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Polydisperse sedimentation models can be described by a strongly coupled system of conservation laws
for the concentration of each species of solids. Typical solutions for the sedimentation model considered
for batch settling in a column include stationary kinematic shocks separating layers of sediment of differ-
ent composition. This phenomenon, known as segregation of species, is a specially demanding task for
numerical simulation due to the need of accurate numerical simulations. Very high-order accurate solu-
tions can be constructed by incorporating characteristic information, available due to the hyperbolicity
analysis made in Donat and Mulet [A secular equation for the Jacobian matrix of certain multispecies

kinematic flow models, Numer. Methods Partial Differential Equations 26 (2010), pp. 159–175.] But
characteristic-based schemes, see Bürger et al. [On the implementation of WENO schemes for a class

of polydisperse sedimentation models, J. Comput. Phys. 230 (2011), pp. 2322–2344], are very expensive
in terms of computational time, since characteristic information is not readily available, and they are not
really necessary in constant areas, where a less complex method can obtain similar results. With this idea
in mind, in this paper we develop a hybrid finite difference WENO scheme that only uses the characteristic
information of the Jacobian matrix of the system in those regions where singularities exist or are starting
to develop, while it uses a component-wise approximation of the scheme in smooth regions. We perform
some experiments showing the computational gains that can be achieved by this strategy.

Keywords: finite difference WENO schemes; component-wise schemes; polydisperse sedimentation

2000 AMS Subject Classifications: 35L65; 65M06; 76T20

1. Introduction

High Resolution Shock Capturing (HRSC) schemes are one of the most important tools used

nowadays to compute accurate numerical approximations to the solution of many hyperbolic

systems of conservation laws. They are usually developed combining an upwind framework,

that is, taking into account the direction of propagation of the information, and a high-order

interpolatory technique to prevent the development of spurious numerical oscillations.

Most of these HRSC schemes require a specific knowledge of the spectral decomposition of

the Jacobian matrix of the system, since the eigenvalues and eigenvectors are used to compute the
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numerical approximations by local projections to characteristic fields. The numerical solutions

that we obtain are often excellent in terms of resolution power. However, in many cases, as in

sedimentation models for polydisperse suspensions, the spectral information is quite difficult to

obtain, due to the lack of closed formulas for the eigenstructure of the flux Jacobian. Therefore,

the computational effort needed to apply these complex techniques may be fairly considerable.

When solving hyperbolic systems of conservation laws, non-smooth structures might develop

spontaneously and evolve in time. Resolving adequately those regions of strong variation

requires the use of very fine grids. But, taking into account that we are working with uniform

meshes, the solution will be over resolved in regions where it is smooth.

It is well known that the costly numerical computations involved in these schemes are only

necessary at existing singularities or when these are about to form. Consequently, we can reduce

the computational cost of the scheme, while maintaining its high-order properties, by using

expensive resources only at the neighbourhood of a singularity.

Many adaptive techniques, which aim to concentrate the computational effort near singu-

larities or sharp transition regions, have been developed in the literature [9,14,19]. The most

remarkable examples are the Multiresolution strategy, based on the multilevel strategies first

introduced by Harten [12], and the Adaptive Mesh Refinement techniques [1,2].

In this work, we propose a hybrid scheme that substitutes the costly characteristic-based com-

putation of the numerical fluxes by a component-wise approach of the scheme when the solution

is smooth enough. We use polydisperse sedimentation models to test the efficiency of the hybrid

scheme mainly for two reasons: First, because of the high computational effort needed to com-

pute the spectral information which have to be computed in the SPECINT scheme. If the spectral

information is easily available this hybrid scheme, as well as multiresolution schemes, can not

improve the results obtained in terms of efficiency. Secondly because it is near sharp transitions

where we need to improve the approximate results without increasing the computational cost and

we know that the typical solutions for the sedimentation model considered for batch settling in

a column include stationary kinematic shocks separating layers of sediment of different compo-

sition which is a special demanding task for numerical simulation due to the need of accurate

numerical simulations.

The paper is organized as follows: First of all, in Section 2, we recall the basic facts of the

Masliyah–Lockett–Bassoon (MLB) polydisperse sedimentation model [16,18], its hyperbolicity

and bounds on characteristic speeds. In Section 3, we briefly describe the main ingredients of

finite difference WENO schemes. In Section 4 we explain the basic strategy used in our cost-

effective alternative to characteristic-based schemes and in Section 5 we perform some numerical

experiments and analyse the quality of the numerical approximations obtained with the hybrid

scheme and its efficiency. Finally, we draw some conclusions in Section 6.

2. Polydisperse sedimentation models

Polydisperse suspensions are mixtures composed of small solid particles belonging to M dif-

ferent species, that vary in size or density, and which are dispersed in a viscous fluid. We

denote the diameter of the ith species as Di and we assume the species to be ordered so that

D1 > D2 > · · · > DM . In this work, we will only consider particles of the same density.

If we denote φi as the volume fraction of particle species i and vi for the phase velocity of

species i, then the continuity equations of the M species are

∂tφi + ∂x(φivi) = 0, i = 1, . . . , M ,

where t is time and x is depth.
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The velocities v1, . . . , vM are assumed to be given functions of the vector of local concen-

trations � := �(x, t) := (φ1(x, t), . . . , φM (x, t))T (kinematic assumption). This yields nonlinear,

strongly coupled systems of conservation laws of the type

�t + f (�)x = 0, (1)

where the components of the flux function f (�) = (f1(�), . . . , fM (�))T are given by

fi(�) := φivi(�), i = 1, . . . , M .

We seek solutions � = �(x, t) such that φi ≥ 0, ∀i = 1, . . . , M , and φ :=
∑M

i=1 φi ≤ φmax,

where the parameter φmax ∈ (0, 1] stands for a given maximum solids concentration.

The velocity model for polydisperse sedimentation considered in this work is the MLB model

[16,18], which is one of the most commonly used velocity models for polydisperse sedimenta-

tion. It arises from the continuity and linear momentum balance equations for the solid species

and the fluid through suitable constitutive assumptions and simplifications (cf. [3]). For particles

that have the same density, the velocities v1(�), . . . , vM (�) are given by

vi(�) = ν(1 − φ)V(φ)(d2
i − (φ1d2

1 + · · · + φM d2
M )), ν =

(̺s − ̺f)gD2
1

18µf

,

where ̺s and ̺f are the solid and fluid densities respectively, g is the acceleration of gravity, di

are the normalized particle sizes di = Di/D1 for i = 1, . . . , M , µf is the fluid viscosity and V is

an empirical hindered settling function assumed to satisfy

V(0) = 1, V(φmax) = 0, V ′(φ) ≤ 0 for φ ∈ [0, φmax].

A standard choice for V(φ) is given by Richardson–Zaki’s hindered settling function [20]:

V(φ) =

{

(1 − φ)nRZ−2, 0 ≤ φ ≤ φmax;

0, otherwise.

with nRZ > 2, φmax < 1.

For the typical application of batch settling of a suspension in a column of height L > 0,

Equation (1) is defined for (x, t) ∈ (0, L) × (0, T) and zero-flux boundary conditions are pre-

scribed:

f |x=0 = f |x=L = 0.

As it can be seen in [3,10], the MLB model is strictly hyperbolic whenever φi > 0 for all

i = 1, . . . , M , and φ < φmax. The eigenvalues λi = λi(�) of the Jacobian matrix f ′(�) satisfy

the interlacing property

vM+1(�) < λM (�) < vM (�) < λM−1(�) < vM−1(�) < · · · < λ1(�) < v1(�), (2)

where the lower bound is given by

vM+1(�) = ν(d2
M V(�) + ((1 − φ)V ′(φ) − 2V(φ))(d2

1φ1 + · · · + d2
M φM )).

3. Finite difference WENO schemes

In order to simplify the notation, let us restrict ourselves to one-dimensional scalar conservation

laws with properly prescribed initial and boundary conditions on some interval, which can be

written as:

�t + f (�)x = 0. (3)

Finite differences WENO schemes (see [23]) can be naturally extended to multiple dimensions

by design and to systems via local characteristic decompositions.
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First of all, we consider a uniform grid on [0, L] defined by the points xi = (i − 1
2
)�x,

i = 1, . . . , N , which are the centres of the cells whose boundaries are given by xi+1/2 = xi +

�x/2, where �x = L/N is the uniform grid spacing, so that, the boundaries of the interval [0, L]

are 0 = x1/2 and L = xN+1/2.

In order to obtain high-order finite difference conservative schemes to solve Equation (3),

we use Shu and Osher’s technique [23], for which the conservative property of the spatial

discretization is obtained by implicitly defining, for fixed t, �x, the function ϕ as:

f (�(x, t)) =
1

�x

∫ x+�x/2

x−�x/2

ϕ(ξ) dξ ,

so that the spatial derivative in Equation (3) is exactly obtained by a conservative finite difference

formula that involves values of ϕ at the cell boundaries,

f (�(x, t))x =
1

�x

(

ϕ

(

x +
�x

2

)

− ϕ

(

x −
�x

2

))

.

We can compute highly accurate approximations to ϕ(x ± �x/2), denoted by ϕ̂, using known

grid values of f (�) (which are cell-averages of ϕ) and a reconstruction method R (a function

whose cell-averages coincide with the given ones) as ϕ(xi+1/2) = ϕ̂(xi+1/2) + d(xi+1/2)�xr +

O(�xr+1), with d a Lipschitz function, where

ϕ̂(x) = R(fi−p, . . . , fi+q; x), fl = f (�(xl, t)).

We can thus discretize the spatial derivative in Equation (3) as:

(f (�))x(xi) =
f̂i+1/2 − f̂i−1/2

�x
+ O(�xr), f̂i+1/2 = ϕ̂(xi+1/2).

The spatially discretized problem

�′
i(t) = D(�(t))i, �k = [φ1,k , . . . , φM ,k]T, D(�)i =

f̂i+1/2(�) − f̂i−1/2(�)

�x
,

for approximations �i(t) ≈ �(xi, t), can be solved using an appropriate ODE solver. In this paper

we use the third-order TVD Runge–Kutta scheme proposed in [22,23]:

�(1) = �n − �tD(�n),

�(2) = 3
4
�n + 1

4
�(1) − 1

4
�tD(�(1)),

�n+1 = 1
3
�n + 2

3
�(2) − 2

3
�tD(�(2)),

, (4)

where �n
i ≈ �i(tn).

To extend these schemes to systems of conservation laws, if we know the full spectral decom-

position of the Jacobian matrix f ′(�) then we can compute the numerical flux f̂i+1/2 := ϕ̂(xi+1/2)

using an upwind characteristic-wise scheme as:

f̂i+1/2 =

M
∑

k=1

rk(R+(lk · f
+,k

i−2 , . . . , lk · f
+,k

i+2 ; xi+1/2))

+

M
∑

k=1

rk(R−(lk · f
−,k

i−1 , . . . , lk · f
−,k

i+3 ; xi+1/2)), (5)

where rk = rk(�i+1/2), lk = lk(�i+1/2), are the right and left normalized eigenvectors corre-

sponding to the eigenvalue λk(f
′(�i+1/2)) of the flux Jacobian f ′(�i+1/2), respectively, computed
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at �i+1/2 = 1
2
(�i + �i+1), for k = 1, . . . , M . The functions f ±,k define a flux-splitting, that is,

they verify f +,k + f −,k = f , and are upwind fluxes, that is, ±λk((f ±,k(�))′) ≥ 0. In (5) we denote

f
±,k

i := f ±,k(xi) and R± are upwind biased reconstruction operators, WENO5 reconstructions in

our case. We refer the reader to [13,15] for further details about the WENO method.

In this work we define the functions f ±,k given by the Lax–Friedrichs (LF) flux-splitting

f ±,k(�) = 1
2
(f (�) ± αk�) with αk verifying:

max{|λk(f
′(�))|/k = 1, . . . , M , � ∈ K} ≤ αk ,

where K is some relevant range where this maximal k-characteristic velocity is estimated. In

many applications, specially when all characteristic fields are either genuinely nonlinear or

linearly degenerate, it is enough to consider K = {�i, �i+1}.

The characteristic fields of the MLB model are not genuinely nonlinear nor linearly degen-

erate, so a more sophisticated bound αk , based on the interlacing property (2), was proposed

in [6]:

αk = max{|vi(�)|, |vi+1(�)|/� ∈ [�i, �i+1]},

where [�i, �i+1] denotes the line segment determined by �i, �i+1 ∈ R
M . The resulting scheme

will be referred to as SPECINT.

Characteristic-wise schemes have a main disadvantage: the high computational cost needed to

obtain the spectral decomposition of the Jacobian matrix of some problems for which no closed

formulas are available. To undertake this shortcoming, a component-wise approach for these

schemes was developed in [24]. For these schemes, the value of the numerical flux vector f̂i+1/2

is computed by setting lk
l = rk

l = δk,l in Equation (5) and f ±,k = f ±, for any k, l = 1, . . . , M .

Then, the numerical flux for the component-wise scheme reads as:

f̂i+1/2,k = R
+(f +

i−2,k , . . . , f +
i+2,k; xi+1/2) + R

−(f −
i−1,k , . . . , f −

i+3,k; xi+1/2). (6)

It is known that component-wise schemes obtained from global LF flux splittings f ± have an

oscillatory behaviour, see, for example [10], and that their numerical solutions tend to be quite

diffusive, due to the global prescription of numerical viscosity, as it could be seen for example

in [6,10]. In this work, we use a local LF flux-splitting which alleviates the excessive diffusion

and the oscillatory behaviour showed by its global counterpart (see [17] for more details).

4. The hybrid algorithm

Once we have given the details of the constitutive elements of our algorithm, we describe next

the smoothness analysis and the corresponding computation of the numerical fluxes f̂i+1/2.

To determine the local smoothness of the solution on a uniform grid on [0, L] we use the

procedure defined by Chiavassa and Donat in [7], adapting it to our problem. In their work, the

authors presented a method based on point-value multiresolution transform used to detect regions

with singularities.

From the discrete computational data φj,i = φj(xi, t), for each component j = 1, . . . , M and

spatial location i = 1, . . . , N , we can compute a set of interpolated values of φj,i, denoted by φ̄j,i,

considering a 4-point centred interpolatory technique as:

φ̄j,i = I[xi; φj] =
9

16
(φj,i+1 + φj,i−1) − 1

16
(φj,i+3 + φj,i−3). (7)
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The values φj,i are extended when i /∈ {1, . . . , N} as follows:

φj,i =

{

φj,1−i i < 1,

φj,2M+1−i i > N .
(8)

Using this set of interpolated values, we can define the coefficients γj,i as the absolute value of

the difference between exact and interpolated data:

γj,i = |φj,i − φ̄j,i|.

Note that the coefficients γj,i are interpolation errors which can be used directly as ‘sensors’ in

order to localize non-smooth behaviour.

Once this set of coefficients is computed, we use them to create a boolean flag vector for each

component, whose values (0 or 1) determine the choice of the procedure to evaluate f̂i+1/2. For

each component and for each spatial location, we define the flag vector bj = (bj,i)i=1,...,N as:

bj,i =

⎧

⎨

⎩

1, if max
k=−1,0,1

γj,i+k ≥ ε max
i

γj,i;

0, if max
k=−1,0,1

γj,i+k < ε max
i

γj,i,

where ε is a given tolerance parameter, 0 < ε < 1, which controls the difference between the

numerical values and the interpolated values. Notice that by considering maxk=−1,0,1 γj,i+k we add

a safety region of one cell surrounding the cells that would have been flagged by only regarding

the local detail γj,i. Finally, using all the boolean flag vectors computed for each component, we

can define the boolean flag vector Bi = ∨M
j=1bj,i.

The behaviour of the solution of the problems we are focused on at the boundaries is well

known: near the bottom boundary non-smooth structure is created while at the top boundary

the solution rapidly attains zero concentration. The extrapolation defined for the computation

of the interpolated values near the boundaries (8) would be exact near the top boundary, due

to the constancy of the solution. At the bottom boundary the interpolated values φ̄j,i would not

be accurate approximations of the real values φj,i assuring this region to be flagged over time.

Therefore, it is not necessary to use a higher order extrapolation near the boundaries.

Notice that this thresholding algorithm takes into consideration that large values of the coef-

ficients γj,i correspond to non-smooth regions of the solution and produces a flagged region

containing the singularities that are present in all the components of the solution.

Finally, for each i = 1, . . . , N , we compute the numerical flux f̂i+1/2 depending on the value of

the boolean flags Bj as:

• If Bi = 1 or Bi+1 = 1, the location has been flagged as non-smooth and a precise compu-

tation of the numerical flux is required, so we compute f̂i+1/2 with the characteristic-based

version (5).

• Otherwise we are located in a smooth region, so we compute f̂i+1/2 with the component-wise

version (6).

As Chiavassa and Donat stated in their work [7], when using a Runge–Kutta ODE solver it is

not necessary to compute the flag vector in each Runge–Kutta stage in Equation (4). As �(1) is

an approximation of �n+1, it contains similar non-smooth structures at the same places, thus the

flag coefficients obtained from the computation of �(1) can be used to compute �(2) from �(1)

and �n+1 from �(2), thus avoiding the computation of the flag coefficients in two of the three

stages of the Runge–Kutta ODE solver. With this modification, we can reduce the computational

cost of the hybrid scheme, without losing accuracy in the numerical results.
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The CPU gain of this algorithm stems from the fact that the cost of the component-wise

approximation of the scheme is significantly smaller than the characteristic-based approach cost.

For example, for the polydisperse sedimentation tests that we will see in the next section, the cost

of the component-wise approximation of the scheme is about 4.5 and 18 times smaller, respec-

tively, than the characteristic-based approach cost, as it could be seen in [17]. The efficiency of

the scheme depends on the problem.

5. Numerical experiments

In this section we present and analyse the results obtained with our hybrid algorithm applied to

two typical sedimentation experiments for batch settling in a column that one can find in the

literature. The value of the threshold parameter ε that we are going to use in all the subsequent

tests is ε = 0.1.

We use a varying time step �t computed as:

�t =
0.5�x

C
,

where C is an estimate of the maximal characteristic velocity of the approximated solution at

the given time step. The computation of this parameter depends on the scheme used. For the

SPECINT scheme, the estimate is based on the computed eigenvalues. For the component-wise

scheme, we use the bounds on the eigenvalues quoted in Equation (2). For our hybrid scheme we

just merge both strategies, using the computed eigenvalues, determined in trouble regions, and

the approximated eigenvalues, computed using the interlacing property (2) in smooth regions, to

compute the parameter C.

The edges of the spatial domain [0, L] are the cell interfaces x1/2 = 0 and xN+1/2 = L. In order

to ensure the conservation of each species throughout the time evolution, our implementation for

the zero-flux boundary conditions is as follows:

f̂1/2 = f̂N+1/2 = 0.

In all subsequent figures depth is assume to be normalized between 0 and 1.

The L1-error for an approximation (φj,i), i = 1, . . . , N , j = 1, . . . , M to the solution at the cell

centres xi and given time t, (φj(xi, t)), is computed as

1

N

N
∑

i=1

M
∑

j=1

|φref
j,i − φj,i|,

where (φref
j,i ) is a reference solution computed at a fairly high resolution, with SPECINT scheme

in our case, and interpolated at the coarse cell centres.

In the following experiments we work with normalized depth, consequently, the spatial coor-

dinate x varies between x = 0 (surface of the suspension) and x = 1 (bottom of the settling

column).

Test 1. We consider the standard test case, proposed by Greenspan and Ungarish [11], defined

by an initially homogeneous suspension in a column of height L = 0.3 m with four different

species of particles with same density ̺s = 2790 kg/m3 and different normalized sizes d1 =

1, d2 = D2/D1 = 0.8, d3 = D3/D1 = 0.6 and d4 = D4/D1 = 0.4 with D1 = 4.96 · 10−4 m. The

initial concentrations of the particles are φ0
i = 0.05 for all i = 1, . . . , 4, the Richardson–Zaki

exponent is nRZ = 4.7 and the maximum total concentration is φmax = 0.68. The density and
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viscosity of the fluid are ̺f = 1208 kg/m3 and µf = 0.02416 kg/(s · m), respectively. This test

was solved numerically, for example, in [5,6].

In Figure 1, we display the reference solutions φ1, . . . , φ4 and the global density φ =
∑

i φi,

computed with the SPECINT scheme with N = 6400 cells and t = 300 s. In Figure 2 we dis-

play some enlarged views of the numerical approximations of φ4 computed with a local LF
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Figure 1. Reference solutions of test 1. (a) φ1, . . . , φ4 and (b) φ =
∑

i φi computed with SPECINT scheme for
t = 300 s and N = 6400 cells.
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Figure 2. Enlarged views of some discontinuities present in the numerical approximation of φ4 for test 1 computed
with t = 300 s and N = 400 ((a) and (c)) and N = 1600 ((b) and (d)).
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component-wise scheme (LLF), our hybrid scheme (HYB-LLF) and the characteristic-based

SPECINT scheme, using two meshes of N = 400 and N = 1600 cells.

It can be seen throughout those pictures that the approximations obtained with the hybrid

scheme are less oscillatory than their LLF counterparts, being quite similar to the SPECINT

approximations. The conclusions about the qualitative behaviour of the approximations that we

could draw from inspection of the other components would be similar to those obtained for our

choice.

In Figure 3 we show the numerical solutions and the flag vectors obtained using meshes of

N = 100, 400 and 1600 cells. As we expect, when we use coarser meshes the flagged area is

wider and could include some smooth regions, specially small smooth regions located between

shocks. But when we refine the mesh, the flagged regions fit exactly with regions with sharp

transitions and strong shocks. In Figure 4 we can see how the numerical solutions and the flag

vectors evolve with time for a fine mesh of N = 1600 cells.

To perform quantitative assessments, in Table 1 and Figure 5 we show the approximate

L1-errors and the CPU times for this test. We have run each of the schemes for N = 100, 200,

400, 800 and 1600 and recorded its CPU time for the execution and approximate L1-error. Each

symbol in a given graphic corresponds to a number N of cells.

As could be expected from the previous comments, our hybrid scheme is more accurate than

the LLF scheme, the SPECINT being of course the most accurate. But when we take into account
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Figure 3. Numerical solutions and flag vectors for test 1 with t = 300 s and (a) N = 100 and (b) N = 400 and (c)
N = 1600 cells.
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Figure 4. Time evolution of the numerical solutions and flag vectors of test 1 computed with t = 300 s and N = 1600
cells.

Table 1. Approximate L1-errors (×10−3) and CPU times (seconds) for test 1 with parameter ε = 0.1 and t = 300 s.

LLF HYB-LLF SPECINT

N CPU Error CPU Error CPU Error

100 0.715 24.88 1.883 6.836 3.146 6.753

200 2.479 13.49 5.609 3.784 10.53 3.782

400 9.366 6.823 17.41 1.718 49.02 1.676

800 35.43 3.372 62.22 0.851 153.3 0.850

1600 145.3 1.596 240.1 0.366 665.3 0.369

computational times, our hybrid scheme takes about 2.5 times less computational time to achieve

a given error level and is consequently more efficient than SPECINT scheme, as can be deduced

from Figure 5.

The accuracy of the results depends on the value of the parameter ε. The wider the flagged

regions are the more accurate the approximations obtained are. The parameter ε has to be tuned

having in mind that we seek an equilibrium between accuracy and computational time to obtain

not only accurate results but efficient methods. In these experiments by choosing a smaller value

of the parameter ε, ε < 0.1, the results in terms of accuracy do not improve significantly but the

computational times increase due to the use of wide flagged regions.
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Figure 5. CPU time – error comparison for test 1 using t = 300 s.

Table 2. Approximate L1-errors (×10−3) and CPU times (seconds) for test 1 obtained by the hybrid scheme with
different values of the parameter ε and t = 300 s.

ε = 0.75 ε = 0.5 ε = 0.25

N CPU Error CPU Error CPU Error

100 1.423 10.18 1.684 8.221 1.642 6.800

200 4.831 6.116 5.012 4.453 5.231 3.771

400 16.01 3.106 16.23 2.715 16.99 1.739

800 57.95 1.072 58.41 0.874 60.07 0.852

1600 227.8 0.699 216.1 0.574 218.2 0.556

ε = 0.1 ε = 0.05 ε = 0.01

N CPU Error CPU Error CPU Error

100 1.883 6.836 2.011 6.849 2.455 6.853

200 5.609 3.784 6.010 3.781 6.974 3.782

400 17.41 1.718 17.64 1.721 18.82 1.687

800 62.22 0.851 63.84 0.848 65.02 0.845

1600 240.1 0.366 245.0 0.365 248.3 0.366

Table 3. Percentage of numerical fluxes computed with SPECINT scheme in test 1 depending on the value of the
parameter ε with t = 300 s.

N ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.25 ε = 0.5 ε = 0.75

100 36.9% 30.5% 26.2% 21.3% 13.4% 9.91%

200 23.6% 19.7% 16.9% 9.84% 6.72% 5.06%

400 12.7% 10.2% 8.26% 5.57% 2.91% 2.43%

800 6.74% 5.22% 4.89% 3.24% 2.32% 1.19%

1600 3.03% 2.71% 2.01% 1.33% 0.81% 0.58%

As shown in Table 3, when the parameter ε increases, the number of fluxes computed with the

SPECINT scheme diminishes. As a consequence, the CPU time diminishes too, but the errors

increase, getting closer to the errors given by LLF scheme as shown in Table 2.
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Table 4. Approximate L1-errors (×10−4) and CPU times (seconds) for test 1 obtained by the hybrid scheme and the
scheme with a multiresolution framework with different values of the parameter tol with t = 300 s.

HYB-LLF ε = 0.1 MR tol = 10−2 MR tol = 10−3 SPECINT

N CPU Error CPU Error CPU Error CPU Error

800 62.22 8.51 98.19 12.0 116.1 8.89 154.0 8.50

1600 240.1 3.66 223.3 5.16 265.3 4.03 669.6 3.69

3200 1287.7 1.43 628.3 3.64 867.7 2.16 4784.7 1.45

We compare the results obtained with our hybrid scheme with those obtained when using

an adaptive multiresolution framework based on the work developed in [4,12]. This multi-

level algorithm consists in substituting the direct computation of the numerical divergences

�x−1(f̂i+1/2 − f̂i−1/2) on the finest grid by a multilevel strategy that saves computational time

by interpolating from coarse levels at regions not tagged by the same procedure that we have

used in our hybrid scheme to determine the boolean flag vector, see [8] for more information

about the multilevel strategy. We use grids of 800, 1600 and 3200 nodes with 4, 5 and 6 levels of

multiresolution respectively, in order to have a coarser mesh with N0 = 100 nodes in all cases.

We use two different values for the tolerance parameter tol, which plays the same role as the

parameter ε in the hybrid scheme.

As it can be seen in Table 4, the hybrid scheme requires quite less computational effort than

the multiresolution scheme to achieve a similar numerical accuracy.

We describe now a reasonable strategy for the selection of the parameter ε. Given some details

γj,i, one can define the function βj(r) = βj[γ ](r)

βj(r) =

∑

i{γj,i/γj,i > r}
∑

i γj,i

. (9)

The value βj(r) ∈ [0, 1] is the ratio between the sum of the details γj,i that are above the threshold

r with respect to the sum of all the details. With these functions and a number p ∈ (0, 1) we can

compute

ε = ε(p) = max

{

r∗ >
0

minj βj(r∗)
> p

}

. (10)

That is, ε is the maximal r∗ such that all the graphs of βj, j = 1, . . . , M for r ∈ [0, r∗] lies above

p.

In Figure 6 we display the graph of βj, j = 1, 2, 3, 4, based on the details obtained for

N = 200 and t = 300s. We deduce that selecting ε between 0.074 and 0.14 would yield

that the most important details would be flagged. Figure 7 shows the graph of β1 for

N = 100, 200, 400, 800, 1600 and t = 300s and Figure 8 shows the graph of β1 for N = 1600

and t = 50, 100, 150, 200. These pictures suggest that setting p ∈ [0.8, 0.9] yields a reasonable

parameter ε = ε(p), in terms of efficiency, in quite a robust manner with respect to resolution

and simulated time.

Test 2. The next experiment consists on the batch settling of an initially homogeneous suspen-

sion with 11 different species in a column of height L = 0.935 m, with initial concentrations φ0
i ,

diameters Di and normalized diameters di = Di/D1 of the particles given in Table 5. This test is

based on experimental data from [21].

We consider the Richardson–Zaki exponent nRZ = 4.65 and maximum total concentration

φmax = 0.641. The other parameters are those of the previous test.

In Figure 9 we show the reference solutions for φ1, . . . , φ11 and φ =
∑

i φi, computed with the

SPECINT scheme with N = 6400 cells and t = 300 s.
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The appearance of very thin layers of sediment of the smaller particles at the top of the sedi-

mentation vessel poses severe difficulties for the numerical schemes to capture them. Therefore,

to obtain accurate results we need to use an efficient shock capturing scheme and a very fine mesh

as illustrates Figure 10 where we can see that when using a coarser mesh of N = 400 cells the

results are very imprecise with all the schemes, while when we use a finer mesh with N = 1600

the quality of the results improve but they are far away from the results obtained using a grid

with N = 6400 cells.

In this specific experiment the main drawback of the characteristic-wise scheme is the high

computational cost needed to obtain the spectral decomposition of the Jacobian matrix. We need

to compute at least one eigenvalue and one eigenvector for each component and for each spa-

tial location. Since we deal with 11 components and that a very fine mesh is mandatory, the

simulation requires a huge CPU time.
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Table 5. Initial concentrations φ0
i , real and normalized diameters Di and di of test 2.

i 1 2 3 4 5 6

φ0
i [10−3] 0.435 3.747 14.420 32.603 47.912 47.762

Di[10−5] 8.769 8.345 7.921 7.497 7.073 6.649

di 1.000 0.952 0.903 0.855 0.807 0.758

i 7 8 9 10 11

φ0
i [10−3] 32.663 15.104 4.511 0.783 0.060

Di[10−5] 6.225 5.801 5.377 4.953 4.529

di 0.710 0.662 0.613 0.565 0.516

Table 6. Approximate L1-errors (×10−3) and CPU times (seconds) for test 2 with t = 300 s.

LLF HYB-LLF SPECINT

N CPU Error CPU Error CPU Error

1600 84.82 0.834 177.5 0.621 1507.5 0.594

3200 468.8 0.360 589.8 0.244 5920.2 0.227

6400 1789.0 2140.2 23,713.1

In Table 6 we display the computational times and the L1-errors obtained by the component-

wise LLF scheme, our hybrid scheme and the characteristic-wise SPECINT scheme ran with

very fine meshes of N = 1600, 3200 and 6400 cells. As we expect, the SPECINT scheme is

highly time consuming while our hybrid scheme takes about 10 times less computational time to

achieve the same error level. Therefore, the proposed hybrid scheme represents a real alternative

when dealing with costly solvers applied to large problems on fine grids.

We observe in Table 7 that the hybrid scheme performs better than the scheme with the mul-

tiresolution framework. When we use the multiresolution technique with a tolerance parameter

tol = 10−3 the errors obtained are slightly smaller than the errors for the hybrid scheme but
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Figure 9. Reference solutions of test 2. (a) φ1, . . . , φ11 and (b) φ =
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i φi computed by SPECINT scheme with
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Figure 10. Enlarged views of discontinuous regions of φ8, ((a) and (b)), and φ10, ((c) and (d)), for test 2 computed with
t = 300 s and N = 400 (left) and N = 1600 (right).

when considering CPU times, the hybrid scheme takes approximately 3.5 times less computa-

tional time to compute the numerical solutions. Thus, in this case, the hybrid scheme is more

efficient than the scheme with the multiresolution technique.
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Table 7. Approximate L1-errors (×10−4) and CPU times (seconds) for test 2 obtained by the hybrid scheme and the
scheme with a multiresolution framework different values of the parameter tol and t = 300 s.

HYB-LLF ε = 0.1 MR tol = 10−2 MR tol = 10−3 SPECINT

N CPU Error CPU Error CPU Error CPU Error

800 59.34 13.8 167.2 13.9 175.6 13.6 401.3 13.6

1600 177.5 6.22 425.8 6.22 499.5 5.95 1507.5 5.94

3200 589.8 2.45 1508.2 2.86 2464.2 2.31 5920.2 2.27
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Figure 11. Graph of minj=1,...,11 βj function for details computed with N = 1600 and t = 300 s.

In Figure 11 we display the graph of minj=1,...,11 βj, based on the details obtained for N =

1600 and t = 300s. We deduce that selecting ε between 0.04 and 0.09 would yield that the most

important details would be flagged.

6. Conclusions

We have presented a cost-effective alternative to characteristic-based HRSC finite difference

WENO schemes for polydisperse sedimentation problems. Merging the characteristic-based

scheme with a component-wise approach for this scheme, we have developed a hybrid scheme

that uses characteristic information only on a neighbourhood of a discontinuity, where more

accuracy is needed to compute precise numerical solutions.

The numerical results showed in this paper point out that, although there are no memory

savings, there is a significant reduction of the computational time when using the hybrid scheme

proposed, which offers the possibility of obtaining a high-resolution numerical solution on a very

fine grid with a reasonable cost.
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