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Detection of Pedestrians at Far Distance

Rudy Bunel, Franck Davoine and Philippe Xu

Abstract— Pedestrian detection is a well-studied problem.
Even though many datasets contain challenging case studies,
the performances of new methods are often only reported on
cases of reasonable difficulty. In particular, the issue of small
scale pedestrian detection is seldom considered. In this paper,
we focus on the detection of small scale pedestrians, i.e., those
that are at far distance from the camera. We show that classical
features used for pedestrian detection are not well suited for
our case of study. Instead, we propose a convolutional neural
network based method to learn the features with an end-to-
end approach. Experiments on the Caltech Pedestrian Detection
Benchmark showed that we outperformed existing methods by
more than 10% in terms of log-average miss rate.

I. INTRODUCTION

In order to reach reliable advanced driver assistance
systems and safe autonomous driving, a robust pedestrian
detection is mandatory. Due to its high commercial interest
and to the possibility to make the roads safer, this has been an
intense area of research in the past decades. The availability
of several public benchmark datasets [1], [2], [3] has allowed
the research community to compare many detection systems
in challenging scenarios. This has lead to the emergence of
new methods based on advanced features such as the classical
HOGs [1] or Integral Channel Features [4] among many
others. These progresses have brought impressive results in
cases of reasonable difficulty. However, difficult situations
such as occluded or distant people remain challenging. While
occlusion has been studied at several occasions [5], the
detection of pedestrian at far distance has been seldom
explored.

The size of the target objects is known to be an important
factor when looking to perform detection and is often the
primary explanation when analyzing the failure modes of a
method [6], [7]. Notably, most pedestrian detectors fail at
detecting people with an apparent size on the image of less
than 30 pixels. Throughout this paper, we will refer to them
as small pedestrians [8]. While the problem could possibly be
alleviated by using higher resolution cameras, as suggested
in [9], this would prove more expensive, both in terms of
hardware costs as well as computationally due to the increase
in image sizes.

Our work aims at improving the state of the art in small
scale pedestrian detection, which will be necessary in future
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autonomous vehicles. Indeed, in order to allow travel at high
speeds, detection of obstacles should be made as early as
possible.

In this paper, we will first review the state of the art
and show the limitations of classical methods. Then, we
will focus on our proposed method based on Convolutional
Neural Networks (CNNs). Finally, experimental results on
the Caltech Pedestrian Detection Benchmark [2] are reported
in Section V. We show an improvement of more than 10%
in terms of log-average miss rate.

II. STATE OF THE ART

Classically, pedestrian detection consists in extracting fea-
tures, such as HOG [1], shapelet features [10] or color self
similarity [11] and using classifiers such as Adaboost [12],
[4] or linear SVM [1], [11], [10]. In order to handle pose
variations, the use of Deformable Parts Models [13] is also
a popular method yielding good results by decomposing a
pedestrian into a coarse global and some local appearance
models, together with geometric constraints on their de-
formation. Other methods for pedestrian detection leverage
features from motion as in [14]. Originally, all these methods
were developed under the assumption of a particular human
appearance structure, covering shapes, colors and sub-parts.
However, the limited resolution of small pedestrian prevents
recovering these features.

The detection of small objects has often been studied in the
context of aerial imaging [15]. In this context, the successful
detection is usually due to the relatively simple background.
In the case of urban scenes captured from a vehicle, these
approaches are not applicable.

As opposed to the use of traditional handcrafted features,
the idea to use Deep Learning and end-to-end learning
methods in order to build a good representation for pedestrian
detection is emerging. In [16], unsupervised learning is used
to give a proper initialization of the network weights before
fine-tuning the CNN in a supervised manner. In [17], Ouyang
and Wang learn jointly the feature extraction, the deformation
handling and the scoring of candidates. In [18], handcrafted
features were used the different stages of the cascade of
classifiers were learned together.

In object detection benchmarks, the best performances are
achieved by methods relying on CNNs. These approaches
are now widely based on the “Region with CNN feature”
paradigm (R-CNN) [19]. Starting from a number of potential
regions of interest, it consists in extracting features from
each region proposal with a CNN pre-trained on a larger
dataset, then in using class specific classifiers to identify the
objects and finally in improving the localization by fitting



Fig. 1: Detection results for the far scale group.

bounding-box regressors. The application of these methods
to pedestrian detection in [20] yields competitive results
on the Caltech Pedestrian Dataset and points that a critical
element of success is the use of pedestrian specific detectors
for region proposal instead of class-agnostic ones. However,
in the specific case of far scale pedestrians, even at high
proportions of false positives, detectors still have too low
recall rates to be used as region proposal generators.

Another way to use CNNs for detection is the one pro-
posed in [21], where the network is applied in a sliding
window manner. High scoring windows become candidate
bounding boxes, whose locations are improved by a regres-
sion network. Another similar approach is the Large-Field-
of-View network [22], used to perform a fast high-recall
pedestrian detection that serves as the first stage in a cascade
of networks. Our method is similar to these approaches but
has been specifically designed for small pedestrians.

III. DETECTION OF SMALL PEDESTRIANS

In the Caltech dataset, pedestrians are grouped into three
scales, based on their height: near (80 or more pixels),
medium (between 30-80 pixels) and far (30 pixels or less).
The far scale corresponds to our so called small pedestrians.
A first look at the performance of existing methods shows the
difficulty of detecting them. Figure 1 depicts the performance
of several algorithms in the far scale case. We can clearly
see that the results are far from being satisfactory. Typically,
at a rate of one False Positive Per Image (FPPI), the best
algorithm barely reaches 5% detection rate.

Those methods still learn from pedestrians within their
image context, at a predefined scale, typically 64 by 128
pixels. Detecting bigger or smaller pedestrians requires im-
age resizing operations, giving rise to artifacts as shown in
Figure 2. Upsampled small pedestrians appear blurry, with
low information content.

As a result, most models fail at detecting small pedestrians,
as they differ significantly from the training samples. To
tackle multi-resolution issues, Park et al. [23] proposed to
learn different HOG models for different scales. However, the
detection of small pedestrians remained unsuccessful. This
can be explained by the lack of reliable contour information.
In the particular case of HOG features, the restricted numbers

Fig. 2: Urban scene with various sized pedestrians: near (in
green), medium (in blue) and far (in red) scales.

of pixels available means that either the histograms are built
with very few gradient values, or that each cell corresponds
to a large part of the pedestrian. For these reasons, we
decided to not base ourselves on the classical features but
instead to learn features with an end-to-end approach, by
making use of CNNs.

IV. OUR MODEL

A. Convolutional Neural Networks

CNNs, as particular cases of Deep Neural Networks
(DNNs), are trained in a fully supervised, end-to-end manner
to learn a hierarchy of features. An advantage of CNN-
based methods is that no prior domain knowledge is required.
A DNN consists of multiple levels of feature extractors,
arranged in a feed forward manner, that apply parameterized
transformation functions in order to transform their inputs
into higher level representations. CNNs use convolutional
filters as transformation functions, meaning that the output
of a filter is a linear function of the input. This allows the
network to take advantage of the two dimensional structure
of the data. On top of these filters, CNNs also contain non-
linear activation units, intertwined between convolutional
layers so as to obtain a richer global function than a simple
linear function. Examples of activation units are the Rectified
Linear Unit (ReLU), sigmoid or hyperbolic tangent. The
output of the activation function is used as input for the
following layer in the hierarchy. We also make use of sub-
sampling layers (max-pooling, average pooling) that reduce
the dimension of the input and provide small scale translation
invariance.

We train our network using the back-propagation algo-
rithm. The results of the forward pass of our samples through
the network are compared to the corresponding labels with
the use of a differentiable loss function. This loss function
can be simple, such as a cross-entropy in the case of binary
classification like ours or can be more complex for other
tasks. The comparison between the output of our network
and the labels using the loss function returns an error. Using
the chain rule, it is possible to differentiate the loss function
that we chose and obtain the derivatives with respect to the



Layer Train time size Test time size
Input 3 x 48 x 32 3 x 480 x 640

Convolutional part

conv1 - 5 x 5 Convolution, filter depth 25 25 x 44 x 28 25 x 476 x 636
conv2 - 5 x 5 Convolution, filter depth 50 50 x 40 x 24 50 x 472 x 632
maxpooling1 - 2 x 2 MaxPooling, stride 2 50 x 20 x 12 50 x 236 x 316
conv3 - 5 x 5 Convolution, filter depth 75 75 x 16 x 8 75 x 232 x 312
conv4 - 5 x 1 Convolution, filter depth 100 100 x 12 x 8 100 x 228 x 312
maxpooling2 - 2 x 2 MaxPooling, stride 2 100 x 6 x 4 100 x 114 x 156

Fully connected part
fc1 - 6 x 5 Convolution, filter depth 1200 1200 x 1 x 1 1200 x 108 x 152
fc2 - 1 x 1 Convolution, filter depth 600 600 x 1 x 1 600 x 108 x 152

fc3 - 1 x 1 Convolution, filter depth 1 1 x 1 x 1 1 x 108 x 152

TABLE I: Our CNN architecture.

filter weights of our network. Using this gradient, we can
then optimize the loss function on the training dataset to
generate appropriate features. The optimization can be done
with any gradient descent type algorithm. In order to increase
the convergence speed, the gradient is not computed on the
whole training set but approximated on mini-batches, so as
to perform more frequent updates.

B. Architecture

The template of pedestrians that we want to detect is
set to 16 by 32 pixels. We designed our network to have
receptive fields (the size of an input element that matches
one prediction) of size 32 by 48 pixels, in order to include
contextual information around the target. It is known that
including this margin leads to significant improvement [1].
Given the limited size of the receptive fields, we chose to use
small kernels and pooling regions. Our network is composed
of two main parts. The first consists in four convolutional
layers and two max-pooling layers that extract features. The
second part contains three fully connected layers to predict
the score using the features. The complete architecture is
detailed in Table I.

Each of the layers in our network is followed by a
Parametric ReLU (PReLU) activation unit [24]. These units
have the low computational cost of the ReLU layers but also
provide a way to learn parameters for the activation function,
leading to improved accuracy.

C. Learning and prediction

To train the network, we perform stochastic gradient
descent. Our loss function is the binary cross entropy,

δ(c, p) = c log(p) + (1− c) log(1− p) (1)

where c is the class of our sample and p ∈ [0, 1] our
prediction after passing through a sigmoid.

In order to improve regularization and prevent overfitting,
we use dropout [25]. The gradient step size is reduced

gradually and we perform early stopping by monitoring the
objective function on a validation set.

During the evaluation phase, our model that makes a 32
by 48 pixels window correspond to a single score prediction
is applied in a fully convolutional manner. This is equivalent
to performing a sliding window on the whole image. Instead
of applying the convolutions to a patch sized input, we apply
them to the whole image. The last layers that were considered
fully connected during the training phase are equivalent to
convolutional layers with a kernel size corresponding to the
size of the training samples at this stage. For the layers with a
kernel bigger than one, this is more efficient than processing
each window separately due to the shared computations
between overlapping regions. Furthermore, a lot of work has
been done recently to optimize the convolution operations
[26], [27]. Applying our CNN in a fully convolutional
manner generates a two dimensional prediction matrix where
each element corresponds to the prediction for a window in
the input image. In order to detect pedestrians of different
sizes, we feed in the input images at various scales.

D. Detection boxes filtering

Our network returns a score for each detection window at
all positions and scale. We only keep Bounding Boxes (BB)
with a positive score. A bounding box is defined by a five
dimensional vector

BB = (x, y, w, h, s), (2)

where (x, y) represent location coordinates, (w, h) the di-
mensions of the box, and s the score.

Some pedestrians may have activated the output for sev-
eral neighboring predictions so we need to perform a Non
Maximum Suppression (NMS) step to remove duplicates that
would be considered as false positives. Typically, a pair of
bounding boxes (BBi, BBj) is supposed to correspond to a
unique pedestrians if the overlap;

a =
area(BBi ∩BBj)

area(BBi ∪BBj)
, (3)

is above a threshold t.
A simple solution consists in greedily selecting the highest

scoring bounding box and then removing all the bounding
boxes with enough overlap [13]. NMS can be formalized as
a clustering problem using (3) as a distance measure. Given
a cluster (BB1, BB2, . . . , BBk), this method is equivalent
to representing this cluster by a unique box defined as

BBgreed = (xM , yM , wM , hM , sM ), (4)

where
M = argmaxi(si). (5)

It means that we only keep the BB with the highest score for
each cluster. This method has the issue that we do not take
advantage of the additional information given by neighboring
bounding boxes. Intuitively, we would expect that a cluster
with many high scored BBs should be represented by a



highly scored one. We propose two other strategies for taking
this information into consideration.

The first one, so called Vote strategy, is similar to the
greedy Non Maximum Suppression except that we update
the score of the maximum bounding box by adding the score
of the boxes that got suppressed. This can be expressed as

BBvote =

(
xM , yM , wM , hM ,

k∑
i=1

si

)
, (6)

where M is defined as previously (5). This allows regions
with a high density of detections to be favored. However we
observed some correct detections that all got suppressed by
another non-matching one, leading to a false negative with
a very high confidence.

In order to solve this problem, a so-called Merge strat-
egy,consists in merging all the detections, instead of sup-
pressing the lowest scoring ones. Rather than updating only
its score, we also update the other parameters of the BB. To
do so, we perform a weighted average of the coordinates,
height and width. In order to give more importance to the
highest scored boxes, we use the scores as weights. This can
be formalized as follows:

BBmerged =

(
k∑

i=1

xi
si
C
,

k∑
i=1

yi
si
C
,

k∑
i=1

wi
si
C
,

k∑
i=1

hi
si
C
,C

)
, (7)

where C is a normalization constant defined as

C =

k∑
i=1

si. (8)

The results given by these strategies are compared in section
V.

V. EXPERIMENTS

We performed all of our experiments on the Caltech
Pedestrian Dataset, using the Matlab toolbox and evaluation
software provided by [2]. Our CNN implementation is based
on the open source Torch framework [28]. Codes are avail-
able at the authors website.1

A. Training Data

The Caltech Pedestrian Dataset is composed of 11 sets of
images taken from a camera embedded into a vehicle driving
in normal conditions in urban areas. The dataset contains 250
000 frames and 2300 unique pedestrians in total, presenting
varying sizes, aspect and occlusion ratios.

We performed our training on the first five sets (noted
0 to 4 in the distributed dataset) and kept the sixth one
for validation and early stopping. To gather our positives
samples, we extracted from each frame all the pedestrians
that did not present occlusion and were not part of a group
of people for which no precise annotation is available. This
led to about 44,000 samples of small pedestrians. Due to
the fact that the performance of neural network is heavily
dependant on the volume of data available during training,
we also performed data augmentation in order to extend
our training set. Medium and near scale pedestrians resized

1https://github.com/bunelr/utc-caltech

by downsampling provided an additional 33,000 positive
samples. For each pedestrian, we used their original images,
the mirrored version around the vertical axis, as well as the
results of small deformations consisting in translation and
scaling. While these generated examples are very close to
the ones already found in the dataset, they help the network
to learn a more generalized version of the pedestrians.

A batch of 100,000 negative examples were randomly
sampled from all the images at each iteration. In order
to learn the more ambiguous cases, after each epoch of
the stochastic gradient procedure, we hold the samples that
resulted in high penalty from the loss function, i.e., negative
samples considered pedestrians with a high confidence, to
be reused in the next epoch, in addition to the new batch of
random crops. This forced the network to be more exposed
to them. This is similar to hard negatives mining.

B. Evaluation protocol

Like in the PASCAL detection challenge [29], the match
between proposed detection and ground truth is determined
by the overlap criteria, defined in (3). Usually, a detection is
deemed a true positive if this overlap score with a bounding
box is higher than a threshold t = 0.5. Ground truth
bounding boxes can only be matched by a single detection,
any additional detection are considered as false positives.
Occulted and tightly grouped people were ignored during
the evaluation, meaning that they did not count as true
positives when detected but did not penalize the score when
missed. The performance criterion is the log average miss
rate, evaluated for nine levels of false positives per image,
spaced evenly in log scale between 10−2 and 100.

C. Results

The results obtained on the far subset of the Caltech
dataset are shown in the left side of Figure 3. The best
results were obtained with the Merge strategy. In terms of log
average miss rate, we observes a gain of 7%. The Vote and
Greedy schemes performed slightly worse but they were still
significantly better than existing methods. We also present
the same evaluation but using a lower overlap threshold,
therefore corresponding to a relaxation in the precise lo-
calisation expectation. During the evaluation, images were
processed at a rate of 1.34 frames per second on a desktop
computer equipped with a GPU. Speed wasn’t an objective
of this project but this could be improved by making use of
recent results in speeding up the evaluation of CNNs [30].

With deeper analysis of our failures, we observe that
many detections were considered as false positives because
of the fixed threshold, even though they present a reasonable
overlap with the ground truths. Examples of such cases are
shown in Figure 5.

In the case of small pedestrians, tiny misalignment of
bounding boxes can translate to great reduction in overlap
score. For this reason, we also tested our performance with
a threshold of t = 0.25. This comes down to a relaxation
of the localization criterion. These results are shown on
the right side of Figure 3. Under this setting, the Vote and

https://github.com/bunelr/utc-caltech


Fig. 3: Evaluation Results on far scale pedestrians of the
Caltech dataset for t = 0.5 (left) and for t = 0.25 (right).

Fig. 4: Worst False Positives. Highlighted are some true
positives that correspond to pedestrians non annotated in the
ground truth data.

Merge strategies led to the same results, a reduction of more
than 10% in miss rate. The difference between these two
in the former case (t = 0.5) demonstrates that using all
boxes to determine the location coordinates of the cluster
representative improves localization. It is interesting to notice
that existing methods do not benefit as much from the relaxed
criterion on the localization.

In Figure 6, we show some detection examples. The
detectors were set up to have a 1 FPPI rate on the far
configuration. We can observe that our method have a much
higher recall rate than both HOG and Channel Features [4].
Allowing a higher number of false positives, our methods
can reach miss rates lower than 10% while existing methods
barely attain 60%. Analyzing the false positives detections
also led to some insights. Figure 4 shows the highest scoring
false positives. Among those, almost a third consist in leaves
of tree that are wrongly detected as pedestrians. Other
elements source of confusions are traffic signs, lamp posts
and similar elements of urban architecture. We can see that
for a significant ratio of false positives, even a human would
be fooled by their visual appearance. This hints that we may
not hope to achieve much better improvements by relying

Fig. 5: Examples of overlap between 0.25 and 0.5. The red
boxes are our detections and the green ones are ground truths

only on the visual appearance of pedestrians.

VI. CONCLUSION

We improved the state of the art in small pedestrians
detection by reducing by an order of magnitude the num-
bers of false positives, using a simple convolutional neural
network. The best localisation is obtained using our merging
strategy. As a future direction, we can consider more com-
plex approaches, such as regression based localisation [19].
Incorporating additional information in our model such as
motion [14] thermal information [31], or semantic attributes
[32] would yield further improvements. Improving the model
by taking into account the relation between different frames,
for example using Recurrent Neural Networks [33].
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