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We are interested in fixed points in Boolean networks, i.e. functions f from {0, 1} n to itself. We define the subnetworks of f as the restrictions of f to the subcubes of {0, 1} n , and we characterizes a class F of Boolean networks satisfying the following property: Every subnetwork of f has a unique fixed point if and only if f has no subnetwork in F. This characterization generalizes the fixed point theorem of Shih and Dong, which asserts that if for every x in {0, 1} n there is no directed cycle in the directed graph whose the adjacency matrix is the discrete Jacobian matrix of f evaluated at point x, then f has a unique fixed point. Then, denoting by C + (resp. C -) the networks whose the interaction graph is a positive (resp. negative) cycle, we show that the nonexpansive networks of F are exactly the networks of C + ∪ C -; and for the class of non-expansive networks we get a "dichotomization" of the previous forbidden subnetwork theorem: Every subnetwork of f has at most (resp. at least) one fixed point if and only if f has no subnetworks in C + (resp. C -) subnetwork. Finally, we prove that if f is a conjunctive network then every subnetwork of f has at most one fixed point if and only if f has no subnetworks in C + .

Introduction

A function f from {0, 1} n to itself is often seen as a Boolean network with n components. On one hand, the dynamics of the network is described by the iterations of f ; for instance, with the synchronous iteration scheme, the dynamics is described by the recurrence x t+1 = f (x t ). On the other hand, the "structure" of the network is described by a directed graph G(f ): The vertices are the n components, and there exists an arc from j to i when the evolution of the ith component depends on the evolution of the jth one.

Boolean networks have many applications. In particular, from the seminal works of Kauffman [START_REF] Kauffman | Metabolic stability and epigenesis in randomly connected nets[END_REF] and Thomas [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF], they are extensively used to model gene networks. In most cases, fixed points are of special interest. For instance, in the context of gene networks, they correspond to stable patterns of gene expression at the basis of particular biological processes.

Importance of fixed point leads researchers to find conditions for the existence and the uniqueness of a fixed point. Such a condition was first obtained by Robert [START_REF] Robert | Iterations sur des ensembles finis et automates cellulaires contractants[END_REF], who proved that if G(f ) has no directed cycle, then f has a unique fixed point. This result was then generalized by Shih and Dong [START_REF] Shih | A combinatorial analogue of the Jacobian problem in automata networks[END_REF]. They associated to each point x in {0, 1} n a local interaction graph Gf (x), which is a subgraph of G(f ) defined as the directed graph whose the adjacency matrix is the discrete Jacobian matrix of f evaluated at point x, and they proved that if Gf (x) has no directed cycle for all x in {0, 1} n , then f has a unique fixed point.

In this paper, we generalize Shih-Dong's theorem using, as main tool, the subnetworks of f , that is, the networks obtained from f by fixing to 0 or 1 some components. The organization is the following. After introducing the main concepts in Section 2, we formally state some classical results connected to this work, as Robert's and Shih-Dong's theorems. In Section 4, we define the class F of even and odd-self-dual networks, and we prove the main result of this paper, the following characterization: f and all its subnetworks have a unique fixed point if and only if f has no subnetworks in F. The rest of the paper discusses this "forbidden subnetworks theorem". In section 5, we show that it generalizes Shih-Dong's theorem. More precisely, we show how it can be used to replace the condition "Gf (x) has no cycles for all x" in Shih-Dong's theorem by a weaker condition of the form "Gf (x) has short cycles for few points x". In section 6, we study the effect of the absence of subnetwork in F on the asynchronous state graph of f (which is a directed graph on {0, 1} n constructed from the asynchronous iterations of f and proposed by Thomas [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF] as a model for the dynamics of gene networks). Section 7 gives some reflexions on the characterization of properties by forbidden subnetworks. In particular, it is showed that there is not a lot of properties that are interesting to characterize in terms of forbidden subnetworks. In Section 8, we compare F with the with the classes C + (resp. C -) of networks f such that the interaction graph G(f ) is a positive (resp. negative) cycle. We show that C + (resp. C -) contains exactly the non-expansive even-self-dual (resp. odd-self-dual) networks, in such a way that C + ∪ C -equals the non-expansive networks of F. This result is used in Section 9 to obtain a strong version of the main result for non-expansive networks: If f is non-expansive, then f and all its subnetworks have at least (resp. at most) one fixed point if and only if f has no subnetworks in C -(resp. C + ). In Section 10, we focus on conjunctive networks. We prove that if f is a conjunctive network, then f and all its subnetworks have at most one (resp. a unique) fixed point if and only if f has no subnetworks in C + (resp. C + ∪ C -). Finally, we show that, for conjunctive networks, the absence of subnetwork in C ± can be easily verified from the chordless cycles of G(f ).

Preliminaries

Notations on hypercube

If A and B are two sets, then A B denotes the set of functions from B to A. Let B = {0, 1} and let V be a finite set. Elements of B V are seen as points of the |V |-dimensional Boolean space, and the elements of V as the components (or dimensions) of this space. Given a point x ∈ B V and a component i ∈ V , the image of i by x (the i-component of x) is denoted x i or (x) i . The set of components i such that x i = 1 is denoted 1(x). For all I ⊆ V , we denote by e I the point of B V such that 1(e I ) = I. Points e ∅ and e V are often denoted 0 and 1, and we write e i instead of e {i} . Hence, e i may be seen as the base vector of B V associated with dimension i. For all x ∈ B V , we set ||x|| = |1(x)|. A point x is said to be even (resp. odd) if ||x|| is even (resp. odd). The sum modulo two is denoted ⊕. If x and y are two points of B V , then x ⊕ y is the point of B V such that (x ⊕ y) i = x i ⊕ y i for all i ∈ V . The Hamming distance between x and y is d(x, y) = ||x ⊕ y||. Thus d(x, y) is the number of components i such that x i = y i . In this way ||x|| = d(0, x). For all I ⊆ V and x ∈ B V , the restriction of x to I is denoted x| I , and the restriction of x to V \ I is denoted x -I . If i ∈ V , we write x| i and x -i instead of x| {i} and x -{i} . Also, if α ∈ B then x iα denotes the point of B V such that (x iα ) i = α and (x iα ) -i = x -i .

Networks and subnetworks

A (Boolean) network on V is a function f : B V → B V . The elements of V are the components or automata of the network, and B V is the set of possible states or configurations for the network. At a given configuration x ∈ B V , the state of component i is given by x i . The local transition function associated with component i is the function f i from B V to B defined by f i (x) = f (x) i for all x ∈ B V . Throughout this article, f denotes a network on V .

We say that f is non-expansive if ∀x, y ∈ B V , d(f (x), f (y)) ≤ d(x, y).

The conjugate of f is the network f on V defined by

∀x ∈ B V , f (x) = f (x) ⊕ x.
Let I be a non-empty subset of V and z ∈ B V \I . The subnetwork of f induced by z is the network h on I defined by

∀x ∈ B V with x -I = z, h(x| I ) = f (x)| I .
The subnetwork of f induced by z is thus the network obtained from f by fixing to z i each component i ∈ V \ I. It can also be seen as the projection of the restriction of f to the hyperplane defined by the equations "x i = z i ", i ∈ V \ I. Note that, by definition, f is a subnetwork of itself. A subnetwork of f distinct from f is a strict subnetwork. Let i ∈ V , α ∈ B and let z ∈ B V with z i = α. The subnetwork of f induced by z| i is denoted f iα and called immediate subnetwork of f induced by the hyperplane "x i = α". In other words, ∀x ∈ B V , f iα (x -i ) = f (x iα ) -i .

Asynchronous state graph

The asynchronous state graph of f , denoted Γ(f ), is the directed graph with vertex set B V and the following set of arcs:

{x → x ⊕ e i | x ∈ B V , i ∈ V, f i (x) = x i } Remark 1.
Our interest for Γ(f ) lies in the fact that this state graph has been proposed by Thomas [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF] as a model for the dynamics of gene networks; see also [START_REF] Thomas | Biological Feedback[END_REF]. In this context, network components correspond to genes. At a given state x, the protein encoded by gene i is "present" if x i = 1 and "absent" if x i = 0. The gene i is "on" (transcripted) if f i (x) = 1 and "off" (not transcripted) if f i (x) = 0. And given an initial configuration x, the possible evolutions of the system are described by the set of paths of Γ(f ) starting from x.

The terminal strongly connected components of Γ(f ) are called attractors. An attractor is cyclic if it contains at least two points, and it is punctual otherwise. Hence, {x} is a punctual attractor of Γ(f ) if and only if x is a fixed point of f , so both concepts are identical. Proposition 1. Let I be non-empty subset of V and let h be the subnetwork of f induced by some point z ∈ B V \I . The asynchronous state graph of h is isomorphic to the asynchronous state graph of f induced by the set of points x ∈ B V such that x -I = z (the isomorphism is x → x -I ).

Proof. For all x, y ∈ B V with x -I = y -I = z, and for all i ∈ I, we have y = x ⊕ e i if and only if x| I = y| I ⊕ e i , thus x → y is an arc of Γ(f ) if and only if x -I → y -I is an arc of Γ(h).

Criticality

We say that f is critical for a property P, if f has the property P but no strict subnetworks of f have this property. Let P 2 be the property "to have at least two fixed points", and let P 0 be the property "to have no fixed point". We say that f is 2-critical if f is critical for the property P 2 , and we say that f is 0-critical if f is critical for the property P 0 . Clearly, if f is 2-critical, then there exists x ∈ B V such that x and x ⊕ 1 are fixed points, and f has no other fixed point (because if x and y are two fixed points and x i = y i = α then x -i and y -i are fixed points of f iα ).

Proposition 2. Let f be a network on V .

1. If the asynchronous state graph of f has multiple attractors, then f has a 2-critical subnetwork.

2. If f is non-expansive and if the asynchronous state graph of f has a cyclic attractor, then f has no fixed point and thus has a 0-critical subnetwork.

Proof. Suppose that Γ(f ) has two distinct attractors X, Y ⊆ B V . Let x ∈ X and y ∈ Y be such that d(x, y) is minimal. Let I = 1(x ⊕ y) so that x -I = y -I = z.

Let h be the subnetwork of f induced by z. Suppose that x| I is not a fixed point of h. Then, there exists i ∈ I with

x i = h i (x| I ) = f i (x)
. Thus Γ(f ) has an arc x → x ⊕ e i and x ⊕ e i ∈ X because x ∈ X. Since x i = y i , we have d(x ⊕ e i , y) < d(x, y), a contradiction. Thus x| I is a fixed point of h, and we prove with similar arguments that y| I is a fixed point of h. Thus h has multiple fixed points. Thus h has necessarily a 2-critical subnetwork g, and since g is a subnetwork of f the first point is proved.

For the second point, suppose in addition that f is non-expansive, that Y is a cyclic attractor (i.e. |Y | > 1) and that X is punctual i.e. reduces to a fixed point x of f . Since y| I is a fixed point of h, we have y| I = f (y)| I and using the fact that f is non expansive we get

d(f (x), f (y)) = d(x, f (y)) = d(x| I , f (y)| I ) + d(x -I , f (y) -I ) = d(x| I , y| I ) + d(y -I , f (y) -I ) = |I| + d(y -I , f (y) -I ) ≤ d(x, y) = |I|.
Thus d(y -I , f (y) -I ) = 0 so y -I = f (y) -I . Consequently, y is a fixed point of f , and Y cannot be cyclic, a contradiction. Consequently, if f is non-expansive and if Y is a cyclic attractor, then X is also a cyclic attractor, so f has no fixed point and thus it has necessarily a 0-critical subnetwork.

Interaction graphs

Notions and notations concerning digraphs are consistent with [START_REF] Bang-Jensen | Digraphs: Theory, Algorithms and Applications[END_REF]. In particular, cycles and paths are seen as digraphs and thus have no repeated vertices. A signed digraph G = (V, A) consists in a set of vertices V and a set of (signed) arcs A ⊆ V × {-1, 1} × V . An arc (i, s, j) ∈ A is an arc from i to j of sign s. We say that G is simple if for every vertices i, j ∈ V there is at most one arc from i to j. The (unsigned) digraph obtained by forgetting signs is denoted |G|: The vertex set of |G| is V and the arc set of |G| is the set of couples (i, j) such that G has at least one arc from i to j.

A signed digraph G = (V , A ) is a subgraph of G (notation G ⊆ G) if V ⊆ V and A ⊆ A. A cycle of G is a simple subgraph C of G such that |C| is a directed cycle. A positive (resp. negative) cycle of G is a cycle of G with an even (resp. odd) number of negative arcs. A cycle of C of G is chordless if |C| is an induced subgraph of |G| (i.e.
|C| can be obtained from |G| be removing vertices only).

Let f be a network on V and two components i, j ∈ V . The discrete derivative of f i with respect to j is the function

f ij from B V to {-1, 0, 1} defined by ∀x ∈ B V , f ij (x) = f i (x j1 ) -f i (x j0 ).
Discrete derivatives are usually stored under the form of a matrix, the Jacobian matrix. However, for our purpose, it is more convenient to store them under the form of a signed digraph.

For all x ∈ B V , we call local interaction graph of f evaluated at point x, and we denote by Gf (x), the signed digraph with vertex set V such that, for all i, j ∈ V , there is a positive (resp. negative) arc from j to i if f ij (x) positive (resp. negative). Note that Gf (x) is simple. The (global) interaction graph of f is the signed digraph denoted by G(f ) and defined by: The vertex set is V and, for all vertices i, j ∈ V , there is a positive (resp. negative) arc from j to i if f ij (x) is positive (resp. negative) for at least one x ∈ B V . Thus each local interaction graph Gf (x) is a subgraph of the global interaction graph G(f ). More precisely, G(f ) is obtained by taking the union of all the Gf (x). Proposition 3. Let I be non-empty subset of V and let h be the subnetwork of f induced by some point z ∈ B V \I , and let x ∈ B V with x -I = z. Then:

1. Gh(x| I ) is an induced subgraph of Gf (x); 2. G(h) is a subgraph of G(f ). Proof. If x ∈ B V and x -I = z, then for all i, j ∈ I, h ij (x| I ) = h i (x j1 | I ) -h i (x j0 | I ) = f i (x j1 ) -f i (x j0 ) = f ij (x).
This proves 1. and 2. is an obvious consequence.

Some fixed point theorems

Robert proved in 1980 the following fundamental fixed point theorem [START_REF] Robert | Iterations sur des ensembles finis et automates cellulaires contractants[END_REF][START_REF] Robert | Discrete iterations: a metric study[END_REF]. A short proof is given in Appendix A (this proof uses an induction on subnetworks, a technic used in almost all proofs of this paper).

Theorem 1 [START_REF] Robert | Iterations sur des ensembles finis et automates cellulaires contractants[END_REF]). If G(f ) has no cycle then f has a unique fixed point.

Robert also proved, in his french book [START_REF] Robert | Les systèmes dynamiques discrets[END_REF], that if G(f ) has no cycle, then Γ(f ) has no cycle, so that every path of Γ(f ) leads to the unique fixed point of f (strong convergence toward a unique fixed point).

The following theorem, proved by Aracena [START_REF] Aracena | Maximum number of fixed points in regulatory boolean networks[END_REF] (see also [START_REF] Aracena | Positive and negative circuits in discrete neural networks[END_REF]) in a slightly different setting, gives other very fundamental relationships between the interaction graph of f and its fixed points.

Theorem 2 [START_REF] Aracena | Maximum number of fixed points in regulatory boolean networks[END_REF]. Suppose that G(f ) is strongly connected (and contains at least one arc).

The following theorem can be deduce from Aracena theorem with an induction on strongly connected components of G(f ), see Appendix A. It gives a nice "proof by dichotomy" of Robert' theorem: The existence of a fixed point is established under the absence of negative cycle while the unicity under the absence of positive cycle. First point of Theorem 3 can be seen as a Boolean version of first Thomas' rule, which asserts that the presence of a positive cycles in the interaction graph of a dynamical system is a necessary conditions for the presence of multiple stable states [START_REF] Thomas | On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations[END_REF] (see also [START_REF] Kaufman | A new necessary condition on interaction graphs for multistationarity[END_REF] and the references therein).

Second Thomas' rule asserts that the presence of a negative cycle is a necessary condition for the presence of cyclic attractors [START_REF] Thomas | On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations[END_REF][START_REF] Kaufman | A new necessary condition on interaction graphs for multistationarity[END_REF]. Hence, the next theorem, proved in [START_REF] Richard | Negative circuits and sustained oscillations in asynchronous automata networks[END_REF], can be see as a Boolean version of second Thomas' rule.

Theorem 4 [START_REF] Richard | Negative circuits and sustained oscillations in asynchronous automata networks[END_REF]). If G(f ) has no negative cycle, then Γ(f ) has no cyclic attractors.

Note that this theorem generalizes the second point of Theorem 3: If Γ(f ) has no cyclic attractor, then all the attractors are fixed points, and since there always exists at least one attractor, f has at least one fixed point.

The next theorem is a "local version" of Robert's theorem. It has been conjectured and presented as a combinatorial analog of the Jacobian conjecture in [START_REF] Shih | Solution of the Boolean Markus-Yamabe problem[END_REF]. It has be proved by Shih and Dong in [START_REF] Shih | A combinatorial analogue of the Jacobian problem in automata networks[END_REF].

Theorem 5 [START_REF] Shih | A combinatorial analogue of the Jacobian problem in automata networks[END_REF]. If Gf (x) has no cycle for all x ∈ B V , then f has a unique fixe point.

This theorem generalizes Robert's one: If G(f ) has no cycle, then it is clear that each local interaction graph Gf (x) has no cycle (because Gf (x) ⊆ G(f )). The original proof of Shih and Dong is quite involved. A much more simple proof is given in Appendix A.

In a similar way, Remy, Ruet and Thieffry [START_REF] Remy | Graphic requirements for multistability and attractive cycles in a boolean dynamical framework[END_REF] proved a local version of the first point of Theorem 3. They thus got the uniqueness part of Shih-Dong's theorem under weaker conditions. Theorem 6 (Remy, Ruet and Thieffry 2008). If Gf (x) has no positive cycle for all x ∈ B V , then f has at most one fixed point.

In view of the previous theorem, it very natural think about a local version of the second point of Theorem 3.

Question 1. Is it true that if Gf (x) has no negative cycle for all x ∈ B V , then f has at least one fixed point?

The following theorem, proved in [START_REF] Richard | Local negative circuits and fixed points in non-expansive boolean networks[END_REF], only gives a very partial answer to this question (see [START_REF] Richard | From kernels in directed graphs to fixed points and negative cycles in boolean networks[END_REF] for another very partial answer).

Theorem 7 [START_REF] Richard | Local negative circuits and fixed points in non-expansive boolean networks[END_REF]). If f is non-expansive and if Gf (x) has no negative cycle for all x ∈ B V , then f has at least one fixed point.

Remark 2. In all the theorems, Aracena one excepted, if the conditions are satisfied by f then they are also satisfied by every subnetwork of f , in such a way that conclusions apply to f and all its subnetworks. For instance, if G(f ) has no cycle, then the interaction graph G(h) every subnetwork h of f has no cycle (since G(h) ⊆ G(f )), and by Robert's theorem, every subnetwork h of f has a unique fixed point. Such a remark is also valid for Theorem 7, because if f is non-expansive then all its subnetworks are non-expansive too.

Remark 3. Using the previous remark, we deduce from Theorem 5 (resp. Theorem 6) that if Gf (x) has no cycle (resp. no positive cycle) for all x ∈ B V , then every subnetwork of f has a unique (resp. at most one) fixed point, and thus, following Proposition 2, Γ(f ) has a unique attractor (resp. at most one attractor).

Remark 4. Proceeding in a similar way, we deduce from Theorem 7 and Proposition 2 the following local version of second Thomas' rule for non-expansive networks: If f is non-expansive and if Gf (x) has no negative cycle for all x ∈ B V , then Γ(f ) has no cyclic attractors.

A forbidden subnetwork theorem

In this section, we introduce the class F of even-and odd-self dual networks, and we prove that it has the following property: Every subnetworks of f (and f itself in particular) has a unique fixed point if and only if f has no subnetwork in F.

We say that

f is self-dual if ∀x ∈ B V , f (x ⊕ 1) = f (x) ⊕ 1. Equivalently, f is self-dual if f (x ⊕ 1) = f (x) for all x ∈ B V .
We say that f is even if the image set of f is the set of even points of

B V , that is, f (B V ) = {x ∈ B V | ||x|| is even}
and similarly, we say that f is odd if

f (B V ) = {x ∈ B V | ||x|| is odd}.
Thus, if f is even, then there exists x ∈ B V such that f (x) = 0, which is equivalent to say that f (x) = x. Hence, even networks have at least one fixed point. Obviously, odd networks have no fixed point.

We say that f is even-self-dual (resp. odd-self-dual) if it is both even (resp. odd) and self dual. We will often implicitly use the following characterization: f is even-self-dual (resp. odd-self-dual) if and only if

∀z ∈ B V s.t. ||z|| is even (resp. odd), ∃x ∈ B V s.t. f -1 (z) = {x, x ⊕ 1}.
It follows that if f is even-self-dual then it has exactly two fixed points.

Our interest for even-or odd-self-dual networks lies in the following theorem, which is the main result of this paper.

Theorem 8. If f has no even-or odd-self-dual subnetwork, then the conjugate of f is a bijection.

The proof needs the following two lemmas. Lemma 1. Let X be a non-empty subset of B V and

N (X) = {x ⊕ e i | x ∈ X, i ∈ V }.
If X and N (X) are disjoint and |X| ≥ |N (X)|, then X is either the set of even points of B V or the set of odd points of B V .

Proof. by induction on |V |. The case |V | = 1 is obvious. So suppose that |V | > 1. Let X be a non-empty subset of B V satisfying the conditions of the statement. Let i ∈ V and α ∈ B. For all Y ⊆ B V , let us denote by Y α be the subset of B V \{i} defined by

Y α = {x -i | x ∈ Y, x i = α}.
We first prove that N (X α ) ⊆ N (X) α and X α ∩ N (X α ) = ∅. Let x ∈ B V with x i = α be such that x -i ∈ N (X α ). To prove that N (X α ) ⊆ N (X) α , it is sufficient to prove that x -i ∈ N (X) α . Since x -i ∈ N (X α ), there exists y ∈ B V with y i = α and j ∈ V with j = i such that y -i ∈ X α and x -i = y -i ⊕ e j . So x = y ⊕ e j , and since y i = α, we have y ∈ X. Hence x ∈ N (X) and since x i = α, we have x -i ∈ N (X) α . We now prove that X α ∩ N (X α ) = ∅. Indeed, otherwise, there exists x ∈ B V with

x i = α such that x -i ∈ X α ∩ N (X α ). Since N (X α ) ⊆ N (X) α , we have x -i ∈ X α ∩ N (X) α , and since x i = α, we deduce that x ∈ X ∩ N (X), a contradiction. Since N (X α ) ⊆ N (X) α , we have |X| = |X 0 | + |X 1 | ≥ |N (X)| = |N (X) 0 | + |N (X) 1 | ≥ |N (X 0 )| + |N (X 1 )|. So |X 0 | ≥ |N (X 0 )| or |X 1 | ≥ |N (X 1 )|. Suppose that |X 0 | ≥ |N (X 0 )|, the other case being similar. Since X 0 ∩ N (X 0 ) = ∅, by induction hypothesis X 0 is either the set of even points of B V \{i} or the set of odd points of B V \{i} . So in both cases, we have |X 0 | = |N (X 0 )| = 2 |V |-1 . We deduce that |X 1 | ≥ |N (X 1 )|,
and so, by induction hypothesis, X 1 is either the set of even points of B V \{i} or the set of odd points of B V \{i} . But X 0 and X 1 are disjointed: For all x ∈ B V , if x -i ∈ X 0 ∩X 1 , then x i0 and x i1 are two points of X, and x i1 = x i0 ⊕e i ∈ N (X), a contradiction. So if X 0 is the set of even (resp. odd) points of B V \{i} , then X 1 is the set of odd (resp. even) points of B V \{i} , and we deduce that X is the set of even (resp. odd) points of B V . Lemma 2. Suppose that the conjugate of every immediate subnetwork of a network f is a bijection. If the conjugate of f is not a bijection, then f is evenor odd-self-dual.

Proof. Suppose that f : B V → B V satisfies the conditions of the statement, and suppose that the conjugate f of f is not a bijection. Let

X = f (B V ), X = B V \ X.
Since f is not a bijection, X is not empty.

Let us first prove that

∀x ∈ X, ∀i ∈ V, | f -1 (x ⊕ e i )| = 2. ( * )
Let x ∈ X and i ∈ V . By hypothesis, f i0 is a bijection, so there exists a unique point y ∈ B V with

y i = 0 such that f i0 (y -i ) = x -i . Then, f (y) -i = f (y i0 ) -i = f i0 (y -i ) = x -i .
In other words f (y) ∈ {x, x ⊕ e i }. Since x ∈ X we have f (y) = x and it follows that f (y) = x ⊕ e i . Hence, we have proved that there exists a unique point y ∈ B V such that y i = 0 and f (y) = x ⊕ e i , and we prove with similar arguments that there exists a unique point z ∈ B V such that z i = 1 and f (z) = x ⊕ e i . This proves ( * ).

We are now in position to prove that f is even or odd. Let

N ( X) = {x ⊕ e i | x ∈ X, i ∈ V }.
Following ( * ) we have N ( X) ⊆ X, and we deduce that

| f -1 (X)| = | f -1 (N ( X))| + | f -1 (X \ N ( X))| ≥ | f -1 (N ( X))| + |X \ N ( X)| = | f -1 (N ( X))| + |X| -|N ( X)|. Again following ( * ), | f -1 (N ( X))| = 2|N ( X)
| and we deduce that

|X| + | X| = 2 |V | = | f -1 (X)| ≥ 2|N ( X)| + |X| -|N ( X)| = |N ( X)| + |X|. Therefore, | X| ≥ |N ( X)|, and since N ( X) ⊆ X = B |V | \ X, we have X ∩N ( X) = ∅.
So according to Lemma 1, X is either the set of even points of B |V | or the set of odd points of B |V | . We deduce that in the first (second) case, X is the set of odd (even) points of B |V | . Thus, f is even or odd.

It remains to prove that f is self-dual. Let x ∈ B V . For all i ∈ V , since || f (x)|| and || f (x) ⊕ e i ||
have not the same parity, and since f is even or odd, we have f (x) ⊕ e i ∈ X. Thus, according to ( * ), the preimage of ( f (x) ⊕ e i ) ⊕ e i = f (x) by f is of cardinality two. Consequently, there exists a point y ∈ B |V | , distinct from x, such that f (y) = f (x). Let us proved that x = y ⊕ 1. Indeed, if

x i = y i = 0 for some i ∈ V , then f i0 (x -i ) = f (x) -i = f (y) -i = f i0 (y -i ). Since x = y,
we deduce that f i0 is not a bijection, a contradiction. We show similarly that if x i = y i = 1, then f i1 is not a bijection. So x = y ⊕ 1. Consequently, f (x ⊕ 1) = f (x), and we deduce that f is self-dual.

Proof of Theorem 8. by induction on |V |. The case |V | = 1 is obvious. So suppose that |V | > 1 and suppose that f has no even-or odd-self-dual subnetwork. Under this condition, f is neither even-self-dual nor odd-self-dual (since f is a subnetwork of f ), and every immediate subnetwork of f has no even-or odd-self-dual subnetwork. So, by induction hypothesis, the dual of every strict subnetwork of f is a bijection, and we deduce from Lemma 2 that the dual of f is a bijection.

Corollary 1. The conjugate of each subnetwork of f is a bijection if and only if f has no even-or odd-self-dual subnetworks.

Proof. If f has no even-or odd-self-dual subnetwork, then every subnetwork h of f has no even-or odd-self-dual subnetwork, and according to Theorem 8, the conjugate of h is a bijection. Conversely, if the conjugate of each subnetwork of f is a bijection, then f has clearly no even-or odd-self-dual subnetwork (since if a network is even or odd, its conjugate sends B V to a subset of B V of cardinality

|B V |/2).
If f is a bijection then there is a unique point x ∈ B V such that f (x) = 0, and this point is thus the unique fixed point of f . As an immediate consequence of this property and the previous corollary, we obtain the characterization mentioned at the beginning of the section.

Corollary 2. Each subnetwork of f has a unique fixed point (f in particular) if and only if f has no even-or odd-self-dual subnetworks.

Remark 5. As an immediate consequence of the two previous corollary, we get the following property, independently proved by Ruet in [START_REF] Ruet | Local cycles and dynamical properties of boolean networks[END_REF]: Each subnetwork of f has a unique fixed point if and only if the conjugate of each subnetwork of f is a bijection.

Example 1. Consider the following network f on {1, 2, 3}1 :

f : B {1,2,3} → B {1,2,3} f 1 (x) = x 2 ∧ x 3 f 2 (x) = x 3 ∧ x 1 f 3 (x) = x 1 ∧ x 2 .
The table of f and f are: The six immediate subnetworks of f are:

x f (x) f (x)
f 10 : B {2,3} → B {2,3} f 10 2 (x) = x 3 ∧ 0 = f 10 3 (x) = 0 ∧ x 2 = x f 11 : B {2,3} → B {2,3} f 11 2 (x) = x 3 ∧ 1 = x f 11 3 (x) = 1 ∧ x 2 = f 20 : B {1,3} → B {1,3} f 20 1 (x) = 0 ∧ x 3 = x f 20 3 (x) = x 1 ∧ 0 = f 21 : B {1,3} → B {1,3} f 21 1 (x) = 1 ∧ x 3 = f 21 3 (x) = x 1 ∧ 1 = x f 30 : B {1,2} → B {1,2} f 30 1 (x) = x 2 ∧ 0 = f 30 2 (x) = 0 ∧ x 1 = x f 31 : B {1,2} → B {1,2} f 31 1 (x) = x 2 ∧ 1 = x f 31 2 (x) = 1 ∧ x 1 = So each immediate subnetwork f iα of
f has one component fixed to zero, so f has no self-dual immediate subnetwork. Furthermore, each immediate subnetwork of f iα is a constant (0), and thus is not self-dual. Furthermore, f is not self-dual since f (000) = f (111) = 111. Hence, f has no self-dual subnetwork, and we deduce from Theorem 8 that the conjugate of f of f is a bijection. This can be easily verified on the table given above.

Generalization of Shih-Dong's theorem

In this section, we show, using Theorem 8, that the condition "Gf (x) has no cycles for all x" in Shih-Dong's theorem (Theorem 5) can be weakened into a condition of the form "Gf (x) has short cycles for few points x". The exact statement is given after the following useful proposition. Proposition 4. If f is even or odd, then for every x ∈ B V the out-degree of each vertex of Gf (x) is odd. In particular, Gf (x) has a cycle.

Proof. Let j ∈ V and let d be the out-degree of j in Gf (x). Since d equals the number of i ∈ V such that |f ij (x)| = 1, and since 

|f ij (x)| = f i (x j1 ) ⊕ f i (x j0 ) = f i (x) ⊕ f i (x ⊕ e j ), we have d = ||f (x) ⊕ f (x ⊕ e j )|| = ||(x ⊕ f (x)) ⊕ ((x ⊕ e j ) ⊕ f (x ⊕ e j ))|| = || f (x) ⊕ f (x ⊕ e j ) ⊕ e j ||.
i ∈ V and α ∈ B. Since Gf iα (x -i ) is the subgraph of Gf (x iα ) for all x ∈ B V (cf. Proposition 3), f iα
satisfies the condition of the theorem. Thus, by induction hypothesis, f iα has no even-or odd-self-dual subnetwork. So f has no even-or odd-self-dual strict subnetwork. If f is itself even-or odd-self-dual, then by Proposition 4, Gf (x) has a cycle for every x ∈ B V , so f does not satisfy that conditions of the statement (for k = |V |). Therefore, f has no even-or odd-self-dual subnetwork.

Example 2. [Continuation of Example 1] Take again the 3-dimensional network f defined by

f 1 (x) = x 2 ∧ x 3 f 2 (x) = x 3 ∧ x 1 f 3 (x) = x 1 ∧ x 2 .
We have seen that f has no self-dual subnetwork. So it satisfies the conditions of Theorem 8, but not the conditions of Shih-Dong's theorem. Indeed, Gf (000)

and Gf (111) have a cycle2 :

Gf (000)

1 2 3
Gf (001) Gf (010) Gf (011) Gf (100)

1 2 3 Gf (101) 1 2 3 Gf (110) 1 2 3 Gf (111) 1 2 3
However, f satisfies the condition of Corollary 3 (there is 0 < 2 1 point x such that Gf (x) has a cycle of length at most 1, 0 < 2 2 point x such that Gf (x) has a cycle of length at most 2, and 2 < 2 3 points x such that Gf (x) has a cycle of length at most 3). From the local interactions graphs given above, we deduce that the global interaction graph G(f ) of the network is the following: In addition to Proposition 4, we have the following property on the structure of the interactions of even-and odd-self-dual networks.

Proposition 5. If f is a critical even-or odd-self-dual network then G(f ) is strongly connected.

Proof. Suppose that f is critical even-or odd-self-dual. If G(f ) is not strongly connected, then it has an initial strongly connected component I (no arc from V \ I to I) strictly included in V . Let h be the subnetwork of f induced by some point z ∈ B I . Since f is critical and since h is a strict subnetwork, according to Theorem 8, h is a bijection. Thus there exists x, y ∈ B V with x| I = y| I = z, such that h(x -I ) and h(y -I ) have not the same parity. Since f (x) -I = h(x -I ) and f (y) -I = h(y -I ) we have 

|| f (x)|| = || f (x)| I || + || h(x -I )||, || f (y)|| = || f (y)| I || + || h(y -I )||.

Weak asynchronous convergence

We say that the asynchronous state graph Γ(f ) describes a strong asynchronous convergence toward a unique fixed x if Γ(f ) is acyclic and admits x as unique attractor. We say that Γ(f ) describes a weak asynchronous convergence toward a unique fixed point x if Γ(f ) admits x as unique attractor (equivalently, f has a unique fixed point x and Γ(f ) has a path from any point y to x). The following corollary shows that the absence of even-or odd-self-dual subnetwork implies a weak asynchronous convergence toward a unique fixed point.

Corollary 4. If f has no even or odd self-dual subnetwork, then f has a unique fixed point x, and for all y ∈ B V , the asynchronous state graph of f contains a path from y to x of length d(x, y). Remark 6. By definition, if x → y is an arc of the asynchronous state graph, then d(x, y) = 1. Hence, path from a point x to a point y cannot be of length strictly less than d(x, y); a path from x to y of length d(x, y) can thus be seen as a shortest or straight path.

Proof of Corollary 4. By induction on |V |. The case |V | = 1 is obvious, so suppose that |V | > 1 and that f has no even or odd self-dual subnetwork. By Theorem 8, f has a unique fixed point x. Let y ∈ B V . Suppose first that there exists i ∈ V such that x i = y i = 0. Then x -i is the unique fixed point of f i0 . So, by induction hypothesis, Γ(f i0 ) has a path from y -i to x -i of length d(x -i , y -i ). Since x i = y i = 0, we deduce from Proposition 1 that Γ(f ) has a path from y to x of length d(x -i , y -i ) = d(x, y). The case x i = y i = 1 is similar. So, finally, suppose that y = x ⊕ 1. Since y is not a fixed point, there exists i ∈ V such that f i (y) = y i . Then, Γ(f ) has an arc from y to z = y ⊕ e i . So z i = x i , and as previously, we deduce that Γ(f ) has a path from z to x of length d(x, z). This path together with the arc y → z forms a path from y to x of length d(x, z) + 1 = d(x, y). Remark 7. According to Proposition 1, the asynchronous state graph Γ(h) of each subnetwork h of f is a subgraph of Γ(f ) induced by some subcube of B V . Hence, one can see Γ(h) as a "dynamical module" of Γ(f ). An interpretation of the previous corollary is then that the asynchronous state graphs of evenand odd-self-dual networks are "dynamical modules" that are necessary for the "emergence" of "complex" asynchronous behaviors, because in their absence the dynamics is "simple": weak asynchronous convergence toward a unique fixed point. Example 1] Take again the 3-dimensional network f defined in Example 1, which has no self-dual subnetwork.

Example 3. [Continuation of

f 1 (x) = x 2 ∧ x 3 f 2 (x) = x 3 ∧ x 1 f 3 (x) = x 1 ∧ x 2 .
The asynchronous state graph Γ(f ) of f is the following: In agreement with Corollary 4, there exists, from any initial point, a shortest path leading to the unique fixed point of f (the point 000): the asynchronous state graph describes a weak asynchronous convergence (by shortest paths) toward a unique fixed point. However, Γ(f ) has a cycle (of length 6), so every path does not lead to the unique fixed point: the condition "has no even or odd self-dual subnetworks" does no ensure a strong asynchronous convergence toward a unique fixed point.

x f (x) f (x)

Characterization by forbidden subnetworks

In this section, we are interested in characterizing networks properties by forbidden subnetworks, such as the characterization given by Corollary 2. We see a network property P as a set of networks, and given a set of networks F, we say that F is a set of forbidden subnetworks for P if

f ∈ P ⇐⇒ sub(f ) ∩ F = ∅,
where sub(f ) denotes the set of subnetworks of f . Thus, if F is a set of forbidden subnetworks for P then F ∩ P = ∅ and P is closed for the subnetwork relation i.e. if f ∈ P then sub(f ) ⊆ P. The negation (or complement) of P is denoted ¬P. Proposition 6. Let P be a set of networks closed for the subnetwork relation. There exists a unique smallest set F of forbidden subnetworks for P. This set F is the set of networks critical for ¬P.

Proof. If f ∈ P, then f necessarily contains a subnetwork h ∈ P such that sub(h) \ h ⊆ P i.e. a subnetwork critical for ¬P. Conversely, if f ∈ P then sub(f ) ⊆ P and since networks critical for ¬P are in ¬P, f has no subnetworks critical for ¬P. This proves that the set of networks critical for ¬P is a set of forbidden subnetworks for P. Now, suppose that F is a set of forbidden subnetworks for P, let f be any network critical for ¬P, and let us prove that f ∈ F. Since every strict subnetwork of f is in P, f has no strict subnetworks in F. So if f is not in F then sub(f ) ∩ F = ∅ and we deduce that f ∈ P, a contradiction. Thus f ∈ F, so F contains all the networks critical for ¬P.

Let P =1 be the set of networks f such that each subnetwork of f has a unique fixed point, and let F =1 be the smallest set of forbidden subnetworks for P =1 . Let F esd and F osd be the set of critical even-and odd-self-dual networks, respectively, and let F eosd = F esd ∪ F osd . Remark 8. A lot of even-or odd-self-dual networks are not critical. For instance, the network f on {1, 2, 3} defined by f 1 (x) = x 1 ⊕ x 2 ⊕ x 3 and f 2 (x) = f 3 (x) = x 1 is even-self-dual, but it contains two even-self-dual strict subnetworks and two odd-self-dual strict subnetworks.

Corollary 5. F =1 = F eosd .
Proof. If f ∈ F eosd , then not strict subnetwork of f is in F eosd and according to Theorem 8, each strict subnetwork of f is in P =1 . Since f ∈ P =1 (because f has zero or two fixed points), f is critical for ¬P =1 , and it follows from the previous proposition that f ∈ F =1 . Thus F eosd ⊆ F =1 . Now, by Theorem 8, F eosd is a set of forbidden subnetworks for P, and we deduce from the previous proposition that F =1 ⊆ F eosd .

Let P ≤1 (resp. P ≥1 ) be the set of networks f such that each subnetwork of f has at most (resp. at least) one fixed point; and let F ≤1 and F ≥1 be the smallest sets of forbidden subnetworks for P ≤1 and P ≥1 , respectively. In the light of the "proof by dichotomy" of Robert's theorem (given by Theorem 3) it is tempting to try to deduce that F eosd is the smallest set of forbidden subnetworks for P =1 from the forbidden sets F ≤1 and F ≥1 . But this is not so simple. Indeed, F ≤1 ∪ F ≥1 is clearly a set of forbidden subnetworks for P ≤1 ∩ P ≥1 = P =1 , thus F eosd ⊆ F ≤1 ∪ F ≥1 , but the inclusion is strict: A lot of networks critical for ¬P ≤1 or ¬P ≥1 are not critical for ¬P =1 (because any network that is critical for ¬P ≤1 (resp. ¬P ≥1 ) and that contains a subnetworks with no (resp. multiple) fixed point is not critical for ¬P =1 ). Examples are given below.

However, in Section 9, we will see that, if we consider the class of nonexpansive networks, then F esd = F ≤1 and F osd = F ≥1 , so that the the equality F eosd = F ≤1 ∪ F ≥1 holds. Also, in Section 10, we will se that F esd = F ≤1 for another class of networks (the conjunctive networks), and we will leave the equality F osd = F ≥1 has an open problem for this class.

Remark 9. f is critical for ¬P ≤1 if and only if f has at least two fixed points, and every strict subnetwork of f has at most one fixed points. In other words, F ≤1 is the set of 2-critical networks. And similarly, F ≥1 is the set of 0-critical networks.

Among network properties closed for subnetworks, P =1 , P ≤1 and P ≥1 are not "very strong", and this is why it is interesting to characterize them in terms of forbidden subnetworks. By opposition, closed property as P >1 (every subnetwork has at least two fixed points) or P <1 (every subnetwork has no fixed points) are not interesting. To see this, consider the two one-dimensional constant networks zero(x) = 0 and one(x) = 1. Clearly zero and one have a unique fixed point and are thus critical for P >1 or P <1 . Consequently, zero and one are in the smallest forbidden set of subnetworks for P >1 and P <1 . But it is easy to see that networks without zero or one as subnetwork are (exactly) networks f such that f is a constant, and restrict our attention to this type of networks is not interesting. Actually, even if only zero or only one is forbidden, the resulting networks are too particular to be interesting. In other words: Interesting closed properties must be satisfied by zero and one. An interesting property different from P =1 , P ≤1 and P ≥1 , is for example "each subnetwork has an asynchronous state graph which describes a strong convergence toward a unique fixed point". Hence, it would be interesting to characterize the set of forbidden subnetworks for this property. 

Circular networks and non expansive networks

A positive-circular (resp. negative-circular) network is a network f such that G(f ) is a positive (resp. negative) cycle. Positive-and negative-circular networks have been widely studied (e.g. [START_REF] Remy | A description of dynamical graphs associated to elementary regulatory circuits[END_REF][START_REF] Demongeot | Combinatorics of boolean automata circuits dynamics[END_REF]) because that are the "simplest non simple networks" in the sense that they are the most simple networks (from a structural point of view) that do not describe a convergence toward a unique fixed point.

In this section, we show that positive-circular (resp negative-circular) networks are even-self-dual (resp. odd-self-dual), and we prove that the converse holds for non-expansive networks (cf. Theorem 9 below). In this way, even-and odd-self-dual network may be seen as generalization of circular networks.

Suppose that f is a circular network. Let σ be the permutation of V that maps every vertex i to the vertex σ(i) preceding i in G(f ). For each x ∈ B V , let us denote by σx the point of B V such that (σx) i = x σ(i) for all i ∈ V . Let s ∈ B V be the such that for all i ∈ V , s i = 0 if the arc from σ(i) to i is positive and s i = 1 otherwise. Then, for all x ∈ B V , we have

f (x) = σx ⊕ s.
We call σ the permutation of f and s the constant of f . Since G(f ) only depends on f , since the couple (σ, s) only depends on G(f ) and since f only depends on this couple, these three objects share the same information. In particular the sign of G(f ) is "contained" in s: It is positive if ||s|| is even, and negative if ||s|| is odd. Theorem 9.

1. f is positive-circular if and only if f is even-self-dual and non-expansive. 2. f is negative-circular if and only if f is odd-self-dual and non-expansive.

We will use the following lemma several times. Lemma 3. Let f be networks on V and I ⊆ V . Let f be the network on V defined by f (x) = f (x) ⊕ e I for all x ∈ B V . We have the following properties.

1. If f is non-expansive, then f is non-expansive. 2. If f is self-dual, then f is self-dual. 3. If f is even or odd, then f is even or odd. 4. |Gf (x)| = |Gf (x)| for all x ∈ B V .
Proof. Suppose that f is non-expansive, and let x, y ∈ B V . Then

d(f (x), f (y)) = d(f (x) ⊕ e I , f (y) ⊕ e I ) = d(f (x), f (y)) ≤ d(x, y). thus f is non-expansive. If f is self-dual then f (x ⊕ 1) = f (x ⊕ 1) ⊕ e I = f (x) ⊕ 1 ⊕ e I = f (x) ⊕ 1 thus f is self-dual.
Suppose that f is even. For all x ∈ B V , we have f (x) = f (x) ⊕ x = f (x) ⊕ e I ⊕ x = f (x) ⊕ e I , and since f (x) is even, we deduce that f (x) and |I| have the same parity. Thus all the points of f (B V ) have the parity of |I|. Suppose that |I| is even (resp. odd), and let z ∈ B V be an even (resp. odd). Then z ⊕ e I is even, thus there exists x ∈ B V such that f (x) = z ⊕ e I , so f (x) = f (x) ⊕ x = f (x) ⊕ e I = z. Thus every even (resp. odd) point of B V is in f (B V ). Thus f is even if |I| is even, and f is odd otherwise. The proof is similar if f is odd. For all i, j ∈ V and x ∈ B V ,

|f ij (x)| = f i (x) ⊕ f i (x ⊕ e j ) = f i (x) ⊕ e I ⊕ f i (x ⊕ e j ) ⊕ e I = f i (x) ⊕ f i (x ⊕ e j ) = |f ij (x)|
and the last point follows.

Proof of Theorem 9. (Direction ⇒) Let f be a circular with permutation σ and constant s. For all x, y ∈ B V , we have

d(f (x), f (y)) = ||σx ⊕ s ⊕ σy ⊕ s|| = ||σx ⊕ σy|| = ||x ⊕ y|| = d(x, y). thus f is non expansive. Also, f (x ⊕ 1) = σ(x ⊕ 1) ⊕ s = σx ⊕ 1 ⊕ s = f (x) ⊕ 1
thus f is self-dual. We now prove that f is even (resp. odd) if G(f ) is positive (resp. negative). We have f (x) = x ⊕ σx ⊕ s so the parity of f (x) is the parity of ||x|| + ||σx|| + ||s||. Since ||x|| = ||σx||, we deduce that the parity of f (x) is the parity of ||s||. So if G(f ) is positive (resp. negative) then the image of f only contains even (resp. odd) points. It remains to prove that if G(f ) is positive (resp. negative) then each even (resp. odd) point is in the image of f . Suppose that G(f ) is positive (resp. negative), and let z be an even (resp. odd) point of B V . Let n = |V | and let i 1 , i 2 , . . . i n be the vertices of G(f ) given in the order, so that σ(i 1 ) = i n and σ(i k+1 ) = i k for 1 ≤ k < n. Let x be the point of B V whose components x i k are recursively defined as follows, with k decreasing from n to 1:

x in = z i1 , x i k = z i k+1 ⊕ s i k+1 ⊕ x i k+1 1 ≤ k < n.
Let us prove that f (x) = z. For every 1 < k ≤ n, we have

fi k (x) = f i k (x) ⊕ x i k = x σ(i k ) ⊕ s i k ⊕ x i k = x i k-1 ⊕ s i k ⊕ x i k = (z i k ⊕ s i k ⊕ x i k ) ⊕ s i k ⊕ x i k = z i k .
It remains to prove that fi1 (x) = z in . By the definition of x, we have

x i1 = (z i2 ⊕ s i2 ) ⊕ x i2 = (z i2 ⊕ s i2 ) ⊕ (z i3 ⊕ s i3 ) ⊕ x i3 . . . = (z i2 ⊕ s i2 ) ⊕ (z i3 ⊕ s i3 ) ⊕ • • • ⊕ (z in ⊕ s in ) ⊕ z i1 = (z i2 ⊕ z i3 ⊕ • • • ⊕ z in ⊕ z i1 ) ⊕ (s i2 ⊕ s i3 ⊕ • • • ⊕ s in ).
So ||z|| and ||x i1 ⊕ s i2 ⊕ s i3 ⊕ • • • ⊕ s in || have the same parity, and since ||z|| and ||s|| have the same parity, we deduce that x i1 = s i1 . Thus

fi1 (x) = f i1 (x) ⊕ x i1 = x in ⊕ s i1 ⊕ x i1 = z i1 ⊕ s i1 ⊕ s i1 = z i1
and it follows that f (x) = z. So f is even (resp. odd).

(Direction ⇐) We first prove the following property:

(1) Suppose that f is odd-self-dual and non-expansive, and suppose that f (x) = x ⊕ e i for some x ∈ B V and i ∈ V . Then the in-degree of i in Gf (x) is at most one.

Let x 1 = x, and for all k ∈ N, let x k+1 = f (x k ). Let n = |V |, and for all 1 ≤ p ≤ n, let us say that a sequence i 1 , i 2 , . . . , i p is good if it is a sequence of p distinct vertices in V such that

f (x k ) = x k ⊕ e i k 1 ≤ k ≤ p.
Let us prove the following property:

( * ) For all 1 ≤ p ≤ n, there exists a good sequence i 1 , i 2 , . . . , i p .

Since f (x) = x ⊕ e i , this is true for p = 1. So suppose that 1 < p ≤ n and that there exists a good sequence i 1 , i 2 , . . . , i p-1 . Since x p = f (x p-1 ) = x p-1 ⊕ e ip-1 we have d(x p , x p-1 ) = 1, and since f is non-expansive, we deduce that

d(f (x p ), x p ) = d(f (x p ), f (x p-1 )) ≤ d(x p , x p-1 ) = 1.
Since f is odd, f has no fixed point, thus d(f (x p ), x p ) = 1, i.e. there exists an element of V , that we denote by i p , such that f (x p ) = x p ⊕ e ip . To complete the induction step, it remains to prove that i p = i 1 , i 2 . . . , i p-1 . Suppose, for a contradiction, that i p = i k with 1 ≤ k < p. Then f (x p ) = f (x k ) = e i k . Since f is self dual f (x p ⊕ 1) = e i k . Thus x p , x k and x p ⊕ 1 are elements of f -1 (e i k ). Since f is odd-self-dual, f -1 (e i k ) contains exactly two elements. Thus x p = x k or x p ⊕ 1 = x k , and this is not possible since

x p = x p-1 ⊕ e ip-1 = x p-2 ⊕ e ip-2 ⊕ e ip-1 . . . = x k ⊕ e i k ⊕ e i k+1 ⊕ • • • ⊕ e ip-2 ⊕ e ip-1 .
This prove the induction step and ( * ) follows. So let i 1 , i 2 , . . . , i n be a good sequence. Since x = x 1 and f (x) = x ⊕ e i , we have i = i 1 . To prove (1), we will prove that if Gf (x) has an arc from i k to i, then k = n. So let 1 ≤ k ≤ n, and suppose that Gf (x) contains an arc from i k to i. Since f is non-expansive,

f (x ⊕ e i k ) = f (x) ⊕ e i = x ⊕ e i ⊕ e i = x = (x ⊕ e i k ) ⊕ e i k Thus f (x ⊕ e i k ) = f (x k ) = e i k . Since f is self-dual f (x ⊕ e i k ⊕ 1) = e i k . Thus x ⊕ e i k ,
x k and x ⊕ e i k ⊕ 1 are elements of f -1 (e i k ), and as previously, we deduce that x k = x ⊕ e i k or x k = x ⊕ e i k ⊕ 1. Thus k > 1, and since

x k = x ⊕ e i1 ⊕ e i2 ⊕ • • • ⊕ e i k-1
we have

x k = x ⊕ e i k . Thus x k = x ⊕ e i k ⊕ 1 so e i k ⊕ 1 = e i1 ⊕ e i2 ⊕ • • • ⊕ e i k-1 . If k < n then (e i k ⊕ 1) in = 1 and (e i1 ⊕ e i2 ⊕ • • • ⊕ e i k-1 ) in = 0, a contradiction.
Thus k = n and (1) is proved.

(2) Suppose that f even-self-dual and non-expansive and suppose that f (x) =

x for some x ∈ B V . Then Gf (x) is a disjoint union of cycles.

Let i ∈ V . If f (x ⊕ e i ) =
x then f (x ⊕ e i ) = e i and this is not possible since f is even. Since f is non-expansive, we deduce that there exists j ∈ V such that f (x ⊕ e i ) = f (x) ⊕ e j . Then j is the unique out-neighbor of i in Gf (x). Thus we have prove the following:

( * ) Each vertex of Gf (x) has exactly one out-neighbor.

Let i ∈ V , and let h be the network on V defined by f (y) = f (y) ⊕ e i for all y ∈ B V . Since f (x) = x, we have f (x) = x ⊕ e i , thus according to Lemma 3, f is odd-self-dual and non-expansive. So according to (1), i has at most one in-neighbor in Gf (x), and by Lemma 3, i has at most one in-neighbor in Gf (x).

Thus each vertex of Gf (x) has at most one in-neighbor, and using ( * ) we deduce that each vertex of Gf (x) has exactly one in-neighbor. Consequently, Gf (x) is a disjoint union of cycles. This proves (2).

(3) Suppose that f is even-or odd-self-dual and non-expansive. Then Gf (x) is a disjoint union of cycles for all x ∈ B V .

Let x ∈ B V , and let f be the network on V defined by f (y

) = f (y) ⊕ f (x) for all y ∈ B V . Then f (x) = f (x) ⊕ f (x) = x ⊕ f (x) ⊕ f (x) =
x and we deduce from Lemma 3 that f is even-self-dual and non-expansive. Thus, following (2), Gf (x) is a disjoint union of cycles, and we deduce from Lemma 3 that Gf (x) is a disjoint union of cycles. This proves (3).

(4) Suppose that f is even-or odd-self-dual and non-expansive. Then

Gf (x) = G(f ) for all x ∈ B V . Let x ∈ B V and i, k, l ∈ V . Suppose that f lk (x) = s = 0 and f lk (x ⊕ e i ) = s. Since f lk (x) = f lk (x ⊕ e k ),
we have k = i, and since, by (3), each vertex of Gf (x) has a unique in-neighbor, we have f l (x) = f l (x ⊕ e i ). Suppose that x k = 0. Then

f lk (x ⊕ e i ) = f l (x ⊕ e i ⊕ e k ) -f l (x ⊕ e i ) = f l (x ⊕ e i ⊕ e k ) -f l (x) = s and f lk (x) = f l (x ⊕ e k ) -f l (x) = s. Thus f l (x ⊕ e i ⊕ e k ) = f l (x ⊕ e k )
, that is, f li (x ⊕ e k ) = 0. Thus Gf (x ⊕ e k ) contains both an arc from k to l and from i to l. Since i = k, l has at least two in-neighbor in Gf (x ⊕ e k ), and this contradicts (3). If x k = 1, we obtain a contradiction with similar arguments. Thus:

∀x ∈ B V , ∀i, k, l ∈ V, f lk (x) = 0 ⇒ f lk (x) = f lk (x ⊕ e i )
We deduce that Gf (x) is a subgraph of Gf (x ⊕ e i ) and that Gf (x ⊕ e i ) is a subgraph of Gf ((x ⊕ e i ) ⊕ e i ) = Gf (x). Thus G(x) = G(x ⊕ e i ) for all x ∈ B V and i ∈ V , and as an immediate consequence, Gf (x) = Gf (y) for all x, y ∈ B V . This proves (4).

(5) If f is even-self-dual and non-expansive, then G(f ) is a positive cycle.

Indeed, following (3) and (4), G(f ) is a disjoint union of cycles and since f if even-self-dual, f has exactly 2 fixed points. Thus G(f ) has only positive cycles (otherwise f would have no fixed point, according to Theorem 2). And since if G(f ) is a union of p ≥ 1 disjoint positive cycle then f has 2 p fixed points, we deduce that G(f ) is a positive cycle.

(6) If f is odd-self-dual and non-expansive, then G(f ) is a negative cycle.

Let i ∈ V and let f be the network on V defined by f (x) = f (x) ⊕ e i for all x ∈ B V . By Lemma 3, f is even-self-dual and non-expansive. Thus according to (5), G(f ) is a cycle. From Lemma 3, we deduce that G(f ) is a cycle too. Since f is odd, it has no fixed point, and we deduce that G(f ) is a negative cycle.

As an immediate consequence of this theorem and Corollary 2 we obtain the following: Corollary 6. If f is non-expansive, then every subnetwork of f has a unique fixed point if and only if f has no circular subnetwork.

Remark 10. It is easy to check that critical even-self-dual (resp. odd-self-dual) network with at most three components are circular. Below is an example of critical even-self-dual network with four components which is not circular.

Example 5. The following network f on {1, 2, 3, 4} is a critical even-self-dual network which is not circular (and which is expansive, since d(f (0), f (e i )) ≥ 2 for i = 1, 2, 3, 4). Note that the subnetwork f 40 is the three-dimensional network considered in Examples 1, 2 and 3. 

f 1 (x) = (x 2 ∧ x 3 ∧ x 4 ) ∨ ((x 2 ∨ x 3 ) ∧ x 4 ) f 2 (x) = (x 3 ∧ x 1 ∧ x 4 ) ∨ ((x 3 ∨ x 1 ) ∧ x 4 ) f 3 (x) = (x 1 ∧ x 2 ∧ x 4 ) ∨ ((x 1 ∨ x 2 ) ∧ x 4 ) f 4 (x) = (x 2 ∧ x 3 ∧ x 1 ) ∨ ((x 2 ∨ x 3 ) ∧ x 1 ) x f (x) f (x)
G(f ) 1 2 3 4

Non-expansive networks

As we have seen in the preceding section, a positive-circular (resp. negativecircular) network f is non-expansive, and it is easy to see that such a network is also 2-critical (resp. 0-critical). The following theorem, the main result of this section, asserts that the converse is true.

Theorem 10.

1. f is positive-circular if and only if f is 2-critical and non-expansive. 2. f is negative-circular if and only if f is 0-critical and non-expansive.

Even if the two points of this theorem seem similar (symmetrical), their proofs are very different. The proof of the first is rather direct and uses Theorem 8 and a part of Theorem 9 (non-expensive even-self-dual networks are positivecircular). The proof of the second points is independent of previous results. It consists in visiting each point of B V in a very special order. In both cases, the following lemma will be useful. Lemma 4. Let f be networks on V and I ⊆ V . Let f be the network on V defined by f (x) = f (x ⊕ e I ) ⊕ e I for all x ∈ B V . We have the following properties.

Proof. Suppose that f is non-expansive, and let x, y ∈ B V . Then

d(f (x), f (y)) = d(f (x ⊕ e I ) ⊕ e I , f (y ⊕ e I ) ⊕ e I ) = d(f (x ⊕ e I ), f (y ⊕ e I )) ≤ d(x ⊕ e I , y ⊕ e I ) = d(x, y).
thus f is non-expansive.

Let J be a non-empty subset of V and let h be the subnetwork of f induced by z ∈ B V \J . Let h be the network on J defined by h (y) = h(y ⊕ e I∩J ) ⊕ e I∩J for all y ∈ B J . Let x ∈ B V be such that x -J = z ⊕ e I\J . We have

h (x| J ) = g(x| J ⊕ e I∩J ) ⊕ e I∩J = h((x ⊕ e I )| J ) ⊕ e I∩J Since (x ⊕ e I ) -J = x -J ⊕ e I\I = z ⊕ e I\J ⊕ e I\I = z we have h((x ⊕ e I )| J ) ⊕ e I∩J = f (x ⊕ e I )| J ⊕ e I∩J = (f (x ⊕ e I ) ⊕ e I )| J = f (x)| J . Thus h (x| J ) = f (x)| J for all x ∈ B V be such that x -J = z ⊕ e I\J , i.e. h is the subnetwork of f induced by z ⊕ e I\J .
Since it is clear that h and h have the same number of fixed points, 2. and 3. are proved.

For all i, j ∈ V and x ∈ B V , Proof of Theorem 10. (Direction ⇒ of 1. and 2.) Suppose that f is positivecircular (resp. negative-circular). According to Theorem 9, f is non-expansive, and according to the same theorem, it is even-self-dual (resp. odd-self-dual), thus it has two (resp. no) fixed points. If h is a strict subnetwork of f , then G(h) is a strict subgraph of G(f ), thus it is acyclic, and by Robert's theorem, h has a unique fixed point. Thus f is 2-critical (resp. 0-critical).

|f ij (x)| = f i (x) ⊕ f i (x ⊕ e j ) = f i (x ⊕ e I ) ⊕ e I ⊕ f i (x ⊕ e I ⊕ e j ) ⊕ e I = f i (x ⊕ e I ) ⊕ f i (x ⊕ e I ⊕ e j ) =
(Direction ⇐ of 1.) We first need the following property:

(1) Suppose that f is non-expansive. If f (0) = 0 and f (1) = 1 then ||x|| = ||f (x)|| for all x ∈ B V .
Indeed, under these hypothesis,

||f (x)|| = d(0, f (x)) = d(f (0), f (x)) ≤ d(0, x) = ||x|| and |V | -||f (x)|| = d(1, f (x)) = d(f (1), f (x)) ≤ d(1, x) = |V | -||x||.
thus ||f (x)|| ≥ ||x|| and it follows that ||f (x)|| = ||x||.

(2) Suppose that f is non-expansive. Suppose also that f (0) = 0 and f (1) = 1. Let I be a non-empty subset of V . Let z ∈ B V \I and let h be the subnetwork of f induced by z. If h(1) = h(0) ⊕ 1 then h(0) = 0.

Let z 0 and z 1 denotes the points of B V such that We are now in position to prove that 2-critical non-expansive networks are positive-circular. Suppose that f is 2-critical and non-expansive. Let x be a fixed point of f . Let f be the network on V defined by

z 0 | I = 0, z 1 | I = 1, z 0 -I = z 1 -I = z. So h(0) = f (z 0 )| I and h(1) = f (z 1 )| I . Suppose that h(1) = h(0) ⊕ 1. Then d(f (z 0 ), f (z 1 )) = d(f (z 0 ) -I , f (z 1 ) -I ) + d(f (z 0 )| I , f (z 1 )| I ) = d(f (z 0 ) -I , f (z 1 ) -I ) + d(h(0), h(1)) = d(f (z 0 ) -I , f (z 1 ) -I ) + d(h(0), h(0) ⊕ 1) = d(f (z 0 ) -I , f (z 1 ) -I ) + |I|. Since f is non-expansive d(f (z 0 ), f (z 1 )) = d(f (z 0 ) -I , f (z 1 ) -I ) + |I| ≤ d(z 0 , z 1 ) = |I| thus d(f (z 0 ) -I , f (z 1 ) -I ) = 0, that is f (z 0 ) -I = f (z 1 ) -I = y for some y ∈ B V \I . Since f (0) = 0 and f (1) = 1, it follows from (1) that ||z|| = ||z 0 || = ||f (z 0 )|| = ||f (z 0 )| I || + ||f (z 0 ) -I || =
f (y) = f (y ⊕ x) ⊕ x for all y ∈ B V . Then f (0) = f (x) ⊕ x = x ⊕ x = 0. Furthermore, by Lemma 4, f is 2-critical (so f (1) = 1
) and f is non-expansive. Suppose that f has a self-dual strict subnetwork h. Then following (2), we have h(0) = 0 and thus h(1) = 1, so f is not 2-critical, a contradiction. We deduce that f has no self-dual strict subnetwork, and since it has two fixed points, we deduce from Theorem 8 that f is even-self-dual. Thus, according to Theorem 9, G(f ) is a positive cycle. It follows from Lemma 4 that G(f ) is a cycle, and since f has two fixed points, G(f ) is a positive cycle.

(Direction ⇐ of point 2.) We begin with the following fact.

(3) If f is non-expansive and 0-critical, then for all i ∈ V there exists x, y ∈ B V with x i = y i such that f (x) = f (y) = e i .

Let i ∈ V and α ∈ B. Since f is 0-critical, the immediate subnetwork f iα has at least one fixed point. Thus there exists x ∈ B V with

x i = α such that f (x) -i = f iα (x -i ) = x -i . Hence, f (x) = x or f (x) =
x ⊕ e i , and since f has no fixed point, we deduce that f (x) = x ⊕ e i . Thus f (x) = e i , and

(4) If f is non-expansive and 0-critical then for all i ∈ V and x, y ∈ B V :

f (x) = f (y) = e i and x i = y i ⇒ x = y ⊕ 1.
Suppose that f (x) = f (y) = e i and x i = y i . Suppose that there exists j such that x j = y j = α. Then f jα (x -j ) = x -j ⊕ e i and f jα (y -j ) = y -j ⊕ e i . Since f is 0-critical, f jα has a fixed point z.

If x i = z i then d(f jα (x -j ), f jα (z)) = d(x -j ⊕ e i , z) = d(x -j , z) + 1,
a contradiction with the fact that f jα is non-expansive. Otherwise

y i = z i so d(f jα (y -j ), f jα (z)) = d(y -j ⊕ e i , z) = d(y -j , z) + 1
and we obtain the same contradiction. Consequently, there is no j such that x j = y j . So x = y ⊕ 1 and (4) is proved.

(5) Suppose that every 0-critical non-expansive network f such that f (0) = e i for some i ∈ V is negative circular. Then every 0-critical non-expansive network is negative circular.

Indeed, let f be 0-critical and non-expansive. By (3) there exists i ∈ V and x ∈ B V such that f (x) = x ⊕ e i . Let f be the network on V defined by f (y) = f (y ⊕ x) ⊕ x for all y ∈ B V . By Lemma 4, f is 0-critical and nonexpansive. Furthermore, f (0) = f (x)⊕x = x⊕e i ⊕x = e i . Thus, by hypothesis, G(f ) is a negative cycle. It follows from Lemma 4 that G(f ) is a cycle, and since f has no fixed points, G(f ) is a negative cycle. This proves [START_REF] Galeana-Sánchez | On kernel-perfect critical digraphs[END_REF].

So according to (5), we can assume, without loss of generality, the following hypothesis:

(H) f (0) = e i for some i ∈ V .
Also, in the all following, we use the following notations:

n = |V |, x 1 = 0 and x k+1 = f (x k ) for all k ∈ N.
We first prove the following property (using arguments similar to the ones introduced in claim (1) of the proof of Theorem 9).

(6) For all k ≥ 1, there exists i k ∈ V such that f (x k ) = x k ⊕ e i k , and the resulting sequence i 1 i 2 i 3 . . . is a periodic sequence of period n.

We prove this by induction on k. The case k = 1 is given by the the hypothesis (H), so suppose that k > 1. Then x p = f (x p-1 ) = x p-1 ⊕ e ip-1 thus d(x p , x p-1 ) = 1, and since f is non-expansive, we deduce that

d(f (x p ), x p ) = d(f (x p ), f (x p-1 )) ≤ d(x p , x p-1 ) = 1.
Since f has no fixed point d(f (x p ), x p ) = 1 so there exists i k ∈ V such that f (x p ) = x p ⊕e ip . We now prove that i 1 i 2 i 3 . . . is a periodic sequence of period n.

Let k ≥ 1. Suppose that there exists l ≥ 1 such that i k = i k+l , and let l be minimal for this property. Then f (x k ) = f (x k+l ) = e i k . Since

x k+l = x k ⊕ e i k ⊕ e i k+1 ⊕ • • • ⊕ e i k+l-1
and since i k = i k+p for all 1 ≤ p < l we have

x k+l i k = x k i k thus following (4), x k+l = x k ⊕ 1.
Consequently, l = n. Thus, the sequence i 1 i 2 i 3 . . . has period n and (6) is proved.

(7) As an immediate consequence of (6), we have

x 1 = 0 x 2 = e i1 x 3
= e i1 ⊕ e i2 . . .

x k = e i1 ⊕ e i2 ⊕ e i3 ⊕ • • • ⊕ e i k-1 . . . x n+1 = e i1 ⊕ e i2 ⊕ e i3 ⊕ • • • ⊕ e i k-1 ⊕ • • • ⊕ e in = 1
and

x n+1 = 1 x n+2 = 1 ⊕ e i1 x n+3 = 1 ⊕ e i1 ⊕ e i2 . . . x n+k = 1 ⊕ e i1 ⊕ e i2 ⊕ e i3 ⊕ • • • ⊕ e i k-1 . . . x 2n+1 = 1 ⊕ e i1 ⊕ e i2 ⊕ e i3 ⊕ • • • ⊕ e i k-1 ⊕ • • • ⊕ e in = 0.
Let h be the negative-circular network on V such that G(h) is the negative cycle with a negative arc from i n to i n+1 = i 1 and a positive arc from i k to i k+1 for all 1 ≤ k < n. In this way, for all x ∈ B V , (8) For all x ∈ B V and 1

≤ k < l ≤ n, f (x ⊕ e i k ) = h(x ⊕ e i k ) f (x ⊕ e i l ) = h(x ⊕ e i l ) ⇒ f (x) = h(x) or f (x) = h(x) ⊕ e i k+1 ⊕ e i l+1 .
Since f is non expansive,

d(f (x), f (x ⊕ e i k )) = d(f (x), h(x ⊕ e i k )) ≤ 1 d(f (x), f (x ⊕ e i l )) = d(f (x), h(x ⊕ e i l )) ≤ 1 Also h(x ⊕ e i k ) = h(x) ⊕ e i k+1 and h(x ⊕ e i l ) = h(x) ⊕ e i l+1 . From k = l it comes that d(h(x ⊕ e i k ), h(x ⊕ e i l )) = 2 and thus d(f (x), h(x) ⊕ e i k+1 ) = 1 d(f (x), h(x) ⊕ e i k+l ) = 1
Hence, there exists p, q such that

f (x) = h(x) ⊕ e i k+1 ⊕ e ip f (x) = h(x) ⊕ e i l+1 ⊕ e iq
Thus if f (x) = h(x) then i p = i l+1 and i q = i k+1 . This proves (8).

(9) For all x ∈ B V and 1 ≤ k < l < p ≤ n,

f (x ⊕ e i k ) = h(x ⊕ e i k ) f (x ⊕ e i l ) = h(x ⊕ e i l ) f (x ⊕ e ip ) = h(x ⊕ e ip )      ⇒ f (x) = h(x).
Indeed, if f (x) = h(x), then according to [START_REF] Kaufman | A new necessary condition on interaction graphs for multistationarity[END_REF],

f (x) = h(x) ⊕ e i k+1 ⊕ e i l+1 f (x) = h(x) ⊕ e i k+1 ⊕ e ip+1
thus i l+1 = i p+1 , a contradiction. This proves (9).

(

) If x ∈ B V and x i1 > x in then f (x) = h(x). 10 
Let x ∈ B V be such that x i1 = 1 and x in = 0. Consider the sequence s(x) = x i1 x i2 . . . x in , and decompose this sequence into maximal subsequences with only 1 or only 0, in the following way:

s(x) = 11 • • • 11 s(x) 1 00 • • • 00 s(x) 2 11 • • • 11 s(x) 3 00 • • • 00 s(x) 4 11 • • • // • • • 11 00 • • • 00 s(x) t(x)
.

Clearly, t(x) is even and t(x) ≥ 2 (since x i1 > x in ). For each 1 ≤ p ≤ t(x), let |s(x) p | denote the length of s(x) p .

(a) Suppose that t(x) = 2. Then s(x) has the following form:

s(x) = x i1 x i2 . . . x in = 11 • • • 11 s(x) 1 00 • • • 00 s(x) 2 .
Let k be such that x i k is the first element of s(x) 2 (or equivalently, the first zero of s(x)).

Then x = e i1 ⊕ e i2 ⊕ • • • ⊕ e i k-1 , so h(x) = x ⊕ e i k .
Following [START_REF] Kauffman | Metabolic stability and epigenesis in randomly connected nets[END_REF] we have x = x k and f

(x k ) = x k ⊕ e i k thus f (x) = h(x).
(b) Suppose that t(x) = 4. Then s(x) has the following form:

s(x) = x i1 x i2 . . . x in = 11 • • • 11 s(x) 1 00 • • • 00 s(x) 2 11 • • • 11 s(x) 3 00 • • • 00 s(x) 4
.

We show that f (x) = h(x) by induction on |s(x) 2 | and then on |s(x) 3 |. Let x i k be the first element of s(x) 2 , let x i l be the first element of s(x) 3 , and let x ip be the last element of s(x) 3 , so that:

s(x) 2 = x i k x i k+1 • • • x i l-1 s(x) 3 = x i l x i l+1 • • • x ip . • Suppose that |s(x) 2 | = 1. Assume first that |s(x) 3 | = 1. In this situation, s(x) 2 = x i k , s(x) 3 = x i k+1 and x = e i1 ⊕ e i2 ⊕ • • • ⊕ e i k-1 ⊕ e i k+1 so that h(x) = x ⊕ e i k ⊕ e i k+1 ⊕ e i k+2 .
Also t(x ⊕ e i k ) = 2 and t(x ⊕ e i k+1 ) = 2, and from (a) it follows that f (x⊕e i k ) = h(x⊕e i k ) and f (x⊕e i k+1 ) = h(x⊕e i k+1 ). Consequently, according to (8), we have f (x) = h(x) or f (x) = h(x) ⊕ e i k+1 ⊕ e i k+2 .

In the second case,

f (x) = h(x) ⊕ e i k+1 ⊕ e i k+2 = x ⊕ e i k ⊕ e i k+1 ⊕ e i k+2 ⊕ e i k+1 ⊕ e i k+2 = x ⊕ e i k .
Thus f (x) = e i k . Following [START_REF] Kauffman | Metabolic stability and epigenesis in randomly connected nets[END_REF], f (x n+k ) = e i k and we deduce from (4) that x n+k = x ⊕ 1, which is a contradiction since by, (7),

x n+k = 1 ⊕ e i1 ⊕ e i2 ⊕ e i3 ⊕ • • • ⊕ e i k-1 = 1 ⊕ x ⊕ e i k+1 .
Consequently, f (x) = h(x). This proves the base case of (b1). For the induction step, assume that |s(x

) 3 | > 1. Then s(x) 2 = x i k , s(x) 3 = x i k+1 • • • x ip and x = e i1 ⊕ e i2 ⊕ • • • ⊕ e i k-1 ⊕ e i k+1 ⊕ e i k+2 ⊕ • • • ⊕ e ip so that h(x) = x ⊕ e i k ⊕ e i k+1 ⊕ e ip+1 .
Also t(x ⊕ e i k ) = 2 and we deduce from (a) that f (x ⊕ e i k ) = h(x ⊕ e i k ). In addition, t(x ⊕ e ip ) = 4 and

|s(x ⊕ e ip ) 2 | = 1 < |s(x ⊕ e ip ) 3 | = |s(x) 3 | -1.
Thus, by induction hypothesis, f (x ⊕ e ip ) = h(x ⊕ e ip ). Hence, according to (8) we have f (x) = h(x) or f (x) = h(x) ⊕ e i k+1 ⊕ e ip+1 .

In the second case,

f (x) = h(x) ⊕ e i k+1 ⊕ e ip+2 = x ⊕ e i k ⊕ e i k+1 ⊕ e ip+1 ⊕ e i k+1 ⊕ e ip+1 = x ⊕ e i k .
Thus f (x) = e i k . Following [START_REF] Kauffman | Metabolic stability and epigenesis in randomly connected nets[END_REF], f (x n+k ) = e i k and we deduce from (4) that x n+k = x ⊕ 1, which is a contradiction since, by [START_REF] Kauffman | Metabolic stability and epigenesis in randomly connected nets[END_REF],

x n+k = 1 ⊕ e i1 ⊕ e i2 ⊕ e i3 ⊕ • • • ⊕ e i k-1 = 1 ⊕ x ⊕ e i k+1 ⊕ e i k+2 ⊕ • • • ⊕ e ip . Consequently, f (x) = h(x). • Suppose that |s(x) 2 | > 1. Then t(x ⊕ e i k ) = t(x ⊕ e i l-1 ) = 4, and |s(x⊕e i k ) 2 | = |s(x⊕e i l-1 ) 2 | < |s(x) 2 |.
Thus, by induction hypothesis,

f (x ⊕ e i k ) = h(x ⊕ e i k ) f (x ⊕ e i l-1 ) = h(x ⊕ e i l-1 )
Suppose that |s(x) 3 | = 1 so that s(x) 3 = x i l . Then t(x ⊕ e i l ) = 2 and we deduce from (a) that f (x ⊕ e i l ) = h(x ⊕ e i l ) and from [START_REF] Remy | A description of dynamical graphs associated to elementary regulatory circuits[END_REF] it comes that f (x) = h(x). Now, suppose that |s(x) 3 (c) Suppose that t(x) ≥ 4. We prove that f (x) = h(x) by induction on t(x) and then on |s(x) 2 | + |s(x) 4 |. The base case t(x) = 4 is given by (b). So assume that t(x) ≥ 6. We use the following notations:

s(x) 2 = x i k x i k+1 • • • x iq s(x) 4 = x i l x i l+1 • • • x ip s(x) t(x)-1 = x ir x ir+1 • • • x is • Suppose that |s(x) 2 | + |s(x) 4 | = 2. Then t(x ⊕ e i k ) = t(x ⊕ e i l ) = t(x) -2.
Thus, by induction hypothesis.

f (x ⊕ e i k ) = h(x ⊕ e i k ) f (x ⊕ e i l ) = h(x ⊕ e i l )
We prove that f (x) = h(x) by induction on |s(x) t(x)-1 |. If |s(x) t(x)-1 | = 1 then t(x ⊕ e ir ) = t(x) -2 and by induction hypothesis,

f (x ⊕ e ir ) = h(x ⊕ e ir ).
Thus according to [START_REF] Remy | A description of dynamical graphs associated to elementary regulatory circuits[END_REF],

f (x) = h(x). If |s(x) t(x)-1 | > 1 then t(x ⊕ e is ) = t(x), |s(x ⊕ e is ) 2 | + |s(x ⊕ e is ) 4 | = 2 and |s(x ⊕ e is ) t(x)-1 | < |s(x) t(x)-1 |, thus, by induction hypothesis, f (x ⊕ e is ) = h(x ⊕ e is )
and according to (9), f (x) = h(x). Thus, according to (9), f (x) = h(x). This ends the proof of [START_REF] Remy | From minimal signed circuits to the dynamics of boolean regulatory networks[END_REF].

With similar arguments, we get:

(11) If x ∈ B V and x i1 < x in then f (x) = h(x).
Hence, to complete the proof, it remains to prove that if x i1 = x in then f (x) = h(x). Assume that x i1 = x in = 0. We proceed by induction on ||x||. If ||x|| = 0 then f (x) = h(x) according to [START_REF] Kauffman | Metabolic stability and epigenesis in randomly connected nets[END_REF]. Otherwise, there exists 1 < k < n such that and(x ⊕ e in ) i1 < (x ⊕ e in ) in , according to [START_REF] Remy | From minimal signed circuits to the dynamics of boolean regulatory networks[END_REF] and (11) we have

x i k = 1. Since ||x ⊕ e i k || = ||x|| -1, by induction hypothesis, f (x ⊕ e i k ) = h(x ⊕ e i k ). Now since (x ⊕ e i1 ) i1 > (x ⊕ e i1 ) in
f (x ⊕ e i1 ) = h(x ⊕ e i1 ) f (x ⊕ e in ) = h(x ⊕ e in )
and we deduce from (9) that f (x) = h(x). If x i1 = x in = 1, we prove with similar arguments that f (x) = h(x). Thus f = h.

As a consequence of this theorem and the fact that a network with multiple fixed points (resp. without fixed point) has a 2-critical (resp. 0-critical) subnetwork, we obtain the following "dichotomization" of Corollary 6.

Corollary 7. Suppose that f is non-expansive.

1. Each subnetwork of f has at most one fixed point if and only if f has no positive-circular subnetwork. 2. Each subnetwork of f has at least one fixed point if and only if f has no negative-circular subnetwork.

It is easy to see that, if the maximal in-degree of the global interaction graph G(f ) of a network f is at most one, then Gf (x) = G(f ) for all x ∈ B V . Thus, in particular, if f is circular then Gf (x) = G(f ) for all x ∈ B V . Proceeding as in Section 5 with this property instead of Proposition 4, we obtain the following corollary. Note that the second point generalizes Theorem 7.

Corollary 8. Suppose that f is non-expansive.

1. If, for every 1 ≤ k ≤ |V |, there exists at most 2 k -1 points x such that Gf (x) has a chordless positive cycle of length k, then f has at most one fixed points. 2. If, for every 1 ≤ k ≤ |V |, there exists at most 2 k -1 points x such that Gf (x) has a chordless negative cycle of length k, then f has at least one fixed points.

Conjonctive networks

A network f on V is an and-net (or conjunctive network) if G(f ) is simple and if, for every i ∈ V , f i is the conjunction of the positive and negative inputs of i in G(f ), that is: For all x ∈ B V , f i (x) = 1 if and only if G(f ) has no positive arc j → i with x j = 0 and no negative arc j → i with x j = 1. Note that every subnetwork of an and-net is an and-net. Note also that for the class of and-nets, f and G(f ) share the same informations.

In this section, we first prove that every 2-critical and-net is positive circular (but we were not able to prove that every 0-critical and-net is negative circular). Then, we show that, for and-nets, the presence of even-self-dual (resp. oddself-dual) subnetworks can be checked in a very simple way by looking at the chordless positive (resp. negative) cycles of G(f ). Proposition 7.

1. f if positive-circular if and only if f is an even-self-dual and-net. 2. f if negative-circular if and only if f is an odd-self-dual and-net.

Proof. Suppose that f is positive-circular (negative-circular). Then, by Theorem 9, f is even-self-dual (resp. odd-self-dual), and since each vertex i ∈ V has exactly one in-neighbor in G(f ), f is an and-net. Suppose that f is an even-or odd-self-dual and-net. Let i, j, k ∈ V , and assume that j and k are distinct in-neighbor of i in G(f ). Let x ∈ B V be such that f i (x) = 1. Then f i (y) = 0 for every y such that y j = x j or y k = x k . So f i (x ⊕ e j ) = f i (x ⊕ e j ⊕ 1) = 0, so f is not self-dual, a contradiction. Since f i is not a constant, we deduce each vertex of G(f ) is of in-degree one. According to Proposition 4, each vertex of G(f ) is of out-degree at least one. Since the sum of the in-degrees equals the sum of the out-degrees, we deduce that each vertex of G(f ) is of in-degree one and out-degree one 3 . In other words, G(f ) is a disjoint union of cycles. Let C be a cycle of G(f ) with vertex set I. Then, for all x ∈ B V ,

f i (x ⊕ e I ) = f i (x) ⊕ 1 ∀i ∈ I,
and since G(f ) has no arc from I to V \ I, we deduce that

f i (x ⊕ e I ) = f i (x) ∀i ∈ V \ I, So f (x ⊕ e I ) = f (x) ⊕ e I ,
and thus:

f (x ⊕ e I ) = (x ⊕ e I ) ⊕ (f (x) ⊕ e I ) = x ⊕ f (x) = f (x).
and since f is even-or odd-self-dual, we deduce that x⊕e I = x⊕1, that is I = V . So G(f ) is a cycle, which is positive if f is even, and negative otherwise.

Using this proposition and Corollary 2 we obtain the following characterization.

Corollary 9. If f is an and-net, then each subnetwork of f has a unique fixed point if and only if f has no circular subnetworks.

We will now show that the "unicity part" of this characterization can be obtained under the absence of positive-circular subnetwork.

Theorem 11. f is positive-circular if and only if f is a 2-critical and-net.

Proof. If P is a sequence of signed arcs of G(f ), we set s(P ) = 0 if P has an even number of negative arcs, and s(P ) = 1 if P has an odd number of negative arcs. We first prove the following two properties (which may be of independent interest).

(1) Suppose that f is an and-net. Suppose also that there exists

x ∈ B V such that f (x) = x and f (x ⊕ 1) = x ⊕ 1. Let P = (i 1 , s 1 , i 2 ), (i 2 , s 2 , i 3 ), . . . , (i l-1 , s l-1 , i l ), (i l , s l , i l+1 )
be a sequence of arcs of G(f ). Then s(P ) = x i1 ⊕ x i l+1 .

We proceed by induction of the length l of the sequence.

1. Suppose that l = 1, that is P = (i 1 , s 1 , i 2 ). If s 1 = 1, then the arc from i 1 to i 2 is positive and: If x i1 = 0 then f i2 (x) = 0 = x i2 ; and if

x i1 = 1, then f i2 (x ⊕ 1) = 0 = x i2 ⊕ 1 thus x i2 = 1.
Hence, in both cases, x i1 ⊕x i2 = 0 = s(P ). If s 1 = -1, then the arc from i 1 to i 2 is negative so: If

x i1 = 1 then f i2 (x) = 0 = x i2 ; and if x i1 = 0, then f i2 (x ⊕ 1) = 0 = x i2 ⊕ 1 thus x i2 = 1.
Hence, in both cases, x i1 ⊕ x i2 = 1 = s(P ). This prove the base case. 2. Suppose that l > 1. Then P can be expressed as the concatenation P = QQ of two subsequences Q and Q , both of length at most l -1. If q is the length of Q, then, by induction hypothesis,

s(Q) = x i1 ⊕ x iq+1 and s(Q ) = x iq+1 ⊕x i l+1 thus s(P ) = s(Q)⊕s(Q ) = x i1 ⊕x iq+1 ⊕x iq+1 ⊕x i l+1 = x i1 ⊕ x i l+1 . This proves (1). 
(2) Suppose that f is an and-net. If there exists x ∈ B V such that f (x) = x and f (x ⊕ 1) = x ⊕ 1 then G(f ) has no negative cycle.

If C is a cycle of G(f ) go length l, and if P = (i 1 , s 1 , i 2 ), (i 2 , s 2 , i 3 ), . . . , (i l , s l , i 1 ) are the arcs of C given in the order, then following (1), s(P ) = x i1 ⊕ x i1 = 0, thus C has an even number of negative arcs, i.e. C is positive. This proves (2).

We are now in position to prove the theorem. By Theorem 10, every positivecircular network is 2-critical, and it is obvious that positive-circular networks are and-nets. So assume that f is a 2-critical and-net. By theorem 8 and Proposition 7, f has a positive-or negative-circular subnetwork h. Following (2), h cannot be negative-circular. Thus h is positive-circular. Thus h has two fixed points, and since f is 2-critical, h = f . As a consequence of this theorem and the fact that a network with multiple fixed points has a 2-critical subnetwork, we obtain the following characterization.

Corollary 10. If f is an and-net, then each subnetwork of f has at most one fixed point if and only if f has no positive-circular subnetworks.

Using again the fact that if f is circular then Gf (x) = G(f ) for all x ∈ B V , we obtain: Corollary 11. Suppose that f is an and-net. If, for every 1 ≤ k ≤ |V | there exists at most 2 k -1 points x such that Gf (x) has a chordless positive cycle of length k, then f has at most one fixed points.

Remark 11. In view of Theorems 10 and 11, it is tempting to think that every 0-critical and-net is negative-circular. But this is false, as showed below. For all n ≥ 4, let G n be the digraph with vertex set V = {0, 1, . . . , n -1} and such that for all u ∈ V and k ∈ {1, ±2, ±3, . . . , ± 1 2 n } there is an arc from u to u + k (mod n). In [START_REF] Galeana-Sánchez | On kernel-perfect critical digraphs[END_REF], it is proved that G n is kernel-critical: G n has no kernel and every strict induced subdigraph has a kernel. Using the correspondence between kernels in digraphs and fixed points in and-nets established in [START_REF] Richard | From kernels in directed graphs to fixed points and negative cycles in boolean networks[END_REF], we easily deduce that: For all n ≥ 4, the and-net f such that |G(f )| = G n and such that G(f ) has only negative arc is a non-circular 0-critical and-net. Now, we show how to check if an and-net has or not a circular subnetworks by looking at the chordless cycles of G(f ). For that, additional definitions are needed. Let G be a simple interaction graph with vertex set V , and let C be a cycle in it. A vertex v ∈ V is a delocalizing vertex of C if G has both a positive and a negative arcs from v to distinct vertices of C (v can be a vertex of C; in such a case the cycle has two chords of opposite sign starting from v).

Proposition 8 (Richard and Ruet [START_REF] Richard | From kernels in directed graphs to fixed points and negative cycles in boolean networks[END_REF]). Suppose that f is an and-net. There exists x ∈ B V such that Gf (x) has a cycle C if and only C is a cycle of G(f ) that has no delocalizing vertex in G(f ).

Proposition 9 (Remy and Ruet [START_REF] Remy | From minimal signed circuits to the dynamics of boolean regulatory networks[END_REF]). Let f be a network on V . Let x ∈ B V , and suppose that Gf (x) has a cycle C with vertex set I. If C has no chord in G(f ), then the subnetwork of f induced by x -I is a circular network with interaction graph C. Proposition 10. Suppose that f is an and-net. Then f has a circular subnetwork with interaction graph C if and only if C is a cycle of G(f ) that has no chord and no delocalizing vertex in G(f ).

Proof. If C a cycle of G(f ) without chord and delocalizing vertex in G(f ), then the fact that f has a subnetwork with interaction graph C follows from Proposition 8 and Proposition 9.

Suppose that h is a circular subnetwork of f with interaction graph C. Let I be the vertex set of C, x ∈ B V , and suppose that h is induced by x -I . Since Gh(x -I ) = G(h) = C is a subgraph of Gf (x), we deduce from Proposition 8 that C has no delocalizing vertex in G(f ). Suppose, for a contradiction, that C has a chord in G(f ), say from j to i. Let k = j be the vertex preceding i in C. Let y ∈ B V be such that y -I = x -I and y j = 0 if and only if the chord j → i is positive. Then h i (y -I ) = f i (y) = 0 and h i (y -I ⊕ e k ) = f i (y ⊕ e k ) = 0, thus Gh(y -I ) has no arc from k to i, a contradiction with the fact that h is circular.

We are now in position to express conditions in Corollaries 9 and 10 in terms of chordless cycles and delocalizing vertices. ( * ) If Gf (x) has no cycle for all x ∈ B V , then the conjugate of f is a bijection (and so f has a unique fixed point).

The case |V | = 1 is obvious. So suppose that |V | > 1, and suppose that Gf (x) has no cycle for all x ∈ B V . Let i ∈ V and α ∈ B. For all x ∈ B V , Gf iα (x -i ) is a subgraph of Gf (x), and thus Gf iα (x -i ) has no cycle. Using the induction hypothesis, we deduce that: For all i ∈ V and α ∈ B, the conjugate of f iα is a bijection. Now, suppose that f is not a bijection. Then, there exists two distinct points x and y in B V such that f (x) = f (y). Let us proved that x = y ⊕ 1. Indeed, if x i = y i = α for some i ∈ V , then f iα (x -i ) = f (x) -i = f (y) -i = f iα (y -i ). Thus the conjugate of f iα is not a bijection, a contradiction. So x = y ⊕ 1. Since Gf (x) has no cycle, it contains at least one vertex of outdegree 0. In other words, there exists i ∈ V such that f (x i1 ) = f (x i0 ). Thus f (x i1 ) -i = f (x i0 ) -i = f (x) -i . Hence, setting α = y i , we obtain f iα (x -i ) = f (x iα ) -i = f (x) -i = f (y) -i = f (y iα ) -i = f iα (y -i ).

So the conjugate of f iα is not a bijection, a contradiction. Thus f is a bijection and ( * ) is proved.

Theorem 3 . 1 .

 31 If G(f ) has no positive cycle then f has at most one fixed point.2. If G(f ) has no negative cycle then f has at least one fixed point.

  Since G(f ) has no arc from V \I to I, and since x| I = y| I we have f (x)| I = f (y)| I and thus f (x)| I = f (y)| I . Thus f (x) and f (y) have not the same parity, a contradiction.

Example 4 .

 4 The following network f is 2-critical (i.e. in F ≤1 ) but not even (double arrows indicate cycles of length two):x f (x) f (x) f is 0-critical (i.e. in F ≥1 ) but not odd:

  |f ij (x ⊕ e I )| thus |Gf (x)| = |Gf (x ⊕ e I )| and 4. follows.

  ||h(0)|| + ||y|| and |I| + ||z|| = ||z 1 || = ||f (z 1 )|| = ||f (z 1 )| I || + ||f (z 1 ) -I || = ||h(1)|| + ||y|| = ||h(0) ⊕ 1|| + ||y|| = |I| -||h(0)|| + ||y||. Thus 2||z|| = ||z 0 || + ||z 1 || -|I| = 2||y||. Hence ||z|| = ||y|| and since ||z|| = ||h(0)|| + ||y||, and it follows that ||h(0)|| = 0. This prove (2).

  | > 1. Then t(x ⊕ e ip ) = 4, |s(x ⊕ e ip ) 2 | = |s(x) 2 | and |s(x ⊕ e ip ) 3 | = |s(x) 3 | -1, thus, by induction hypothesis,f (x ⊕ e ip ) = h(x ⊕ e ip )and according to (9), f (x) = h(x).

Corollary 12 .

 12 Let f be an and-net.

1 . 2 . 1 .

 121 Each subnetwork of f has a unique fixed point if and only if f every chordless cycle of G(f ) has a delocalizing vertex. Each subnetwork of f has at most one fixed point if and only if f every chordless positive cycle of G(f ) has a delocalizing vertex.Remark 12. If G(f ) has n vertices and c cycles, then the enumeration of these m cycles can be done with time complexity O(n 2 c); see[START_REF] Johnson | Finding all the elementary circuits in a directed graph[END_REF] for instance. Since for each cycle the absence chord and delocalizing vertex can be verified in O(n 2 ), conditions of Corollary 12 can be verified in time O(n 2 c).Suppose, for a contradiction, that h(x| I ) = f (x)| I for some x ∈ B V , and assume that ||x|| is minimal for this property. Then, since h is induced by the point 0 ∈ B V \I , there exists j ∈ V \ I with x j = 1. Thus ||x ⊕ e j || < ||x|| so h(x|I ) = h((x⊕e j )| I ) = f (x⊕e j )| I = f (x)| I . Thus there exists i ∈ I such that f i (x⊕e j ) = f i (x). Thus G(f ) has an arc from j to i, a contradiction. This prove ( * ). We are now in position to complet the induction step. Suppose that G(f ) has no positive cycle, and suppose, for a contradiction, that x and y are fixed points of f . Then following ( * ), x| I and y| I are fixed points of h. Since G(h) has no positive cycle, by induction hypothesis, h has at most one fixed point, thus x| I = y| I = z. Let h be the subnetwork of f induced by z. By definition, h (x -I ) = f (x) -I and h (y -I ) = f (y) -I . Thus x -I and y -I are fixed points of h . Since G(h ) has no positive cycle, by induction hypothesis, h has at most one fixed point, thus x -I = y -I . Thus x = y so f has at most one fixed point. 2. Suppose that G(f ) has no negative cycle. Then G(h) has no negative cycle, and by induction hypothesis, h has at least one fixed point z ∈ B I . Let h be the subnetwork of f induced by z. Again, by induction hypothesis, h has at least one fixed point. Thus, there exists x ∈ B V with x| I = z such that x -I = h (x -I ) = f (x) -I , and by ( * ) we have x| I = z = h(z) = h(x| I ) = f (x)| I . Thus x is a fixed point of f . Proof of Theorem 5. The "trick" consists in proving, by induction on |V |, the following more general statement:

  So the parity of d is the parity of|| f (x)|| + || f (x ⊕ e i )|| + 1. Hence, if f is even or odd, then || f (x)|| and || f (x ⊕ e i )|| have the same parity, so || f (x)|| + || f (x ⊕ e i )||is even, and it follows that d is odd.

Corollary 3. If, for every 1 ≤ k ≤ |V |, there exists at most 2 k -1 points x ∈ B V such that Gf (x) has a cycle of length at most k, then f has a unique fixed point.

Proof. According to Theorem 8, it is sufficient to prove, by induction on |V |, that if f satisfies the conditions of the statement, then f has no even-or odd-selfdual subnetwork. The case |V | = 1 is obvious, so suppose that |V | > 1. Suppose also that f satisfies the conditions of the statement. Let

•

  Suppose that |s(x) 2 | + |s(x) 4 | > 2. Then either |s(x) 2 | ≥ 2 or |s(x) 4 | ≥ 2. Suppose that |s(x) 2 | ≥ 2, the other case being similar. Then t(x ⊕ ei k ) = t(x ⊕ e iq ) = t(x) and |s(x ⊕ e i k ) 2 | = |s(x ⊕ e iq ) 2 | < |s(x) 2 | and |s(x⊕e i k ) 4 | = |s(x⊕e iq ) 4 | = |s(x)4 |, and so, by induction hypothesis,f (x ⊕ e i k ) = h(x ⊕ e i k ) f (x ⊕ e iq ) = h(x ⊕ e iq ). If |s(x) 4 | = 1 then t(x ⊕ e i l ) = t(x) -2 thus, by induction hypothesis, f (x ⊕ e i l ) = h(x ⊕ e i l ); otherwise, t(x ⊕ e i l ) = t(x) and |s(x ⊕ e i l ) 2 | = |s(x) 2 | and |s(x ⊕ e i l ) 4 | < |s(x)4 |, and so, by induction hypothesis, we have again f (x ⊕ e i l ) = h(x ⊕ e i l ).

In all the examples, network components are integers, and if V is a set of n integers i 1 < i

< • • • < in, then for all x ∈ B V we write x = (x i 1 , x i 2 , . . . , x in ) or x = x i 1 x i 2 . . . x in .

Arrows correspond to positive arcs and bars to negative arcs.

h i1 (x) = x in ⊕ 1, h i k (x) = x i k-1 1 < k ≤ n.We will prove that h = f , using several times the following easy tow next properties.

If each vertex of G(f ) is of out-degree one, then f is non-expansive, and we can conclude by applying Theorem 9. However, we give here the few additional arguments that makes the proof independent of Theorem 9.
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Example 6. [Continuation of

 Example 1]Take again the network f on {1, 2, 3} defined by:

This network is an and-net and its global interaction graph G(f ) is

It is easy to see that every chordless cycle (i.e. cycle of length 2) has a delocalizing vertex. Thus f has no circular subnetwork (cf. Proposition 10). Thus it has no even-or odd-self-dual subnetwork (cf. Proposition 7). Thus each subnetwork of f has a unique fixed point (cf. Corollary 2); see indeed Example 1. Note that the two cycles of length three have no delocalizing vertex, thus these cycles are in Gf (x) for some x; see indeed Example 2. 

has no cycle and by induction hypothesis f iα has a unique fixed point i.e. there exists a unique x ∈ B V with

Proof of Theorem 3. We proceed by induction on the number of strongly connected components. If |V | = 1 then the theorem is obvious. So assume that |V | > 1. If G(f ) is strongly connected, then the theorem is given by Theorem 2. So suppose that G(f ) is not strongly connected, an let I ⊆ V be an initial strongly connected component of G(f ) (there is no arc from V \ I to I). Let h be the subnetwork of f induced by 0 ∈ B V \U . Let us prove that ∀x ∈ B V , h(x| I ) = f (x)| I .

( * )