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The Bernstein-Gelfand-Gelfand complex for the groups Sp(n, 1) and F4(−20)
as a Kasparov module

Pierre Julg

Université d’Orléans

0. Introduction.

Let G be a locally compact group and A be any G−C∗-algebra. We say
that G satisfies the Baum-Connes conjecture with coefficients in A if that
the Baum-Connes assembly map:

KG
∗ (EG,A)→ K∗(C

∗
r (G,A))

is an isomorphism. The left hand side is the G-equivariant K-homology of
the universal proper space for proper G-actions, which is well defined up to
G-equivariant homotopy, with coefficients in A. The right hand side is the
K-theory of the reduced crossed product of A by G.

We say that G satisfies the Baum-Connes conjecture with coefficients if
it satisfies the conjecture with coefficients in any G−C∗-algebra A. On the
other hand, G satisfies the usual Baum-Connes conjecture, i.e. the conjec-
ture without coefficents, if it satisfies the conjecture with scalar coefficients,
i.e. for A = C, the algebra of complex numbers. The important point about
the conjecture with coefficients is that it is stable by restriction to closed
subgroup. In particular, if G is a group which satisfies the Baum-Connes
conjecture with coefficients, then any closed, and in particular any discrete
subgroup of G satisfies the Baum-Connes conjecture.

We are interested in the following situation: let us assume that G is a
semi-simple Lie group, connected with finite centre. The conjecture without
coefficients for G is known to be true. There are actually two completely
distinct proofs of that fact. In 1984, A. Wassermann [W](following the
work of Pennington-Plymen and Valette) has proved the conjecture using
the Harish-Chandra theory which allows to describe the reduced dual of
such groups. However the philosophy of A. Connes non commutative geom-
etry suggested that one should provide a proof of the conjecture completely
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independent of such a representation theory. This has been done in the
remarkable work of V. Lafforgue in 1998 [L].

On the other hand, let Γ be a discrete subgroup of G, the question of
Baum-Connes for Γ can be summerized as follows:

1) injectivity is known to be true since the work of Kasparov on the
Novikov conjecture in 1980 [K1][K3][; in fact this is a consequence of the
injectivity of the Baum-connes assembly map with coefficient in any A for
the Lie group G.

2) the question of surjectivity of the Baum-Connes assembly map for
the discrete group Γ, or more generally the surjectivity of the Baum-Connes
assembly map with coefficients in any A for the Lie group G is a difficult
problem and a test for the conjecture. Let us list a few results and open
problems.

In the case where G is simple with real rank one, there is a dichotomy
between two classes of groups:

(i) if G is (locally isomorphic to) one of the groups S00(n, 1) or SU(n, 1)
(n ≥ 2), G has the Haagerup property. Therefore, by the Higson-Kasparov
theorem [HK][J4], G satisfies the Baum-Connes conjecture with coefficients,
and so do all its discrete subgroups. Moreover, G is K-amenable [JV]:
the reduced crossed products C∗r (G,A) can be replaced by the full crossed
products C∗(G,A).

The case of SO0(n, 1) had in fact been solved by Kasparov [K2] already
in 1983, combining geometry (the conformal structure on the sphere at in-
finity of the hyperbolic space) and the theory of unitary representations
(complementary series). This was generalized to SU(n, 1) by Kasparov and
the author [JK].

(ii) if G is (locally isomorphic to) one of the groups Sp(n, 1) (n ≥ 2)
or F4(−20) , then G has Kazhdan’s property T . This fact makes the Baum-
Connes conjecture more difficult since the full and reduced crossed product
do not have in general the same K-theory. The first deep result in that
direction was obtained by V. Lafforgue in 1998 [L]: if Γ is a cocompact
discrete subgroup of such a group G, then Γ satisfies the Baum-connes con-
jecture (without coefficients), and even the conjecture with coefficients in a
commutative C∗-algebra.

In this paper we present the main step in the proof of the following
result:

Theorem 1 Let G be one of the groups Sp(n, 1) (n ≥ 2) or F4(−20) . Then
G satisfies the Baum-Connes conjecture with coefficients. In particular all
discrete subgroups of G satisfy the Baum-Connes conjecture.
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Our proof is a generalisation of the method of [JK]. The difference is
that it is no longer possible to use the theory of unitary representations since
the complementary series stays away from the trivial representation. The
main ingredient in our proof is the use of a family of uniformly bounded
representations , constructed by M. Cowling, which approach the trivial
representation.

Recently, V. Lafforgue has shown that any Gromov hyperbolic group Γ
satisfies the Baum-Connes conjecture with coefficients. Note that the range
of application of Lafforgue’s method and ours are in general position: the
case where Γ is a cocompact discrete subgroup of Sp(n, 1) (n ≥ 2) or F4(−20)
can therefore be obtained by both. However we obtain the case of all discrete
subgroups of such Lie groups, and Lafforgue obtains all Gromov hyperbolic
groups.

Let us say a few words about the case of higher rank. Very few is known.
Let G be a simple Lie group of real rank at least 2, and Γ a discrete subgroup
of G.

(i) Assume that G is SL3(R) or SL3(C). V. Lafforgue has shown that
any discrete cocompact subgroup Γ of G satisfies the Baum-connes conjec-
ture (without coefficients). I. Chatterji has generalized this fact to SL3(H)
and E6(−26). It is not known whether such a group Γ (or a fortiori the
Lie group G) satisfies the conjecture with coefficients. Moreover, nothing is
known about the Baum-Connes conjecture for general discrete subgroups of
G.

(ii) If G is either another real rank 2 simple group, or a simple group
with real rank at least 3, nothing is known.

In particular there are two very difficult open problems: Prove that
SL3(Z) satisfies the Baum-Connes conjecture, or prove that SL3(R) satisfies
the Baum-Connes with coefficients.

On the other hand, leaving the world of Lie groups, the so called Gromov
random groups (or Gromov’s monsters) are known to be counterexamples
to the Baum-Connes conjecture with coefficients (but possibly not to the
plain conjecture).

1.K-theory and Fredholm modules.

1.1 Review of Kasparov’s Dirac-dual Dirac method.

From now on, G will be a semi-simple Lie group, connected with finite
centre. Let K be a maximal compact subgroup of G. The Riemannian

3



symmetric space X = G/K representative of the universal space EG) .
The subgroup K is the stabilizer of a point x0 in the symmetric space and
therefore acts by a linear representation in the real vector space V tangent
to X at point x0. The left hand side is isomorphic to the K-theory of the
crossed product of C0(V

∗)⊗A by K. The Baum-Connes conjecture for that
case is the so-called Connes-Kasparov conjecture: the map

αA : K∗(C
∗(K,C0(V

∗)⊗A))→ K∗(C
∗
r (G,A))

is an isomorphism. That map αA is called the Dirac map because it can be
constructed using a Dirac operator on G/K.

G. Kasparov (cf [K1][K3]) has shown that the map αA is injective. More
precisely he constructed a left inverse βA : K∗(C

∗
r (G,A))→ K∗(C

∗(K,C0(V
∗)⊗

A)), called dual Dirac. The composition βAαA is the identity ofK∗(C
∗(K,C0(V

∗)⊗
A)), but the composition γA = αAβA is a priori only an idempotent map of
the K-theory group K∗(C

∗
r (G,A)). The conjecture is therefore equivalent

to the fact that the map γA is the identity.
The maps αA and βA are described by Kasparov thanks to explicit ele-

ments in equivariant KK-theory:

α ∈ KKG(C0(T
∗X),C)

β ∈ KKG(C, C0(T
∗X))

such that α ⊗ β = 1 in KKG(C0(T
∗X), C0(T

∗X)). In particular , the map
γA comes from the idempotent element γ = β ⊗ α of the commutative ring
R(G) = KKG(C,C). The abelian groups K∗(C

∗
r (G,A)) are modules over

the ring R(G) via the following ring homomorphisms:

R(G) = KKG(C,C)→ KKG(A,A)→ KK(C∗r (G,A), C∗r (G,A))→ EndK∗(C
∗
r (G,A))

The Baum-Connes conjecture for G with coefficients in A is therefore
equivalent to the following statement:
Conjecture. The above map R(G) → EndK∗(C

∗
r (G,A)) sends the Kas-

parov element γ to the identity.
In this paper we prove the above conjecture for the groups Sp(n, 1) and

F4(−20). The proof also applies to the case of SO(n, 1) or SU(n, 1), but in
that case one has in fact the much stronger result γ = 1 in R(G): this was
shown in [K2][JK], and also results from [HK], see for example [J]. It also
implies K-amenability (cf [JV]).

1.2 Idea of our proof.
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The crucial point in our work is the role of uniformly bounded represen-
tions. Michael Cowling has shown [C][ACD], already in 1980, that the non
unitary principal series representions πs on the suitable Sobolev spaces asso-
ciated to the hypoelliptic sublaplacian, are not only bounded, but uniformly
bounded provided the complex parameter lies in some vertical strip (section
3.1).

On the other hand, there is a link between uniformly bounded represen-
tations and K-theory which we had already observed in 1984 [J2]: the fact
that the map R(G) → EndK∗(C

∗
r (G,A)) factors through a group Rub(G)

which is defined using uniformly bounded representations instead of unitary
ones (section 3.2).

The idea of our proof is therefore the following: since we cannot (because
of property T ) make a homotopy from γ to 1 with unitary representations,
we construct such a homotopy with uniformly bounded representations. The
strip of uniformly bounded representations of M. Cowling plays here the role
of the complementary series for S0(n, 1) [K2] and SU(n, 1)[JK].

Stricly speaking, there is another technical difficulty due to the fact
that at the end of the homotopy the representations are no more uniformly
bounded: the uniform bounds blow up . This problem can be fixed using a
trick which appears in the Banach context of V. Lafforgue’s thesis in 1998.
The idea of adapting the argument to our situation had been suggested
to us in 1999 by N. Higson and V. Lafforgue. Technically we replace the
uniformly bounded representations by representations of ε-exponential type,
i.e. satisfying ‖π(g)‖ ≤ Ceεl(g), where l(g) is the length of g ∈ G. We can
perform a homotopy to 1 for any ε > 0 and a result of N. Higson and V.
Lafforgue is that it is enough to show that our element of Rub(G) acts by
the identity on the K-theory of any reduced crossed product C∗r (G,A).

1.3. Uniformly bounded representations and K-theory.

A representation g 7→ π(g) of a locally compact group G in a Hilbert
space is a strongly continuous morphism of the group G to the group of
invertible elements of the C∗-algebra L(H) of bounded operators on H.

Definition 2 A G-Fredholm module is a triple (H,π, T ) where: H is a
Z/2-graded Hilbert space; π a representation of G in H which is even (i.e.
commutes with the grading); F a bounded operator on H which is odd (i.e.
anticommutes with the grading), Fredholm (i.e. there exists a bounded op-
erator S on H such that TS − 1 and ST − 1 are compact operators), and
almost G-intertwining (i.e. g 7→ [T, π(g)] is a normly continuous map from
G to the compact operators).
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Definition 3 A homotopy of G-Fredholm modules is a triple (E, π, T ) where:
E is a Z/2-graded Hilbert module over the C∗-algebra C[0, 1] of continuous
functions on [0, 1]; π a representation of G in H which is even (i.e. com-
mutes with the grading); F a bounded operator on E which is odd (i.e. anti-
commutes with the grading), Fredholm (i.e. there exists a bounded operator
S on E such that TS − 1 and ST − 1 are compact operators), and almost
G-intertwining (i.e. g 7→ [T, π(g)] is a normly continuous map from G to
the compact operators).

Definition 4 A bounded representation π of G is a representation of the
group G by bounded operators on a Hilbert space which is strongly continu-
ous. Such a representation is uniformly bounded if moreover

sup
g∈G
‖π(g)‖ <∞.

Unitary representations are special cases of uniformly bounded representa-
tions.

The other crucial fact which makes the uniformly bounded representa-
tions relevant for our problem is the following. Let (G,A) be a C∗-dynamical
system. We will show below that the map R(G) → EndK∗(C

∗
r (G,A)) fac-

tors, as a map of additive groups, through a group Ru.b(G) defined using
uniformly bounded representations instead of unitary representations.

We will need the following lemma:

Lemma 5 1) Let π be a uniformly bounded representation of G. Let λ be
the left regular representation of G on L2(G). There exists an operator U
on H ⊗ L2(G), which is bounded and has a bounded inverse, such that

π(g)⊗ λ(g) = U(1⊗ λ(g))U−1

2) If moreover π is a unitary representation, U is a unitary operator.

The unitary case is classical and its generalisation to the uniformly bounded
case is straitforward.

Let λA be the canonical map C∗(G,A)→ C∗r (G,A).
To a Hilbert space H equipped with a uniformly bounded representa-

tion π, associate the Hilbert module E = H ⊗ C∗r (G,A) and the covariant
representation of (G,A) with values in LC∗r (G,A)(E) defined by:

a 7→ 1⊗ a, g 7→ π(g)⊗ λ(g).
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Lemma 6 The representation π̃ : L1(G,A) → LC∗r (G,A)(E) extending the
above covariant representation factors through the reduced crossed product
C∗r (G,A).

Proof. The reduced crossed product C∗r (G,A) is by definition a sub-C∗-
algebra of LA(L2(G) ⊗ A) . Therefore the C∗-algebra LC∗r (G,A)(E) is a
sub-C∗-algebra of LA(H ⊗ L2(G)⊗A). It follows easily from lemma 1 that
for any a ∈ L1(G,A), one has

π̃(a) = Ũ(1⊗ λA(a))Ũ−1

where
λA : L1(G,A)→ C∗r (G,A)→ LA(L2(G)⊗A)

The map π̃ therefore extends to a continuous (but not ∗) homomorphism

π̃ : C∗r (G,A)→ LC∗r (G,A)(E).

A G-Fredholm module (resp. a homotopy of G-Fredholm modules) is
uniformly bounded if the representation π is uniformly bounded. Let us
consider the monoid of uniformly bounded G-Fredholm modules (for the
direct sum), and take the quotient by the equivalence relation defined by
the uniformly bounded homotopies. We obtain an abelian group denoted
by Rub(G). The same construction with ”unitary” instead of ”uniformly
bounded” yields the Kasparov group R(G) = KKG(C,C) (we do not con-
sider here the ring structure). Since any unitary map is uniformly bounded,
there is an obvious map R(G)→ Rub(G).

Theorem 7 For any G−C∗-algebra A, the Kasparov map R(G)→ EndK∗(C
∗
r (G,A))

factors through the map R(G)→ Rub(G).

Proof. Let us construct a map Rub(G) → EndK∗(C
∗
r (G,A)). To a G-

Fredholm module (H,π, T ) we associate the triple (H ⊗ C∗r (G,A), π̃, T̃ )
where π̃ : C∗r (G,A) → LC∗r (G,A)(E) is the Banach algebra homomorphism

defined above, and T̃ = T ⊗ 1 ∈ LC∗r (G,A)(H ⊗ C
∗
r (G,A)).

Proposition 8 A is a Banach algebra, B a C∗-algebra and E a Z/2-graded
B-Hilbert module, if π is a banach algebra morphisme A → LB(E), and
T ∈ LB(E) which is odd, Fredholm (i.e. invertible modulo the B-compact
operators) and commutes modulo the B-compact operators with the operators
π(a), a ∈ A. Then (E, π, T ) defines maps K0(A) → K0(B) and K1(A) →
K1(B).
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This is a classical statement. It is here unnecessary to use the powerful
tool of Lafforgue’s KKban(A,B).

1.4 Slow-growth representations.

Let ε > 0. We say that a representation π of G is of ε-exponential type
if there is a constant C such that for any g ∈ G,

‖π(g)‖ ≤ Ceεl(g)

where l(g) = d(gx0, x0) is the length of g. We define as above a G-Fredholm
module (resp. a homotopy of G-fredholm modules of ε-exponential type. Let
Rε(G) be the abelian group of homotopy classes of such Fredholm modules.
There are obvious maps Rε(G) → Rε′(G) for ε < ε′, and we consider the
projective limit limRε(G) when ε → 0. We would like to replace in the
above result the group Rub by limRε(G). In fact there is a slightly weaker
result due to Higson and Lafforgue (cf [L], théorème 2.3):

Theorem. The kernel of the map

R(G)→ limRε(G)

is included in the kernel of the map

R(G)→ EndK∗(C
∗
r (G,A))

.
The idea of their proof is the following. For given ε there is a Banach

algebra Cε which is a completion of Cc(G,A) such that the the map

π̃ : Cc(G,A)→ LC∗r (G,A)(E)

extending the covariant representation of (G,A) with values in LC∗r (G,A)(E)
defined by a 7→ 1⊗a, g 7→ π(g)⊗λ(g) extends to a map Cε → LC∗r (G,A)(E),
which is compatible with the obvious maps Cε → Cε′ for ε′ < ε.

One has a commutative diagramme (cf [L] prop 2.5)

R(G) → EndK∗(C
∗
r (G,A))

↓ ↓
limRε(G) → lim Hom(K∗(Cε),K∗(C

∗
r (G,A)))

The theorem of Higson-Lafforgue follows immediatly from the lemma:
Lemma. The group K∗(C

∗
r (G,A)) is the union of the images of the maps

K∗(Cε)→ K∗(C
∗
r (G,A)).
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The proof of their lemma is subtle. Using the idea of finite asymptotic
dimension, they first show an estimate of the form (prop 2.6 in [L])

‖f‖Cε ≤ kεeε(ar+b)‖f‖C∗r (G,A)

for f ∈ Cc(G,A) with support in a ball of radius r (for the length l). Using
the spectral radius formula in Banach algebras one immediately gets:

ρCε(f) ≤ eεarρC∗r (G,A)(f).

Hence the crucial fact that ρC∗r (G,A)(f) = inf ρCε(f), which by standard
holomorphic calculus implies the lemma.

1.5 A characterisation of the element γ.

We shall need a characterisation of the element γ of R(G), which already
appears in [JK] . Consider X̄ = X ∪ ∂X the natural compactification of X.
We have the following fact:

Proposition 9 The map KKG(C(X̄),C)→ KKK(C(X̄),C) is an isomor-
phism. In other words, (1− γ)KKG(C(X̄),C) = 0.

The proof reproduces exactly the proof of [JK] , prop. 1.2.

Corollary 10 An element of R(G) which is in the image of KKG(C(X̄),C)→
R(G) and maps to 1 in R(K) is equal to γ.

2. Construction of a family of Fredholm modules on the boundary
of a symmetric space of rank 1.

The main technical tools of the proof are introduced in thischapter .
Let X be a symmetric space of rank 1, and M = ∂X its boundary or
sphere at infinity. Then M is a generalized contact manifold, i.e. a smooth
manifold equipped with a subbundle E of the tangent bundle. The group G
of isometries ofM leaves invariant not only the generalized contact structure,
but a conformal class of Carnot-Caratheodory metrics (i.e. metrics on the
subbundle E and on the quotient bundle TM/E) (section 2.1).

To such a geometric data is associated a hypoelliptic sublaplacian and
a pseudodifferiential calculus Ψ(M,E) [CGGP] modelled on the theory of
representations a two step graded nilpotent groups (section 2.2). This fact
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allows to construct the families of representations which play a central role
in our proof. We start with unitary principal representations, i.e. geomet-
rically the spaces of L2 sections of some equivariant hermitian bundles on
M . We deform them to non unitary principal series πs (depending on a
complex parameter s ∈ C), which by the virtue of the pseudodifferential
calculus Ψ(M,E), become bounded on some Sobolev spaces associated to
the hypoelliptic sublaplacian (section 2.3). On the other hand, there is a
complex of differential operators, introduced by M. Rumin [R], which is more
adapted than the de Rham complex to the generalized contact and Carnot-
Caratheodory structure and whose hypoelliptic regularity is expressed in
terms of the pseudodifferential calculus Ψ(M,E) . A crucial fact that we
prove in section 2.4 is the G-invariance of the Rumin complex on the bound-
ary of a rank one symmetric space.

All of the above geometric and analytic datas above are combined in the
construction of a family (indexed by s ∈ C) of Fredholm modules (section
2.5).

2.1 Field of graded Lie algebras associated to a Heisenberg mani-
fold.

We shall call Heisenberg manifold a smooth manifold M equipped with a
subbundle E of the tangent bundle TM . To such a subbundle is associated
a bundle homomorphism ∧2

E → TM/E

which to X∧Y associates [X,Y ] modulo E. This map is indeed well defined
because the formula [fX, gY ] = fg[X,Y ] + fX(g)Y − Y (g)fX ≡ fg[X,Y ]
modulo E shows that the value of the vector field [X,Y ] modulo E at a
given point only depends on the value of X and Y at the same point.

Note that the duality transpose of the above map is the map

E⊥ →
∧2

E∗

which to a form τ vanishing on the subbundle E associates the restriction
to E of dτ . Here again the formula d(fτ) = fdτ + df ∧ τ shows that the
map is defined poinwise.

Let us consider TM as a filtered bundle (by the increasing filtration
E ⊂ TM) and let gr(TM) = E ⊕ TM/E the associated graded bundle.
Then there is a field of graded Lie algebra structures on the bundle gr(TM)
defined (pointwise) by

((X,Z), (Y, T )) 7→ (0, [X,Y ] mod.E)
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The graded Lie algebra gr(TM) is equipped with the automorphism θt
defined by θt(X) = tjX if X ∈ E and θt(Z) = t2Z if Z ∈ TM/E
Remark: This construction can be generalized as follows. We consider a
filtration of the tangent bundle TM :

F1 ⊂ F2 ⊂ ... ⊂ Fl = TM

subject to the following condition: if X is a section of Fi and Y a section
of Fj then the Lie bracket [X,Y ] is a section of Fi+j . Then we can equipp
the associated graded bundle gr(TM) = F1 ⊕ F2/F1 ⊕ F3/F2...⊕ TM/Fl−1
with a field of graded Lie algebra structure as follows. If X is a section of
Fi and Y a section of Fj , then the section [X,Y ] of Fi+j modulo Fi+j−1
clearly only depends on X modulo Fi−1 and Y modulo Fj−1. Moreover the
formula [fX, gY ] = fg[X,Y ] + fX(g)Y − Y (g)fX again proves that the
value of [X,Y ] ∈ Fi+j/Fi+j−1 at a given point only depends on the values
of X ∈ Fi/Fi−1 and Y ∈ Fj/Fj−1 at the same point. Note that the grading
on the Lie algebra gr(TM) gives rise to the automorphism θt defined by
θt(X) = tjX if X ∈ Fj/Fj−1.

2.2 Differential forms on a Heisenberg manifold.

The increasing filtration E ⊂ TM defines a dual decreasing filtration
T ∗M ⊃ E⊥, and induces filtrations of the exterior algebras

∧
TM and∧

T ∗M . Namely: ∧
1
TM ⊂

∧
2
TM ⊂ ... ⊂

∧
TM

where
∧
w TM the space of multivectors of weight ≤ w is defined as the span

of X ∧ Y where X ∈
∧iE, Y ∈

∧j TM and i+ 2i ≤ w. Dually∧
T ∗M ⊃

∧
1
T ∗M ⊃

∧
2
T ∗M ⊃ ...

where
∧
w T
∗M , the space of forms of weight ≥ w is the span of α ∧ β,

α ∈
∧iE⊥, β ∈

∧jT ∗M where i+ 2j ≥ w. Note that in the duality between∧
TM and

∧
T ∗M ,

∧
w T
∗M is the orthogonal of

∧
w−1 TM .

Lemma 11 The associated graded algebra gr
∧
T ∗M =

⊕
w

∧
w T
∗M/

∧
w+1 T

∗M
is canonically isomorphic to the exterior algebra

∧
(E⊕TM/E)∗ of the dual

of the Lie algebra gr(TM) = E ⊕ TM/E.
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Let us consider the algebra Ω(M) = Γ(
∧
T ∗M) of differential forms on

M . Let Ωw(M) be the space of sections of the bundle
∧
wT
∗M , defining a

filtration of the algebra Ω(M). The associated graded algebra gr(Ω(M)) =⊕
Ωw(M)/Ωw+1(M) is the algebra of sections of the algebra bundle

∧
(E ⊕

TM/E)∗.

Lemma 12 The map d : Ω(M)→ Ω(M) preserves the spaces Ωw(M). The
induced map on the associated graded algebra is map d0 given by the bundle
map

d0 :
∧k

(E ⊕ TM/E)∗ →
∧k+1

(E ⊕ TM/E)∗

which is nothing but the coboundary map for the Lie algebra cohomology of
the Lie algebra E ⊕ TM/E.

Remark: This can be generalized as follows to the case of a filtration by
the Fj ’s. We define ΛwT

∗M as the ideal of ΛT ∗M generated by the forms
α1 ∧ α2 ∧ ... ∧ αl, with αj ∈ ΛijF⊥j−1 and the multiindex (i1, ..., il) satisfies
i1 +2i2 + ...+ lil = w. Both lemma 1 and lemma 2 can be generalized to the
case of a filtration by Fj ’s. The fact that d preserves Ωw(M) follows from
the fact that d(F⊥j ) ⊂ T ∗M ∧ F⊥j−1

We now consider the operator d as a differential operator on Ω. We
equip the algebra Diff(M,ΛT ∗M) of differential operators on the bundle
ΛT ∗M with the following increasing filtration. Let us choose a connection
on Γ(TM) such that for any vector field X, ∇X(Γ(E)) ⊂ Γ(E). Such
connections do exist.

We equipp he subalgebra of bundle operators (i.e. zero order operators)
with the Z-filtration such that:

(i) an element of End(ΛT ∗M) is of weight ≤ w if it maps ΛuT
∗M to

Λu−wT
∗M .

(ii) if a vector field X is in Γ(E) (resp. Γ(TM)) then ∇X has weight
≤ 1 (resp.2).

The filtration thus obtained is independent of the choice of the connec-
tion ∇.

Lemma 13 The operator d in Diff(M,ΛT ∗M) has 0-order in the above
filtration.

The differential calculus given by Diff(M,ΛT ∗M) with the above fil-
tration extends to a pseudodifferential calculus Ψ(M,E,ΛT ∗M). Such a
pseudodifferential calculus generalizes the pseudodifferential calculus asso-
ciated to the tangent groupoid for the Heisenberg manifold [JvE], [vEY], see
also [M].
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2.3 Quasi-conformal structure on a Heisenberg manifold.

To any riemannian metric γ on the manifold M we associate a bundle
isomorphism

ϕγ : gr(TM)→ T ∗M

as follows: we map gr(TM) isomorphically to TM by identifying each quo-
tient Fj/Fj−1 to the orthogonal (for the given metric) of Fj−1 in Fj , then
the metric defines an isomorphism from TM to its dual T ∗M . Note that the
map ϕγ is filtration preserving, if gr(TM) is equipped with the decreasing
filtration induced by its grading, and T ∗M by the decreasing filtration by
the (duality) orthogonals to the increasing Fj ’s.

Definition 14 Two metrics γ1 and γ2 are quasi-conformal if the composi-
tion ϕ−1γ1 ◦ϕγ2 is a (filtered) Lie algebra isomorphism of gr(TM) which is of
the form Ad(X) ◦ θt where X ∈ gr(TM) and t ∈ R∗+.

The notion of quasi-conformality defines an equivalence relation among
metrics on M . We shall call quasi-conformal structure on a Heisenberg man-
ifold the choice of an equivalence class. Given a quasi-conformal structure on
a Heisenberg manifold there is a unique field of filtered Lie algebra structures
on the cotangent bundle T ∗M , such that the map ϕγ : gr(TM)→ T ∗M is a
filtered Lie algebra morphism (fiberwise) for any metric g in the given class.

Let us assume that such a quasi-conformal class has been chosen, and
let us consider the bundle T ∗M equipped by a field of filtered Lie algebra
structures. Let δ :

∧kT ∗M →
∧k−1T ∗M be the bundle map which is on

each fiber the boundary map for the Lie algebra homology of the Lie algebra
T ∗M .

Lemma 15 The map δ preserves the filtration of
∧
T ∗M , and induces on

the associated graded space
∧

gr(T ∗M) the map δ0 = d∗0 , i.e. the adjoint of
the coboundary map d0 defined in lemma 2 for any metric γ in the quasi-
conformal class.

Let Ω = Ω(M) be the graded algebra of differential forms on M . We
consider on Ω the two operators d and δ, which d2 = 0 and δ2 = 0. They
have respectively degree 1 ans −1.

Let us consider the degree zero map dδ+ δd, which commutes both with
d and δ.

Lemma 16 The map dδ + δd induces on the sections of the vector bundle
imδ a differential operator which is invertible among differential operators.

13



Proof of the lemma. Consider the filtration Ωw(M) of Ω. By lemmas 2 and 3
he maps d and δ are both filtration preserving and induce on the associated
graded space Γ(

∧
gr(T ∗M)) the map given by the bundle morphism d0d

∗
0 +

d∗0d0, which is clearly invertible on imd∗0. To deduce lemma 4, it is enough to
observe that if a linear map on a filtered vector space induces an invertible
map at the graded level, then it is invertible.

2.4 Complex associated to a quasi-conformal Heisenberg structure.

Let E be the space of differential forms α on M such that δα = 0 and
δdα = 0. It is graded by Ek = E ∩ Ωk and is stable by d. We thus have a
subcomplex (E , d) of the complex (Ω, d).

Consider the map ι from E to the sections of the quotient bundle kerδ/imδ
obtained by composing the canonical injection E = kerδ∩kerδd→ kerδ with
the canonical surjection kerδ → kerδ/imδ. Note that (kerδ/imδ)k is the
space of sections of the homology groups Hk(

∧
T ∗xM, δ) of the Lie algebras

T ∗xM at each point x ∈M .

Theorem 17 1) The canonical injection E → Ω induces an isomorphism
in cohomology. 2) The map ι is an isomorphism from E to the sections of
the quotient bundle kerδ/imδ. .

Proof of the theorem:
Let us consider q be the differential operator on Ω by qα = (dδ+δd)−1δα

where (dδ + δd)−1 is the inverse of dδ + δd on imδ. Note that the kernel of
q (resp. the image of q) is the space of sections of the vector bundle kerδ
(resp. imδ).

Proposition 18 One has q2 = 0 and qdq = q. The operator π = dq + qd
satisfies π2 = π, πd = dπ and πq = qπ = q

Let us consider the decomposition Ω = kerπ⊕ imπ It follows from lemma
that the cohomologies of the two subcomplexes (kerπ, d) and (imπ, d) are:

H∗(imπ, d) = 0, H∗(kerπ, d) = H∗(Ω, d).

Indeed, the map dq + qd vanishes in cohomology.
On the other hand kerπ = kerq ∩ kerqd and the map kerπ → kerq/imq

is an isomorphism. The first assertion follows immediately from the above
lemma. The inverse of the last map is given by 1 − qd which leaves kerq
stable and vanishes on imq

14



Proposition 19 The filtration Ωw(M) of Ω restricts to a filtration of the
space E. It also induces a filtration of the bundle kerδ/imδ, and the map
ι is filtration preserving. Moreover the filtration on kerδ/imδ is associated
to a canonical grading. So that the vector bundle kerδ/imδ is given with a
bigrading (degree and weight).

Corollary 20 The operator D = ιdι−1 defines a differential operator on
the space of sections of the bundle kerδ/imδ which satisfies D2 = 0 and has
degree one for the grading of kerδ/imδ.

The complex Γ(kerδ/imδ), D) is called the BGG-Rumin complex. Its
cohomology is the de Rham homology of the manifold M .

In particular the BGG-Rumin complex has finite dimensional cohomol-
ogy. In the classical case (i.e. when the subbundle E = TM) this also
follows from the ellipticity of the complex (Ω, d), namely the existence
of a parametrix Q0, a pseudodifferential operator of degree -1 such that
dQ0 +Q0d− 1 is smoothing. Here we have to replace the classical pseudod-
ifferential calculus by the calculus Ψ(M,E,ΛT ∗M) associated by Melin to
a Lie filtration, here the filtration E ⊂ TM .

Theorem 21 There exists an operator Q0 ∈ Ψ(M,E,ΛT ∗M) which has
weight 0 (and degree -1 for the standard degree of forms) such that the op-
erator dQ0 +Q0d− 1 is smoothing.

To prove the theorem it is enough to consider the symbols, i.e. to look
at the case of a nilpotent Lie group of Heisenberg type. For any X of degree
1 in the Lie algebra, one has the Cartan formulas diX + iXd = LX so that
d and iX commute with LX . Let (Xi) be an orthonormal basis of such
vectores. Then dA+ Ad =

∑
L2Xi where A =

∑
iXiLXi , and

∑
L2Xi can be

shown to be invertible. Indeed LX = X − ad(X)∗ and
∑
L2Xi is equal to∑

X2
i plus a nilpotent operator. We then use the classical fact that

∑
X2
i

is invertible in the algebra of pseudodifferential operators on a Heisenberg
type group.

We can restrict the operator d to the subcomplex E of Ω and consider
the projection πQ0π as an operator on E . By transport to Γ(kerδ/imδ)
we obtain a parametrix for the complex D. Let Ψ(M,E, kerδ/imδ) be the
corresponding pseudodifferential calculus.

Corollary 22 There exists an operator Q0 ∈ Ψ(M,E, kerδ/imδ) which has
weight 0 (and degree -1 for the standard degree of forms) such that the op-
erator DQ0 +Q0D − 1 is smoothing.
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2.5 A family of representations.

Let (M,E) be a Heisenberg manifold equipped with a quasi-conformal
structure manifold with M compact, and G be a Lie group acting on a
(M,E), preserving the structure. Let us fix metric in the class and let λg be
a cocycle as above. Let us consider the Hibert space L2(M) equipped with
the unitary representation π defined by

π(g)f = λν/2g g−1∗f

We shall use here the pseudodifferential calculus associated to the tan-
gent groupoid for the Heisenberg manifold [JvE], [vEY], see also [M].

It follows from the above that for g ∈ G, λsgπ(g)Lsπ(g)−1 − Ls is in
Ψs−1(M,E), and that

L−sλsgπ(g)Lsπ(g)−1 − 1

is in Ψ−1(M,E), and therefore compact.

Corollary 23 The operator L−sλsgπ(g)Ls extends to a bounded operator
and

L−sλsgπ(g)Ls − π(g)

is compact.

The map g 7→ L−sλsgπ(g)Ls thus defines a representation ofG with values
in bounded operators on L2(M) with differs from the unitary representation
π(g) by compact operators.
Remark. The above construction can be generalized to the sections of a
G-equivariant bundle C equipped with a hermitian metric ‖ ‖2C of weight
w ∈ R, i.e. such that g∗‖ ‖2C = λ2wg . One considers the Hilbert space
L2(M,C) with the unitary representation defined by

π(g)f = λν/2−wg g−1∗f

for any section f of C. The operator L is still defined by L = (1 + ∆E)1/2

, but now ∆E = ∇∗E∇E where ∇E : C∞(M,C) → C∗(M,C ⊗ E∗) is the
composition of a connection ∇ : C∞(M) → C∞(M,C ⊗ T ∗M) with the
restriction T ∗M → E∗ of 1-forms to the subbundle E. The operator has the
same analytical properties and the statement of the above corollary holds
without any change.
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We shall need as a crucial point the result of M. Cowling. Let M be as
above the boundary of a symmetric space of rank 1, with isometry group
G, and C be a G-equivariant bundle equipped with a hermitian metric ‖ ‖2C
of weight w ∈ R, i.e. such that g∗‖ ‖2C = λ2wg ‖ ‖2C . We equipp the Hilbert
space L2(M,C) with the unitary representation defined by

π(g)f = λν/2−wg g−1∗f

for any section f of C. The operator L is defined by L = (1 + ∆E)1/2 as in
section 2.3, remark.

Theorem 24 (M. Cowling) The representation g 7→ L−sλsgπ(g)Ls extends
to a bounded operator for any s ∈ C such that |Res| < ν/2.

2.6 A family of Fredholm modules.

A G-Fredholm module is a triple (H,π, T ) where: H is a Z/2-graded
Hilbert space; π a representation ofG inH which is even (i.e. commutes with
the grading); F a bounded operator on H which is odd (i.e. anticommutes
with the grading), Fredholm (i.e. there exists a bounded operator S on
H such that TS − 1 and ST − 1 are compact operators), and almost G-
intertwining (i.e. g 7→ [T, π(g)] is a normly continuous map from G to the
compact operators).

Note that in the above definition, the representation g 7→ π(g) does not
have to be unitary.

Definition 25 A homotopy of G-Fredholm modules is a triple (E, π, T )
where: E is a Z/2-graded Hilbert module over the C∗-algebra C[0, 1] of con-
tinuous functions on [0, 1]; π a representation of G in H which is even (i.e.
commutes with the grading); F a bounded operator on E which is odd (i.e.
anticommutes with the grading), Fredholm (i.e. there exists a bounded op-
erator S on E such that TS − 1 and ST − 1 are compact operators), and
almost G-intertwining (i.e. g 7→ [T, π(g)] is a normly continuous map from
G to the compact operators).

From now on, M = ∂X is the boundary of a symmetric space of rank
1, with isometry group G. We make a choice of a point x0 ∈ X, which
determines a Carnot-Caratheodory metric in the G-conformal class on the
generalized contact manifold (M,E). We construct a family (indexed by
s ∈ C) of G-Fredholm modules associated to the geometry of M

17



Theorem 26 There exists a Z-graded Hilbert space H =
⊕

kH
k, equipped

with: 1) a family indexed by s ∈ C of representations ρs of G by bounded
operators in H, of degree zero for the Z-grading, such that ρ0 is unitary
and ρs(g) − ρ0(g) is compact for any s ∈ C and any g ∈ G. 2) a bounded
operator F in H, of degree one for the Z-grading, with F 2 = 0, and such
that[F, ρs(g)] is compact for any s ∈ C and g ∈ G, and [F, ρ1(g)] = 0. 3)
a bounded operator Q in H, of degree −1 for the Z-grading, such that the
operators Q2, FQ + QF − 1 and [Q, ρs(g)] are compact for any s ∈ C and
g ∈ G.

In particular, one has

Corollary 27 For any s ∈ C, the triple (H, ρs, F + Q) is a G-Fredholm
module. The Fredholm modules for different values of s are homotopic.

Let us construct the objects appearing in the theorem.
i) Let H be the Hilbert space of L2 sections of the bundle C on M = ∂X.

One has a bigrading H =
⊕
H i,j where the sum is over 0 ≤ i ≤ p and

0 ≤ j ≤ q, and H i,j is the space of L2 sections of Ci,j . We shall consider H
as Z- graded as follows: H =

⊕
kH

k where

Hk =
⊕
i+j=k

H i,j .

The Z-grading induces as usual a Z/2-grading, which grading operator γ =
(−1)i+j on H i,j .

ii) For any s ∈ C , let πs be the representation of G by bounded operators
on each Hilbert space H i,j defined by

πs(g)α = λ(ν/2−w)(1−s)g g−1∗α

for any section α of Ci,j , where w = i+2j. Note that πs(g) = λ
−(ν/2−w)s
g π0(g)

where π0 is a unitary representation.
We also define

ρs(g) = L(ν/2−w)sπs(g)L−(ν/2−w)s

where again w = i + 2j. By section 2.3, ρs is a representation of G by
bounded operators on H i,j , and ρs(g)− π0(g) is compact.

We shall also denote πs and ρs the representations of G on the Hilbert
space H obtained by direct sum over all the (i, j)’s. One has

ρs(g) = L(ν/2−W )sπs(g)L−(ν/2−W )s

18



where L(ν/2−W )s is the non homogeneous pseudodifferential operator on sec-
tions of C defined by L(ν/2−w)s on sections of Ci,j with i + 2j = w. The
operators ρS(g) are of degree zero for the Z-grading, and thus even operators
for the Z/2-grading.

Note that the parametrisation has been chosen such that for s = 1, the
representation π1 is the natural representation of G acting functorially on
the sections of the G-equivariant bundle C.

iii) Let F be the Rumin operator made bounded as follows:

F = Lν/2−WDL−(ν/2−W ).

By section 2.4, F is bounded since it belongs to Ψ0(M,E). It is of degree
1 for the Z-grading, and thus an odd operator for the Z/2-grading. The
G-invariance of D means that

[D,π1(g)] = 0,

which implies
[F, ρ1(g)] = 0.

But the fact that ρs(g) − π0(g) is compact for any s , together with the
boundedness of F implies that

[F, ρs(g)]

is compact for any g ∈ G and s ∈ C.

Lemma 28 There exists a Q ∈ Ψ0(M,E) such that FQ + QF − 1 is a
smoothing operator. In particular Q is bounded and FQ+QF−1 is compact.
Moreover, one has gor g ∈ G, ρ1(g)Qρ1(g)−1−Q ∈ Ψ−1(M,E), in particular
[Q, ρ1(g)] is compact and so is [Q, ρs(g)] for any s.

The lemma follows from the corollary in 2.4 by considering

Q = Lν/2−WQ0L
−(ν/2−W )

.
Remark: one can always assume that Q2 is smoothing. Namely il is easy
to check that FQ and QF are idempotent modulo smoothing, and that
FQ2F is smothing. Now, replacing Q by Q̃ = QFQ we note that Q̃ − Q
is smoothing, that Q̃2 is smothing and satisfies FQ̃ + Q̃F = 1 modulo
smoothing.
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When s = 0, the representation ρ0 is unitary, so that our Fredholm
module is a representative of a class in Kasparov’s ring R(G) = KKG(C,C).
When s = 1, the representation ρ1 exactly commutes with F , a fact which
implies the Fredholm module is homotopic to a trivial module since F +Q
can be replaced by t−1F + tQ whose commutator with ρ1(g) vanishes when
t→ 0.

Note also that the index of the Fredholm operator F + Q is equal to
the Euler caracteristic of the complex D, i.e. the Euler caracteristic of the
manifold M : it is 2 or 0 depending whether the sphere M is even ( the
g = SO(2n+ 1, 1)-case) or odd dimensional (all other cases). We shall have
to modify the familily of Fredholm modules to get an index one operator.
This modification will be explained in section 3

2.7. Uniform boundedness.

The following crucial fact follows from M. Cowling’s theorem stated at
the end of 2.5.

Proposition 29 The representation ρs on H i,j is uniformly bounded for
any s ∈ C such that

|Res| < ν/2

|ν/2− w|
with w = i+ 2j.

Note that the values of w are between 0 and ν = p + 2q, so that ν/2 ≤
|ν/2 − w| with equality iff w = 0 or ν, i.e. (i, j) = (0, 0) or (p, q). In
particular,

Corollary 30 The representations ρs are uniformly bounded if s ∈ [0, 1[;
the representation ρ1 is uniformly bounded on H i,j for (i, j) 6= (0, 0) and
6= (p, q).

A G-Fredholm module (resp. a homotopy of G-Fredholm modules) is
uniformly bounded if the representation π is uniformly bounded. The G-
Fredholm module (H, ρs, F +Q) is uniformly bounded for any s ∈ [0, 1[

3. Sketch of proof of the Baum-Connes conjecture for Sp(n, 1) and
F4(−20).
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We shall first modify the Fredholm module (H, ρs, F + Q) to make it
of index 1. We will then obtain an element δ of Rub(G) and show that
it is a representative of the Kasparov element γ ∈ R(G). We would like
to show that it is equal to 1 in the group Rub(G), but in fact we show a
weaker statement, namely that it is equal to 1 in Rε(G) for any small ε .
That is enough to assure that it acts by the identity on the K-theory of
reduced crossed products, therefore proving the Baum-Connes conjecture
(with coefficients).

3.1. The trunkated Fredholm module.

To obtain a G-Fredholm module of index one, we modify the triple
(H, ρs, F +Q) as follows. The idea is to trunkate the complex in the middle.

1) Let H ′ =
⊕
kH
′k be the Z-graded Hilbert space defined as follows.

For k ≤ m−1
2 , we let H ′k = Hk.

For k = m+1
2 , we define H

′m+1
2 = F (H

m−1
2 )

For k > m+1
2 , we let H ′k = 0.

2) The representation ρ′s is defined as follows. For k ≤ m−1
2 , we let

ρ′s = ρs on H ′k = Hk

For k = m+1
2 , we define ρ′s = ρ1 (independent on s) which stabilizes

H
′m+1

2 = F (H
m−1

2 ) because [F, ρ1(g)] = 0. Note that we still have ρ′s(g) −
ρ0(g) compact. The representation ρ′s is uniformly bounded for s ∈ [0, 1[.

3) The operator F ′ is defined as follows: F ′ : H ′k → H ′k+1 is the restric-
tion of F to Hk for any k ≤ m−1

2 . Its parametrix Q′ is defined similarly:
Q′ : H ′k → Hk−1 is the restriction of Q to H ′k for all k ≤ m+1

2 .
The triple (H ′, ρ′s, F

′+Q′) is a Fredholm module, with index one for any
s. It is uniformly bounded for s ∈ [0, 1[. Let δ be its class in Ru.b(G), which
is independent of s.

3.2 Representing the γ element.

We show that the trunkated Fredholm module defined in the previous
section is a representative of Kasparov’s γ element of R(G). More precisely:

Theorem 31 The class δ is the image of the Kasparov element γ under the
map R(G)→ Ru.b.(G).

Proof. We take s = 0. The representation on all H ′k for k 6= m+1
2 is

ρ0 which is unitary , but it is ρ1 on H
′m+1

2 so that it is only uniformly

21



bounded. The key lemma is that ρ1 on H
′m+1

2 is in fact equivalent to a
unitary representation.

The crucial lemma is the following:

Lemma 32 There exists a bounded operator U from H
′m+1

2 to the Hilbert

space H
m+1

2 of L2-harmonic forms (of degree m+1
2 ) on the symmetric space

X, which is invertible with bounded inverse, and such that Uρ1(g) = σ(g)U

for any g ∈ G, where σ is the natural unitary representation of G on H
m+1

2

defined by σ(g)ω = g−1∗ω.

Corollary 33 The element δ is in the image of the map R(G)→ Rub(G).

Proof of the corollary. Let us show that the above Fredholm module (H ′, ρ′0, F+
Q) is conjugate to a unitary Fredholm module. We define

V : H ′ =

m−1
2⊕

k=0

Hk ⊕H
′m+1

2 → H̄ =

m−1
2⊕

k=0

Hk ⊕H
m+1

2

by V = 1⊕U . Then the conjugate Fredholm module (H̄, V ρ′0(.)V
−1, V (F +

Q)V −1) , defining the same class in Rub(G), is unitary since V ρ′0(.)V
−1 =

ρ0 ⊕ Uρ1(.)U−1 = ρ0 ⊕ σ is a unitary representation.

To show that δ is actually the image of γ, one shows as in [JK] that it is
in the image of KKG(C(X̄),C) where X̄ = X ∪ ∂X is the compactification
of X. Indeed, the spaces Hk of L2-sections of bundles on ∂X carry represen-
tations of the commutative C∗-algebra C(∂X) and hence of C(X̄)→ C(∂X)
by restriction. On the other hand, C(X̄) is represented in the Hilbert space
L2Ω(X) = L2(X,

∧
T ∗X) of L2-forms on X. Let us replace in δ the spaces

H̄k = Hk (0 ≤ k ≤ m−1
2 ) and H̄

m+1
2 = H

m+1
2 by

H̃k = Hk ⊕ L2Ωk(X)

for 0 ≤ k ≤ m−1
2 and

H̃k = L2Ωk(X)

for m+1
2 ≤ k ≤ m+ 1

Note that
H̃k = H ′k ⊕Hk⊥

for all k, where of course the space of harmonic L2-forms Hk is non zero
only in degree k = m+1

2 . Let us extend the operator F ′ by the direct sum
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with the phase of the de Rham operator d on L2Ωk(X). Then one shows
as in [JK] that we still get a representative of δ. The key observation is the
following lemma:

Lemma 34 The above map UF : H
′m−1

2 → L2(X,
∧m+1/2 T ∗X) commutes

modul o compact operators with the action of C(X̄).

To summarize we obtain:

Corollary 35 The element δ is in the image of the composition of maps

KKG(C(X̄),C)→ R(G)→ Rub(G).

The proposition in 1.5 (cf. [JK] , prop. 1.2.) then implies theorem 1.

3.3 Homotopy to 1.

Theorem 36 For any ε > 0, the class δ maps to 1 under the map

Ru.b(G)→ Rε(G).

Corollary 37 For any G − C∗-algebra A, the class δ maps to the identity
under the map

Rub(G)→ EndK∗(C
∗
r (G,A)).

The above theorem relies on the following

Lemma 38 Let ε ∈ R, s ∈ C and g ∈ G. The operator

ρεs(g) = L−ερs(g)Lε

on H i,j, i + 2j = w < ν is bounded for any g ∈ G. Assume furthermore
that ε > 0 if w = 0 and ε < 0 if w = ν. The map g 7→ ρεs(g) defines a
representation of G satisfying ‖ρεs(g)‖ ≤ Ceεal(g), with constants C and a
independant of g and s.

Proof of the lemma. One has πs−ε(g) = λ
ε(ν/2−w)
g πs(g) , therefore

ρεs(g) = L(ν/2−w)s−ελ−εg L−(ν/2−w)s+ερs− ε
ν/2−w

(g).
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where the operator Lν/2−w−ελ−εg L−(ν/2−w−ε) is in Ψ0(M,E), and therefore
bounded.

Note that the representations ρs− ε
ν/2−w

(g) are uniformly bounded with

a bound independant of s because s− ε
ν/2−w belongs to a compact interval

strictly contained in [0, ν/2
|ν/2−w| [. Moreover, the map g 7→ Lν/2−w−ελgL

−(ν/2−w−ε)

is a 1-cocycle with respect to the representation ρs− ε
ν/2−w

(g) and satisfies an

inequatility
‖Lν/2−w−ελgL−(ν/2−w−ε)‖ ≤ Ceal(g)

with positive constants C and a.

Proof of theorem 2.
Let us consider Fε = LεFL−ε and Qε = LεQL−ε. Then [F ε, ρεs(g)] is

compact for any g ∈ G . The triple (H, ρεs, Fε+Qε) is a G-Fredholm module
of ε-exponential type for any s ∈ [0, 1], which represents the same homotopy
class in Rε(G). Now for s = 1, [F ε, ρε1(g)] = 0 so that the Fredholm module
is trivial, i.e. equal to its index which is 1.
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