well-defined mould

and Y := M*B[,) has order > 1, hence ey is a well-defined Lie algebra automorphism.

Proposition 3.8. (i) The map [B.9) induces a Lie algebra anti-morphism Alt*(N) — L, i.e.
[M‘,N']B[.] = [N.B[.],M.B[.]] for any M*,N*® € Alt.(./\/) (311)
(ii) If M*, N* € Alt*(N), then the mould e=™" x N* x eM" can be written

e M W N* x M = (efadM')N' = Z (_kl!)k(adM-)kN°
k=0

and is alternal, and 'Y := M® B[, satisfies
eadY(N.B[.]) = (e_M. x N® x eM.)B[.].

Proof. (i) As mentioned in Section (2), the set of all moulds k& is a complete metric space for
the distance d(M*®, N*) := 27 dWV*=M*) " The map M*® — M* B[,y is continuous (and even 1-
Lipschitz) by (.I0), and the set of finite-support alternal moulds Alt}(N) is dense in Alt®(N),
so ([B.I1) follows from Proposition
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(i) Because of (i), the adjoint representations of Alt*(N) and L are related by

M*® e Alt*(N), Y = M*Br,; = ady(N°B[,]) = —(adye N*)B,.; for any N*® e Alt*(N),
(3.12)
therefore €Y (N*Bp,)) = (e”*m* (N*))B[,], where e~ 2Im* (N*) € Alt*(N) is well-defined be-
cause M2 = 0, hence adje increases order in £ by at least one unit and e~ 23 is a well-defined
k-linear operator of Alt*(N).
In fact, Alt*(N) — Lie(k/i) and e~ 2dm* is also a well-defined k-linear operator of k&; as such,

it can be written

e~ dnme — o= Lye+Rye — oL o eRJM”

where Lpse, Ryre € Endy (k/\—[) are the operators of left-multiplication and right-multiplication
by M*, which commute. Obviously, e %m* and ef'M* are the operators of left-multiplication and
right-multiplication by e ™™ and €™, hence e~ 2 (N®) = e " x N* x eM" (the latter identity
is sometimes called Hadamard lemma; we gave these details because later we will need again the

operators Lyse and Rpye). O

Proposition 3.9. Suppose that there are a function \: N — k and an Xo € L such that
[Xo, Bn] = A(n)B,, for each letter n. If M* € Alt*(N), then

(i) the mould V\M?* is alternal and
[Xo, M*B[a1] = (VAM?®)B[., (3.13)

(ii) the mould ™" x V5 (eM") can be written

. . _1)k .
e M vy (M) = Z %(adM-)kVAM

k=0
and is alternal, and Y := M*® B[, satisfies

Y Xy = Xo — (e7™ x V(")) B.y.

Proof. (i) The identity (3I3) holds for any M* € kX, as a consequence of (3], by continuity of
M?* — M* By, and density of k(M) in kY. Tt is obvious that V) preserves alternality.

(ii) We write e®¥ Xy — X, = Zkzoﬁ(ady)kﬂ)ﬁ) = — k>0 ﬁ(ady)k[Xo,Y] with
[X0,Y] = (VAM?®)B[.1 by BI3), whence (ady)*[Xo, Y] = (=1)*((adpse)*VAM*)) Bf. by BIZ).

Therefore

e Xy — X = —(PVAM*)Bfa) with Pi= Y {5 (adye)* € Endy (KY). (3.14)

k=0
Note that P is a well-defined k-linear operator of k% which preserves Alt®(N), because adje

increases order in k¥ by at least one unit and preserves Alt*(N\).
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On the other hand, as V, is a derivation of the associative algebra kXX, the Leibniz formula
applied to eM* =1°+ >, ¢ ﬁ(M')X(’“H) yields
VACM) = Y g D (M) VaM® x (M*)*0 = 3 by > LR Ry (VaM®),
k=0 p+q=~k k=0 p+q=k
with the same left- and right-multiplication operators Ljse and Ry as in the end of the proof of

—M*®

Proposition B8l Left-multiplication by e coincides with the operator e~La* | therefore

M VAEM) =QVaM® with Q:=e P 3 ol M LR LRy € Endy (KY). (3.15)
k=0 pt+q=k

Since adpse = Lpyse — Rpze, we see that P = @ in Endy (kj\—/), as a consequence of the following
identity between (commutative) series of two indeterminates:
> en (L - RF =t Y ey ), LR € QUL ]
k>0 k>0 p+a=Fk
(which can be checked, since Q[[L, R]| has no divisor of zero, by multiplying both sides by L — R:
the left-hand side yields —e~%*#+1 and the right-hand side yields e %>}, (k+1) H(LFHL - RRHL) =
e (el —eft)).
Since P = Q, BI5) shows that e ™" x V,(eM") = PV, M* € Alt*(N) (because V \M* is
alternal and P preserves Alt*(N)), and (BI4) yields e*Y Xo— Xo = —(e™" x V)\(eM'))B[.]. O

Remark 3.10. The set Sym*®(N) < k& of symmetral moulds has been defined in (Z19) as the set
of all exponentials of alternal moulds. Here is a characterization more in the spirit of Definition 2.2]

(the proof of which can be found e.g. in [Sau09, Prop. 5.1]): A mould M* is symmetral if and
only if

M2 =1 and Z sh(%, Q)Mﬂ = M2MY  for any two nonempty words a, b. (3.16)
neN
When identifying k& with the dual of kA as in footnotes Mand B we thus identify the symmetral
moulds with the characters of the associative algebra (kA A), i.e. when viewed as linear forms
of k V they are characterised by M*(z A y) = M*(z)M*(y). In that point of view, Sym*(N) is
a group because k A is a bialgebra.

In the case when £ < Lie(A), where A is a complete filtered associative algebra such that
Lom = L N Asy, for each m, the map (B3] extends to an associative algebra anti-morphism
M* € k¥ — M°*B, € A, compatible with the filtrations of k& and A, whose restriction to
Alt*(N) coincide with that of M*® +— M*®By,]. Then

M2—=0 = M*'B._ (eM.)B..

In particular, if M* is alternal, then M Ble] = (eM')B. with eM* symmetral.
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3.4. Theorem [B] implies Theorem [Al

In this section, we take Theorem [B] for granted and show how Theorem [A] follows from Lie mould
calculus. We thus assume that we are given N a nonempty set, k a field of characteristic zero,
A: N — k a map, £ a complete filtered Lie algebra over k, an element X, € £, and a formally
summable family (B),)nen such that ord(B,) > 1 and [Xy, B,] = A(n)B,, for each n e N.

Let us consider any of the many solutions (F'*,G*) € Alt*(k) x Alt®(k) of equation (ZI0) that
Theorem [Bl provides in the canonical case of Section 2.5.2] i.e. with V;q replacing V. We thus
have alternal moulds F'*, G*, explicitly defined by (2.I4)—(2.I7) with some A*® € Altg(k), which
satisfy equation (2.I0]).

Using the map \*: k¥ — kY of Section Z5I], we define Fy := \*(F*) and G} := \*(G*),
which belong to Alt®(N) and satisfy equation (2I0) but now with the operator V) associated
with the eigenvalue map .

Let Z := F}By,, in accordance with (L3]). We have Z € L>; and the first part of ([2.I0) says
that VyFy = 0, hence [ Xy, Z] = 0 by Proposition B.9(i).

Let Y := G;\B[.], in accordance with ([4]). We have Y € £, and the second part of (2.10])
can be rewritten

—e R x (Va(e9h)) + O3 x I* x €93 = Fy.

Let us apply the map M*® — M*B[,] to both sides: because of Proposition [3.8(ii) and Proposi-
tion B.9Yii), the image of the left-hand side is €Y Xy — X + edv (I°B[41), while the image of the
right-hand side is Z, we thus get

ey (Xo + I.B[.]) = Xo+ Z,
which is the desired result, since I* B[, = >, o\ Bn by 7).

3.5. Proof of the formulas (L.9)—(TI0) of Remark 1.3l

We keep the same assumptions and notations as in Section B.41

Let us denote by £ := Endg (L) the associative algebra consisting of all k-linear operators of
the vector space underlying £ (multiplication being defined as operator composition), and by D
the subset of all derivations of the Lie algebra £, which is in fact a Lie subalgebra of Lie(£) (Lie

bracket being defined as operator commutator). For each m € N, we set

Eom ={T el |T(Lsp) C Lspym foreach pe N}, Dsyy =D N Expp. (3.17)
It is easy to check that 9 D €51 D Es9 D ... is a complete filtered associative algebra and
D=9 D D>1 D Dso D ... is a complete filtered Lie algebra. Moreover, ad: £ — Dsg is a Lie

algebra morphism compatible with the filtrations, in the sense that it maps L., to D=,,. Thus,
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(adp, Jnen is a formally summable family contained in D>; and we are in the situation described
at the end of Remark B.J0F with the notation 7), := adp,, we may consider the corresponding

associative comould and Lie comould, defined by
Tﬂ = adBnT cee adBn1 € 5271, T[ﬂ] = [adBnT, [ .. [adBnQ’adBnl] .. ]] = adB[ﬂ] € D)r

for any n = ny---n, € N (the identity Tin) = adB[ﬁ] is due to the Lie algebra morphism
property). It follows that adjze Bl = M*T14 for any M* € k¥ and, in the case of the alternal

mould G,

ady = adgs g, = G1[.] = G3 T
because the restrictions to Alt*(N) of the maps M*® — M*T, and M*® — M*Tj,; coincide. This
is (L3). Remark B.I0] also says that

eCxTel = (eGi)T.

and, setting S} := \*(e?") = %X (recall that \*: kK — k& is a morphism of associative algebras),
we get el = ST, which is (ILI0).

3.6. Proof of the addendum to Theorem [Al

We keep the same assumptions and notations as in Section B.4] except that now F*, G* € Alt*(N)
are moulds satisfying (ZI0]) (e.g. the ones denoted by A\*(F®) and A\*(G*) in Section B.4]).
Let m € N*. The set
Npi={neN |ord(B,) <m}
is finite, as a consequence of the formal summability of the family (B, )nes. We can thus define

a “truncation map” M* e k& — M2, e k(¥ by the formula
Mgm = M2, MZ,, = Tircmy Ly ,.mven;,y M™ - for any nonempty word n = ny ---n, € N

and, in our current notations, the formulas (LII)—(TI2) become

m—1
1 .
Zui= 2, 2 pFMMBuy = FinBp
r=1

N1y nr€Nm

m—1
1 L]
Y= 2, 2 yGM By = GlnB.
r=1 ny,...neNpm
Clearly VAF'* = 0 entails V,F?2,, = 0, hence [X¢, Z,,] = 0 by Proposition It only remains to
be proved that
Wi i= ebin (Xo + 3 By ) = Xo = Zum
neN
has order = m.
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Lemma 3.11. If M*® € Alt*(N), then M2, € Alt3(N).

Proof. Let a and b be nonempty words and consider the expression )] sh(ghb)MSm. We find 0 if
nN B

r(ab) = m or if one of the letters of a or b is outside N, (because, tEn, n has the same property

whenever sh(gﬁb) # 0); otherwise we find >’ sh(gﬁb)Mﬂ, which is also 0 if M* is supposed to be
nN

alternal. 0

Hence F?

<m

with Yy, = G2, B[4] to rewrite W, = e?dvin Xy — X + e2dvm (I'B[.]) — FZ,, Bl as

and G

<m

are alternal and we can use Proposition B.8[ii) and Proposition B.9(ii)

W = (e_G.<m X E')B[.L E*® = —V)\(eGlm) 4+ I° x eF5m — ¢Glm x F:,.. (3.18)

Let C* := F* —F* . C*:=G* - G*

<m> *,, and D® := e% — eC%m. Since fVA(eG.) +I° x & —
e

x F* =0, we get
E*=V,D* —I* x D* + D* x F* +eC<m x C°. (3.19)

Lemma 3.12. (i) Suppose M* € k™ and M, =0. Then M*B[4] € Lom.
(ii) Suppose M* N* e k¥ and M2,, = 0. Then (M* x N*)<p = (N* x M*)p, = 0.

Proof. Suppose M2, = 0.

(i) For any word n = ny---n,, M® # 0 implies max{r,ord(By,),...,ord(By,,)} = m, but
ord(By,]) = max{r,ord(By,),...,ord(By,)}, hence ord(M™B,]) = m in all cases.

(ii) Suppose n = ny---n, with r < m and ny,...,n, € Np,. We have (M*® x N*)& = > MeNt
with summation over all pairs of words such that ab = n, which entails M2 = 0 in each term of

the sum, and similarly for N® x M?*. O

We have C2,, = C*,, =0, and D* = 2 k>0 (k%l)!((G')X(’fH) — (G%,,)** V) with

(G kD) (e yx (kD) Z (G2,,)P x C* x (G*)*? for each k > 0,
k=p+q
whence D2, = 0 by Lemma B12(ii). In view of [B.19)), it follows, again by Lemma B.I2[(ii), that
(e=C=m x E')<m =0, whence Wy, € L=, by (318)) and Lemma B.12(i).

4. Resolution of the mould equation and proof of Theorem [Bl

With the view of proving Theorem [Bl we now give ourselves a nonempty set N, a field k of
characteristic zero and a map \: N'— k.

Part (i) of the statement of Theorem [Blrequires that, for each A® € Alt3_,(N), we prove the ex-
istence and uniqueness of a pair (F*,G*) € Alt*(NV) x Alt*(N) solving (ZI0)—(ZTIT). As explained
in Section 5.5}, with the change of unknown mould S® := €%°, this is equivalent to proving the
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existence and uniqueness of a pair (S*, F'*) € Sym*(N) x Alt*(N) solving equation (220) and
satisfying

[™5® x V18], , = A" (4.1)

Heuristically, here is what happens: it is easy to see that, apart from the exceptional case in
which A(n) # 0 for every nonempty word n (in which case Alt}_,(N) = {0} and there is a unique
solution (S*, F'*) to 220) in k& x k¥ such that S? = 1), equation (2.20) has in general infinitely
many solutions (S*, F'*) € kY x k& such that S2 =1 (because one is free to assign an arbitrary
value to S whenever A\(n) = 0), but what is not obvious is the existence of at least one solution
with S* symmetral and F* alternal; adding the requirement (£J]) removes the freedom: then we
get a unique solution (S®, F'*) in kY x k& such that S2 = 1, and we are left with the problem of
proving that this solution is in Sym®(N') x Alt*(N). This will follow from the alternality of A*

at the price of an excursion in the space of “dimoulds”.

4.1. The associative algebra of dimoulds.

The material in this section is essentially taken from [Sau09].

We call dimould any map N x N — k. We denote by M** the dimould whose value on a pair
of words (a,b) is M%t. The set kNN of all dimoulds is clearly a linear space over k, it is also an
associative k-algebra for the dimould multiplication (M**,N**) — P** = M** x N** defined
by a formula analogous to (2.1)):

PQ7I_) - Z M(gl 7@1 ) N(QQ 7@2) ,
(a,b)=(a' b")(a?b?)

where the concatenation in N x A is defined by @17@1)(@2’@2) = (a! a2, bt QQ).

Examples of dimoulds are the decomposable dimoulds, namely the dimoulds of the form
P — M*®N®,
where it is meant that M* and N* are (ordinary) moulds and P%% = M2N2. Note that
(M} ® NT) x (M5 ® N3) = (M} x M3) ® (NT x N3) (4.2)

for any four moulds M7, N7, M3, Ns.
Using the shuffling coefficients of Definition 2.2] we define a linear map

A: M* ek s P = A(M®) e KX (4.3)

as follows:

pab.— Z sh(%2)M™ for any (a,b) e N x N. (4.4)
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We thus can rephrase the definition of alternality given in Definition and the definition of
symmetrality given in (B.16)):

A mould M* is alternal if and only if A(M®) = M*®1°+1°® M"°. (4.5)
It is symmetral if and only if M2 =1 and A(M®) = M* @ M*. (4.6)

It is proved in [Sau09, Sec. 5.2] thatH
A kY o KON i an associative algebra morphism. (4.7)

We end this section with an example of dimould derivation, i.e. a derivation of the dimould

algebra KN

Lemma 4.1. Let ¢: N — k denote an abitrary function, extended to N by (28)). Then the

formula

Ve: P*" Q% Q% := (p(a) + p(b)) P**  for all a,be N

defines a k-linear operator %g, of KN*N which is a dimould deriation and satisfies
Vo(M*®N*) = (V,M*)®N* + M*® V,N* (4.8)
A(V,M*) = V,A(M®) (4.9)

for any two moulds M* and N*, where V., is the mould derivation defined by (29).

The proof of Lemma BTl is left to the reader (use sh(%2) # 0 = ¢(a) + ¢(b) = ¢(n) for the

last property).

4.2. Proof of Part (i) of Theorem [Bl

Let A® € Alt3_y(N). As explained at the beginning of Section ] the strategy is first to check the
existence and uniqueness of a pair of moulds (S*, F*) € k¥ x kX satisfying (Z20) and @) and
S92 =1, and then to prove (with the help of dimoulds) that (S*, F*) € Sym®(N) x Alt®(N).

4.2.1. Let us introduce an extra unknown mould N*® = ™S* x V;S*, so that finding a solution
(S*, F*) to (220) and (&I is equivalent to finding a solution (S®,F*,N*) to the system of

5In this paper we have denoted by A the map which was denoted by 7 in [Sau09], because this map is essentially

the coproduct of a Hopf algebra structure that one can define and the notation A is more common for coproducts.
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equations
VaS®=1°xS*—S5°xF* (4.10)
V18® =5°*x N* (4.11)
VAF* =0 (4.12)
Ny_o=A°. (4.13)

The system (EI0)—(I3), in presence of the condition S? = 1, amounts to F? = N? = 0 and,

for each nonempty word n,

An) S+ Fr=gn— % gepb (4.14)
n=ab, a,b#2
rin)S*—N"= Y SeN° (4.15)
n=ab, a,b#2
An) #0 = F2=0 (4.16)
An)=0 = Nt=A" (4.17)

with ‘n denoting the word n deprived from its first letter.
We thus find a unique solution by induction on r(n): we must take S? = 1, F? = N2 = 0

and, for r(n) > 1,

(F2 =0

S — 1 <S‘n _ Z qe pb
An) #0 = A(n) pmab oD (4.18)

N% =r(n)S™ — Z §e b

n=ab, a,b#D
Fr— gn_ Z §a b
n=ab, a,b#2
An)=0 = { N*=A" (4.19)
1
st———(am4 Y soNP).
T(ﬂ) n=ab, a,b#2

4.2.2. We now check that, in the unique solution constructed above, S® is symmetral and F'° is

alternal. Making use of the dimould formalism of Section 1], and in particular of the associative



30

algebra morphism A defined by (.3)—(4.4]), we set
A% = A(A%), 8% = A(S®), F** = A(F*), N%*:= A(N®).

Our assumption amounts to A** = A* ® 1°* + 1°* ® A®* and we are to prove S*°®* = 5°* ® S*® and
F** = F*®1° + 1°*® F*. Note that S92 = 8% = 1.
In view of Lemma E.1], the dimould derivations V and V; are defined by

VML = (Ma) + )\(b))MQ’Q and VML .= (r(a) +r(b)) M2t for all a,be N

for any dimould M**. Applying A to each equation of the system (LI0)-(AI3]), we get

VaS** = A(I*) x S — §** x F** (4.20)
V15%* = §%* x N** (4.21)
VAF** =0 (4.22)

NIt = A% (4.23)

Here we have used the associative algebra morphism property (£7]) of A and the identity (49
with V) and Vi; moreover, we have denoted by N ;’;0 the resonant part of the dimould N**

defined by

Nfizo = ]I{A(Q)Jr)\(b):o} NQ’Q for any (g, b) € M X ,/\_/

and used the obvious identity (A(N')))\:O = A(N)'\:O) (due to the fact that Sh(gﬁb) #0 =
Ala) + A(b) = A(n)).

We now observe that the system of dimould equations ([E20)-(#23]) has a unique solution
(8** F** N**) such that S?? = 1. Indeed, these equations entail F?? = N2 = ( and, by
evaluating them on a pair of words (a,b) # (2,2), we get equations analogous to (£.14)—(4.17)
which allow to determine S%¢, %t and Nt by induction on r(a) 4+ r(b) (distinguishing the cases
Aa) + A(b) = 0 or # 0).

Since A(I*) =I°*®1°+1°®I°* and A** = A*®1° + 1°® A°®, it is easy to check directly that
(S*®S*,F*R1°+1°QF°*, N*®1° 4+ 1°*® N°*) is a solution of the system (£20)-(@.23)) with the
initial condition (S*®S°*)?? = 1 (one just has to use (@2), (X)), (@EI0)-(@I3) and the identities
(N*®1°)a=0 = N3_o®1% (I°QN*)r=0 = I° @ N3_g)-

The uniqueness of the solution of the system of dimould equations implies
(S.7.’FQ7.7N.,.) — (S.®507F.®1.+1. ®F.7N.®1.+1. ®N.)

in particular S*® is symmetral and F'® is alternal.
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4.2.83. The induction formulas (4I8])-(£.I9) that we have obtained for F** and S*® coincide with
ZI5)—-(2I16). Setting G* = log S*, we get an alternal mould, inductively determined by (2.17).
This ends the proof of Part (i) of Theorem [Bl

4.3. Proof of Part (ii) of Theorem [Bl

4.3.1. Recall that the mould exponential G* — S* = ¢ is a bijection between the set of all
moulds G* such that G? = 0 and the set of all moulds S*® such that S? = 1, which induces a
bijection Alt*(A) — Sym®(N). There is thus a bijection between the solutions (F*, G*) € k& x ki
to equation (ZI0) such that G2 = 0 and the solutions (F*,S*) € k¥ x k& to equation (2.20)
such that S% = 1. We rewrite equation (Z20) as

F* =G x [* x §° —MG® x V,S°, (4.24)

VAF* = 0. (4.25)

Starting with a solution (F*,G*) € Alt*(N) x Alt*(N) to (ZI0) and setting S* := & €

Sym*(N), we get a solution (F*,S*) € Alt*(N) x Sym®*(N) to ([@24)—(ZL25); using the change
K* =¢’" (as in Section Z5.7)), we are asked to prove that the map

K® — (F*,5%) = ("™K* x F* x K*, §* x K*) (4.26)

establishes a one-to-one correspondence between Sym$_,(N') and the set of all solutions (F*,S%) e

Alt*(N) x Sym*(N) to ([@24)—-([25]), and that

|5 VIS"L =K X g(G) x K* 4 K® X VIK. (4.27)

4.3.2. Suppose that K* € Sym$_q(N) and define (F*,S*) by @28). Since S* = S* x K*, this
mould is symmetral (recall that (Sym®(N), x) is a group—see e.g. [Sau09, Prop. 5.1]); since V
is a derivation which annihilates K*, we have V,5°* = (VS *) x K* and

invgo « T® x Sro _ invSr « V)\g _ iano % (invSo <« I* x §° — inVS > V)\S) % K.,
which, by [@24)), is ™K*® x F* x K* = F*. Thus, (F*,5*) satisfies ([@.24)).

On the other hand, by (ZI9) and Proposition BR(ii), F' = ™K* x F* x K* is alternal. It is
easy to check that F'* satisfies (E25) because F** satisfies [EZH): 0 = "K* x V) \F* x K* = V,F.
It is so because V) is derivation which annihilates both K* and ™K*: the fact that also ™VK* is
A-resonant (i.e. VA"YK*® = 0) is an elementary property of A-resonant moulds, which is part of
Lemma 4.2. Suppose that M*® is a A-resonant mould. Then also V1 M*® is A-resonant, and

[M® x N°®|\_g=M* x N3_y, [N®*xM®],_,=Ny_oxM* for any mould N*.

If moreover M* is invertible, then also ™M?® is A-resonant.
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The proof of Lemma is left to the reader.
We now compute the gauge generator of log S*: by Lemma 2] the A-resonant part of
MG x V18T = MVK® x MG x ((V15%) x K* + S° x V1K°)
is TVEC® x [IS® x V15%], o x K*+™K* x V1K* = ™WK* x _#5(G*) x K* +™K* x V1 K*. This
is (A.27).
4.3.3. Conversely, suppose that (F*,5%) € Alt*(N) x Sym®*(N) is a solution to [E24)-EZ5). We
define K*® := "™S5* x §* € Sym*(N). Inserting

S*=5"xK* (4.28)
in F* =1G® x J* x §* —1vG* x V,S°, we get
F* = Ve (im’S' X I® x S® x K®* —W8* x V,(S* x K')) = VR % (F* x K*—V,K*), (4.29)
ie. VyK® =F* x K* — K* x F*. We are in a position to apply
Lemma 4.3. Suppose that M*®, N®, P® € kj\—/, M? = N2 =0, M* and N* are A-resonant and
VaAP®* = M®* x P*— P* x N°. (4.30)
Then P* is A-resonant.

Taking Lemma [£.3] for granted, we thus obtain that K* is A-resonant, hence K* € Sym3_,(N),
and [@29) yields F = ™K* x F* x K*, which together with [28) gives (F*,S5*) as the image
of K* by the map ([£26). The proof of Theorem [Blii) is then complete.

Proof of Lemma [{.3 Let us show that
An)P*=0 (4.31)

for every n € N by induction on 7(n). The property holds for n = @ or, more generally, for
A(n) = 0, we thus suppose that n € A/ has r(n) > 1 and A(n) # 0, and that (£3T]) holds for all
words of length < r(n). It follows from ([Z30) that

AP = Y (MP? — PaN®) = Y (MeP? — PONY), (4.32)

n=ab

n=ab

where the symbol Z* indicates that we can restrict the summation to non-trivial decompositions
(it is so because M™ = N = 0, since A(n) # 0, and M? = N? = 0). But, in the right-hand side
of [@32)), each term between parentheses vanishes, because either A(a) # 0 and M% = P% = 0
(by the assumption on M% and the inductive hypothesis), or A(a) = 0, but then A(b) # 0 and

MY = Pb = 0 (for similar reasons). O
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FIVE DYNAMICAL APPLICATIONS

We now turn to examples of application of Theorem [Al The Lie algebras in these examples
will consist of vector fields with their natural Lie brackets [-,-] ; or, in presence of a symplectic
structure, Hamiltonian functions with the Lie bracket [-,-],.,, := {-,-} (Poisson bracket) or, in
the quantum case, operators of a Hilbert space with the Lie bracket [-, -] qu = iﬁ X commutator.
We will deal with formal objects (i.e. defined by means of formal series, either in the dynamical

variables or in some external parameter), and this gives rise to a natural Lie algebra filtration.

5. Poincaré-Dulac normal forms

5.1 Let N e N*. A formal vector field is the same thing as a derivation of the algebra of formal

series C[[z1,...,2n]] and is of the form
N
X = Z V(21,5 2N) 0z
j=1

We take k := C and £ := the Lie algebra of formal vector fields whose components v; have no
constant term. We get a complete filtered algebra by setting X € L, if its components v;, as
formal series, have order > m + 1.

Let X € L. The formal normalization problem consists in finding a formal change of variables

which simplifies the expression of X as much as possible. We assume that X has a diagonal linear

part:
N
XO = Z ijjazj
j=1
with “spectrum vector” w = (wy,...,wy) € CV. The components of B := X — X have order > 2,

hence, introducing
M= {(j,k)e{l,....N} x NV | |k] = 2},

we can write the expansion of X — Xpas B= )] bj,kzkazj with coefficients b, € C. It turns
(4,k)eM
out that the monomial vector fields zkazj are eigenvectors of adx,:

[Xo,zkazj] .= (Ckyw) — wj)zkazj for each (j,k) e M (5.1)
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(where (-, -) denotes the standard scalar product), we thus set
N = {{k,w) —w; | (j,k) e Mand b;j, # 0} < C,

By = Z bj7kzkazj for each A e \V,
(j,k)eM such that
kywy—wi=A

so that X = Xy + 3, By and [Xy, By],; = AB) for each A € V.
AeN

5.2 Let us apply Theorem [Al with each choice of A® € Alt{(N) is associated a pair of alternal
moulds, F'* and G* explicitly given by (2I4)—(2I7), which give rise to formal vector fields Z
and Y such that (L2) holds: the automorphism e of £ maps X = Xy + B to Xy + Z and
[Xo0,Z],; = 0. Moreover, Z and Y are explicitly given by the expansions (3)-(L4) (with the
convention of Definition 224t the map A is to be interpreted as the inclusion map N < C).

In this context, a formal vector field which commutes with X is called “resonant”. According
to (B.1)), this means that it is a sum of “resonant monomials”, i.e. multiples of elementary vector
fields of the form zkazj with

(4,k) e M such that (k,w) —w; = 0. (5.2)

It may happen that there exist no resonant monomial at all: one says that the spectrum vector w
is “non-resonant” if equation (5.2]) has no solution (a kind of arithmetical condition). Necessarily
Z =0 in that case (although F'* might be nonzero).

The first part of (2] thus says that Z is a formal resonant vector field; classically, Xy + Z
is called a Poincaré-Dulac normal form. In [EV95], the particular Poincaré-Dulac normal form
corresponding to the choice A* = 0 (zero gauge solution of equation (2I0))) is called “regal
prenormal form”.

The automorphism €Y of £ is nothing but the action of the formal flow ® of Y at time 1
by pull-back: €Y X = ®_1X, hence the second part of (L) says that ®;'X = X, + Z, which
corresponds to the formal change of coordinates z > ®7!(z) obtained by flowing at time 1
along —Y.

We have thus recovered the classical results by Poincaré and Dulac, according to which one
can formally conjugate X to its linear part Xg when w is non-resonant and, in the general case,
to a formal vector field the expression of which contains only resonant monomials.

It is well known that, in general, there is more than one Poincaré-Dulac normal form.

5.3 For a resonant vector w, there may be only one resonance relation (5.2)) (e.g. for w = (2,1)

in dimension N = 2) or infinitely many of them (e.g. for w = (—1,1)). A generic vector w in C
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is non-resonant, but for certain classes of vector fields like the class of Hamiltonian vector fields
the spectrum vector is necessarily resonant—see Section

As already mentioned, when w is non-resonant, F'® is not necessarily trivial. This is because
the alphabet N/ = C* is not necessarily stable under addition and it may happen that there is
a nonempty word A = A;--- A, € A such that Ay + --- + A\, = 0, in which case formula (2.22])
fails to define the value of S2. In fact, in that case, there is no non-trivial mould S* such that
VS® = I* x S§°. However, we repeat that Poincaré’s formal linearization theorem holds in that
situation: we necessarily have B[y} = 0 for such a word A, and Z = 0, since there are no non-trivial
resonant formal vector fields.

Here is an example in dimension N = 2: the spectrum vector w = (5w, 2w) with w € R* is non-
resonant but if we assume that, associated with (j,k) = (1,(0,2)) or (1,(0,3)), there are nonzero
coefficients bj i, then A" contains A = —w and p = w and (ZI4)-@I7) yield FM* = L = —p#i

and SM = — L — guA
2c02
Remark 5.1. If w e CV is “strongly non-resonant” in the sense that
(k,w) # 0 for any nonzero k € Z",

then the sum of the letters is nonzero for every nonempty word, hence F'* = 0 and the symmetral
mould S* is entirely determined by the utterly simple formula ([2:22]). So, in that case, the mould
equation VS® = I* x S§° has a symmetral solution, which is sufficient to obtain formal linearization

by mould calculus.

Remark 5.2. On the other hand, it may happen that w is resonant but 0 does not belong to the
additive monoid generated by N (in particular this requires that b;; = 0 for every (j, k) € M
such that (k,w) —w; = 0). In that case F'* is necessarily 0, hence X is formally linearizable.
5.4 The formal flow ® can be directly computed in terms of the symmetral mould S* = e&":
viewing the By’s as differential operators which can be composed (and not only Lie-bracketed),
we can define the associative comould A = A --- A\, € N — By, ..\, = By, -+ By, and, according
to the end of Remark B.10], we get

Y = Z Z GAIW)""BAI...AT

r=1 )\17...)\7«6./\/-

(in general By, ..., ¢ £, but the above sum is in £ and coincides with Y'), and

eY = Id + Z Z S)‘l'“)\TB)\l...)\r
r=1 )\1,...)\7«6/\/
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(this operator is not in £). Now eV f = fo® for any f € C[[z1,...,2n]], hence ® = (®1,...,Px)
with
@j(zl,...,zN) =2zj+ Z Z SAIW)\’"B)\I...)\TZJ‘ forj=1,...,N.
r=1 )\17...,)\1~€N

There is a similar formula for ®~! involving ™vS"°.

6. Classical Birkhoff normal forms

6.1 Let d e N*. We now set
£k = {fek[[ml,...,xd,yl,...,yd]] | f has order 22}, k=R or C.

The symplectic form Z;l:l dx; A dy; induces the Poisson bracket {f, g} := Z;l:l (% g_zi- - ngj %gj),

which makes £¥ a Poisson algebra over k, and thus a Lie algebra over k with [, -], = {-,-}. We
get a complete filtered Lie algebra by setting X € E;m if, as a power series, it has order = m + 2.

Any X € £¥ generates a formal Hamiltonian vector field, namely

d

0X 0 0X 0
)= 3 (5 7~ )
o1 0% 0Y; Yj 0
viewed as a derivation of the associative algebra k[[z1,...,24,y1,...,yq]]- Let Xy be the quadratic
part of X, so that {Xo,-} is the linear part of the formal vector field {X,-}. The corresponding
matrix is Hamiltonian, hence its eigenvalues come into pairs of opposite complex numbers and we

cannot avoid resonances in this case. From now on, we assume that

d d
0 0
1 2, .2
Xo = Z swj(zj +y;), hence {Xo,-} = Z ) (:U]a— — yj_@:c')’ (6.1)
=1 =1 Yi j
with a “frequency vector” w = (w1, ...,wq) € k% so the eigenvalues of the linear part of the vector
field are iwy,...,iwg, —iwi,..., —iwg (which corresponds to a totally elliptic equilibrium point at

the origin when k = R).

The formal Hamiltonian normalization problem consists in finding a formal symplectomor-
phism @ such that the expression of X o ® is as simple as possible (so that the expression of the
conjugate Hamiltonian vector field ®;1{X, -} is as simple as possible). We will apply Theorem [Al
in the Lie algebra £€ of complex formal Hamiltonian functions so as to recover the classical result

according to which

there exists a formal symplectomorphism ® (with real coefficients if k = R) such

that X o ® Poisson-commutes with Xy,



37

i.e. X o ® is a Birkhoff normal form (which implies, at the level of vector fields, that ®,;{X, -}

is a Hamiltonian Poincaré-Dulac normal form).

6.2 The series

zj(x,y) = %(.%'] +iy;), wji(z,y):= %(ixj + yj), j=1,...,d, (6.2)

satisfy > dx; A dy; = > dz; A dw; and
{Xo, 2"w'} = ik — £,w) 2*w’  for any k, £ € N¢. (6.3)

Using them as a change of coordinates and writing the generic formal series as

k, ¢ k, L
D% beatyt = Y et

k,feNd k,feNd
we identify the complex Poisson algebras C[[z1,...,%q,Y1,...,y4]] and C[[z1,..., zq, w1, ..., wq]].
The real Poisson algebra R[[x1,...,24,y1,...,Yq]] can be seen as the subspace consisting of the

fixed points of the conjugate-linear involution ¢ which maps )] by, ¢ zFyt to Y @xfyk ; note that &

maps », Cp ¢ ZFwt to Z(fi)"”g'm ZfwF | hence the coefficients b ¢ are real if and only if
Crt = i‘k”|c@,k for all k, ¢ e N%. (6.4)
Let X e £¥ with quadratic part X as in (6.1]). Introducing

M :={(k,0) e N x N?| |k| + |¢| = 3},

we can decompose B := X — X € Elf as B= Y cpy 2wt with coefficients cxe € C, and set
(k,0)eM
B, = Z cpe 2Fwt e LS for n e N := Z¢, (6.5)
(k,0)eM such
that k—f¢=n

so that X = X + > B, and, for each n e N/,
{Xo,Bn} = A(n)B,, A(n) = i{n,w)y e C. (6.6)
Moreover, if k = R, then condition ([6.4]) holds, whence
€(B,) = B_, forall neZz’ (6.7)
in that case.

6.3 Let us apply Theorem[Alto £&. For any complex-valued A* € Alt$_,(N\) (recall that N = Z4
and A is defined by (6.6])), Theorem [B] yields alternal moulds F*,G* € CV, explicitly given by
(2I14)-2I7), such that Z,Y € LS, defined by

1 1
Z=> > ~F" B, y=> > ~G" By

r=1 neNT r=1 neNT
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satisfy (L2).

Formulas (2.I4)-(2I7) show that, if k = R and A* is real—valuedH, then the complex conjugate
of Frnr js F(=m)=(=r) and similarly for G* (because A\(n) = A(—n) for each n € A); on the
other hand, ¢ maps Bj,| = {Bn,,{-- - {Bny, Bny} .- - }} to {B_pn,, {.. . {B_ny, B_n,} ...}} (because
of (61 and because ¢ is a real Lie algebra automorphiswh of £%) and is conjugate-linear, hence
we get Z,Y € Eﬂil in that case.

So Z,Y € E;l whether k = C or R. The automorphism e of £¥ is nothing but the action
of the formal flow ® at time 1 of the formal Hamiltonian vector field {Y,-} by composition:
e®¥ X = X o ®, hence the second part of (L2 says that X o ® = X + Z, where ® is a formal
symplectomorphism with coefficients in k, which implies ®;1{X,-} = {Xo + Z,-} at the level of
the formal Hamiltonian vector fields. The components of ® can be directly computed from the

symmetral mould S*® by means of (LI0):

Qj(x,y) =x; + Z Z S™radp, ---adgp, ¥

r=1 ny,...n-eN

Parj(z,y) =y; + Z Z S adp, - -adp,, Yj

r=1 ny,...n.eN

for j = 1,..., N (the series z; and y; have been excluded from the definition of £¥, but (LIN0)
holds as an identity between operators acting in the whole of k[[x1,...,2Z4,y1,...,Yd]])-

The first part of (L2) says that X+ Z is a “Birkhoff normal form”, in the sense that it Poisson-
commutes with Xy. According to (6.3]), this means that all the monomials in its (z,w)-expansion

are of the form ¢ ¢ 28w with (k — ¢,w) = 0.
6.4 Instead of (6.5]), one can as well take

Ni={ik—Llw)| (k,f)e Mand ¢, # 0} < C, By := Z e 2R,
(k,0)eM such that
k=l wH=X
so that (6.6]) is replaced by {Xo, Bn} = AB) for each A\ € N and one can use the formalism of
Definition 241
When w is strongly non-resonant in the sense of Remark [5.1] the relation (k —¢,w) = 0 implies
k— ¢ =0, hence

Z =% Cpu' =Y iloy 1, L=t +yl) forj=1,....d,
|¢|>2 |¢|>2

6 In fact it is sufficient that the complex conjugate of A™ """ ig A (=ne) gy any word mq - - np.
7 Indeed, € can be viewed as the symmetry fi + ifz — fi — ifa associated with the direct sum £° = £® @ icF,

it is a real Lie algebra automorphism because £F is a real Lie subalgebra.
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with certain complex coefficients C, which satisfy i/Cy € R when k = R.
It is easy to check that, when w is strongly non-resonant, the Birkhoff normal form is unique

(but not the formal symplectomorphism conjugating X to it).

6.5 Remark. Exactly the same formalism would apply to the perturbative situation of a Hamil-
tonian X which is also a formal series in € (an indeterminate playing the role of a parameter). We
would take £X := k[[z1,...,%a,v1,...,Ya,€]] with k = R or C, with Lie bracket [+, ], == {*,"}
as before, and with filtration induced by the total order in the 2d+ 1 indeterminates. Then, for any
X = Xy + B with X as in (6.1]) and B € £>1, Theorem [Al yields a formal symplectomorphism @
such that X o ® = Xy + Z Poisson-commutes with Xj.

6.6 The above formalism, as it stands, does not allow us to deal directly with C' functions
of (x,y), but there is a simple variant which allows for mixed Hamiltonians, formal in € (as in
Remark [65]) with coefficients C* in (z,y). However, to have a decomposition of X — Xy as a
formally summable series of eigenvectors of { Xy, -}, we must restrict ourselves to a certain kind
of C® functions. With a view to allowing for comparison with certain quantum Hamiltonians in

Section [@ we denote by S the Schwartz class and set, for k = R or C,

Sk {f e S(R? x RY k) | 3f € 0% ((Rs0)? k) such that f(x,y) = (2l Zatua) 3

Z bie(,y) 2yt | © finite subset of N? x N%, bic € Yok for each (k, ) € Q },
(k,£)eQ

£k = 7¥[[e]].

We choose w = (w1, ...,wq) € R? and consider the same X as in ©1). Theorem[Al can be applied
to any X € LR of the form Xo+ [order = 1 in €] so as to produce Z,Y € L such that {Xy,Z} = 0
and 2 X = X, + Z.

Indeed, £ and £C are complete filtered Lie algebras (filtered by the order in ¢), and B :=
X — Xy can be decomposed into a formally convergent series as follows: we can write B =

> bz, y,€) zFyt with bie(z,y,€) € Y(%R[[a]]%, hence B = ), _,4 By, with
Nd xNd

(=)l +R"] E+0N (k" +¢" k" Yy
By = Z (V2)IF+k"++E7| K k! bk o pren (2, ) w(z,y)

k' 0 k" 0"eN? such
that k' +k"=n+0'+£"

with the same z;,w; as in (G.2). This is the result of using (x,y) — (z,w) as a change of coordi-
nates; notice that the decomposition B = by ¢(z, y,€) z*y¢ is not unique, but the decomposition
B =} B, is, and we have

{Xo, Bn} = A(n)By, A(n) =i{n,wyeC for each n e N := Z%.
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Note that each B, € £C, but the realness assumption on X implies that ¢ (B,) = B_, with
the same conjugate-linear involution % as in Section Therefore, for any real-valued A® €

Alt_y(N), we get alternal moulds F*,G* € C such that

ZZZ Bin); YZZ Bin)

r=1 neNT r>=1 neNT

define Z,Y € £H§1 with the desired properties (the realness of Z and Y follows from the same
argument as in Section [6.3]).

Note that if w is strongly non-resonant in the sense of Remark 5.1}, then Z € .Z3¥[[¢]].

7. Multiphase averaging

7.1 Let d, N € N*. We call “slow-fast” a vector field of the form

d
0 0
wi+efilp,I,e))=— + egr (e, I, 7.1
; J i\¥p ))a% kZl ' )(Hk (7.1)
where w = (w1, . ..,wy) € R?is called the frequency vector, the idea being that, for € > 0 “small”,

the time evolution of the variables I}, will be “slow” compared to the “fast” variables y; (at least
if w # 0). We take ¢ € T?, where T := R/27Z, so the fast variables are angles. When d = N, this

includes the case of vector field generated by a near-integrable Hamiltonian

Xham — (o Iy + eh(p, I,¢€) (7.2)

Oh
9pj°
We will deal with formal series in € whose coefficients are trigonometric polynomials in ¢ with

for the symplectic form Z;l=1 dI; A depj, for which f; = gThj and g; = —

complex-valued coefficients smooth in I. More precisely, we take f1,..., fq,91,...,9gn or h in the

complex associative algebra &€ or the real associative algebra «® defined by
o= L0 e e]], N = {fedC | [@LE) = flp.de)}  (73)

with . := C®(D,C), where D is an open subset of RY (or D = D' x TN with D’ open subset
of RN and N’ + N” = N); in fact, we could as well take for . a linear subspace of C*(D,C),
as long as it is stable under multiplication and all the derivations aaTkv e.g. one could take the
Schwartz space S(RY,C).

Note that .&7® coincides with the set of fixed points of the conjugate-linear involution ¢ which
maps 3 by (1) eP ™% to b, (1) P e~ K9,

Let Xg := ij% and X3*™ := (w,I). The formal averaging problem asks for a formal

conjugacy between X and a vector field Xog + Z which commutes with Xq or, in the Hamiltonian



41

version, for a formal symplectomorphism ® such that X" o & Poisson-commutes with X(})lam.
The reader is referred to [LM8§] and [MS02] for the importance of this problem.

Let us set k := C and consider the complete filtered Lie algebra £€ consisting of vector fields
whose components belong to &/ (with [-,-] = [-,-],;) or, in the Hamiltonian case, £& = &/*
itself (with [-,-] = {-,-}, the Poisson bracket), filtered by the order in ¢ in both cases. If we
impose furthermore that the components of the vector fields or the Hamiltonian functions belong

to «/®, then we get a real Lie subalgebra LK.

7.2 We can apply Theorem [Alto £C. Indeed, any slow-fast system as above can be written as a
sum of eigenvectors of adx, = [Xo, -], or ad yham = {Xham 1
X =Xo+ Y, B, or XMm_xpamy N opham
neN neN

with A = Z¢ corresponding to all possible Fourier modes:

d N
. 0 9 0 .
B, = el<n790>< E b[l] I,e)— + E b[ ] Ie _)7 Bgam _ el<n7<ﬂ>bn 1,¢),
= n,]( )a@] P n,k( )aIk ( )

[1]_[2

nj> Un ko bn € Z[[e]]. In both cases, the eigenvalue map is

with certain coefficients b
neZ— \n) =il(n,w)eC. (7.4)
For any choice of A® € Alt}_y(N), we thus get Y, Z € LC of order > 1 in ¢ such that
[X0,Z];=0 and VX = Xo+ Z, or {X{™, Z} =0 and e Xxhm = xpom 4 7.
In the first case, as in Section [B]

A X — o1 X (7.5)
where ® is the formal flow at time 1 of the formal vector field Y. In the second case, as in
Section [6]

eadtham _ Xham ) (76)
where ® is the formal symplectomorphism obtained by flowing at time 1 along the formal Hamil-

tonian vector field {Y,-}. In both cases,
Z only contains Fourier modes n € N such that {n,w) = 0. (7.7)

Therefore, when w is strongly non-resonant in the sense of Remark [5.I] the components of the
formal vector field Z (in the first case) or the formal series Z (in the second case) do not depend
on ¢, they are formal series in ¢ with coefficients depending on I only: the formal change of

coordinates ®~1 has eliminated the fast phase o from the vector field.
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If the coefficients fi,..., f4,91,...,9n or h belong to &%, ie. if we start with X or Xham
in £®, and we take A°® real-valued, then one gets Y, Z € LR for the same reason as in Section
LR consists of the fixed points of € which is a real Lie algebra automorphismH mapping B,, to B_,

and is conjugate-linear, and the complex conjugate of F™ " ig [(=1)(=nr) and similarly for G*

(the condition described in footnote [6 is sufficient for this).

7.3 Remark. In the real Hamiltonian case, Xgam + Z can be considered as a Birkhoff normal form

for Xham — xham 1 cp (o [ ¢). If we choose . = S(RY,C) in (Z3)), then we get the action-angle
analogue of Section

8. Quantum Birkhoff normal forms

8.1 Let H be a complex Hilbert space, with inner product denoted by (- |-). In this section, by
“operator”, we mean an unbounded linear operator with dense domain.

Let us consider an operator Xy of H which is diagonal in an orthonormal basis e = (eg)rers
of H:

X06k=Ek€k, k‘EI,

with eigenvalues Ej, € C, i.e. X( is a normal operator, or Fr € R, in which case X is self-
adjoint. Let 2/C consist of all operators of H whose domain is the dense subspace Spanc(e) and
which preserve Spanc(e). Let LX consist of all symmetric operators among the previous ones. In
particular, the restriction of Xy to Spanc(e) belongs to L, and even to LX in the self-adjoint
case.

Notice that an element B of %C is determined by a complex “infinite matrix” (8 ¢)x cer:

Bey = Zﬁk,ﬁ e, kel, (8.1)
lel

with the following “finite-column” property: if 8, # 0 then £ belongs to a finite subset of I
depending on k and B. The domain of the adjoint operator B* then contains Spanc(e), and

B*ek:Z%Gb kel
Lel

870 see it, first observe that C': (¢, I) — (=, I) is conformal-symplectic with a factor —1 hence the composition
with C is a complex Lie algebra anti-automorphism ¢ of £°, then note that € = ©¢ oS where S is the symmetry
associated with the direct sum &/© = Z @ i%, with Z := C*(D,R)[e*'?1, ... e*'?d][[¢]] real linear subspace,
and S is a real Lie algebra anti-automorphism because the Lie bracket of vector fields with components in # has

its components in i%Z and, for Hamiltonians, {#Z,Z} c i%.
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Lemma 8.1. (i) For A,B € %(C, there is a well-defined composite operator AB € %(C, and for
this product sa/e(c is an associative algebra over C.

(ii) Let h > 0 be fized. The formula

[A,B],, = #:(AB— BA), A Bed,,

makes AL a Lie algebra over C, which we denote by LS.
(iii) LR is a real Lie subalgebra of LS, coinciding with the set of the fixed points of the involution

e’
%: Be %C — B*|Spanc(e) € %C,

which is a conjugate-linear anti-homomorphism of the associative algebra %C, and a real Lie

algebra automorphism of LS.

Proof. Obvious. O

8.2 We want to perturb X in £, resp. in £LE, by a “small” perturbation and work formally, as

in a Rayleigh-Schrodinger-like situation. So, we introduce an indeterminate ¢ and consider
8= LC[[e)], vesp. L% = LE[[]],

as a complete filtered Lie algebra over C, resp. over R, filtered by order in €.
To decompose an arbitrary perturbation as a sum of eigenvectors of adx,, we notice that, for

B e LT with matrix (Bk(c)) so that (81)) holds (with formal series 5y ¢(e) € C[[e]]), we can

write

kel

B= Y Be with Bygi=|e) Brele)er| (8.2)
(kb)elx ]

(here we used the Dirac notation i.e. Bkjej = Bre(e)ecif j =k, Bk7g€j = 0 else). The sum in (8.2))
may be infinite, but it is well-defined because its action in Spanc(e) is finitary. One then easily

checks that
[Xo, Bk,é]q = (B, — Ey) By

u

We thus have B = »},.\r B, with

N = {%(Eg*Ek) | (k‘,f) EIXI}, B)\:z Z |6(>,8k7g(6)<6k| for A\ e N. (8.3)
(k,€) such that
E¢—E=ihA

Note that, if Xo, B € LR, then

% (B)) = B_) forany Ae N. (8.4)
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We thus suppose that we are given a perturbation B € Egl. We can apply Theorem [A] to
X = Xo + B e LE, with k = C. For each choice of A® € Alty(N), we get Z,Y € LC of order > 1

in € such that

[Xo, Z] 4 = 0, A X = X+ Z. (8.5)

Since @ [[€]] is a complete filtered associative algebra and Y is of order > 1 in ¢, we can define
U:i=en? by the exponential series: it is an automorphism of Spanc(e) formal in e, with inverse

Ul =c Y, and e2dv X = UXU~L. So, the second part of (81 says that
—1 iy
UXo+BU™ = Xo+ 2, U=en?,
Mould calculus shows that

%Y = Z Z (%)TGM---ATBM - B)m U=1d+ Z Z (%)TS)Q...ATBM . B>\1’
T?lAl,...,)\TEN 7,.21 Aly"-7>\’l‘€N

and there is a similar formula for U~! involving the mould ™S°.

If we assume that each eigenvalue Ej, of X is simple (an assumption analogous to the strong
non-resonance condition of Remark [5.1]), then it is easy to check that the first part of (83]) says
that Z is diagonal in the basis e. In general, it says that Z is block-diagonal, where the blocks
refer to the partition I = | |I,, I, :={kel| Ex =a}.

Suppose now that Xg € £F, i.e. it is a self-adjoint operator, and also B € £X. Then, in view
of (84), by the same arguments as in Section [ or [, we get Z,Y € £L®. Note that U is then a
“formal unitary operator”. The formally conjugate operator Xy + Z is called a quantum Birkhoff

normal form for Xy + B.

8.3 The simplest example is that of the self-adjoint operator Xy = —ithj% of H = L?(T4),

which is diagonal in the Fourier basis. We have I = Z? and, for each k € Z¢, e}, = (271)*d/ 2 gi ko)
and the corresponding eigenvalue is Ej, = h(k,w) for k € Z4. In particular,

(Ey — Eg) =1k — L,w).

The simplest example for H = L?(R?) is the quantum harmonic oscillator

d
Xo = —%h2A + Z %wfzi (8.6)
j=1
(with wy,...,wq > 0 given), for which the spectrum is natually indexed by I = N¢:
Epy=hk+(3,...,3),w), ke N%, (8.7)

and e is given by the Hermite functions.
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In these cases, one can index the eigenvector decomposition B = > B,, of finite-column opera-
tors by N = Z%, by a slight modification of (83):

Bni= > leBre(e)lexl, meZ.

(k,£)eN? x N?
k—l=n

This way, the eigenvalue map is A(n) = i{(n,w).

Moreover, in these cases, one may wish to restrict oneself to the “finite-band” case defined by
replacing £X with its subspace Eﬂe&,fb consisting of those elements associated with infinite matrices
(Br.e)k.eer for which there exists K € N such that 8¢ = 0 for [k — ¢| < K. Since L := ER wlle]]
is a Lie subalgebra of LR, we get Z,Y € E whenever we start with a perturbation B € Efb or

order > 1 in e.
9. Semi-classical limit

9.1 In general the dependence of the eigenvalues Fj in the Planck constant # is very complicated,
very often intractable. This makes the set N' = N (k) in (83)) very difficult to follow as i — 0.
Nevertheless, this difficulty is absent in the two examples of X of Section B3] since we have seen
that in these cases we can choose N = Z% and A\(n) = i(n,w), thus independent of .

We will now consider an operator X = Xy + BY" obtained by Weyl quantlzatlonH from a
classical Hamiltonian o(z,€,¢€) of the type introduced in Section [6.6l For the sake of simplicity,
we choose X to be the quantum harmonic oscillator [86) on L2(R?) (we could treat as well the
case of the trickier Weyl quantization on T¢ and choose for Xy the first example of Section R3],
starting from a classical Hamiltonian o(z,&, ) of the type alluded to in Section [T3]). We take
arbitrary wi,...,wg > 0; it will not be necessary to assume that the corresponding frequency
vector w := (wq,...,wq) is non-resonant.

The quantum harmonic oscillator Xg is the Weyl quantization of the Hamiltonian

d

oo(x,€) i= Y| 3(&F +wiad), (9.1)

j=1
which differs from the quadratic Hamiltonian (6.I]) considered in Section [6l only by the conformal-
symplectic change of coordinates induced by §; = w;y;. Let us thus consider a formal Hamiltonian
o € .7%[[e]] of the form

o =09+ B, with B9 = BY(z,¢,¢) of order > 1 in ¢, (9.2)

9See e.g. [Fol89] for a general exposition of pseudo-differential operators and Weyl quantization. The few defini-

tions and facts we need will be recalled in Section
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exactly as in Section [6.6lexcept for the change y — £. Weyl quantization gives rise to a self-adjoint
operator X = Xy + B of L?(R?). We are interested in comparing the quantum Birkhoff normal
form Xy 4+ Z of X and the classical Birkhoff normal form oo + Z of o.

We will see how transparent mould calculus makes the relation between Z9" and Z¢'. The point
is that it is the very same mould F* which will appear in the mould expansions Z¢ = F ‘B[Cl.]
and Z9" = F ‘BFP]; the difference lies only in the Lie comould to be used in each expansion, but
the semi-classical limit of the quantum Lie comould BFF] is easily tractable in this context, with
its symbol tending to B[Cl.] as h — 0. In fact, all the “difficult” part, that is solving the mould

equation which generates combinatorial difficulties solved only by induction, is exactly the same

in the classical and quantum cases.

9.2 The operator Xj is obtained from og by replacing §; by fih%. More generally, Weyl
J
quantization associates to a function o belonging e.g. to the Schwartz class S(R? x R?) = S(T*R?)

an operator V which acts on a function ¢ € L?(R?) through the formula

Vo) = [ o(55) T o (93
In other words, the operator V has an integral kernel given by
Ko = [ (e
A straightforward computation shows that this formula is invertible by
o(x,&) = | Ky(z+dx—9) e~ 2% dd. (9.4)

R4
In that situation, we use the notation o = oy and say that the function o is the “symbol” of the
operator V. For instance, with the notations of Section 0.1l o = ox,.
The following result is the fundamental one concerning the transition quantum-classical. Its
proof is straightforward for symbols in the Schwartz class, by using (@3] and ([@.4). It gives a

mod(h)-homomorphism between quantum and classical Lie algebras.

Lemma 9.1. Suppose that the operators V and W are obtained by Weyl quantization from the
symbols oy and oy . Then the symbol of %[VV, V] is

O 1wy = Alow ® ov), (9.5)

ih
where A(f ® g)(2,€) = &sin (W& — &) £, )98, 7) =g =z, ppr=e-
In particular

lim 0 1y 1) = {ow, ov} (9.6)
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and, in the case of a quadratic symbol ox, like in (O,

%[XO V] {UXmUV}- (97)

9.3 On the one hand, according to Section [6.6], the Hamiltonian (@.2]) can be decomposed as

=00+ . B, {00, BJ} =An)BY,  A(n) =iln,w),
neN

with A/ := Z%. Denoting by B[Cl.] the Lie comould defined from (B%),cns by means of Poisson
brackets, we get a Birkhoff normal form of ¢ in the form o 4+ Z¢ with

-3y e 09)

r=1 nEN’"

where we choose for F'* the first of a pair of alternal moulds (F**, G*) solving (2.10]) in the canonical
case of Section (we may choose any alternal solution, e.g. the zero gauge solution; note that
if w is strongly non-resonant, then Z¢ is uniquely determined, hence this choice is not relevant,
but we make no such hypothesis about w).

On the other hand, the Weyl quantization of ¢ = oy + B% is X = X + B and, for each
n e N, the Weyl quantization Bj" of BS satisfies

cl
I 1 x0,B3" = {00, B, } = Ox(n)BI"

because of (7)), hence Bji" is the n-homogeneous component of B1". Note that B and the By"’s
belong to the space LX; [[€]] defined at the end of Section B3l Now, according to Section B, we

obtain a quantum Birkhoff normal form of X in the form Xy + Z9" with

= Z Lpaen- o) v, (9.9)

r=1 nEN’"

if we take for F'* the same mould as in (O.8) and define BF:I] as the Lie comould generated by
(Ba")nenr by means of the Lie bracket |-, Jqu of Eﬂe{’fb[[e]] (note that, if w is strongly non-resonant,
then the eigenvalues ([87)) are simple and Z" is uniquely determined).

For each letter n € N, the symbol of Bi" is the Hamiltonian B, but in general, for a word

n € N of length > 2, the symbol of BFZ] is not exactly B[Cln]. However, iteration of (@.6]) implies

lim ogas = BE . for each nonempty n e V. (9.10)

ho0 Dln [n]

Putting together (0.8), ([©.9) and ([©.I0), we thus obtain very simply the following result:

Theorem. One has

oga —— Z% termwise in ¢,
h—0



48

i.e. the coefficients of the e-expansion of the classical Birkhoff normal form Xo+ Z< are the limits,

as h — 0, of the symbols of the coefficients of the e-expansion of the quantum Birkhoff normal
form Xo + Z".

In the case of a strongly non-resonant frequency vector w satisfying a Diophantine condition,
this result was first established in [GP87] and later using the Lie method in [DGH9]1].
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