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Abstract. We are interested in discovering user groups from collabo-
rative rating datasets of the form 〈i, u, s〉, where i ∈ I, u ∈ U , and s
is the integer rating that user u has assigned to item i. Each user has
a set of attributes that help find labeled groups such as young computer
scientists in France and American female designers. We formalize the
problem of finding user groups whose quality is optimized in multiple
dimensions and show that it is NP-Complete. We develop α-MOMRI,
an α-approximation algorithm, and h-MOMRI, a heuristic-based algo-
rithm, for multi-objective optimization to find high quality groups. Our
extensive experiments on real datasets from the social Web examine the
performance of our algorithms and report cases where α-MOMRI and
h-MOMRI are useful.

1 Introduction

Today’s data scientists are faced with large volumes of data to explore. In par-
ticular, collaborative rating sites have become essential data resources to make
decisions about mundane tasks such as purchasing a book, renting a movie or
going to a restaurant. The availability of a number of datasets on the social
Web, such as MovieLens, a movie rating site, LastFM, a music rating site and
BookCrossing, a book rating site, appeals to scientists today who design algo-
rithms that help analysts make better decisions on complex tasks such as crowd
data sourcing (which users to ask ratings from), advertisers in determining which
items to recommend to which users, and social scientists in validating hypothe-
ses such as young professionals are more inclined to buying self-help books, on
large datasets.

In practice, however, there does not exist analytics tools that enable the
scalable, on-demand discovery of user groups. In this paper, we are given a
dataset of rating records in the form 〈i, u, s〉, where i ∈ I (set of items), u ∈ U
(set of users), and s is the integer rating that user u has assigned to item i.
We define the notion of user group as a conjunction of demographic attributes
over rating records, such as rich young professionals or teachers who live in the
countryside. Given a dataset, e.g., ratings of Woody Allen movies, we formalize
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the problem of discovering high quality user groups. Quality is formulated as
the optimization of two dimensions: coverage and diversity. Optimizing coverage
ensures that most input records 〈i, u, s〉 will belong to at least one group in
the output. Optimizing diversity ensures that found groups are as different as
possible from each other, e.g., males and females or young and old, and unveils
ratings by different users. User groups with high coverage and high diversity, can
help analysts make a variety of decisions such as audience targeting in advertising
or hypothesis validation in social science. The following two examples illustrate
two common cases in practice.

Example 1. (Audience Targeting) Julia who works in an advertising company, is
responsible for finding the best target audience for a 20% reduction on the new
book of John Grisham, the American author known for his popular thrillers.
To find a target group, Julia goes to BookCrossing website1, a database of
book ratings, and finds 6,913 rating records for all Grisham’s books. A group-
centric examination of those records would reveal that over 89% of users who
rated Grisham’s book are either i. young reviewers who live in Connecticut, ii.
middle-age reviewers in France or iii. old females. Such groups are diverse, i.e.,
they do not overlap because their reviewers belong to different age-categories.
Julia finds the first two groups promising, as their average rating scores are 4.6
and 4.0 out of 5, respectively, while it is only 2.3 for the third group. Julia exploits
these two groups for audience targeting, as they capture the attention of many
readers (becasue of coverage) and address different sub-populations (because of
diversity).

Example 2. (Hypothesis Validation) It is generally believed that romantic movies
(e.g., American Beauty, 1999) are mostly watched by females. This observation
is based on demographic breakdown reports on IMDb.2 Anna, who is a social
scientist, wants to validate this hypothesis by exploring diverse user groups that
cover most ratings for romance genre movies. Such a group-centric examination
would provide the following 3 user groups: i. female reviewers from DC (District
of Columbia), ii. young female reviewers, and iii. male teenager reviewers with
average ratings of 4.6, 3.7 and 3.1 (out of 5), respectively. By observing those
groups, Anna finds that the hypothesis holds only for a sub-population of female
reviewers, middle-age or residents of DC. Also the results show another group
of romance genre lovers, male teenagers, which contradicts the hypothesis. Anna
is confident in her observation (as the results has high coverage) and she can
notice different aspects of her hypothesis (as results are diversified).

Beyond coverage and diversity, another interesting dimension of group qual-
ity is its rating distribution. As it has been argued in previous work [4], groups
with homogeneous ratings may be more appealing to some applications, while
groups with polarized ratings are preferred by others. Indeed the rating distri-
bution in a group provides analysts with the ability to tune the quality of found

1 http://www.bookcrossing.com
2 http://www.imdb.com
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groups according to specific needs. Example 2 is a good case for homogeneity.
By reporting the average rating of 4.6 for young female reviewers, we know that
most individuals in that group have high ratings. The following example shows
how tuning the rating distribution of discovered groups leads to new discoveries
when used alongside coverage and diversity.

Example 3. Following Example 2, Anna then looks at the variance of ratings in
those groups and finds that male teenager reviewers has a higher variance com-
paring to two other groups. This potentially shows that not all male teenagers
like romantic movies. Anna is more interested in a homogenous group, so she can
either choose the second or third group or ask the system to find other groups
specifically for males or teenagers.

Given an input set of rating records (e.g., Sci-Fi movies from the 90’s, David
Lynch movies, movies starring Scarlett Johansson), our problem is that of dis-
covering a set of user groups. Even when the number of records is not very high,
the number of possible groups that could be built may be very large. Indeed, the
number of groups is exponential in the number of user attribute values and many
groups are very small or empty. Therefore, given the ad-hoc and online nature of
group discovery, our challenge is to quickly identify high quality user groups. We
hence define desiderata that user groups should satisfy (local desiderata) and
those that must be satisfied by the set of returned groups (global desiderata).

Local desiderata:

– Describability: Each group should be easily understandable by the analyst.
While this is difficult to satisfy through unsupervised clustering of ratings,
it is easily enforced in our approach since each group must be formed by
rating records of users that share at least one attribute value, which is used
to describe that group.

– Size: Returning groups that contain too few rating records is not meaningful
to the analyst. We hence need to impose a minimum size constraint on
groups.

Global desiderata:

– Coverage: Together, returned groups should cover most input rating records.
While ideally we would like each input record to belong to at least one group,
that is not always feasible due to other local and global desiderata associated
with the set of returned groups.

– Diversity: Returned groups need to be different from each other in order to
provide complementary information on users.

– Rating Distribution: Ratings in selected groups should follow a requested
distribution (e.g., homogeneity).

– Number of groups: The number of returned groups should not be too high in
order to provide the analyst with an at-a-glance understanding of the data.
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A candidate solution is a group-set that verifies all above desiderata. Finding
such a group-set is a hard problem because of two reasons. First the pool of
candidate group-sets is very large as any possible combination of attribute value
pairs can form a group, and any number of groups can form a group-set. By
having only 20 attribute value pairs, we end up with 1, 048, 575 groups (i.e.,
(220) − 1) and over 1012 group-sets of size 5 (i.e., 1, 048, 575 choose 5). The
second reason of hardness is that diversity, coverage and rating distribution
are conflicting objectives (Section 5.1), i.e., optimizing one does not necessarily
lead the best values for others. Thus the need for a multi-objective optimization
approach that will not compromise one objective over another. Such an approach
would return the set of all candidate group-sets that are not dominated by any
other along all objectives.

In this paper, we propose α-MOMRI, an α-approximation algorithm for
user group discovery that considers local and global desiderata and guarantees
to find group-sets that are α-far from optimal ones. Since α-MOMRI relies on an
exhaustive search in the space of all groups, we propose h-MOMRI, a heuristic
that exploits the lattice formed by user groups and prunes exploration in order to
speed up group-set discovery. Both our algorithms admit a set of rating records of
the form 〈i, u, s〉 and a constrained multi-objective optimization formulation [5]
and return group-sets that satisfy the formulation and are not dominated by any
other group-set. The contributions of this paper are as follows.

1. We formalize specific quality dimensions (coverage, diversity and rating dis-
tribution) which we find to be the most natural for discovering user groups
on the Social Web. We exploit the semantics of these objectives to go beyond
a generic approach.

2. We formalize the problem of discovering user groups as a constrained multi-
objective optimization problem with quality dimensions as objectives.

3. We develop α-MOMRI, an α-approximation algorithm for user group dis-
covery. Returned group-sets are instances of Pareto plans and are guaranteed
to be α-far from optimal ones.

4. We develop h-MOMRI, a heuristic-based algorithm that exploits the lattice
formed by user groups to speed up group discovery.

5. In an extensive set of experiments on MovieLens and BookCrossing
datasets, we analyze different solutions of α-MOMRI and h-MOMRI and
show that high quality group-sets are returned by our approximation and
very good response time is achieved by our heuristic.

2 Data Model and Preliminaries

We model our database D as a triple 〈I,U ,R〉, representing the sets of items,
reviewers and rating records respectively. Each rating record r ∈ R is itself a
triple 〈i, u, s〉, where i ∈ I, u ∈ U , and s is the integer rating that reviewer u has
assigned to item i. The values of s are application-dependent and do not affect
our model.
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I is associated with a set of attributes, denoted as IA = {ia1, ia2, . . .}, and
each item i ∈ I is a tuple with IA as its schema. In other words, i = 〈iv1, iv2, . . .〉,
where each ivj is a set of values for attribute iaj . For example, for the movie
Kazaam (1996) in MovieLens dataset, the set of attribute values are 〈Paul M.
Glaser, {Comedy, Fantasy}〉 for the attribute schema 〈director, genre〉. Note
that the attribute genre is multi-valued. Another example is for the book Wild
Animus (2004) in BookCrossing dataset where the set of attribute values are
〈Rich Shapero, Too Far〉 for the attribute schema 〈author, publisher〉.

We also have the schema UA = {ua1, ua2, . . .} for reviewers, i.e., u = 〈uv1,
uv2, . . .〉 ∈ U , where each uvj is a value for attribute uaj . As a result, each rating
record, r = 〈i, u, s〉, is a tuple, 〈iv1, iv2, . . . , uv1, uv2, . . . , s〉, that concatenates
the tuple for i, the tuple for u, and the numerical rating score s. The set of
all attributes is denoted as A = {a1, a2, . . .}. We now define the notion of user
group.

Definition 1 (User Group). A group g is a set of rating records 〈u, i, s〉 de-
scribed by a set of attribute value pairs shared among the reviewers and the items
of those rating records. The description of a group g is defined as {〈a1, v1〉, 〈a2, v2〉,
. . .} where each ai ∈ A and each vi is a set of values for ai. By |g|, we denote
the number of rating records contained in g.

ID Movie Name Gender Age Occup. Rating
r1 Toy Story John M young teacher 4

r2 Toy Story Jennifer F old teacher 3

r3 Toy Story Mary F old teacher 2

r4 Titanic Carine F old other 4

r5 Toy Story Sara F young student 3

r6 Toy Story Martin M young student 5

r7 Titanic Peter M young student 1

r1

r2

r3

r4

r5
r7

r6

g1={<gender,female>}
g2={<occupation,student>, <age,young>}

g3 = {<movie,Toy Story>}

Fig. 1. Example Dataset and Group-set

For instance, the first group in Example 2, g = {〈gender, female〉, 〈location,
DC〉, 〈genre, romance〉} contains rating records in MovieLens for romance
movies whose reviewers are all females in DC. Figure 1 illustrates an exam-
ple dataset with 7 rating records. The user group g1 is for female reviewers with
4 rating records, and g2 is for young students with 3 rating records. Note that
there exists one record in common between two mentioned user groups (r5). Note
that a user group differs from a where-clause SQL query, since our objectives
and constraints are not expressible as SQL predicates.

Given a rating record r = 〈v1, v2 . . . , vk, s〉, where each vi is a set of values
for its corresponding attribute in the schema A, and a group g = {〈a1, v1〉,
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〈a2, v2〉, . . . , 〈an, vn〉}, n ≤ k, we say that g covers r, denoted as r l g, iff
∀i ∈ [1, n], ∃r.vj such that vj is a set of values for attribute g.ai and g.vj ⊆
r.vi. For example, the rating 〈female, DC, student, 4〉 is covered by the group
{〈gender, female〉, 〈location, DC〉}.

{} 
#records=3662

{male, young} 
#records=1588

{CA, 
student} 

#records=20

{male} 
#records=2634

{young} 
#records=2147

{CA} 
#records=664

{student} 
#records=184

{male, young, 
CA} 

#records=268

{male, young, CA, student}  
#records=2

{young, CA} 
#records=375

{male, 
student} 

#records=120

{male, CA} 
#records=477

{young, 
student} 

#records=13

{young, CA, 
student} 

#records=2

{male, young, 
student} 

#records=13

{male, CA, 
student} 

#records=17

Fig. 2. Partial Lattice for the Movie Toy Story

Similarly to data cubes, the set of all possible groups form a lattice where
nodes correspond to groups and edges correspond to parent/child and ances-
tor/descendant relationships. A partial lattice for rating records of the movie
Toy Story is illustrated in Figure 2 where we have four reviewer attributes to
analyze: gender, age, location and occupation. For simplicity, exactly one
distinct value per attribute is shown in the Figure.

2.1 Group Quality Dimensions

We now define three quality dimensions for groups, i.e., coverage, diversity and
rating distribution. We are given a set of rating records R ⊆ R and a group-setG.

Coverage is a value between 0 and 1 and measures the percentage of rating
records in R contained in groups in G.

coverage(G,R) = | ∪g∈G (r ∈ R, r l g)|/|R| (1)

For instance, in Figure 1, coverage(G,R) = 0.8 where G = {g1, g2} and R
contains rating records for the movie Toy Story.

Diversity is a value between 0 and 1 that measures how distinct groups in
group-set G are from each other. Diversity penalizes group-sets containing over-
lapping groups. To prioritize groups with few overlaps, the overlapping penalty
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is considered exponential.

diversity(G,R) = 1/(1 +Σg1,g2∈G|r ∈ R, r l g1 ∧ r l g2|) (2)

For instance, in Figure 1, diversity(G,R) = 0.5.

1 2 3 4 5 1 2 3 4 5 1 2 3 4

5

5

Homogeneous G Balanced G Polarized G

Rating Scores Rating Scores Rating Scores

Ra
tin

g 
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nt

Ra
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g 
C
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nt
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tin

g 
C

ou
nt

Fig. 3. Different Rating Distributions for a Group-Set

Rating Distribution. A group-set G may be characterized by its rating
distribution. Figure 3 illustrates some examples of distributions. A rating dis-
tribution is a function over the set of ratings in the rating records of groups in
G. Equation 3 shows an example of such a function which computes the average
diameter of ratings. Other aggregation functions could be defined.

diameter(G) = avgg∈G(maxr∈g(r.s)−minr′∈g(r′.s)) (3)

In Figure 1, diameter(G) = 3. We now explain different rating distributions
in Figure 3.

Homogeneous. A homogeneous rating distribution shows that all users in G
have approximately agreed on a unique score (i.e., “1” in Figure 3). We use this
rating distribution when we are seeking a consensus between group members and
to provide a representative unique score for the whole group-set. An example for
this rating distribution is the movie The Godfather (1972) in IMDb, as 53.7% of
ratings are for the highest score.3

Balanced. A balanced rating distribution shows that the preference of group
members are equally distributed among scores. A user group with balanced rat-
ing distribution counts as a neutral group: there is no preference for any score.
A neutral group can be used as a reference to see how other groups are biased
towards a score.

Polarized. A polarized rating distribution shows that group members have the
farthest possible preferences from each other over the set of rating records. A

3 http://www.imdb.com/title/tt0068646/ratings?ref =tt ov rt
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real example for this rating distribution is the movie Fifty Shades of Grey (2015)
in IMDb, as 28.8% and 15.9% of ratings are for the lowest and highest scores,
respectively.4

Increasing/Decreasing. We can take into consideration many other distri-
butions depending on problem needs and specifications. For instance, increasing
rating distribution is the one where for each score s, the number of rating records
with score s is larger than or equal to the one for s−1. Decreasing rating distribu-
tion is also the inverse of the above distribution. In these two rating distributions,
there exists a total order between the number of rating records in consecutive
scores. A group with increasing/decreasing rating distribution potentially rep-
resents rising/falling items, i.e., items which currently have relatively low/high
acceptability but may eventually emerge as prominent popular/weak items.

Based on Definition 3, a small value of diameter(G) leads a homogeneous
group-set G and a high value leads a polarized group-set G.

2.2 Multi-Objective Optimization Principles

We propose to use the quality dimensions (coverage, diversity and rating distri-
bution) defined as optimization objectives. When dealing with more than one di-
mension to optimize, there may be many incomparable group-sets. For instance,
for a set of ratings R, we can form two group-sets, G1 with coverage(G1, R) = 0.8
and diversity(G1, R) = 0.4 andG2 with coverage(G2, R) = 0.5 and diversity(G2, R)
= 0.7. Each group-set has its own advantage: the former has higher coverage and
the latter has higher diversity. Another group-set G3 with coverage(G3, R) = 0.5
and diversity(G3, R) = 0.2 has no advantage compared to G1, hence it can be
ignored. In other words, G3 is dominated by G1. In this section, we borrow the
terminology of multi-objective optimization and define these concepts.

Definition 2 (Plan). Plan pi, associated to a group-set Gi for a set of rating
records R ⊆ R, is a tuple
〈|Gi|, coverage(Gi, R), diversity(Gi, R), diameter(Gi)〉.

Definition 3 (Sub-plan). Plan pi is the sub-plan of another plan pj if their
associated group-sets satisfy Gi ⊆ Gj.

Definition 4 (Dominance). Plan p1 dominates p2 if p1 has better or equiva-
lent values than p2 in every objective. The term “better” is equivalent to “greater”
for maximization objectives (e.g., diversity, coverage and polarization), and “lower”
for minimization ones (e.g., homogeneity). Furthermore, plan p1 strictly domi-
nates p2 if p1 dominates p2 and the values of objectives for p1 and p2 are not
equal.

Definition 5 (Pareto Plan). Plan p is Pareto if no other plan strictly domi-
nates p. The set of all Pareto plans is denoted as P.

4 http://www.imdb.com/title/tt2322441/ratings?ref =tt ov rt
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3 Problem Definition

We define our constrained multi-objective optimization problem as follows: for
a given set of rating records R and integer constants σ and k, the problem is to
identify all group-sets, such that each group-set G satisfies:

– coverage(G,R) is maximized;
– diversity(G,R) is maximized;
– diameter(G) is optimized;
– |G| ≤ k;
– ∀g ∈ G : |g| ≥ σ.

The last constraint states that a group g should contain at least σ rating
records, an application-defined threshold. For example, if we fix σ to 10 rating
records, the groups highlighted in gray in Figure 2 will not be returned. Note
that while we always maximize coverage and diversity, we may either minimize
(e.g., in case of homogeneity) or maximize (e.g., in case of polarization) the di-
ameter based on the analyst’s needs.

We state the complexity of our problem as follows.

Theorem 1. The decision version of our problem is NP-Complete.

Proof. (sketch) It is shown in [4] that a single-objective optimization problem for
user group discovery is NP-Complete by a reduction from the Exact 3-Set Cover
problem (EC3). There, homogeneity is maximized and a threshold on coverage
is satisfied. In our case, two new conflicting dimensions (diversity and coverage)
are added. This means that the problem in [4] is a special case of ours, hence
our problem is obviously harder. ut

4 Algorithm

The main challenge in designing an algorithm for user group discovery, is the
multi-objective nature of the problem. A multi-objective problem can be easily
solved if i. it is possible to combine all objective dimensions into a single di-
mension (scalarization), or ii. if optimizing one dimension leads an optimized
value for other dimensions. First, it is not possible in our problem to combine
all objective dimensions into a single dimension [6]. We provide an intuition of
the reason in the following example.

Example 4. Let us consider the sum aggregation function to combine coverage
and diversity values of a plan into a single score. Let p1 and p2 be two plans cor-
responding to two group-sets G1 and G2 respectively, and coverage(G1, R)=0.5,
diversity(G1, R) = 0.8, coverage(G2, R)=0.6 and diversity(G2, R) = 0.1. In this
case, the aggregated score of p1 is 1.3 and the score of p2 is 0.7. Hence, we would
incorrectly prune p2 while it has a higher value for coverage.
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Second, our objectives are conflicting, i.e., optimizing one does not necessarily
lead to an optimized value for others (Section 5.1). For instance, a group-set may
cover almost all input rating records but contains highly overlapping groups
thereby hurting its diversity.

In this paper, we discuss 3 different algorithms for our problem: exhaustive,
approximation and heuristic.

4.1 Exhaustive Algorithm

The exhaustive algorithm starts by calculating Pareto plans for single groups.
Then it iteratively calculates plans for group-sets containing more than one
group by combining single groups. At each iteration, dominated plans are dis-
carded. The algorithm combines sub-plans to obtain new plans and exploits the
optimality principle (POO) for pruning. POO is defined as follows.

Definition 6 (POO). Given a maximization objective f (e.g., diversity, cover-
age, polarization) and plans p1 and p2 with sub-plans p11, p12 for p1 and p21, p22
for p2, if f(G11) ≥ f(G21) and f(G12) ≥ f(G22), then f(G1) cannot be lower
than f(G2). The extension for a minimization objective is straightforward.

This approach makes an exhaustive search over all combinations of user
groups to find Pareto plans. This is both time and space consuming [6].

We propose two ways of improving the complexity of the exhaustive al-
gorithm: approximation-based and heuristic-based. An approximation algorithm
makes less enumerations with a theoretical guarantee on the quality of results.
On the other hand, a heuristic can exploit the properties of the search space and
prevent a brute-force execution.

4.2 Approximation Algorithm

For our approximation algorithm, we exploit the near-optimality principle (PONO) [14].

Definition 7 (PONO). Given a maximization objective f (e.g., diversity, cov-
erage, polarization) and α ≥ 1, let p1 be a plan with sub-plans p11 and p12. Derive
p2 from p1 by replacing p11 by p21 and p12 by p22. Then f(G21) ≥ f(G11) × α
and f(G22) ≥ f(G12)× α together imply f(G2) ≥ f(G1)× α. The extension for
a minimization objective is straightforward.

In Section 8, we formally prove that all our objectives (coverage, diversity
and diameter) satisfy POO and PONO. Note that the functions for quality
dimensions (coverage, diversity and diameter) are chosen in a way to satisfy
POO and PONO.

PONO overrides POO (Definition 6). Thus a new notion of dominance is
introduced in Definition 8 to be in line with PONO.

Definition 8 (Approximated Dominance). Let α ≥ 1 be the precision value,
a plan p1 α-dominates p2 if for every objective f , f(G1) ≥ f(G2) × α where
f ∈ {coverage, diversity , polarization} and f(G1) ≤ f(G2) × α where f is
homogeneity.
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Algorithm 1: α-approximation MOMRI (α-MOMRI)

Input: k, α > 1, R
Output: Pareto result set Pα

1 α ← ∅
2 for all user groups g do
3 pg ← construct plan(g)
4 if pg is not α-dominated by any other plan in Pα then Pα.add(pg)

5 end
6 for n ∈ [2, k] do
7 for group-sets G of size n do
8 pG ← construct plan(gG)
9 if pG is not α-dominated by any other plan in Pα then Pα.add(pG)

10 end

11 end
12 return α

Definition 9 (Approximated Pareto Plan). For a precision value α, plan
p is an α-approximated Pareto plan if no other plan α-dominates p.

Generating fewer plans makes a multi-objective optimization algorithm run
faster [14]. This is because the execution time heavily depends on the number
of generated plans. Thus a pruning strategy dictated by PONO is at the core of
an approximation algorithm for multi-objective optimization.

0
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1

0
0.5

1

0.5

Plan

Dominated Area

Approximately 
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Fig. 4. Dominance Areas

Our α-approximation algorithm α-MOMRI is illustrated in Algorithm 1.
The main idea is to exploit a dynamic programming approach. The algorithm
begins by constructing a plan for each single user group (lines 2 to 5). We keep
all non α-dominated plans of single groups in a buffer. Then it builds group-sets
of size 2 up to size k using plans in the buffer (lines 7 to 11). After each iteration,
we remove α-dominated plans from the buffer. At the end, we return the buffer
content.
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Algorithm 2: Heuristic MOMRI (h-MOMRI)

Input: k, α,R
Output: Result set Ph

1 Ph ← ∅
2 N ← Set of intervals on diversity values
3 for n times do
4 Gs ← random groupset(k)
5 G∗s ← SHC (Gs)
6 interval ← get interval(G∗s)
7 N [interval ].add(G∗s)

8 end
9 for interval ∈ N do

10 Keep non-dominated plans in interval and add them to Ph
11 end
12 Ph ← optimize diameter(Ph)
13 return Ph

The crucial part of this simple algorithm is its pruning mechanism using
the precision value α. In the special case of α = 1, the algorithm operates
exhaustively (as described in Section 4.1). If α > 1, the algorithm prunes more
and hence is faster. In the latter case, a new plan is only compared with all plans
that generate the same result. But a new plan are only inserted into the buffer if
no other plan approximately dominates it. This means that α-MOMRI tends to
insert fewer plans than the exhaustive algorithm. Figure 4 helps illustrate this
statement using two of our objectives: diversity and coverage. The exhaustive
algorithm inserts new plans if they do not fall within the dominated area, but
α-MOMRI inserts new plans if they neither fall into the dominated nor into the
approximately dominated area.

4.3 Heuristic Algorithm

A heuristic algorithm has obviously its own advantages and disadvantages. Of
course a heuristic algorithm does not provide any approximation guarantee.
Eventually, it returns a subset of Pareto set. Nevertheless, the fact that it gen-
erates a subset of Pareto makes it faster.

Algorithm 2 illustrates our heuristic algorithm. The algorithm starts by mak-
ing n different iterations on finding optimal points to avoid local optima (lines
3 to 8). At each iteration, the algorithm begins with a random group-set of size
k called Gs (line 4). Then a Shotgun Hill Climbing [13] local search approach
(SHC ) is executed (Algorithm 3) to find the group-set with optimal value start-
ing from Gs (line 5). SHC maximizes coverage. Diversity is already divided into
intervals N for each of which a buffer is associated. The resulting group-set of
SHC is placed in the buffer whose interval matches the diversity value of the
group-set (line 7). Finally, n different solutions are distributed in different inter-
val buffers. The algorithm then iterates over interval buffers to prune dominated
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plans (lines 9 to 11). Based on Definition 4, a plan is pruned and removed from
its buffer if it is dominated by other plans. Finally, for each interval, we report
one unique solution that has the maximum/minimum value for diameter based
on the requested distribution (line 12).

SHC operates on a generalization/specialization lattice of groups (as in Fig-
ure 2). Navigation of this lattice in a downward fashion satisfies a monotonicity
property for coverage: given any two groups g1 and g2 where g1 is the parent of
g2, the coverage of g1 is no smaller than the coverage of g2.

Note that in a bi-objective context, SHC can optimize each one of coverage
and diversity. However, to benefit from the monotonicity property, we use SHC
to optimize coverage. Nevertheless, if we optimize diversity using SHC , naviga-
tion in the generalization/specialization lattice is nothing but a random walk
over the space of groups.

Algorithm 3: Shotgun Hill Climbing (SHC ) Algorithm

Input: Group-set G, R
Output: Optimized group-set G∗

1 G∗ ← ∅
2 while true do
3 C ← ∅
4 for g ∈ G and each lattice-based parent g′ of g do
5 G′ ← G− {g}+ {g}′
6 C.add(G′, coverage(G′, R))

7 end
8 let (G′m, coverage(G

′
m, R)) be the pair with maximum coverage

9 if coverage(G′m, R) ≤ coverage(G,R) then
10 G∗ ← G
11 return G∗

12 end
13 G← G′m
14 end

SHC verifies all local neighbors of a group for an improvement of coverage.
If no improvement is achieved, it stops and returns the current group-set. For
instance, consider the input group-setGs = {g1, g2} where g1 = {〈gender, male〉,
〈occupation, student〉} and g2 = {〈location, CA〉, 〈occupation, student〉}.
These two groups are marked in bold boxes in Figure 2. We obtain a coverage of
0.79 for Gs. Keeping g2 fixed, the resulting combinations by swapping g1 with its
parents are either g3 = {〈gender, male〉} or g4 = {〈occupation, student〉}. For
instance, the coverage of G′

s = {g2, g3} is 0.81. As we observe an improvement,
we iterate on this new group-set G′

s to improve coverage.
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4.4 Complexity Analysis

α-MOMRI: For each group-set of size between 1 and k, α-MOMRI verifies
the whole buffer content β (as in Algorithm 1) for dominance. Thus the time

complexity of α-MOMRI in the worst case is O(k.
(|G|
k

)
.|β|) where G is the set

of all k user groups. Size of the buffer is dictated by the number of Pareto
plans generated by the algorithm (hence a function of α). In case of an unlim-
ited buffer (i.e., the case for the exhaustive algorithm), the complexity becomes

O(k.
(|G|
k

)
.|G|) Note that |G| � |β| for α-MOMRI. This is why the approxima-

tion algorithm can perform much better than the exhaustive algorithm.

h-MOMRI: The time complexity of SHC in the worst case is TSHC = O(h.2|A|)
where h is the height of the generalization/specialization lattice and A is the set
of all attributes. The complexity of h-MOMRI is then O(n.(TSHC + |N |)) where
|N | is the number of diversity intervals.

Comparison: Concerning buffer size, it is always bound to n for h-MOMRI
and potentially n � |β|. Also the execution of α-MOMRI depends on the size
of the group space (G) which is not the case for the heuristic algorithm. Hence
h-MOMRI is faster.

5 Experiments

We run 3 sets of experiments. The first set justifies the need for multi-objective
optimization. In the second set, we vary different parameter values in order to
find the most appropriate values. The last set is a comparative evaluation of
α-MOMRI and h-MOMRI on the quality of retuned groups and the scalability
of those algorithms.

We consider two different rating datasets for our study: MovieLens and
BookCrossing. Both datasets have approximately the same number of ratings.
BookCrossing has one order of magnitude more users and items. Ratings in
MovieLens are expressed on a scale from 1 to 5 (higher values denoting higher
appreciation) while in BookCrossing, it is from 1 to 10. We divide the rat-
ings of the latter dataset by two, to make both datasets uniform. A cleaning
phase was also necessary for BookCrossing as the structure is often broken
(e.g., poor coded characters, lack of value, lack of separator, etc.) and this led
to pruning 118,606 unstructured ratings to finally obtain 1,031,175 ratings. We
briefly explain the dataset attributes we employ.

MovieLens Attributes: We consider four user attributes: gender, age, occupation
and zipcode. The attribute gender takes two distinct values: male or female.
We convert the numeric age into four categorical attribute values, namely teen-
ager (under 18), young (18 to 35), middle-age (35 to 55) and old (over 55).
There are 21 different occupations listed in MovieLens e.g., student, artist,
doctor, lawyer, etc. Finally, we convert zipcodes to states in the USA (or to
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foreign, if not in USA) by using the USPS zip code lookup.5 This produces
the user attribute location which takes 52 distinct values. Concerning item at-
tributes, MovieLens only provides movie genres. Thus we enriched this dataset
by crawling IMDb6 using the OMDb API.7 This gives us the director, writer
and release year of each movie.

BookCrossing Attributes: There are only two attributes for each user in
BookCrossing: age and location. Concerning age, we apply the same con-
version we made for MovieLens. Note that in this dataset, the age attribute is
missing for 110,776 users. Concerning location, we consider different levels (city,
state and country) as different independent attributes, hence we end up with 4
different user attributes. Note that unlike MovieLens, users of BookCrossing
are not located only in the USA. BookCrossing also offers information on each
book (item), i.e., writer, release year and publisher.

We implement our prototype system using JDK 1.8.0. All scalability experi-
ments are conducted on an 2.4 GHz Intel Core i5 with 8 GB of memory on OS
X 10.9.5 operating system.

For our experiments, we consider four different sets of input rating records
described in Table 1. Each item contains at least 50 ratings. We assume that it
is straightforward to analyze less than 50 ratings, manually.

Dataset Item (movie or book) Characteristic

American Beauty Highest number of ratings
Movie Celtic Pride Lowest number of ratings
Lens Sanjuro Highest avgerage rating

Kazaam Lowest average rating

Wild Animus Highest number of ratings
Book Scarlet Letter Lowest number of ratings
Crossing Free Lowest avgerage rating

Ground Zero & Beyond Highest avgerage rating
Table 1. Input Sets of Rating Records

For an input set of rating records, our algorithms return a set of group-sets.
We now illustrate an example output of α-MOMRI. The same observation holds
for h-MOMRI. Given a set of rating records R for the movie American Beauty
in MovieLens, k = 3, σ = 10 and the request for minimizing the rating di-
ameter (i.e., homogeneity), one of the returned group-sets is G1 = {g1, g2, g3}
where g1 = {〈gender, male〉}, g2 = {〈gender, female〉, 〈age, old〉} and g3 =
{〈gender, female〉, 〈location, CT〉}. The objective values for G1 are as fol-
lows: coverage(G1, R)=0.74, diversity(G1, R)=0.25 and diameter(G1, R)=0.38.

5 http://zip4.usps.com
6 http://www.imdb.com
7 http://www.omdbapi.com
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This group-set has a high coverage, as it only misses female reviewers who are
neither old nor residents of Connecticut. It also has a high diversity, as only 3
female reviewers (out of 946) for American Beauty are both old and residents
of Connecticut. Finally, it has also a low diameter, i.e., all groups in G1 are
homogeneous.

Another group-set for R is G2 = {g4, g5, g6} where g4={〈gender, male〉,
〈age, teen-ager〉}, g5 = {〈location, AZ〉} and g6 = {〈age, old〉}. The objective
values for G2 are as follows: coverage(G2, R)=0.1, diversity(G2, R)=0.33 and
diameter(G2, R) = 0.11. While G2 has a lower coverage than G1, it has a better
score for the two other objectives. Thus G1 and G2 are incomparable.

5.1 Need for Multi-Objective Optimization

What is the added value of multi-objective optimization? We compare first
MOMRI with MRI [4], a single-objective approach for group discovery which
some authors of this work have already proposed. MRI minimizes diameter and
considers a lower bound on coveragemin c. Given a set of rating recordsR for the
movie American Beauty in MovieLens, k = 3, min c = 0.7, one of the returned
group-sets by MRI is GMRI = {g1, g2, g3} where g1 = {〈gender, female〉, 〈age,
young〉}, g2 = {〈occupation, student〉, 〈age, young〉} and g3 = {〈gender,
male〉, 〈occupation, student〉}. The objective values for GMRI are as follows:
coverage(GMRI , R)=0.81, diversity(GMRI , R)=0.03 and diameter(GMRI , R) =
0.13. However, as diversity is not optimized, there exists huge overlap in groups:
many young reviewers are also students.

In the same context, one returned group-set by MOMRI is the one we al-
ready discussed in Example 2: GMOMRI = {g4, g5, g6} where g4 = {〈gender,
female〉, 〈age, young〉}, g5 = {〈age, young〉, 〈location, DC〉} and g6 = {〈gender,
male〉, 〈age, teen− ager〉}. The objective values for GMOMRI are as follows:
coverage(GMOMRI , R)=0.79, diversity(GMOMRI , R)=0.33 and diameter(GMOMRI ,
R) = 0.11. This group-set has optimized values on all objectives. Specifically, it
has a high diversity as only 2 female reviewers for American Beauty are both
young and residents of DC. It also shows that min c in MRI is a hard constraint
and can easily miss a promising result which has a very high coverage but does
not meet the threshold.

We already discussed that consistency of objectives transforms the multi-
objective problem into a single-objective one that is trivial to solve (Section 4).
In this experiment, we verify if our objectives (defined in Section 2.1) are con-
sistent. We maximize coverage and observe how values of diversity and diameter
evolve. To maximize coverage, we use Algorithm 3. Figure 5 illustrates the re-
sults for different sets of input rating records in Table 1. Each point illustrates
the objective values for each of 20 runs. Note that this experiment is independent
of the heuristic and the approximation algorithms.

We observe that in general, no correlation exists between the optimized value
of coverage and other objectives. Thus each objective should be optimized inde-
pendently.
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Fig. 5. Conflicting Objectives on MovieLens (top) and BookCrossing (bottom).
Movie/Book title initials are illustrated on points.

5.2 Effect of Application-Defined Parameters

In this section, we examine the influence of different parameters of Algorithms 1
and 2. The parameters which are employed by h-MOMRI are number of inter-
vals (nbintervals) and number of iterations (nbiterations). Also both algorithms
employ two other parameters: minimum group size (σ) and maximum number
of groups in a group-set (k). By default, we consider 10 intervals of diversity and
500 iterations for h-MOMRI and α = 1.5 for α-MOMRI. For both algorithms,
we consider k = 5 and we minimize diameter.

Minimum Group Size (σ) Not all combinations of attribute values can form
a group. Because some combinations may not cover at least σ rating records. For
instance, among rating records for Toy Story movie, there exists only 1 record
which can be described by this label: 〈male, young, lawyer, CA〉. Thus for any
σ > 1, this group would not be formed. In the first experiment, we illustrate the
evolution of the number of groups by varying σ. Figure 6 illustrates the results
for our 4 different sets of input ratings. The figure demonstrates a long-tail [7]: A
few ratings are extremely frequent, but the majority of the dataset is composed
of a large number of infrequent ratings. The long-tail transition is smoother in
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case of MovieLens as it is denser, i.e., its average number of ratings per user
is 4.14 times larger than BookCrossing. The long-tail reveals that choosing a
fair value of σ is indeed challenging. In our experiments, we fix σ = 10 for both
datasets, as this value is a border line between frequent ratings and the long tail.

0 20 40 60 80 100

0

10

20

30

40

10

σ

%
ra

ti
n
g

re
co

rd
s

American Beauty

Sanjuro

Celtic Pride

Kazaam

0 20 40 60 80 100

0

10

20

30

10

σ

%
ra

ti
n
g

re
co

rd
s

Wild Animus

Scarlet Letter

Free

Ground Zero

Fig. 6. Number of Groups as a Function of σ for MovieLens (left) and BookCrossing
(right)

Number of Intervals and Iterations We examine the effect of other pa-
rameters on execution time and number of solutions. When there is more than
one objective to optimize, there exists potentially many optimal solutions. Be-
cause those are incomparable (Example 4), it becomes tedious for an analyst to
deal with thousands of solutions. On the other hand, a limited subset of these
solutions may miss some interesting ones.

Figure 7 shows the effect of nbintervals on execution time and number of
solutions. We vary nbintervals from 2 to 40. Obviously increasing nbintervals
implies increasing result precision. However, we observe that it does not influence
the size of the result space or the execution time. Each set of input ratings has
almost a same value for all number of intervals. The order in which the values
appear is in accordance with their number of input rating records. There exists
different classes of values. For movies with less than 100 rating records, the
execution time and the result space size are pretty similar. It is also the case for
items with more than 1000 rating records (i.e., the movie American Beauty).

Figure 8 shows the effect of nbiterations on execution time and number of
solutions. We vary nbiterations from 2 to 2000 to measure its effect on execution
time and number of solutions. The hypothesis is that increasing the number of
iterations leads to increasing the result space size. We observe that this hypoth-
esis is only true when there is more than 1000 input rating records. In all other
cases, the increase in number of solutions is negligible. Regarding the execution
time, a linear behavior is observed which is far from being surprising.

Number of Returned Groups (k) Finally, we examine the effect of k on
execution time and performance (Figure 9). We vary k from 2 to 10. In all sets
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Fig. 7. Effect of nbintervals on Execution Time (left) and Result Space Size (right) for
MovieLens (top) and BooCrossing

of input rating records, increasing k leads decreasing the size of the result space.
Indeed, a bigger k means having bigger group-sets and less results. Nevertheless,
when there are less than 1000 input rating records, the decrease is negligible.
Same results hold for MovieLens.

5.3 Comparison of Algorithms

In this section, we compare h-MOMRI and α-MOMRI. Our hypothesis is that
h-MOMRI has a manageable solution space size compared to α-MOMRI which
leads to a reduced execution time.

First we compare the quality of algorithms regarding the dominance of solu-
tions. In multi-objective optimization, if for two algorithms X and Y , the major-
ity of X’s solutions dominate Y ’s, it means that X is able to produce solutions
with higher quality than Y . In this experiment, we make the same comparison
between α-MOMRI and h-MOMRI. For this experiment, we need to compare
each pair of α-MOMRI and h-MOMRI solutions. We count the number of times
each algorithm dominates the other in pairwise comparison of their results. We
consider α = 1.15 for α-MOMRI and nbintervals = 40 for h-MOMRI. We de-
note the set of α-MOMRI solutions as Pα and the set of h-MOMRI solutions as
Ph. We observe that for all sets of input rating records in Table 1, at least 62%
of solutions in Ph are dominated by solutions in Pα. This is because α-MOMRI
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Fig. 8. Effect of nbiterations on Execution Time (left) and Result Space Size (right)
for MovieLens (top) and BookCrossing (bottom)

generates the complete set of α-approximated Pareto plans, while h-MOMRI
produces a subset. For instance, for the movie American Beauty, α-MOMRI
produces 16 times more solutions than the heuristic algorithm. It is 14 times
bigger for the book Wild Animus. Evidently the solutions in Ph are either as
good as Pα’s or worse. Our results show that although α-MOMRI presents a
huge set of all Pareto plans, h-MOMRI can return an acceptable representative
subset where almost half of solutions are as good as the set Pα.

Concerning the huge difference in the size of solution sets, potentially a fairer
comparison is to consider objective values to neutralize the influence of size. We
observe that for all sets of input rating records in Table 1, h-MOMRI can achieve
a supremacy over α-MOMRI in 39.4% of cases. This is a promising result for h-
MOMRI which is in-line with our findings regarding the dominance comparison.
We believe that the supremacy of h-MOMRI can be increased in two ways: i.
by making a better balance of solution space size in each interval, and ii. by
employing a more intelligent navigation mechanism for diversity and diameter
as we do for coverage. We discuss the former in the next piece of experiments,
while the latter is future work.

In the second comparative experiment, we analyze the distribution of solu-
tions in h-MOMRI among diversity intervals. Note that the intervals have the
same width. If the solutions are equally distributed among intervals, the proba-
bility of missing Pareto plans decreases. Because in this case, there exists enough



Multi-Objective Group Discovery on the Social Web (Technical Report) 21

2 4 6 8 10

0

2

4

6

·104

k

T
im

e
(m
s)

Wild Animus

Scarlet Letter

Free

Ground Zero

2 4 6 8 10

0

20

40

60

80

100

k

#
S
o
lu

ti
o
n
s

Wild Animus

Scarlet Letter

Free

Ground Zero

Fig. 9. Effect of the Number of Returned Groups (k) on Execution Time (left) and
Result Space Size (right) for BookCrossing

instances in each interval which makes the probability of achieving Pareto plans
statistically more powerful. For this experiment, we first observe a huge amount
of empty intervals for most sets of input rating records. This is mainly because
for some set of input rating records, the maximum possible diversity is not 1,
but lower. In this case when we discretize diversity values into fixed-width in-
tervals, many of them remain empty. Hence in this experiment, we discretize
diversity values between zero and maximum possible diversity value for input
rating records.

Figure 10 illustrates the results for different intervals and different sets of
input rating records. The left chart illustrates the standard deviation for the
number of solutions in intervals. If for a set of input rating records, all intervals
contain the same number of solutions, then the standard deviation is equal to
zero. Also, the right chart illustrates number of intervals with no solution, i.e.,
empty intervals.

We observe a high heterogeneity when nbintervals < 10 for all sets of input
rating records and for both datasets. This means that by considering less than
10 intervals, we will potentially miss many Pareto plans. On the other hand,
increasing the number of intervals leads to increasing the number of empty in-
tervals which has the same consequence, i.e., missing Pareto plans. We then
fix nbintervals to 10 as it exhibits the best tradeoff between heterogeneity and
emptiness. This value of nbintervals increases the chance of discovering more
Pareto plans in h-MOMRI, but as some amount of heterogeneity still remains
even for nbintervals > 10, we cannot consider h-MOMRI as a safe replacement
for α-MOMRI.

Now we compare α-MOMRI and h-MOMRI concerning their performance
and the number of solutions they produce. We consider 3 different instances for
each algorithm: for α-MOMRI, we consider instances with α = 2 (A), α = 1.5
(B) and α = 1.15 (C), and for h-MOMRI, we consider instances with 5 (D), 10
(E) and 40 (F ) intervals. We run this experiment with 4 items having the highest
amount of rating records as items with fewer records exhibit similar behavior.
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Fig. 10. Distribution of Solutions in Intervals in MovieLens (top) and BookCrossing
(bottom)

Figure 11 illustrates the results. As expected, in general the number of solu-
tions produced by h-MOMRI is one order of magnitude less than α-MOMRI
in both datasets. In both algorithms, the number of ratings records play an
important role and increases the the number of solutions.

5.4 Choosing between α-MOMRI and h-MOMRI

Both α-MOMRI and h-MOMRI are useful for analysts in different scenarios.
α-MOMRI can be used in an offline context to produce an exhaustive set of user
groups with a precision defined by α for further analysis. For instance, a movie
rating website (like IMDb) can index user groups generated offline and execute
various user queries like ‘what are interesting groups of female teenagers who have
rated romantic movies’. On the other hand, in an online or streaming context,
h-MOMRI is beneficial because it can immediately produce a representative
subset of results. For instance, in a movie rating website an analyst can quickly
observe interesting user groups of comedy and romantic movies.

6 Related Work

To the best of our knowledge, no approach has proposed and formalized the
problem of discovering user groups for collaborative rating datasets by consid-
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Fig. 11. Comparison of α-MOMRI and h-MOMRI Algorithms in Execution Time
(left) and # Solutions (right) on MovieLens (top) and BookCrossing (bottom)

ering multiple independent and conflicting quality dimensions. Recent studies8

have shown an interest in reporting statistics about pre-defined groups, as op-
posed to our work where we look to discover high-quality user groups on the fly.
However our work does relate to a number of others in its aim and optimization
mechanism.

There exist different approaches to solve a multi-objective problem [14, 15].
We already discussed that Scalarization does not work in our case (Section 5.1).
Another popular method is ε-constraints [12] where one objective is optimized
and others are considered as constraints. The approach in [4] can be seen as a
relaxed ε-constraints version of our problem.

Another approach is Multi-Level Optimization [11] which needs a meaningful
hierarchy between objectives. In our case, all objectives are independent and
conflicting, hence using this mechanism is not feasible. In this work, we focused
on [5, 14] mainly because of their recency and the adequacy of their data model
to our problem.

User groups can be discovered by clustering methods [1–3, 9] where a sin-
gle objective is optimized. Multi-Objective clustering [8, 10] is an improvement
where clusters are obtained from n different clustering algorithms. This guar-
antees clusters with high quality in multiple dimensions. This is a two-step ap-
proach where i. each clustering algorithm, applied to one quality dimensionin
our case, generates its own set of clusters, ii. a goodness measure picks target

8 http://blog.testmunk.com/how-teens-really-use-apps/
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clusters by combining results of all algorithms. However, the definition of a good-
ness measure is subjective and does not guarantee that all desired objectives are
optimized.

MOMRI scans data only once as the pruning technique in α-MOMRI con-
siders all objectives at the same time and ddetermines if a candidate group-set
should or not be kept for further comparisons. On the other hand, another chal-
lenge of clustering which has received less attention, is information overload,
i.e., on real data, there exists usually millions of clusters which make the analy-
sis tedious. Using h-MOMRI, the analyst receives a manageable subset of high
quality results in a reasonbale time. More (precise) results are returned by re-
ducing α for α-MOMRI or increasing nbintervals for h-MOMRI.

7 Conclusion and Future Work

In this paper, we investigated the question of finding the best group-sets that
characterize a database of rating records of the form 〈i, u, s〉, where i ∈ I, u ∈ U ,
and s is the integer rating that user u has assigned to item i. We showed that
the problem of finding high-quality group-sets is NP-Complete and proposed
a constrained Multi-Objective formulation. Our formulation incorporates local
and global group desiderata. We proposed two algorithms that find group-sets
as instances of Pareto plans. The first one α-MOMRI, is an α-approximation
algorithm and the second, h-MOMRI, is a heuristic-based algorithm. Our ex-
tensive experiments on MovieLens and BookCrossing datasets show that
our approximation finds high quality groups and that our heuristic is very fast.
without compromising quality.

Our work can be improved in many ways. In particular, we plan to perform
an extensive user study to be able to evaluate the quality of returned group-sets.
An online poll (about movies or books) could be used to build a ground-truth
and will be used to evaluate the usefulness of our group-sets. Also, we plan to
investigate an extensive analysis of rating distributions for our algorithms using
some dispersion measures.
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8 Appendix: Optimality and Near-Optimality Proofs

In all of the following theorems, we consider two group-sets G and G′ and two
sub group-sets G1, G2 for G and G′

1, G′
2 for G′ such that:

– G1 ∪G2 = G, G1 ∩G2 = ∅;
– G′

1 ∪G′
2 = G′, G′

1 ∩G′
2 = ∅;

– |G| = |G′|, |G1| = |G′
1| and |G2| = |G′

2|;
– User groups in {G,G′, G1, G2, G

′
1, G

′
2} are distinct, i.e., each group cannot

appear more than once in a group-set;
– ∀g1 ∈ G1 ∧ g2 ∈ G2, g1 * g2 ∧ g2 * g1;
– Σg1∈G1,g2∈G2

|g1 ∩ g2| ≤ Σg′1∈G′
1,g

′
2∈G′

2
|g′1 ∩ g′2|.

8.1 Optimality Proofs

Theorem 2. Coverage (Equation 1) satisfies POO.

Proof. Given the fact that:

– coverage(G,R) is a monotone function;
– coverage(G1 ∪G2, R) = coverage(G,R);

Then the left part of the POO implication coverage(G1, R)≥ coverage(G′
1, R)

∧ coverage (G2, R) ≥ coverage(G′
2, R) → coverage(G,R) ≥ coverage(G′, R)

can be transformed to coverage(G1 ∪ G2, R) ≥ coverage(G′
1 ∪ G′

2, R) and then
coverage(G,R) ≥ coverage(G′, R), i.e., the right part of the implication, hence,
the proof. ut

Theorem 3. Diversity (Equation 2) satisfies POO.

Proof. In Equation 2, the compoenent (Σg,g′∈G|r ∈ R, r l g ∧ r l g′|) com-
putes the amount of overlap. We use the notation ovG to denote this compo-
nent. Thus diversity(G,R) = 1/(1 + ovG). Obviously whenever ovG increases,
diversity(G,R) decreases. Thus we transform the POO implication to ovG1

≤
ovG′

1
∧ ovG2 ≤ ovG′

2
→ ovG ≤ ovG′ . It is obvious that larger overlaps in G′

1 and
G′

2 compared to G1 and G2 lead a larger overlap in G′ compared to G. It is true
only if there is no overlap between sub group-sets. ut

Theorem 4. Diameter (Equation 3) satisfies POO.

Proof. We consider homogeneity in this proof. The extension to polarization is
straightforward. For simplicity, we convert the formulation to the following form:
diameter(G) = avgg∈G(diff (g)).

Step 1. The left part of the POO implication diameter(G1, R) ≤ diameter(G′
1, R)

∧ diameter(G2, R) ≤ diameter(G′
2, R) is then equal to avgg∈G1

(diff (g)) ≤
avgg∈G′

1
(diff (g)) ∧ avgg∈G2

(diff (g)) ≤ avgg∈G′
2
(diff (g)). It can be transformed

to (avgg∈G1
(diff (g)) ×|G1|) ≤ (avgg∈G′

1
(diff (g))×|G1|) ∧(avgg∈G2

(diff (g))×
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|G2|) ≤ (avgg∈G′
2
(diff (g))× |G2|) (i.e., multiplying a constraint to both parts of

inequalities).

Step 2. As summation is a monotone function, we merge two parts of the con-
junction to obtain the following: (avgg∈G1

(diff (g))×|G1|)+(avgg∈G2
(diff (g))×

|G2|) ≤ (avgg∈G′
1

(diff (g))×|G1|)+(avgg∈G′
2

(diff (g))×|G2|) and then ((avgg∈G1

(diff (g))×|G1|) /|G|) + ((avgg∈G2
(diff (g)) × |G2|)/ |G|) ≤ ((avgg∈G′

1
(diff (g))

× |G1|) /|G|) + ((avgg∈G′
2

(diff (g)) × |G2|) /|G|) (i.e., dividing the whole in-

equality by |G|).

Step 3. Recall |G| = |G′| then ((avgg∈G1
(diff (g)) × |G1|) /|G|) + ((avgg∈G2

(diff (g))×|G2|) /|G|) ≤ ((avgg∈G′
1

(diff (g))×|G1|) /|G′|) + ((avgg∈G′
2

(diff (g))

× |G2|) /|G′|). Based on the definition of average function, the expression is equal
to avgg∈G (diff (g) ≤ avgg∈G′(diff (g)), i.e., the right part of the formula, hence
the proof. ut

8.2 Optimality Proofs

Theorem 5. Coverage (Equation 1) satisfies PONO.

Proof. Given the same facts in the proof of Theorem 2, the left part of the
PONO implication can be transformed to coverage(G1∪G2, R) ≥ coverage(G′

1∪
G′

2, R) × α and then coverage(G,R) ≥ coverage(G′, R) × α, i.e., the right part
of the implication, hence, the proof. ut

Theorem 6. Diversity (Equation 2) satisfies PONO.

Proof. We reuse the notation we introduced in the proof of Theorem 3 and define
diversity(G,R) = 1/(1+ovG). The PONO implication for diversity based on ovG
is ovG1

< (ovG′
1
× α) ∧ ovG2

< (ovG′
2
× α) → ovG < ovG′ × α. As summation

is a monotone function, then we can transform the left part of the implication
to ovG1

+ ovG2
< (ovG′

1
× α) + (ovG′

2
× α) ⇒ ovG1

+ ovG2
< α× (ovG′

1
+ ovG′

2
)

⇒ diversity(G1, R) + diversity(G2, R) ≥ α(diversity(G′
1, R) + diversity(G′

2, R))
⇒ diversity(G,R) ≥ diversity(G′, R)× α, hence the proof. ut

Theorem 7. Diameter (Equation 3) satisfies PONO.

Proof. We consider homogeneity in this proof. The extension to polarization is
straightforward. For simplicity, we convert the formulation to the following form:
diameter(G) = avgg∈G(diff (g)).

Step 1. The left part of the PONO implication diameter(G1, R) ≤ (diameter(G′
1, R)×

α)∧diameter(G2, R) ≤ (diameter(G′
2, R)×α) is then equal to avgg∈G1

(diff (g)) ≤
(avgg∈G′

1
(diff (g)) × α) ∧ avgg∈G2

(diff (g)) ≤ (avgg∈G′
2
(diff (g)) × α). It can be

transformed to (avgg∈G1
(diff (g)) × |G1|) ≤ (avgg∈G′

1
(diff (g)) × |G1| × α) ∧

(avgg∈G2
(diff (g))× |G2|) ≤ (avgg∈G′

2
(diff (g))× |G2| × α).
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Step 2. As summation is a monotone function, we merge two parts of the con-
junction to obtain the following: (avgg∈G1

(diff (g))×|G1|)+(avgg∈G2
(diff (g))×

|G2|) ≤ (avgg∈G′
1
(diff (g)) × |G1| × α) + (avgg∈G′

2
(diff (g)) × |G2| × α) and

then ((avgg∈G1
(diff (g)) × |G1|) /|G|) + ((avgg∈G2

(diff (g)) × |G2|) /|G|) ≤
(α× ((avgg∈G′

1
(diff (g)) × |G1|) /|G|)+ ((avgg∈G′

2
(diff (g))× |G2|)) /|G|).

Step 3. Recall |G| = |G′| then ((avgg∈G1
(diff (g)) × |G1|) /|G|) + ((avgg∈G2

(diff (g)) × |G2|) /|G|) ≤ (α×((avgg∈G′
1

(diff (g)) × |G1|) + (avgg∈G′
2
(diff (g))×

|G2|)) /|G′|). Based on the definition of average function, the expression is equal
to avgg∈G (diff (g) ≤ α × avgg∈G′ (diff (g)), i..e, the right part of the formula,
hence the proof. ut


