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Introduction

High Resolution Shock Capturing (HRSC) schemes are one of the most important tools used nowadays to compute accurate numerical approximations to the solution of many hyperbolic systems of conservation laws. They are usually developed combining an upwind framework, that is, taking into account the direction of propagation of the information, and a high-order interpolatory technique to prevent the development of spurious numerical oscillations.

Most of these HRSC schemes require a specific knowledge of the spectral decomposition of the Jacobian matrix of the system, since the eigenvalues and eigenvectors are used to compute the *Corresponding author. Email: mulet@uv.es numerical approximations by local projections to characteristic fields. The numerical solutions that we obtain are often excellent in terms of resolution power. However, in many cases, as in sedimentation models for polydisperse suspensions, the spectral information is quite difficult to obtain, due to the lack of closed formulas for the eigenstructure of the flux Jacobian. Therefore, the computational effort needed to apply these complex techniques may be fairly considerable.

When solving hyperbolic systems of conservation laws, non-smooth structures might develop spontaneously and evolve in time. Resolving adequately those regions of strong variation requires the use of very fine grids. But, taking into account that we are working with uniform meshes, the solution will be over resolved in regions where it is smooth.

It is well known that the costly numerical computations involved in these schemes are only necessary at existing singularities or when these are about to form. Consequently, we can reduce the computational cost of the scheme, while maintaining its high-order properties, by using expensive resources only at the neighbourhood of a singularity.

Many adaptive techniques, which aim to concentrate the computational effort near singularities or sharp transition regions, have been developed in the literature [START_REF] Costa | Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws[END_REF][START_REF] Liu | Hybrid weighted essentially non-oscillatory schemes with different indicators[END_REF][START_REF] Ren | A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[END_REF]. The most remarkable examples are the Multiresolution strategy, based on the multilevel strategies first introduced by Harten [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF], and the Adaptive Mesh Refinement techniques [START_REF] Berger | Local adaptive mesh refinement for shock hydrodynamics[END_REF][START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF].

In this work, we propose a hybrid scheme that substitutes the costly characteristic-based computation of the numerical fluxes by a component-wise approach of the scheme when the solution is smooth enough. We use polydisperse sedimentation models to test the efficiency of the hybrid scheme mainly for two reasons: First, because of the high computational effort needed to compute the spectral information which have to be computed in the SPECINT scheme. If the spectral information is easily available this hybrid scheme, as well as multiresolution schemes, can not improve the results obtained in terms of efficiency. Secondly because it is near sharp transitions where we need to improve the approximate results without increasing the computational cost and we know that the typical solutions for the sedimentation model considered for batch settling in a column include stationary kinematic shocks separating layers of sediment of different composition which is a special demanding task for numerical simulation due to the need of accurate numerical simulations.

The paper is organized as follows: First of all, in Section 2, we recall the basic facts of the Masliyah-Lockett-Bassoon (MLB) polydisperse sedimentation model [START_REF] Lockett | Sedimentation of binary particle mixtures[END_REF][START_REF] Masliyah | Hindered settling in a multi-species particle system[END_REF], its hyperbolicity and bounds on characteristic speeds. In Section 3, we briefly describe the main ingredients of finite difference WENO schemes. In Section 4 we explain the basic strategy used in our costeffective alternative to characteristic-based schemes and in Section 5 we perform some numerical experiments and analyse the quality of the numerical approximations obtained with the hybrid scheme and its efficiency. Finally, we draw some conclusions in Section 6.

Polydisperse sedimentation models

Polydisperse suspensions are mixtures composed of small solid particles belonging to M different species, that vary in size or density, and which are dispersed in a viscous fluid. We denote the diameter of the ith species as D i and we assume the species to be ordered so that

D 1 > D 2 > ••• > D M .
In this work, we will only consider particles of the same density.

If we denote φ i as the volume fraction of particle species i and v i for the phase velocity of species i, then the continuity equations of the M species are

∂ t φ i + ∂ x (φ i v i ) = 0, i = 1, ..., M ,
where t is time and x is depth.

The velocities v 1 , ..., v M are assumed to be given functions of the vector of local concentrations := (x, t) := (φ 1 (x, t), ..., φ M (x, t)) T (kinematic assumption). This yields nonlinear, strongly coupled systems of conservation laws of the type

t + f ( ) x = 0, (1) 
where the components of the flux function f ( ) = (f 1 ( ), ..., f M ( )) T are given by f i ( ) := φ i v i ( ), i = 1, ..., M . We seek solutions = (x, t) such that φ i ≥ 0, ∀i = 1, ..., M , and φ := M i=1 φ i ≤ φ max , where the parameter φ max ∈ (0, 1] stands for a given maximum solids concentration.

The velocity model for polydisperse sedimentation considered in this work is the MLB model [START_REF] Lockett | Sedimentation of binary particle mixtures[END_REF][START_REF] Masliyah | Hindered settling in a multi-species particle system[END_REF], which is one of the most commonly used velocity models for polydisperse sedimentation. It arises from the continuity and linear momentum balance equations for the solid species and the fluid through suitable constitutive assumptions and simplifications (cf. [START_REF] Berres | Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression[END_REF]). For particles that have the same density, the velocities v 1 ( ), ..., v M ( ) are given by

v i ( ) = ν(1 -φ)V (φ)(d 2 i -(φ 1 d 2 1 +•••+φ M d 2 M )), ν = (̺ s -̺ f )gD 2 1 18µ f ,
where ̺ s and ̺ f are the solid and fluid densities respectively, g is the acceleration of gravity, d i are the normalized particle sizes d i = D i /D 1 for i = 1, ..., M , µ f is the fluid viscosity and V is an empirical hindered settling function assumed to satisfy

V (0) = 1, V (φ max ) = 0, V ′ (φ) ≤ 0f o r φ ∈ [0, φ max ].
A standard choice for V (φ) is given by Richardson-Zaki's hindered settling function [START_REF] Richardson | The sedimentation of a suspension of uniform spheres under conditions of viscous flow[END_REF]:

V (φ) = (1 -φ) n RZ -2 ,0 ≤ φ ≤ φ max ; 0, otherwise.
with n RZ > 2, φ max < 1.

For the typical application of batch settling of a suspension in a column of height L > 0, Equation (1) is defined for (x, t) ∈ (0, L) × (0, T) and zero-flux boundary conditions are prescribed:

f | x=0 = f | x=L = 0.
As it can be seen in [START_REF] Berres | Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression[END_REF][START_REF] Donat | A secular equation for the Jacobian matrix of certain multispecies kinematic flow models[END_REF], the MLB model is strictly hyperbolic whenever φ i > 0 for all i = 1, ..., M , and φ<φ max . The eigenvalues λ i = λ i ( ) of the Jacobian matrix f ′ ( ) satisfy the interlacing property

v M +1 ( ) < λ M ( ) < v M ( ) < λ M -1 ( ) < v M -1 ( ) < ••• <λ 1 ( ) < v 1 ( ),( 2 )
where the lower bound is given by

v M +1 ( ) = ν(d 2 M V ( ) + ((1 -φ)V ′ (φ) -2V (φ))(d 2 1 φ 1 +•••+d 2 M φ M )).

Finite difference WENO schemes

In order to simplify the notation, let us restrict ourselves to one-dimensional scalar conservation laws with properly prescribed initial and boundary conditions on some interval, which can be written as:

t + f ( ) x = 0. (3) 
Finite differences WENO schemes (see [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii[END_REF]) can be naturally extended to multiple dimensions by design and to systems via local characteristic decompositions.

First of all, we consider a uniform grid on [0, L] defined by the points x i = (i -1 2 ) x, i = 1, ..., N, which are the centres of the cells whose boundaries are given by x i+1/2 = x i +

x/2, where x = L/N is the uniform grid spacing, so that, the boundaries of the interval [0, L] are 0 = x 1/2 and L = x N+1/2 .

In order to obtain high-order finite difference conservative schemes to solve Equation (3), we use Shu and Osher's technique [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii[END_REF], for which the conservative property of the spatial discretization is obtained by implicitly defining, for fixed t, x, the function ϕ as:

f ( (x, t)) = 1 x x+ x/2
x-x/2 ϕ(ξ) dξ , so that the spatial derivative in Equation ( 3) is exactly obtained by a conservative finite difference formula that involves values of ϕ at the cell boundaries,

f ( (x, t)) x = 1 x ϕ x + x 2 -ϕ x - x 2 .
We can compute highly accurate approximations to ϕ(x ± x/2), denoted by φ, using known grid values of f ( ) (which are cell-averages of ϕ) and a reconstruction method R (a function whose cell-averages coincide with the given ones) as ϕ(x i+1/2 ) =φ(x i+1/2 ) + d(x i+1/2 ) x r + O( x r+1 ), with d a Lipschitz function, where

φ(x) = R(f i-p , ..., f i+q ; x), f l = f ( (x l , t)).
We can thus discretize the spatial derivative in Equation (3) as:

(f ( )) x (x i ) = fi+1/2 -fi-1/2 x + O( x r ), fi+1/2 =φ(x i+1/2 ).
The spatially discretized problem

′ i (t) = D( (t)) i , k = [φ 1,k , ..., φ M ,k ] T , D( ) i = fi+1/2 ( ) -fi-1/2 ( ) x ,
for approximations i (t) ≈ (x i , t), can be solved using an appropriate ODE solver. In this paper we use the third-order TVD Runge-Kutta scheme proposed in [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes[END_REF][START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii[END_REF]:

(1) = n -tD( n ), (2) = 3 4 n + 1 4 (1) -1 4 tD( (1) ), n+1 = 1 3 n + 2 3 (2) -2 3 tD( (2) ), , ( 4 ) 
where n i ≈ i (t n ). To extend these schemes to systems of conservation laws, if we know the full spectral decomposition of the Jacobian matrix f ′ ( ) then we can compute the numerical flux fi+1/2 :=φ(x i+1/2 ) using an upwind characteristic-wise scheme as:

fi+1/2 = M k=1 r k (R + (l k • f +,k i-2 , ..., l k • f +,k i+2 ; x i+1/2 )) + M k=1 r k (R -(l k • f -,k i-1 , ..., l k • f -,k i+3 ; x i+1/2 )),( 5 
)
where

r k = r k ( i+1/2 ), l k = l k ( i+1/2
), are the right and left normalized eigenvectors corresponding to the eigenvalue

λ k (f ′ ( i+1/2 )) of the flux Jacobian f ′ ( i+1/2 ), respectively, computed page 4 | 17 at i+1/2 = 1 2 ( i + i+1 ),f o rk = 1, .
.., M . The functions f ±,k define a flux-splitting, that is, they verify f +,k + f -,k = f , and are upwind fluxes, that is, ±λ k ((f ±,k ( )) ′ ) ≥ 0. In [START_REF] Bürger | Numerical simulation of the settling of polydisperse suspensions of spheres[END_REF] we denote f ±,k i := f ±,k (x i ) and R ± are upwind biased reconstruction operators, WENO5 reconstructions in our case. We refer the reader to [START_REF] Jiang | Efficient implementation of weighted eno schemes[END_REF][START_REF] Liu | Weighted essentially non-oscillatory schemes[END_REF] for further details about the WENO method.

In this work we define the functions f ±,k given by the Lax-Friedrichs (LF) flux-splitting

f ±,k ( ) = 1 2 (f ( ) ± α k ) with α k verifying: max{|λ k (f ′ ( ))|/k = 1, ..., M , ∈ K}≤α k ,
where K is some relevant range where this maximal k-characteristic velocity is estimated. In many applications, specially when all characteristic fields are either genuinely nonlinear or linearly degenerate, it is enough to consider

K ={ i , i+1 }.
The characteristic fields of the MLB model are not genuinely nonlinear nor linearly degenerate, so a more sophisticated bound α k , based on the interlacing property (2), was proposed in [START_REF] Bürger | On the implementation of WENO schemes for a class of polydisperse sedimentation models[END_REF]:

α k = max{|v i ( )|, |v i+1 ( )|/ ∈ [ i , i+1 ]},
where [ i , i+1 ] denotes the line segment determined by i , i+1 ∈ R M . The resulting scheme will be referred to as SPECINT.

Characteristic-wise schemes have a main disadvantage: the high computational cost needed to obtain the spectral decomposition of the Jacobian matrix of some problems for which no closed formulas are available. To undertake this shortcoming, a component-wise approach for these schemes was developed in [START_REF] Zhang | A weighted essentially non-oscillatoy numerical scheme for a multiclass Lighthill-Whitham-Richards traffic flow model[END_REF]. For these schemes, the value of the numerical flux vector fi+1/2 is computed by setting l k l = r k l = δ k,l in Equation ( 5) and f ±,k = f ± , for any k, l = 1, ..., M . Then, the numerical flux for the component-wise scheme reads as:

fi+1/2,k = R + (f + i-2,k , ..., f + i+2,k ; x i+1/2 ) + R -(f - i-1,k , ..., f - i+3,k ; x i+1/2 ).( 6 
)
It is known that component-wise schemes obtained from global LF flux splittings f ± have an oscillatory behaviour, see, for example [START_REF] Donat | A secular equation for the Jacobian matrix of certain multispecies kinematic flow models[END_REF], and that their numerical solutions tend to be quite diffusive, due to the global prescription of numerical viscosity, as it could be seen for example in [START_REF] Bürger | On the implementation of WENO schemes for a class of polydisperse sedimentation models[END_REF][START_REF] Donat | A secular equation for the Jacobian matrix of certain multispecies kinematic flow models[END_REF]. In this work, we use a local LF flux-splitting which alleviates the excessive diffusion and the oscillatory behaviour showed by its global counterpart (see [START_REF] Martí | Some techniques for improving the resolution of finite difference component-wise WENO schemes for polydisperse sedimentation models[END_REF] for more details).

The hybrid algorithm

Once we have given the details of the constitutive elements of our algorithm, we describe next the smoothness analysis and the corresponding computation of the numerical fluxes fi+1/2 .

To determine the local smoothness of the solution on a uniform grid on [0, L]w eu s et h e procedure defined by Chiavassa and Donat in [START_REF] Chiavassa | Point-value multiscale algorithms for 2D compressible flows[END_REF], adapting it to our problem. In their work, the authors presented a method based on point-value multiresolution transform used to detect regions with singularities.

From the discrete computational data φ j,i = φ j (x i , t), for each component j = 1, ..., M and spatial location i = 1, ..., N, we can compute a set of interpolated values of φ j,i , denoted by φj,i , considering a 4-point centred interpolatory technique as:

φj,i = I[x i ; φ j ] = 9 16 (φ j,i+1 + φ j,i-1 ) -1 16 (φ j,i+3 + φ j,i-3
).( 7)
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The values φ j,i are extended when i / ∈{1, ..., N} as follows:

φ j,i = φ j,1-i i < 1, φ j,2M +1-i i > N. ( 8 
)
Using this set of interpolated values, we can define the coefficients γ j,i as the absolute value of the difference between exact and interpolated data:

γ j,i =|φ j,i -φj,i |.
Note that the coefficients γ j,i are interpolation errors which can be used directly as 'sensors' in order to localize non-smooth behaviour.

Once this set of coefficients is computed, we use them to create a boolean flag vector for each component, whose values (0 or 1) determine the choice of the procedure to evaluate fi+1/2 . For each component and for each spatial location, we define the flag vector b j = (b j,i ) i=1,...,N as:

b j,i = ⎧ ⎨ ⎩ 1, if max k=-1,0,1 γ j,i+k ≥ ε max i γ j,i ; 0, if max k=-1,0,1 γ j,i+k <εmax i γ j,i ,
where ε is a given tolerance parameter, 0 <ε<1, which controls the difference between the numerical values and the interpolated values. Notice that by considering max k=-1,0,1 γ j,i+k we add a safety region of one cell surrounding the cells that would have been flagged by only regarding the local detail γ j,i . Finally, using all the boolean flag vectors computed for each component, we can define the boolean flag vector B i =∨ M j=1 b j,i . The behaviour of the solution of the problems we are focused on at the boundaries is well known: near the bottom boundary non-smooth structure is created while at the top boundary the solution rapidly attains zero concentration. The extrapolation defined for the computation of the interpolated values near the boundaries (8) would be exact near the top boundary, due to the constancy of the solution. At the bottom boundary the interpolated values φj,i would not be accurate approximations of the real values φ j,i assuring this region to be flagged over time. Therefore, it is not necessary to use a higher order extrapolation near the boundaries.

Notice that this thresholding algorithm takes into consideration that large values of the coefficients γ j,i correspond to non-smooth regions of the solution and produces a flagged region containing the singularities that are present in all the components of the solution.

Finally, for each i = 1, ..., N, we compute the numerical flux fi+1/2 depending on the value of the boolean flags B j as:

• If B i = 1o rB i+1 = 1,
the location has been flagged as non-smooth and a precise computation of the numerical flux is required, so we compute fi+1/2 with the characteristic-based version (5). • Otherwise we are located in a smooth region, so we compute fi+1/2 with the component-wise version [START_REF] Bürger | On the implementation of WENO schemes for a class of polydisperse sedimentation models[END_REF].

As Chiavassa and Donat stated in their work [START_REF] Chiavassa | Point-value multiscale algorithms for 2D compressible flows[END_REF], when using a Runge-Kutta ODE solver it is not necessary to compute the flag vector in each Runge-Kutta stage in Equation (4). As (1) is an approximation of n+1 , it contains similar non-smooth structures at the same places, thus the flag coefficients obtained from the computation of (1) can be used to compute (2) from (1) and n+1 from (2) , thus avoiding the computation of the flag coefficients in two of the three stages of the Runge-Kutta ODE solver. With this modification, we can reduce the computational cost of the hybrid scheme, without losing accuracy in the numerical results.

The CPU gain of this algorithm stems from the fact that the cost of the component-wise approximation of the scheme is significantly smaller than the characteristic-based approach cost. For example, for the polydisperse sedimentation tests that we will see in the next section, the cost of the component-wise approximation of the scheme is about 4.5 and 18 times smaller, respectively, than the characteristic-based approach cost, as it could be seen in [START_REF] Martí | Some techniques for improving the resolution of finite difference component-wise WENO schemes for polydisperse sedimentation models[END_REF]. The efficiency of the scheme depends on the problem.

Numerical experiments

In this section we present and analyse the results obtained with our hybrid algorithm applied to two typical sedimentation experiments for batch settling in a column that one can find in the literature. The value of the threshold parameter ε that we are going to use in all the subsequent tests is ε = 0.1.

We use a varying time step t computed as:

t = 0.5 x C ,
where C is an estimate of the maximal characteristic velocity of the approximated solution at the given time step. The computation of this parameter depends on the scheme used. For the SPECINT scheme, the estimate is based on the computed eigenvalues. For the component-wise scheme, we use the bounds on the eigenvalues quoted in Equation ( 2). For our hybrid scheme we just merge both strategies, using the computed eigenvalues, determined in trouble regions, and the approximated eigenvalues, computed using the interlacing property (2) in smooth regions, to compute the parameter C. The edges of the spatial domain [0, L] are the cell interfaces x 1/2 = 0 and x N+1/2 = L. In order to ensure the conservation of each species throughout the time evolution, our implementation for the zero-flux boundary conditions is as follows:

f1/2 = fN+1/2 = 0.
In all subsequent figures depth is assume to be normalized between 0 and 1.

The L 1 -error for an approximation (φ j,i ), i = 1, ..., N, j = 1, ..., M to the solution at the cell centres x i and given time t, (φ j (x i , t)), is computed as

1 N N i=1 M j=1 |φ ref j,i -φ j,i |,
where (φ ref j,i ) is a reference solution computed at a fairly high resolution, with SPECINT scheme in our case, and interpolated at the coarse cell centres.

In the following experiments we work with normalized depth, consequently, the spatial coordinate x varies between x = 0 (surface of the suspension) and x = 1 (bottom of the settling column).

Test 1. We consider the standard test case, proposed by Greenspan and Ungarish [START_REF] Greenspan | On hindered settling of particles of different sizes[END_REF], defined by an initially homogeneous suspension in a column of height L = 0.3 m with four different species of particles with same density ̺ s = 2790 kg/m 3 and different normalized sizes 3 and µ f = 0.02416 kg/(s • m), respectively. This test was solved numerically, for example, in [START_REF] Bürger | Numerical simulation of the settling of polydisperse suspensions of spheres[END_REF][START_REF] Bürger | On the implementation of WENO schemes for a class of polydisperse sedimentation models[END_REF].

d 1 = 1, d 2 = D 2 /D 1 = 0.8, d 3 = D 3 /D 1 = 0.
In Figure 1, we display the reference solutions φ 1 , ..., φ 4 and the global density φ = i φ i , computed with the SPECINT scheme with N = 6400 cells and t = 300 s. In Figure 2 component-wise scheme (LLF), our hybrid scheme (HYB-LLF) and the characteristic-based SPECINT scheme, using two meshes of N = 400 and N = 1600 cells. It can be seen throughout those pictures that the approximations obtained with the hybrid scheme are less oscillatory than their LLF counterparts, being quite similar to the SPECINT approximations. The conclusions about the qualitative behaviour of the approximations that we could draw from inspection of the other components would be similar to those obtained for our choice.

In Figure 3 we show the numerical solutions and the flag vectors obtained using meshes of N = 100, 400 and 1600 cells. As we expect, when we use coarser meshes the flagged area is wider and could include some smooth regions, specially small smooth regions located between shocks. But when we refine the mesh, the flagged regions fit exactly with regions with sharp transitions and strong shocks. In Figure 4 we can see how the numerical solutions and the flag vectors evolve with time for a fine mesh of N = 1600 cells.

To perform quantitative assessments, in Table 1 and Figure 5 we show the approximate L 1 -errors and the CPU times for this test. We have run each of the schemes for N = 100, 200, 400, 800 and 1600 and recorded its CPU time for the execution and approximate L 1 -error. Each symbol in a given graphic corresponds to a number N of cells.

As could be expected from the previous comments, our hybrid scheme is more accurate than the LLF scheme, the SPECINT being of course the most accurate. But when we take into account computational times, our hybrid scheme takes about 2.5 times less computational time to achieve a given error level and is consequently more efficient than SPECINT scheme, as can be deduced from Figure 5. The accuracy of the results depends on the value of the parameter ε. The wider the flagged regions are the more accurate the approximations obtained are. The parameter ε has to be tuned having in mind that we seek an equilibrium between accuracy and computational time to obtain not only accurate results but efficient methods. In these experiments by choosing a smaller value of the parameter ε, ε<0.1, the results in terms of accuracy do not improve significantly but the computational times increase due to the use of wide flagged regions. Table 2. Approximate L 1 -errors (×10 -3 ) and CPU times (seconds) for test 1 obtained by the hybrid scheme with different values of the parameter ε and t = 300 s. As shown in Table 3, when the parameter ε increases, the number of fluxes computed with the SPECINT scheme diminishes. As a consequence, the CPU time diminishes too, but the errors increase, getting closer to the errors given by LLF scheme as shown in Table 2. We compare the results obtained with our hybrid scheme with those obtained when using an adaptive multiresolution framework based on the work developed in [START_REF] Bihari | Multiresolution schemes for the numerical solution of 2-D conservation laws I[END_REF][START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF]. This multilevel algorithm consists in substituting the direct computation of the numerical divergences

φ 1 φ 2 φ 3 φ 4 φ 1 φ 2 φ 3 φ 4 φ 1 φ 1 , φ 2 , φ 3 , φ 4 φ 1 , φ 2 , φ 3 , φ 4 φ 1 , φ 2 , φ 3 , φ 4 φ 1 , φ 2 , φ 3 , φ 4 φ 2 φ 3 φ 4
ε = 0.75 ε = 0.5 ε = 0.25 N CPU
x -1 ( fi+1/2 -fi-1/2 ) on the finest grid by a multilevel strategy that saves computational time by interpolating from coarse levels at regions not tagged by the same procedure that we have used in our hybrid scheme to determine the boolean flag vector, see [START_REF] Chiavassa | Cost-effective multiresolution schemes for shock computations[END_REF] for more information about the multilevel strategy. We use grids of 800, 1600 and 3200 nodes with 4, 5 and 6 levels of multiresolution respectively, in order to have a coarser mesh with N 0 = 100 nodes in all cases. We use two different values for the tolerance parameter tol, which plays the same role as the parameter ε in the hybrid scheme.

As it can be seen in Table 4, the hybrid scheme requires quite less computational effort than the multiresolution scheme to achieve a similar numerical accuracy.

We describe now a reasonable strategy for the selection of the parameter ε. Given some details γ j,i , one can define the function β j (r) = β j [γ ](r)

β j (r) = i {γ j,i /γ j,i > r} i γ j,i . ( 9 ) 
The value β j (r) ∈ [0, 1] is the ratio between the sum of the details γ j,i that are above the threshold r with respect to the sum of all the details. With these functions and a number p ∈ (0, 1) we can compute

ε = ε(p) = max r * > 0 min j β j (r * ) > p . ( 10 
)
That is, ε is the maximal r * such that all the graphs of β j , j = 1, ..., M for r ∈ [0, r * ] lies above p.

In Figure 6 we display the graph of β j , j = 1, 2, 3, 4, based on the details obtained for N = 200 and t = 300s. We deduce that selecting ε between 0.074 and 0.14 would yield that the most important details would be flagged. Figure 7 shows the graph of β 1 for N = 100, 200, 400, 800, 1600 and t = 300s and Figure 8 shows the graph of β 1 for N = 1600 and t = 50, 100, 150, 200. These pictures suggest that setting p ∈ [0.8, 0.9] yields a reasonable parameter ε = ε(p), in terms of efficiency, in quite a robust manner with respect to resolution and simulated time.

Test 2. The next experiment consists on the batch settling of an initially homogeneous suspension with 11 different species in a column of height L = 0.935 m, with initial concentrations φ 0 i , diameters D i and normalized diameters d i = D i /D 1 of the particles given in Table 5. This test is based on experimental data from [START_REF] Shannon | Batch and continuous thickening. Basic theory. Solids flux for rigid spheres[END_REF].

We consider the Richardson-Zaki exponent n RZ = 4.65 and maximum total concentration φ max = 0.641. The other parameters are those of the previous test.

In Figure 9 we show the reference solutions for φ 1 , ..., φ 11 and φ = i φ i , computed with the SPECINT scheme with N = 6400 cells and t = 300 s. The appearance of very thin layers of sediment of the smaller particles at the top of the sedimentation vessel poses severe difficulties for the numerical schemes to capture them. Therefore, to obtain accurate results we need to use an efficient shock capturing scheme and a very fine mesh as illustrates Figure 10 where we can see that when using a coarser mesh of N = 400 cells the results are very imprecise with all the schemes, while when we use a finer mesh with N = 1600 the quality of the results improve but they are far away from the results obtained using a grid with N = 6400 cells.

In this specific experiment the main drawback of the characteristic-wise scheme is the high computational cost needed to obtain the spectral decomposition of the Jacobian matrix. We need to compute at least one eigenvalue and one eigenvector for each component and for each spatial location. Since we deal with 11 components and that a very fine mesh is mandatory, the simulation requires a huge CPU time. In Table 6 we display the computational times and the L 1 -errors obtained by the componentwise LLF scheme, our hybrid scheme and the characteristic-wise SPECINT scheme ran with very fine meshes of N = 1600, 3200 and 6400 cells. As we expect, the SPECINT scheme is highly time consuming while our hybrid scheme takes about 10 times less computational time to achieve the same error level. Therefore, the proposed hybrid scheme represents a real alternative when dealing with costly solvers applied to large problems on fine grids.

We observe in Table 7 that the hybrid scheme performs better than the scheme with the multiresolution framework. When we use the multiresolution technique with a tolerance parameter tol = 10 -3 the errors obtained are slightly smaller than the errors for the hybrid scheme but when considering CPU times, the hybrid scheme takes approximately 3.5 times less computational time to compute the numerical solutions. Thus, in this case, the hybrid scheme is more efficient than the scheme with the multiresolution technique.

  6 and d 4 = D 4 /D 1 = 0.4 with D 1 = 4.96 • 10 -4 m. The initial concentrations of the particles are φ 0 i = 0.05 for all i = 1, ..., 4, the Richardson-Zaki exponent is n RZ = 4.7 and the maximum total concentration is φ max = 0.68. The density and viscosity of the fluid are ̺ f = 1208 kg/m
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 2 Figure 2. Enlarged views of some discontinuities present in the numerical approximation of φ 4 for test 1 computed with t = 300 s and N = 400 ((a) and (c)) and N = 1600 ((b) and (d)).
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 1212413 Figure 3. Numerical solutions and flag vectors for test 1 with t = 300 s and (a) N = 100 and (b) N = 400 and (c) N = 1600 cells.
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 4 Figure 4. Time evolution of the numerical solutions and flag vectors of test 1 computed with t = 300 s and N = 1600 cells.
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 5 Figure 5. CPU time -error comparison for test 1 using t = 300 s.
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 467 Figure 6. Graph of β j function, j = 1, 2, 3, 4 for details computed with N = 200 and t = 300 s.

Figure 8 .

 8 Figure 8. Graph of β 1 function for details computed with N = 1600 and t = 50, 100, 150, 200 s. The graphs for t = 100, 150, 200 are coincident.
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 910 Figure 9. Reference solutions of test 2. (a) φ 1 , ..., φ 11 and (b) φ = i φ i computed by SPECINT scheme with N = 6400 cells and t = 300 s.
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Figure 1. Reference solutions of test 1. (a) φ 1 , ..., φ 4 and (b) φ = i φ i computed with SPECINT scheme for t = 300 s and N = 6400 cells.

Table 1 .

 1 Approximate L 1 -errors (×10 -3 ) and CPU times (seconds) for test 1 with parameter ε = 0.1 and t = 300 s.

		LLF		HYB-LLF		SPECINT	
	N	CPU	Error	CPU	Error	CPU	Error
	100	0.715	24.88	1.883	6.836	3.146	6.753
	200	2.479	13.49	5.609	3.784	10.53	3.782
	400	9.366	6.823	17.41	1.718	49.02	1.676
	800	35.43	3.372	62.22	0.851	153.3	0.850
	1600	145.3	1.596	240.1	0.366	665.3	0.369

Table 3 .

 3 Percentage of numerical fluxes computed with SPECINT scheme in test 1 depending on the value of the parameter ε with t = 300 s.

			Error	CPU	Error	CPU	Error
	100	1.423	10.18	1.684	8.221	1.642	6.800
	200	4.831	6.116	5.012	4.453	5.231	3.771
	400	16.01	3.106	16.23	2.715	16.99	1.739
	800	57.95	1.072	58.41	0.874	60.07	0.852
	1600	227.8	0.699	216.1	0.574	218.2	0.556
		ε = 0.1			ε = 0.05		ε = 0.01
	N	CPU	Error	CPU	Error	CPU	Error
	100	1.883	6.836	2.011	6.849	2.455	6.853
	200	5.609	3.784	6.010	3.781	6.974	3.782
	400	17.41	1.718	17.64	1.721	18.82	1.687
	800	62.22	0.851	63.84	0.848	65.02	0.845
	1600	240.1	0.366	245.0	0.365	248.3	0.366
	N	ε = 0.01	ε = 0.05	ε = 0.1	ε = 0.25	ε = 0.5	ε = 0.75
	100	36.9%	30.5%	26.2%	21.3%	13.4%	9.91%
	200	23.6%	19.7%	16.9%	9.84%	6.72%	5.06%
	400	12.7%	10.2%	8.26%	5.57%	2.91%	2.43%
	800	6.74%	5.22%	4.89%	3.24%	2.32%	1.19%
	1600	3.03%	2.71%	2.01%	1.33%	0.81%	0.58%

Table 4 .

 4 Approximate L 1 -errors (×10 -4 ) and CPU times (seconds) for test 1 obtained by the hybrid scheme and the scheme with a multiresolution framework with different values of the parameter tol with t = 300 s.

		HYB-LLF ε = 0.1	MR tol = 10 -2	MR tol = 10 -3	SPECINT	
	N	CPU	Error	CPU	Error	CPU	Error	CPU	Error
	800	62.22	8.51	98.19	12.0	116.1	8.89	154.0	8.50
	1600	240.1	3.66	223.3	5.16	265.3	4.03	669.6	3.69
	3200	1287.7	1.43	628.3	3.64	867.7	2.16	4784.7	1.45

Table 5 .

 5 Initial concentrations φ 0 i , real and normalized diameters D i and d i of test 2.

	i	123456
	φ 0 i [10 -3 ] D i [10 -5 ]	0.435 8.769	3.747 8.345	14.420 7.921	32.603 7.497	47.912 7.073	47.762 6.649
	d i	1.000	0.952	0.903	0.855	0.807	0.758
	i7	8	9	1 0	1 1	
	φ 0 i [10 -3 ] D i [10 -5 ]	32.663 6.225	15.104 5.801	4.511 5.377	0.783 4.953	0.060 4.529	
	d i	0.710	0.662	0.613	0.565	0.516	

Table 6 .

 6 Approximate L 1 -errors (×10 -3 ) and CPU times (seconds) for test 2 with t = 300 s.

		LLF		HYB-LLF		SPECINT	
	N	CPU	Error	CPU	Error	CPU	Error
	1600	84.82	0.834	177.5	0.621	1507.5	0.594
	3200	468.8	0.360	589.8	0.244	5920.2	0.227
	6400	1789.0		2140.2		23,713.1	
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Table 7. Approximate L 1 -errors (×10 -4 ) and CPU times (seconds) for test 2 obtained by the hybrid scheme and the scheme with a multiresolution framework different values of the parameter tol and t = 300 s. In Figure 11 we display the graph of min j=1,...,11 β j , based on the details obtained for N = 1600 and t = 300s. We deduce that selecting ε between 0.04 and 0.09 would yield that the most important details would be flagged.
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Conclusions

We have presented a cost-effective alternative to characteristic-based HRSC finite difference WENO schemes for polydisperse sedimentation problems. Merging the characteristic-based scheme with a component-wise approach for this scheme, we have developed a hybrid scheme that uses characteristic information only on a neighbourhood of a discontinuity, where more accuracy is needed to compute precise numerical solutions.

The numerical results showed in this paper point out that, although there are no memory savings, there is a significant reduction of the computational time when using the hybrid scheme proposed, which offers the possibility of obtaining a high-resolution numerical solution on a very fine grid with a reasonable cost.
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