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Abstract

The paper deals with recent developments about non-uniform cellular automata.
After reviewing known results about structural stability we complete them by
showing that also sensitivity to initial conditions is not structurally stable. The
second part of the paper reports the complexity results about the main dy-
namical properties. Some proofs are shortened and clarified. The third part is
completely new and starts the exploration of the fixed points set of non-uniform
cellular automata.

Key words: Non-uniform cellular automata, structural stability, symbolic
dynamics, ζ-rational languages, decidability.

1. Introduction and motivations

Last fifty years witness the growing interest of researchers in cellular au-
tomata (CA) both from the theoretical and applicative point of view. CA are
indeed a formal model for complex systems [41, 13, 12, 26]. They essentially
consist of an infinite number of finite automata arranged on a regular lattice (Z
in this paper). Each automaton takes a state chosen from a finite set. The state
is updated at each time step according to a local rule on the basis of the state
of the automaton itself and the ones of a fixed set of neighboring automata.
All automata of the lattice apply the same local rule and have the same neigh-
borhood pattern. All updates are synchronous. These few lines single out the
three main characteristics of the model: locality, synchronicity and uniformity.
Relaxing these properties originates variants of the model that have a great
interest in their own, especially in practical applications. This paper surveys
recent results about the dynamical behavior of non-uniform cellular automata
(ν-CA), i.e., those variants of CA in which each automaton can have a different
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local rule (and hence a possibly different neighborhood). In Section 3, the reader
can immediately get convinced that ν-CA constitute a real stand-alone model.
Indeed, many of the classical results concerning CA dynamics are disproved.
For example, injective ν-CA are no longer necessarily surjective and expansive
ν-CA do not need to be surjective.

Structural stability is one of the main motivations for the study of this
new model. This notion has been introduced by Aleksandr Andronov and Lev
Pontryagin in relation to the qualitative behavior of a dynamical system [4]. A
property of a system is structurally stable if small perturbations of the system
do not affect it. Therefore, the structural stability of a dynamical system is
often interpreted as its robustness to failures.

In the context of cellular automata, there are several ways to model struc-
tural perturbations. The first possibility is to consider transient failures. In [30],
Peter Gacs proposed a model in which each cell has some probability p of be-
ing updated and 1 − p of keeping its current state (i.e., the identity local rule
is applied). More recently, the case of transient failures is more viewed as a
modification of the updating scheme for cellular automata. This turns into a
model of asynchronous cellular automata. An ever-growing litterature exists on
this subject. The interested reader can begin with [43, 27, 17, 18, 16, 28], for
example.

Another possibility is to modify the topology of the lattice, i.e., the links
between cells can be rewired. As the neighborhood can vary, to be consistent
with the definition of the local rule, this kind of perturbation is mainly used
for totalistic rules, namely functions of the values in the cells wherever they are
positioned [32].

This paper is more concerned with the case of permanent failures. Given a
cellular automaton, the local rule is replaced in some positions by arbitrary local
rules. The structural stability of several properties is investigated according
to those perturbations. Section 4 shows that (among other things) neither
sensitivity to the initial conditions nor almost equicontinuity are structurally
stable properties for CA. Indeed, it seems that most of the dynamical properties
are not structurally stable except for equicontinuity.

These results also point out that structural stability is influenced not only
from the specific properties of the local rules perturbing the system but even
from their relative distribution and cooperation. Section 5 tries then to char-
acterize all the distributions of local rules inducing a given dynamical property.
Indeed, if the radius and the set of states are fixed, the set of distinct local
rules is finite. Therefore, a distribution of local rules is just a biinfinite word
over some finite alphabet and, seemingly, the set of distributions inducing a
given dynamical property is nothing but a language of biinfinite word. This
simple remark lead us to characterize biinfinite languages of distributions in-
ducing ν-CA with some interesting dynamical property. The idea is that the
complexity of the language quantifies, in a certain sense, the complexity of the
dynamical property itself.

For example, we illustrate that distributions inducing surjective ν-CA form
a sofic subshift while injective ν-CA are characterized by ζ-rational languages.
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Going more in deep along this direction seems difficult since one needs more
properties on the intrinsic structure of the ν-CA to prove further results. For
these reasons, we focused on linear non-uniform cellular automata, i.e., ν-CA
with an additive global rule (see [38, 11] for the main results about additive CA).
The additivity constraint allowed to show that for linear ν-CA also equiconti-
nuity and sensitivity to the initial conditions are characterized by ζ-rational
languages. Indeed, in the more general case, we know that none of those prop-
erties is decidable and hence the language cannot be ζ-rational.

The last part of the paper reports a recent research direction focusing on
fixed points. These latters play a fundamental role in many modelling situations
since they represent the viable/feasible ones (in systems biology, for example).
Section 6 first writes down some more or less folklore results about the cardi-
nality of the set of fixed points in CA. The proofs are essentially based on the
well-known De Bruijn graphs. More or less the same results about cardinality
can be restated also in the context of ν-CA. Moreover, we proved the following
interesting characterization. Consider a set S of configurations which can rep-
resent a pointed ζ-rational language. Then, in the case of rν-CA (a subclass
of ν-CA), the set of distributions having S as set of fixed points is a pointed
ζ-rational language.

All the three research directions need further investigations and provide more
questions than answers. Some of these questions are addressed in the last sec-
tion.

2. Background

In this section, we briefly recall standard definitions about CA and discrete
dynamical systems (see for instance [35, 22, 2, 15, 14, 1, 23, 10] for introductory
matter and recent results).

For all integers i and j with i ≤ j, let [i, j] denote the set {i, i+ 1, . . . , j}.
With the obvious meaning, we shall use the notations ]−∞, i] and [i,∞[.

Configurations and cellular automata. Let A be a finite set (an alphabet).
A configuration is a function from Z to A. The configuration set AZ is usually
equipped with the metric d defined as follows

∀x, y ∈ AZ, d(x, y) = 2−n, where n = min {i ∈ N, xi 6= yi or x−i 6= y−i} .

The set AZ is a compact, totally disconnected and perfect topological space
(i.e., AZ is a Cantor space). For all integers i and j with i ≤ j, and for all
configuration x ∈ AZ, we denote by x[i,j] the word xi · · ·xj ∈ Aj−i+1, i.e., the
portion of x inside the interval [i, j]. Similarly, u[i,j] = ui · · ·uj is the factor of

a word u ∈ Al inside [i, j] (here, i, j ∈ [0, l − 1]). For any word u ∈ A∗, |u|
denotes its length. A cylinder of block u ∈ Ak and position i ∈ Z is the set
[u]i =

{
x ∈ AZ : x[i,i+k) = u

}
. Cylinders are clopen sets w.r.t. the metric d and

they form a basis for the topology induced by d. A configuration x is said to
be a-finite for some a ∈ A if there exists k ∈ N such that xi = a for all i ∈ Z,
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|i| > k. In the sequel, the collection of the a-finite configurations for a certain
a will be simply called set of finite configurations.

A (one–dimensional) cellular automaton (CA) is a structure (A, r, f), where
A is the alphabet, r ∈ N is the radius and f : A2r+1 → A is the local rule of
the automaton. The local rule f induces a global rule F : AZ → AZ defined as
follows,

∀x ∈ AZ, ∀i ∈ Z, F (x)i = f(xi−r, . . . , xi+r) .

Recall that F is a uniformly continuous map w.r.t. the metric d.
A local rule f is extended to a function f∗ : A∗ → A∗ which map any u ∈ A∗

to the word v such that v = ε (the empty word), if |u| ≤ 2r; and v is the word
of size l − 2r defined by vi = f(u[i,i+2r]) for all i ∈ [0, |v| − 1], otherwise. This

definition still holds also for u ∈ AN. With an abuse of notation, we will still
write f for f∗.

DTDS and dynamical properties. A discrete time dynamical system (DTDS)
is a pair (X,G) where X is a set equipped with a distance d and G : X → X
is a map which is continuous on X with respect to the metric d. When AZ is
the configuration space equipped with the above introduced metric and F is the
global rule of a CA, the pair (AZ, F ) is a DTDS. From now on, for the sake
of simplicity, we identify a CA with the dynamical system induced by itself or
even with its global rule F .

Given a DTDS (X,G), an element x ∈ X is an ultimately periodic point if
there exist p, q ∈ N such that Gp+q(x) = Gq(x). If q can be chosen equal to 0,
then x is a periodic point, i.e., Gp(x) = x. The minimal p for which Gp(x) = x
holds is called period of x. A DTDS (X,G) is sujective (resp., injective) if G is
surjective (resp., G is injective).

Recall that a DTDS (X, g) is sensitive to the initial conditions (or simply
sensitive) if there exists a constant ε > 0 such that for any element x ∈ X and
any δ > 0 there is a point y ∈ X such that d(y, x) < δ and d(Gn(y), Gn(x)) > ε
for some n ∈ N. A DTDS (X,G) is positively expansive if there exists a constant
ε > 0 such that for any pair of distinct elements x, y we have d(Gn(y), Gn(x)) ≥
ε for some n ∈ N. If X is a perfect set, positive expansivity implies sensitivity.
Recall that a DTDS (X,G) is (topologically) transitive if for any pair of non-
empty open sets U, V ⊆ X there exists an integer n ∈ N such that Gn(U)∩V 6=
∅.

Let (X,G) be a DTDS. An element x ∈ X is an equicontinuity point for G if
∀ε > 0 there exists δ > 0 such that for all y ∈ X, d(y, x) < δ implies that ∀n ∈
N, d(Gn(y), Gn(x)) < ε. For a CA F , the existence of an equicontinuity point
is related to the existence of a special word, called blocking word. A word u ∈ Al
is s-blocking (s ∈ [1, l]) for a CA F if there exists an offset d ∈ [0, l−s] such that
for any x, y ∈ [u]0 and any n ∈ N, Fn(x)[d,d+s−1] = Fn(y)[d,d+s−1] . A DTDS is
said to be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ X,
d(x, y) < δ implies that ∀n ∈ N, d(Gn(x), Gn(y)) < ε. If X is a compact set, a
DTDS (X,G) is equicontinuous iff the set E of all its equicontinuity points is
the whole X. A DTDS is said to be almost equicontinuous if E is residual (i.e.,
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E contains an intersection of dense open sets). In [36], Kůrka proved that a CA
is almost equicontinuous if and only if it is non-sensitive if and only if it admits
a r-blocking word.

Recall that two DTDS (X,G) and (X ′, G′) are topologically conjugated if
there exists a homeomorphism φ : X → X ′ such that G′ ◦ φ = φ ◦ G. In that
case, (X,G) and (X ′, G′) share some properties such as surjectivity, injectivity,
transitivity. If φ is only an injective morphism, then (X,G) is called a subsystem
of (X ′, G′).

Languages. Recall that a language is any set L ⊆ A∗ and a finite automaton
is a tuple A = (Q,A, T, I, F ), where Q is a finite set of states, A is the alphabet,
T ⊆ Q×A×Q is the set of transitions, and I, F ⊆ Q are the sets of initial and
final states, respectively. A (finite) path in A is a finite sequence of transitions
(qi, ai, qi+1)i∈[0,n]. The word a0 · · · an−1 is the label of the path. A path is
accepting if q0 ∈ I and qn ∈ F . The language L(A) of the automaton A is the
set of the labels of all accepting paths in A. A language L is rational if there
exists a finite automaton A such that L = L(A).

An infinite (ω-) language, (resp., a bi-infinite (ζ-) language) is any subset of
AN (resp., AZ). Let A = (Q,A, T, I, F ) be a finite automaton. An infinite (resp.,
bi-infinite) path in A is an infinite (resp., bi-infinite) sequence of transitions
(qi, ai, qi+1) for i ∈ N (resp., i ∈ Z). The word a is the label of the path. An
infinite path is accepting if q0 ∈ I and {i ∈ N : qi ∈ F} is infinite. A bi-infinite
path is accepting if the sets {i ∈ N : q−i ∈ I} and {i ∈ N : qi ∈ F} are infinite.
The infinite (resp., bi-infinite) language Lω(A) (resp., Lζ(A)) of the automaton
A is the set of the labels of all accepting infinite (resp., bi-infinite) paths in
A. An infinite (resp., bi-infinite) language L is ω–rational (resp., ζ–rational) if
there exists a finite automaton A such that L = Lω(A) (resp., L = Lζ(A)).

For words u and v in AN, we denote by [u, v] the bi-infinite word w such that
wi = ui and w−i−1 = vi, for all i ∈ N. For pairs U, V of ω-languages on the al-
phabet A, we denote by [U, V ] the set of bi-infinite words {[u, v] : u ∈ U, v ∈ V }.
A bi-infinite language L is a pointed ζ-rational language if it is a finite union of
languages [U, V ] where U and V are ω-rational languages. Classical ζ-rational
languages are just closures of pointed ζ-rational languages under the shift op-
erator, i.e., the function σ : AZ → AZ defined as ∀x ∈ AZ,∀i ∈ Z, σ(x)i = xi+1.

A bi-infinite language X is a subshift if X is (topologically) closed and σ–
invariant, i.e., σ(X) = X. For any F ⊆ A∗ let XF be the bi-infinite language
of all bi-infinite words x such that no word u ∈ F appears in x. A bi-infinite
language X is a subshift if and only if X = XF for some F ⊆ A∗. The set F
is a set of forbidden words for X. A subshift X is said to be a subshift of finite
type (resp., sofic) iff X = XF for some finite (resp., rational) F .

For a more in deep introduction to the theory of formal languages, the reader
can refer to [31] for rational languages, [6, 37] for subshifts and [42] for ω-rational
and ζ-rational languages.

5



3. Non-uniform cellular automata

This section gives the formal definition of ν-CA and the first basic properties.
Moreover, main differences with classical CA are reported.

3.1. Definition and first properties

Definition 1 (Non-uniform cellular automaton (ν-CA)). A non–uniform
cellular automaton (ν-CA) is a pair (A, (θi, ri)i∈Z) where A is a finite set called
alphabet and the sequence (θi, ri)i∈Z, called distribution of rules, is such that
ri ≥ 0 and θi : A2ri+1 → A, for all integer i. The function θi is the local rule
of radius ri at index i in the distribution θ. The global rule induced by a ν-CA
(or by the distribution of rules θ) is the function Hθ : AZ → AZ defined as

∀x ∈ AZ, ∀i ∈ Z, Hθ(x)i = θi(x[i−ri,i+ri]) .

Clearly, the global function of a ν-CA is uniformly continuous. From now on,
for the sake of simplicity, we identify a ν-CA with its global rule Hθ or even
with the dynamical system induced by itself. It is easy to see that ν-CA are
characterized as the class of continuous functions on AZ. In other words, a
function H : AZ → AZ is the global rule of a ν-CA if and only if H is continuous.

The class of ν-CA is by far too wide to be dealt with. Therefore, we will focus
on several subclasses of ν-CA endowed with some structure [9]. This allowed to
study their behavior with more precision.

Definition 2 (dν-CA, pν-CA, and rν-CA). A ν-CA H : AZ → AZ is

• a dν-CA if there exists a distribution θ, a local rule f and an integer n ≥ 0
such that H = Hθ and ∀k ∈ Z, |k| > n⇒ θk = f . The rule f is called the
default rule and n is the perturbation threshold of H.

• a pν-CA if there exists a distribution θ and integers n ≥ 0 and p > 0
such that H = Hθ; and ∀k > n, θk = θk+p and θ−k = θ−k−p. The integer
n is called the perturbation threshold and p the structural period of H.
If p = 1, θn+1 and θ−n−1 are said to be the right and left default rule,
respectively.

• a rν-CA if there exists a distribution θ and an integer r ≥ 0 such that
H = Hθ and for each θi is a local rule of radius r. In that case, the given
ν-CA is said to have radius r.

Remark that the some notions above introduced (namely, default rule, per-
turbation threshold and radius) are not univocally defined for a given ν-CA (seen
as a dynamical system) but only for a distribution inducing it. It is possible to
entirely define them using minimality arguments, but, for practical purposes, it
is more convenient to allow some flexibility. For instance a rν-CA of radius r
can be viewed as a rν-CA of radius r′ > r.
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Example 1. Consider the ν-CA’s H0, H1, H2 and H3 on the alphabet A =
{0, 1} defined as follows: ∀x ∈ AZ,∀i ∈ Z,

H0(x)i =

{
1 if i = 0,

0 otherwise
,

H1(x)i =

{
1 if i ≥ 0,

0 otherwise
,

H2(x)i =

{
1 if |i| is prime,

0 otherwise
,

H3(x)i = x−i .

Clearly, H0 is a dν-CA but not a CA, H1 is a pν-CA but not a dν-CA, H2 is a
rν-CA but not a pν-CA, and H3 is a ν-CA but not a rν-CA.

The following strict hierarchy holds among the classes of ν-CA introduced in
Definition 2:

CA ( dν-CA ( pν-CA ( rν-CA ( ν-CA .

Proposition 1 ([20]). Any dν-CA is topologically conjugated to a dν-CA of
radius 1 and perturbation threshold 0. Any pν-CA is topologically conjugated
to a pν-CA of radius 1, perturbation threshold 0, and structural period 1. Any
rν-CA is topologically conjugated to a rν-CA of radius 1.

Proposition 2 ([20]). Any rν-CA is a sub-system of a CA.

3.2. Differences with classical CA

We now illustrate some differences in dynamical behavior between CA and
ν-CA. The following properties which are really specific for CA are lost in the
larger class of ν-CA.

P1) the set of ultimately periodic points is dense in AZ.

P2) surjectivity ⇔ injectivity on finite configurations.

P3) surjectivity ⇔ any configuration has a finite number of pre–images.

P4) expansivity ⇒ transitivity

P5) expansivity ⇒ surjectivity

P6) injectivity ⇒ surjectivity

Some of the previous properties are not valid for the following ν-CA.

Example 2. Consider the ν-CA of global rule H4 on the alphabet A = {0, 1}
defined as follows

∀x ∈ AZ,∀i ∈ Z, H4(x)i =

{
xi if i = 0

xi−1 otherwise .
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Since H4
n([01]0) ⊆ [0n+11]0 for every n ∈ N, the cylinder [01]0 contains no

ultimately periodic configuration. Thus, P1 is not valid for H4. Furthermore,
any configuration x ∈ AZ has 0 pre-images if x0 6= x1. Otherwise, x admits
as pre-images the 2 configurations y and z such that ∀i /∈ {−1, 0}, yi = zi =
xi+1, y0 = z0 = x0, y−1 = 0; z−1 = 1. Hence P3, and in particular the implica-
tion ⇐, is not valid for H4 (while the implication ⇒ fails for the ν-CA of global
rule H such that ∀x ∈ AZ, ∀i ∈ Z, H(x)i = xi if i = 0, H(x)i = xi+1, if i > 0,
and H(x)i = xi−1, otherwise).

Example 3. Consider the ν-CA of global rule H5 on the alphabet A = {0, 1}
defined as follows

H5(x)i =


xi if i = 0

xi−1 if i > 0

xi+1 if i < 0

Since H5(AZ) = [000]−1 ∪ [111]−1, H5 is not surjective. Furthermore, any
configuration x ∈ [000]−1∪ [111]−1 admits as unique pre-image the configuration
y such that y0 = x0, ∀i > 0, yi = xi+1, and ∀i < 0, yi = xi−1. Thus, H5 is
injective and P6 is not valid for H5.

Example 4. Consider the ν-CA of global rule H6 on the alphabet A = {0, 1}
defined as follows

H6(x)i =

{
0 if i = 0

xi−1 + xi+1 (mod 2) otherwise

Clearly, H6 is not surjective, and hence not transitive. Let x, y be two distinct
finite configurations with xi 6= yi, for some integer i that we can assume to be
positive and maximal. Since xi+2 = yi+2, it follows that xi⊕xi+2 = H6(x)i+1 6=
H6(y)i+1 = yi⊕yi+2, and so H6 is injective on the finite configurations. Hence,
P2, and in particular the implication ⇐, is not valid for H6 (while the im-
plication ⇒ fails for the ν-CA of global rule H such that ∀x ∈ AZ, ∀i ∈ Z,
H(x)i = x2i).

Furthermore, if x and y are two distinct configuration with d(x, y) < 1
2 ,

then d(H6(x), H6(y)) = 2d(x, y). So, there exists a natural n > 0 such that
d(Hn

6 (x), Hn
6 (y)) = 1

2 . Thus, H6 is positively expansive with expansivity con-
stant 1

2 and both P4 and P5 are not valid for H6.

4. Structural stability and permanent failures

This section deals with the problem of the structural stability for cellular
automata. Formally, a model of perturbation of a CA F with local rule f is any
dν-CA with default rule f . A property is structurally stable for F if it is true
for any model of perturbation of F (and then for F itself).
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4.1. Surjectivity and injectivity

We consider first the structural stability of surjectivity and injectivity. These
properties are of a great interest in modelling real-world phenomena. Indeed,
reasonable models in physics or biology have to be reversible if the modelled
phenomenon is [34]. We will see that neither surjectivity nor injectivity is struc-
turally stable, but both properties have interesting relations in the models of
perturbations.

Proposition 3. Let F be any CA with local rule f of radius r and alphabet A
with Card(A) ≥ 2. There exist always a non-surjective and non-injective model
of perturbation of F .

Proof. Let a and b be two distinct letters of A and let g be the constant local
rule equal to a. Consider the distribution θ ∈ [g2r+1]−r with θi = f for all
i /∈ [−r, r]. The dν-CA Hθ is a model of perturbation of F which is not surjective
since Hθ(A

Z) ⊆
[
a2r+1

]
−r. It is not even injective since Hθ(x) = Hθ(y) for all

distinct configurations x and y with xi = yi for all i 6= 0. �

There exist necessary conditions on a CA to assure surjectivity and injectiv-
ity for its models of perturbation. Moreover, any injective model of perturbation
is also surjective. As every dν-CA is the model of perturbation of some CA,
injectivity and reversibility are equivalent for dν-CA.

Proposition 4 ([20]). Let F be a CA and H a model of perturbation of F . It
holds that

1. if H is surjective, then F is surjective,

2. if H is injective, then F is bijective and H is surjective.

Proposition 4 shows that any injective dν-CA is in fact bijective. We already
know that it is not true for pν-CA as shown in Example 3. Note that item 2
of Proposition 4 is not a consequence of some “Garden of Eden”-like theorem
for dν-CA (the theorem for classical CA states that surjectivity is equivalent to
injectivity on finite configurations). Indeed, the dν-CA from Example 4 is not
surjective, and so not injective, but is injective on finite configurations.

4.2. Dynamical properties

We now study the structural stability of sensitivity, almost equicontinuity
and equicontinuity. These properties are strictly related to blocking words [36,
7]. A blocking word in a configuration separates the CA dynamics of the config-
uration to its left from the dynamics to its right and makes them independent.

In order to study the structural stability of sensitivity, consider the following
example.
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Example 5. Let A = {0, 1, 2} and define the local rule f : A3 → A as follows

∀x, y, z ∈ A, f(x, y, z) =


1 if x = 1 and (y = 1 or y, z 6= 2)

2 if z = 2 and (y = 2 or x, y 6= 1)

0 otherwise

.

The behavior of the CA F with local rule f can be described by two kinds of sig-
nals (1 and 2) that propagate towards opposite directions and annihilate when-
ever they meet (see Figure 1).

Claim. F is sensitive.

Proof. Choose arbitrarily n ∈ N and u ∈ A2n+1. Let x, y ∈ [u]−n be such that
xi = 0 and yi = 1 for every i /∈ [−n, n]. By induction, we obtain that

∀k ∈ N,∀i ∈ Z,

i < −n+ k ⇒ F k(x)i 6= 1
i > n− k ⇒ F k(x)i 6= 2
i < −n ⇒ F k(y)i = 1
i > n− k ⇒ F k(y)i 6= 2

By a combination of the first, resp., last, two statements, we get that ∀k >
n, F k(x)0 = 0, resp., ∀k ∈ N, ∀i ∈ Z, F 2n+1+k(y)i 6= 2. The latter gives
i < −n+ k ⇒ F 2n+1+k(y)i = 1, and then F 3n+2+k(y)0 = 1.

Since any configuration z ∈ [u]−n is such that either d(F 3n+2(z), F 3n+2(x)) =
1 or d(F 3n+2(z), F 3n+2(y)) = 1, we conclude that F is sensitive with sensitivity
constant 1. �

Let H be the model of perturbation of F defined as

∀x ∈ AZ,∀i ∈ Z, H(x)i =


2 if i = −1

1 if i = 1

f(x[i−1,i+1]) otherwise

.

Roughly speaking, H acts as F but has two generators of signals (see Figure 1).

Figure 1: Example of dynamics of F (on the left) and H (on the right). Time goes upward.
A symbol 1 is represented by a / and 2 by \.

Claim. H is almost equicontinous.

Proof. For any n ∈ N, consider the set Tn =
⋃
k>n[02k−2]−3k+2 ∩ [02k−2]k+1.

Every Tn is open and dense, so the set T =
⋂
n∈N Tn is residual. We are going

10



to prove that any element in T is an equicontinuity point for H. This allows to
concludes that H is almost equicontinuous.

Since positive and negative cells do not interact each other under the appli-
cation H and the dynamics is symmetric with respect to the origin of the lattice,
we only consider the action of H on AN.

Choose arbitrarily x ∈ T . For any n > 0, x ∈ Tn and so there exists
k > n such that xi = 0 for all i ∈ [k + 1, 3k − 2]. The action of H assures that
Ht(x)0 = 0 for all t > 1, Hk−1(x)1 = 1, Hk−1(x)j 6= 2 for all j ∈ [2, 2k−1], and
H2k−2(x)j = 1 for all j ∈ [1, k]. As a consequence, one obtains by induction over
all integers i ≥ 2k − 2 that Hi(x)k 6= 2 and Hi(x)j = 1 for every j ∈ [1, k − 1].
In particular, for all i ≥ 2k−2 it holds that Hi(x)j = 1 for every j ∈ [1, n], and
by symmetry, Hi(x)−j = 2 for every j ∈ [1, n]. Summarizing, for any n > 0
there exists k > n such that Hi(x)[−n,n] does not depend on x for all i ≥ k.

Thus, for any n > 0 there exists m = n+k such that if y is any configuration
with y[−m,m] = x[−m,m], then y ∈ Tn, and so Hi(x)[−n,n] = Hi(y)[−n,n] for all
i ∈ N. Hence, x is an equicontinuity point for H. �

The following result immediately follows from the two claims proved in the
Example 5.

Theorem 5. Sensitivity to the initial conditions is not structurally stable.

We now illustrate an almost equicontinuous CA admitting a sensitive model
of perturbation. This CA has already been presented in [20]. We now propose
an alternative, more simple and short proof of the existence of a sensitive model
of perturbation.

Example 6. Let A = {0, 1, 2}. Define the local rule f : A3 → A as ∀x, y ∈ A:

f(x, 0, y) =

{
1 if x = 1 or y = 1

0 otherwise

f(x, 1, y) =

{
2 if x = 2 or y = 2

1 otherwise

f(x, 2, y) =

{
0 if x = 1 or y = 1

2 otherwise
.

The CA F of local rule f has the following behavior: 0 is a neutral state; a cell
in state 1, resp., 2, spreads its own state to each neighbor in state 0, resp., 1;
state 2 is annihilated by the state 1 in some neighbor cell.

Since every word 20k2 (k > 0) is k-blocking, the following fact is immediate.

Claim. F is almost equicontinous.

Let H be the model of perturbation of F defined as

∀x ∈ AZ,∀i ∈ Z, H(x)i =

{
1 if i = 0

f(x[i−1,i+1]) otherwise
.

11



Roughly speaking, H acts as F but has one generator of 1 (see Figure 2).

Figure 2: Example of dynamics of F (on the left) and H (on the right). Cells in state 0, resp.
1, resp., 2, are white, resp., grey, resp. black. Time goes upward.

Since positive and negative cells do not interact each other under the appli-
cation of H, we only consider the action of H on AN.

Lemma 6. For any s ∈ N and any u ∈ As, let x ∈ [u]0 be such that xi = 2 for
all i ≥ s. Then, for every n ∈ N, there exists k ≥ n such that Hk(x)1 = 2.

Proof. Choose any integer n > 0. Since Hn(x)0 = 1 and Hn(x) is 2-finite,

αn = max
{
i ∈ N : Hn(x)[0,i] = 1i+1

}
,

βn = min {i ∈ N : Hn(x)i = 2} , and

γn = min {i ∈ N : Hn(x)i = 2 and ∀j > i,Hn(x)j 6= 1}

are well-defined integers with 0 ≤ αn < βn ≤ γn. We prove that there exists
k ≥ n such that βk = 1 and this concludes the proof. There are two cases:

1. αn + 1 = βn. Then, for all i ∈ [0, βn− 1], it holds that αn+i + 1 = βn+i =
βn − i, and so βk = 1 with k = n+ βn − 1.

2. Hn(x)αn+1 = 0. Then, αn+1 ≥ αn + 1 and γn+1 ≤ γn. So, 0 < γn+1 −
αn+1 < γn−αn and αm + 1 = βm for some m > n, i.e., we fall in case 1.

�

Lemma 7. For any s ∈ N and u ∈ As, the sequence (u(n))n∈N ∈ (As)N{
u(n+1) = f(1u(n)0) ∀n ∈ N
u(0) = u

is such that u
(k)
s−1 6= 2 for some k ∈ N.

Proof. For the sake of argument assume that u
(n)
s−1 = 2 for all n ∈ N. Then,

αn = min
{
i ∈ [0, s− 1] : u

(n)
i = 2 and ∀j ∈ [i+ 1, s− 1], u

(n)
j 6= 1

}
,

βn = min
{
i ∈ [0, s− 1] : ∀j ∈ [i, s− 1], u

(n)
j 6= 1

}
and

γn = Card
{
i ∈ [0, s− 1] : u

(n)
i = 2

}
,

are well-defined naturals for every n ∈ N.
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As done in the proof of Lemma 6, one can show that there exists k ≥ 0 such
that αk = 0. So, without loss of generality we can assume that u(0) ∈ X where
X = {1}∗ {0, 2}∗. Since f(X) ⊆ X, we get that u(n) ∈ X for all n ∈ N.

We are now going to prove that ∀n ∈ N, δn+1 ≺ δn where δn = (γn, αn, αn−
βn) and ≺ is the dominance order. Since ≺ is well-founded, we obtain a con-
tradiction. Let n ∈ N. We have 4 cases.

1. αn = βn = 0. There exists v ∈ {0, 2}∗ such that u(n) = 2v. Then,
u(n+1) = 0v and so γn+1 = γn − 1.

2. αn = βn > 0. There exists v ∈ {0, 2}∗ such that u(n) = 1βn2v. Then,
u(n+1) = 1βn−120v. So, γn+1 = γn and αn+1 < αn.

3. αn > βn > 0. There exists v ∈ {0, 2}∗ such that u(n) = 1βn0αn−βn2v.
Then, u(n+1) = 1βn+10αn−βn−12v. So, γn+1 = γn, αn+1 = αn, and
βn+1 = βn + 1.

4. αn > βn = 0. There exists v ∈ {0, 2}∗ such that u(n) = 0αn−βn2v. Then,
u(n+1) = 10αn−βn−12v. So, γn+1 = γn, αn+1 = αn, and βn+1 = βn + 1.

�

Lemma 8. For any s ∈ N and any u ∈ As, let x ∈ [u]0 be such that xi = 0 for
all i ≥ s. Then, there exists n0 ∈ N such that for all k ≥ n0, Hk(x)1 6= 2.

Proof. Take S = {00, 02, 10, 11, 21} and C =
{
y ∈ AN : ∀i ∈ N, y[i,i+1] ∈ S

}
.

For all n ∈ N, Hn(x) is 0-finite, and so αn = min
{
i ∈ N, Hn(x)[i,∞[ ∈ C

}
is a

well-defined natural. We now prove that ∀n ∈ N, αn+1 ≤ αn and limαn = l = 0.
Since f(C) ⊆ C, ∀n ∈ N, αn+1 ≤ αn + 1. To conclude that αn+1 ≤ αn it is

enough to show that Hn+1(x)[αn,αn+1] ∈ S for every n. There are two cases:

1. αn = 0. Then, Hn(x)0 = 1 and Hn(x)[0,1], H
n(x)[1,2] ∈ S. So, Hn(x)[0,2] ∈

{100, 102, 110, 111} and Hn+1(x)1 = 1. Finally, Hn+1(x)[0,1] = 11 ∈ S.

2. αn > 0. Then Hn(x)[αn−1,αn] 6∈ S and Hn(x)[i,i+1] ∈ S, i ∈ {αn, αn + 1}.
If v = Hn(x)[αn−1,αn+2], then f(v) = Hn+1(x)[αn,αn+1] ∈ S (see Table 1).

v 0100 0102 0110 0111 1210 1211 2000 2002 2021 2210 2211
f(v) 11 11 11 11 02 02 00 00 00 02 02

Table 1: Possible values for v and f(v).

Let n0 ∈ N be such that, ∀n ≥ n0, αn = l. By contradiction, assume that l > 0.
So, we have that

Hn(x)[l−1,l+2] ∈ {0100, 0102, 0110, 0111, 1210, 1211, 2000, 2002, 2021, 2210, 2211}

for every n ≥ n0. If Hn(x)[l−1,l+2] were one among the first four patterns,
we would have αn+1 < αn = l. Thus, for all n > n0, Hn(x)l = 0 and then
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Hn(x)[l−1,l] = 20 (see Table 1). Define now u(n) = Hn+n0+1(x)[1,l−1], for all

n ∈ N. Since for all n ∈ N, u(n+1) = f(1u(n)0), by Lemma 7 there exists n1 ∈ N
such that u

(n1)
l−2 6= 2, i.e., Hn0+n1+1(x)l−1 6= 2, which is a contradiction.

Therefore, l = 0 and since Hn(x)[0,1] ∈ S and Hn(x)0 = 1 for every n > n0,
it follows that Hn(x)1 6= 2 for all integer n > n0. �

Claim. H is sensitive to the initial conditions.

Proof. Choose arbitrarily k ∈ N, u ∈ A2k+1 and z ∈ [u]−k. Let x, y ∈ [u]−k
be such that xi = 2 and yi = 0 for all i ∈ Z with |i| > k. By Lemma 8,
there exists n0 ∈ N such that ∀n ≥ n0, H

n(y)1 6= 2. By Lemma 6, there exists
n1 ≥ n0 such that Hn1(x)1 = 2. Finally, either d(Hn1(z), Hn1(x)) = 1

2 or
d(Hn1(z), Hn1(y)) = 1

2 and hence H is sensitive. �

Theorem 9 ([20]). Almost equicontinuity is not structurally stable.

Theorem 9 says that blocking words of cellular automata are not necessarily
blocking in their models of perturbations. It is possible to define a stronger
notion of blocking words which forces this behavior.

Definition 3 ([20]). Let l ∈ N with l > 0 and s ∈ [1, l]. A word u ∈ Al is
strongly s-blocking for a CA F of local rule f and alphabet A if their exists an
offset d ∈ [0, l − s] such that for any rule distribution θ with θi = f for every
integer i ∈ [0, l − 1], it holds that

∀x, y ∈ [u]0 ,∀n ∈ N, Hn
θ (x)[d,d+s−1] = Hn

θ (y)[d,d+s−1] .

Roughly speaking, a word u is blocking as soon as appears in a configuration
at positions where the rule f is applied (see Figure 3). It actually separates the
dynamics on its left from the one on its right if both it is strongly s-blocking
and every θi has radius at most s. It is obvious that any strongly s-blocking

arbitrary rules f arbitrary rules

u

d s

only depends on u

Figure 3: A strongly blocking word. Time goes downward.

word is also s-blocking.
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Proposition 10 ([20]). Let F be a CA of radius r. If F admits a strongly
r-blocking word, then all models of perturbation of F are almost equicontinuous.
Furthermore, if all words of a certain size are strongly r-blocking, then all models
of perturbation of F are equicontinuous.

More precisely, the equicontinuity behavior for models of perturbation of an
equicontinuous CA is expressed by the following

Theorem 11 ([20]). Let F be a CA of radius r with alphabet A. The following
statements are equivalent:

1. F is equicontinuous.

2. There exists k > 0 such that all words in Ak are strongly r-blocking.

3. Every model of perturbation of F is ultimately periodic.

The following is a direct consequence of Theorem 11.

Theorem 12 ([20]). Equicontinuity is structurally stable.

Remark that the existence for a CA of a strongly blocking word is not a
necessary condition in order to admit equicontinuous models of perturbation as
illustrated in the following example.

Example 7. Let F be the CA of radius 1 on the alphabet A = {0, 1} and
with local rule f defined as ∀a, b, c ∈ A, f(a, b, c) = max{a, b, c}. The CA F
is not equicontinuous but admits equicontinuous models of perturbation as, for
instance, the dν-CA induced by the distribution θ defined as θi = f , if i 6= 0,
θi = g, otherwise, where g is the constant rule giving 1.

5. Characterization and decidability of properties by distributions of
rules

Given a (finite) set R of allowed local rules, the distributions over R re-
lated to interesting ν-CA properties are characterized. Indeed, distributions are
viewed as infinite words on the alphabet R and, hence, a formal language point
of view can be adopted. Every property is associated with the languages of
distributions inducing ν-CA exhibiting that property. The study of those lan-
guages provides machines which recognize them and allow to prove decidability
results.

This is of a great interest when modelling systems based on local interactions
by ν-CA. Indeed, once local interactions have been represented by local rules, it
is possible to know how to assign them to the different lattice positions in order
to assure some desired properties to the model. Conversely, by the knowledge of
the distribution of a ν-CA it is possible to verify if the ν-CA exhibits a certain
property.

Fix an alphabet A and a finite set of local ruleR on the alphabet A. Without
loss of generality all rules in R can be assumed to have the same radius r. The
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set of all distributions on R is denoted by Θ. In this case, Θ is viewed as the set
Rζ of all bi-infinite words on R and we call language any set of distributions.
The purpose of this section is to characterize the language L ⊆ Θ such that θ ∈ L
if and only if Hθ has a given property. The considered properties are number
conservation, surjectivity, injectivity, sensitivity to the initial conditions and
equicontinuity.

As R contains only rules or radius r, we can define finite distributions and
the mapping they induce. A finite distribution on R is any word in R∗. Every
finite distribution ψ of length n induces a mapping hψ : An+2r → An defined
by

∀u ∈ An+2r,∀i ∈ [0, n− 1], hψ(u)i = ψi(u[i,i+2r]) .

Finite distributions are related to whole distributions by the fact that

∀θ ∈ RZ,∀x ∈ AZ,∀i, j ∈ Z, i ≤ j, Hθ(x)[i,j] = hθ[i,j](x[i−r,j+r]) .

5.1. Number conservation

In physics, most of transformations are conservative: a certain quantity re-
mains invariant along time (conservation laws of mass and energy, conservation
of the number of atoms in chemical reactions. . . ). Those systems often consist
of a huge number of particles in mutual interaction and the power of those inter-
actions is neglectable for sufficiently far particles. Therefore, cellular automata,
and their non-uniform generalization, are particularly suitable to model such
systems and the question of the translation of conservation laws naturally oc-
curs. The case of uniform CA has been treated in a number of papers, see for
instance [8, 24]. The results for ν-CA have been generalized in [21].

Throughout this section we consider the alphabet A = {0, 1, . . . , s− 1} for
some integer s ≥ 2. The results presented here can be generalized to more com-
plex alphabets (see [29]) but we only consider the case of numerical alphabets.
Denote by 0 the empty configuration, i.e. the configuration such that 0i = 0 for
all integer i. In the sequel, finite configurations refer to 0-finite configurations.

For all configuration x ∈ AZ, define the partial charge of x between the
indexes −n and n as µn(x) =

∑n
i=−n xi and the global charge of x as µ(x) =

limn→∞ µn(x). Clearly µ(x) =∞ if and only if x is not a finite configuration.
There exist three usual ways to define number conserving CA: the number

conservation either on the finite configurations, or on the periodic configurations,
or on all the configurations. As to ν-CA, the second way has no meaning as it
implicitly assumes an uniform application of a unique local rule, while the other
ones are similar to the CA case.

Definition 4. A ν-CA H is number conserving on finite configurations (FNC)
if for all finite configurations x, µ(x) = µ(H(x)), while it is said to be number
conserving (NC) if both the following conditions hold

1. H(0) = 0

2. ∀x ∈ AZ r {0}, limn→∞
µn(H(x))
µn(x)

= 1.
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It is known that all the definitions of number conservation are equivalent
for the uniform case (see [24]). It is clear that any number conserving ν-CA is
FNC. The converse holds for rν-CA.

Proposition 13 ([21]). Any rν-CA is FNC if and only if it is NC.

In fact, for rν-CA condition 1 from Definition 4 is implied by condition 2.
However, there exist ν-CA for which the condition 2 holds while condition 1
does not. In other words, there are ν-CA which are FNC but not NC.

Theorem 14 ([21]). The language L of distributions on R inducing a NC
ν-CA is a subshift of finite type.

A possible set of forbidden blocks for the SFT from Theorem 14 is

F =

{
ψ ∈ R2r+1 : ∃u ∈ A2r+1,

ψ2r(u) 6= u0 +

2r−1∑
i=0

ψi+1(02r−iu[1,i+1])− ψi(02r−iu[0,i])
}
.

Corollary 15. Number conservation is decidable for pν-CA.

Proof. The sets of patterns of a fixed size inside the distribution inducing a
pν-CA is finite. Hence, the thesis is true.

Example 8. Let R = {f, g, h} where f, g, h are the elementary rules 136, 184
and 252, respectively. The rule g is also known as the traffic rule in relation with
its use for traffic flow modeling [41]. According to the SFT and the set F from
Theorem 14, after a reduction we get {ff, gf, hh, hg} as the set of minimal
forbidden patterns for the SFT. Since gg is not a forbidden pattern while ff
and hh are, the CA defined by g is NC while the CAs defined by f and g are
not. However, there exist suitable distributions θ ∈ Θ on R inducing number
conserving rν-CA (see Figure 4).

5.2. Surjectivity and injectivity

In classical CA settings, surjectivity and injectivity are fundamental prop-
erties which are strongly linked. Indeed, a CA is surjective if and only if it is
injective on finite configurations [39, 40] and then injectivity is equivalent to
reversibility. As to dν-CA, this last result is still true as Proposition 4 states.
However, surjectivity is no longer equivalent to injectivity on finite configura-
tions (see Example 4). We are now interested in the case of rν-CA.

It is well-known that both properties are decidable for one-dimensional CA
and undecidable in higher dimensions [3, 33]. To deal with rν-CA, De Bruijn
graphs and product graphs as presented in [45] have been generalized. This has
allowed to extend decidability results to rν-CA.
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Figure 4: Example of dynamics for automata with rules in {f, g, h}. The automaton at the
top is number conserving, while the one at the bottom is not. Time goes upward.

Definition 5. Let R be a finite set of rules of radius r. The De Bruijn graph
of R is the labeled multi-edge graph G = (V,E), where V = A2r and edges in
E are all the pairs (aw,wb) with label (f, f(awb)), obtained varying a, b ∈ A,
w ∈ A2r−1, and f ∈ R. The language LG of G is the set of all labels (ψ, u) of
paths in G.

If G is the De Bruijn graph of a finite set R of rules of radius r, then LG ={
(ψ, u) ∈ (R×A)∗ : h−1ψ (u) 6= ∅

}
and LG is a recognizable language.

Consider now surjectivity. By compactness, a distribution θ ∈ Θ induces a
surjective rν-CA Hθ if and only if hψ is surjective for all factor ψ of θ. Then,
it follows that the language L of distributions inducing surjective rν-CA is a

subshift. The fact that the set L =
{
ψ ∈ R∗ : ∃u ∈ A∗, h−1ψ (u) = ∅

}
consists of

the finite distributions on R inducing non surjective functions and that L is the
projection of LcG on its first component are the ideas underlying the following
result.

Theorem 16 ([21]). The language L of distributions on R inducing a surjec-
tive ν-CA is a sofic subshift.

Similarly to CA, De Bruijn graphs allow to represent a configuration as a se-
quence of vertexes and its image obtained by some distribution as a sequence
of edges. Clearly, the coupling of G with itself allows to individuate two config-
urations and the corresponding images obtained by the same distribution. In
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addition, the main idea of the product graph is that the two configurations have
the same image.

Definition 6. Let R be a finite set of rules of radius r and G = (V,E) be the De
Bruijn graph of R. The product graph P of R is the labeled graph (V × V,W )
where ((u, u′), (v, v′)) ∈ W with label f ∈ R if and only if there exists a ∈ A
such that (u, v) and (u′, v′) belong to E both with the same label (f, a).

So, any path ((ui, vi), θi)i∈Z in P defines two configurations x and y such
that for all integer i, xi and yi are the (r+1)-th letter of ui and vi, respectively.
Moreover, Hθ(x) = Hθ(y). This allows to deal with injectivity.

Then, a distribution θ ∈ Θ will induce a non injective ν-CA if and only if θ is
the label of some path such that x 6= y if and only if θ is the label of some path
reaching a vertex (u, v) with u 6= v. The set of all those labels defines a ζ-rational
language and, as ζ-rational languages are closed under complementation, its
complement is also ζ-rational. All the previous facts are the ideas underlying
the following result.

Theorem 17 ([21]). The language L of distributions on R inducing injective
ν-CA is a ζ-rational language.

We now propose a proof for the next result from the language point of view.

Theorem 18 ([20]). Surjectivity and injectivity are decidable for pν-CA.

Proof. Let H be a pν-CA defined by a distribution θ. By Proposition 1, we can
assume without loss of generality that both the perturbation threshold and the
structural period of H are equal to 1. Then, there exist local rules f , g and h
such that θi = f for i < 0, θ0 = g and θi = h for i > 0. It is possible to assimilate
the distribution θ to the ζ-rational language f−ωghω. By Theorems 16 and 17,
the languages of distributions inducing surjective and injective ν-CA on the set
of rules {f, g, h} are ζ-rational (sofic subshifts are a special case of ζ-rational
languages). As the inclusion of ζ-rational languages is decidable, we can check
if H is surjective or injective.

5.3. Equicontinuity and sensitivity of linear ν-CA

Equicontinuity and sensitivity are important properties of dynamical sys-
tems. It is known than none of them is decidable for CA [25]. Therefore, if we
are interesting in the language of distributions from Θ inducing one of those
properties, we know that this language is not ζ-rational. However, in the case
of linear CA it is possible to decide both properties [38]. In this section, we
extend the notion of linearity to ν-CA and we show that distributions in Θ in-
ducing equicontinuous linear ν-CA are fully characterized by the existence of an
infinite number of walls, which are a kind of mono-directional blocking words.
If R only contains rules of radius 1, we can go further and prove that all those
distributions forms a ζ-rational language.

From now on, we assume the alphabet A is endowed with two binary op-
erations + : A × A → A and · : A × A → A such that (A,+, ·) is a unitary
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finite ring. The main examples of such a ring is ( Z
mZ ,+, ·) of integers modulo

m for m ≥ 2 with the usual addition and multiplication. Of course, (An,+, ·)
and (AZ,+, ·) are also commutative rings where sum and product are defined
component-wise and they are denoted by the same symbols.

Definition 7. A local rule f on A with radius r is linear if there exists λ ∈
A2r+1 such that ∀u ∈ A2r+1, f(u) =

∑
i∈[0,2r] λi · ui. A ν-CA is linear if there

exists a distribution of linear local rules which defines it.

In fact, the notion of linearity for ν-CA matches with the usual notion of lin-
earity from linear algebra: a ν-CAH is linear if and only if it is an endomorphism
of the module (AZ,+, ·), i.e., ∀a ∈ A,∀x, y ∈ AZ, H(x+a ·y) = H(x)+a ·H(y) .

It is known that any almost equicontinuous linear cellular automaton is
actually equicontinuous. This property is still true in the non-uniform case.

Proposition 19 ([21]). A linear ν-CA is either sensitive or equicontinuous.

We now assume that R is a set of linear local rules of radius r and we focus
on the distributions inducing either sensitive or equicontinuous linear rν-CA.
The following notion is essential to characterise equicontinuous rν-CA.

Definition 8. A right-wall is a finite distribution ψ ∈ R∗ of length n ≥ r such
that, for all v ∈ Ar, the sequence uψ(v) : N→ An defined by

uψ(v)0 = 0n

uψ(v)1 = hψ(0ruψ(v)0v)
uψ(v)k+1 = hψ(0ruψ(v)k0r) for every integer k > 1

verifies ∀k ∈ N, (uψ(v)k)[0,r−1] = 0r. Left-walls are defined symmetrically.

Roughly speaking, a right (resp., left) wall is a finite distribution that, when
it is a factor of a distribution, blocks any signal coming from the right (resp.,
left) in the induced automaton. As to a right-wall, the sequence uψ(v) is a
partial dynamic induced by ψ on an empty initial configuration with a signal
v coming from the right (see Figure 5). After the first step, there is no longer
any signal coming from the right neither from the left. Indeed, the fact that ψ
is a right-wall prevents the signal from interacting with the leftmost part of the
configuration.

Next two Propositions illustrate two properties of walls: they are extendable
and may entirely constrain the dynamic induced by a full distribution.

Proposition 20 ([21]). If ψ is a right-wall and ψ′, ψ′′ are any two finite dis-
tributions on R, then ψ′ψψ′′ is a right-wall.

Proposition 21 ([21]). Let θ ∈ Θ, x ∈ AZ, m and n ∈ Z such that m > n
and x[n+1,m] = 0m−n. Let ψ denote θ[n+1,m] and, for every i ∈ N, αi denote
Hi
θ(x)[m+1,m+r]. If ψ is a right-wall, then, for all k ∈ N,

(
∀i ∈ [0, k), Hi

θ(x)[n−r+1,n] = 0r
)
⇒ Hk

θ (x)[n+1,m] =

k∑
j=0

uψ(αk−j)j .
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Fixed Application of hψ Fixed

0r 0n = uψ(v)0 v

0r uψ(v)1 0r

0r uψ(v)2 0r

0r uψ(v)k 0r

Figure 5: The sequence uψ(v). Time goes downward.

Proposition 21 says that if a right-wall ψ appears as factor somewhere in a
distribution θ, assuming that no signal comes from the left of ψ, the dynamics
of Hθ in that place is just the superposition of the propagation of the signals
coming from the right. As ψ is a right-wall, the propagation never reaches the
left of the wall. Summarizing, a right-wall makes independent the dynamics to
its left from the one to its right. Therefore, the dynamics between a left-wall
and a right-wall is completely independent from the rest of the dynamics and
so walls are used to characterize equicontinuity for rν-CA.

Theorem 22 ([21]). Let θ ∈ Θ, Hθ is equicontinuous if and only if both the
two following conditions hold:

1. For all n ∈ N, there exists m ≥ n such that θ[n+1,m] is a right-wall.

2. For all n ∈ N, there exists m ≥ n such that θ[−m,−n−1] is a left-wall.

Note that it is effectively decidable to know if a finite distribution ψ of length n
is a right or left-wall. Indeed, for every v ∈ Ar, the sequence uψ(v) is ultimately
periodic and at most Card(A)n different terms can appear. Then, the condi-
tion to be a wall can be checked on all these sequences by means of a Turing
machine. That shows that, in some sense, the language L of distributions on
R inducing equicontinuous linear rν-CA is recursive. More formally, let ←−. be
the operator which inverts the indices of a word in AN to produce its mirror
in A−N and consider the sets L+ =

{
x ∈ AN : ∃y ∈ L, x = y[0,+∞[

}
and L− ={

x ∈ AN : ∃y ∈ L,←−x = y]−∞,0]
}

. We have that L = {←−y x : x ∈ L+, y ∈ L−},
and L+ and L− are recursive according to [44]. However, in the general case
it is not known if a smaller class of ζ-languages contains all the languages L
induced by a finite set of rules R. In the restricted case where R only contains
rules of radius 1, we are going to see that the language L is ζ-rational.

Then, in the remaining part of this section, we assume that R is a finite
set of linear rules of radius 1. In this case, for any rule f ∈ R there exist

21



Minimal left-wall

detection

Minimal right-wall

detection

Waiting Transition from left part
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End of

detection

Waiting

Beginning of

detection

Figure 6: Conceptual view of the automaton A.

coefficients λ−f = f(1, 0, 0), λ̃f = f(0, 1, 0) and λ+f = f(0, 0, 1) in A such that

for all a, b, c ∈ A, f(a, b, c) = λ−f · a + λ̃f · b + λ+f · c. In this context, walls are
characterized as follows.

Proposition 23 ([21]). A finite distribution ψ ∈ Rn is a right-wall (resp.,

left-wall) if and only if
∏n−1
i=0 λ

+
ψi

= 0 (resp.,
∏n−1
i=0 λ

−
ψi

= 0).

Proposition 23 allows to design a finite automaton which detects right and left-
wall on its paths. Let A = (Σ, Q, T, I, F ) be the finite automaton such that the
alphabet Σ isR, the set of states Q is {−,+}×A, I = {(−, 0)} and F = {(+, 0)}
are the set of initial and final states, respectively, and the set T of transitions
is as follows

1. ((−, a), f, (−, λ−f ·a)), ∀a ∈ Ar{0},∀f ∈ R (minimal left-wall detection).

2. ((−, 0), f, (−, 1)), ∀f ∈ R (end of detection).

3. ((−, 1), f, (−, 1)), ∀f ∈ R (waiting).

4. ((−, 1), f, (+, 1)), ∀f ∈ R (transition from left part to right part).

5. ((+, 1), f, (+, 1)), ∀f ∈ R (waiting).

6. ((+, 1), f, (+, 0)), ∀f ∈ R (beginning of detection).

7. ((+, λ+f ·a), f, (+, a)), ∀a ∈ Ar{0},∀f ∈ R (minimal right-wall detection).

The automaton A consists of two symmetric parts for the detection of the
left and right-walls (see Figure 6) plus a transition from left to right. We just
explain the left part: the automaton tries to detect a left-wall of minimal length
and starting from (−, 1) it enters the states (−,

∏
λ−f ) for those rules f read

since the beginning of the detection. A left-wall is actually detected when it
enters the state (−, 0). A distribution θ is recognized by this automaton if and
only if there exists some path having this distribution as label and such that
the states (−, 0) and (+, 0) are visited infinitely many times, i.e., if and only
if θ contains an infinite number of both left-walls and right-walls at negatives
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and positives indexes, respectively. Theorem 22, Proposition 19, Proposition 23,
and the aforementioned automaton A lead to the following result.

Proposition 24 ([21]). Both the languages of distributions on R inducing lin-
ear equicontinuous and sensitive rν-CA are ζ-rational.

In [21], an improvement has been proposed to reduce the number of states of
A. We consider the equivalence relation ∼ on A defined by a ∼ b if and only if
there exists an invertible element c ∈ A such that a = b · c. We denote by Ã the
set of all equivalence classes. This relation is compatible with the multiplication
of A, i.e., x ∼ x′ and y ∼ y′ imply x · x′ ∼ y · y′. Then, we can extend the
multiplication on A to Ã and we can merge in A all states (−, a) (resp., (+, a))
for the elements a ∈ A which are in the same equivalence class. Finally, the
automaton A can be constructed with 2×Card(Ã) states instead of 2×Card(A)
states.

One can prove that Card(Ã) = d(m) where number d(m) is the number of
divisors of m. Since d(m) = o(mc) for any c > 0 (see [5]), the improvement
is effective. However, remark that if A is any boolean ring, the only invertible
element is the multiplicative neutral one and then Card(Ã) = Card(A), that is
to say that there are no improvements at all.

6. A first characterisation of fixed points

Let F : X → X, we denote by Fix (F ) the set of fixed points of F , i.e.,
Fix (F ) := {x ∈ X : F (x) = x}. For a set S of such functions, Fix (S) denote

the set of common fixed points of functions in S, i.e., Fix (S) =
⋂
F∈S

Fix (F ).

In this section, we propose a study of fixed points of ν-CA using De Bruijn
graphs.

6.1. Case of a CA

Let F be a cellular automaton of local rule f and radius r > 0. Let GF be
the De Bruijn graph of F , i.e., the graph (V,E) where V = A2r and the set
E is

{
(au, f(aub), ub) : a, b ∈ A, u ∈ A2r−1}. This graph is the same as the De

Bruijn graph of the set of local rules {f} (see Section 5.2) without the second
component on edges.

The fixed points graph of the CA F is the subgraph G̃F of GF in which the
edges are the pairs (au, ub), a, b ∈ A, u ∈ A2r−1, such that ur−1 = f(aub). It

is clear that x ∈ Fix (F ) if and only if x is the label of a path in G̃F . In other
words, Fix (F ) is the SFT XF where F =

{
u ∈ A2r+1 : f(u) 6= ur

}
.

Proposition 25. Fix (F ) has cardinality

1. 2ℵ0 (of the continuum), if G̃F admits a strongly connected component con-
taining two distinct cycles;

2. ℵ0, if all the strongly connected components of G̃F are cycles and there
exists a path between two of them.

23



3. In all the other cases, Fix (F ) has finite cardinality.

Proof. 1. It is clear that Fix (F ) contains the subset consisting of all the bi-
infinite juxtapositions of the blocks u and v possibly separated by w and
w′, where u and v are the labels of the two cycles and w and w′ are the
labels of the paths connecting them. Clearly, such a subset has cardinality
2ℵ0 .

2. In this case Fix (F ) is the finite union of countable subsets each of which
contains either a finite number of configurations or all the configurations
u−ωwvω, where u and v are the labels of each pair of cycles connected by
some path π and w is label of π. In this second case, the position of w
allows to encode any integer.

3. In this case, the strongly connected components are disconnected cycle.
Every cycle encodes a finite number of spatially periodic configuration
(periodic configurations for the shift) and those configurations are the
only fixed points.

�

6.2. Case of a pν-CA

Let H be a pν-CA. Without loss of generality, we can assume that H has
radius, perturbation threshold and structural period all equal to 1 and we denote
by f , g and h its left default rule, its right default rule, and the rule applied at
index 0, respectively.

We define the De Bruijn graph of H to be the graph GH = (V,E) where
V = A2 × {f, g} and E is the set

{((ab, α), α(abc), (bc, α)) : a, b, c ∈ A,α ∈ {f, g}}⋃
{((ab, f), h(abc), (bc, g)) : a, b, c ∈ A} .

The fixed points graph of H is the subgraph G̃H = (Ṽ , Ẽ) of GH where Ṽ is
the set of vertices in V accessible from A2×{f} and co-accessible from A2×{g},
and where Ẽ = (Ṽ ×A× Ṽ )∩ {((ab, α), b, (bc, β)) : a, b, c ∈ A,α, β ∈ {f, g}}. It

is clear that x ∈ Fix (H) if and only if x is the label of a path in G̃H which uses
an edge ((ab, f), b, (bc, g)) for some a, b and c in A at index 0. This proves that
Fix (H) is a closed subset of AZ.

Proposition 26. Fix (H) has cardinality

1. 2ℵ0 (of the continuum), if G̃H admits a strongly connected component con-
taining two distinct cycles;

2. ℵ0, if all the strongly connected components of G̃H are cycles and there
exists a path between two of them, both included in A2×{f} or in A2×{g}.

3. In all the other cases, Fix (H) has finite cardinality.
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Proof. The proof is similar to the one of Proposition 25 except for the second
case. When all the strongly connected component are cycles but the only paths
between them use an edge of the kind ((ab, f), b, (bc, g)) for some a, b, c ∈ A,
this edge must appear at position 0 and therefore it is not possible to encode
an integer. �

Corollary 27. Let F and G be the CA of local rules f and g, respectively. If
Fix (F ) and Fix (G) are finite (resp., countable), then Fix (H) is finite (resp.,
countable).

6.3. rν-CA

We now consider the fixed point set Fix ({Hθ : θ ∈ Θ}) for a set Θ of dis-
tributions from a given family R of rules with radius r. With a little abuse of
notation, we will denote it by Fix (Θ).

It is clear that Fix (Θ) is a closed set. For any set Θ of rule distributions
and any integer i ∈ Z, denote by App (Θ, i) := {f ∈ R : ∃θ ∈ Θ, θi = f} the set
of rules appearing in position i in some distribution from Θ. It immediately
follows that

Lemma 28. For any x ∈ AZ it holds that x ∈ Fix (Θ) if and only if ∀i ∈
Z,∀f ∈ App (i) , f(x[i−r,i+r]) = xi.

Proposition 29. If the sequences App (Θ, i)i∈N and App (Θ,−i)i∈N are ulti-
mately periodic then Fix (Θ) is a pointed ζ-rational language.

Proof. Let p and q be the period and pre-period of App (Θ, i)i∈N. Consider the
graph (V,E) where V = A2r × {0, . . . , p+ q − 1} and E contains the labelled
edges ((au, i), ur−1, (ub, i+ 1)) and ((au, p+ q−1), ur−1, (ub, q)) for all a, b ∈ A,
u ∈ A2r−1, and i ∈ [0, p + q − 1) such that ∀f ∈ App (i) , f(aub) = ur−1. For
each u ∈ A2r, denote by Uu the set of words that are the labels of all paths with
initial vertex (u, 0). In a similar way, the language Vu is obtained starting from

App (Θ,−i− 1)i∈N. Since Fix (Θ) =
⋃

u∈A2r

[Vu, Uu], we conclude that Fix (Θ) is

a pointed ζ-rational language. �

Proposition 30. If Θ is a pointed ζ-rational language, then both the sequences
App (Θ, i)i∈N and App (Θ,−i)i∈N are ultimately periodic.

Proof. Let L be any ω-language. We show that if L is ω-rational then App (L, i)i∈N
is ultimately periodic. Let Ak(L) =

⋃
u∈Ak

u−1L. Since L is ω-rational, L ad-

mits a finite number of residual languages and there exists k < k′ such that
Ak(L) = Ak

′
(L). Since App (L, j) = App

(
Ai(L), j − i

)
for all integers i, j with

i ≤ j, it follows that

∀i ∈ N, App (L, k′ + i) = App
(
Ak

′
(L), i

)
= App

(
Ak(L), i

)
= App (L, k + i) .
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Hence, App (L, i)i∈N is ultimately periodic with pre-period k and period k′− k.
By a similar argument, one can prove that App (L,−i)i∈N is ultimately periodic.
The fact that Θ is a pointed ζ-rational language concludes the proof. �

Let R be a family of rules with radius r and C ⊆ AZ. We now want to study
the set Θ(C) :=

{
θ ∈ RZ : C ⊆ Fix (Hθ)

}
.

Proposition 31. Θ(C) is closed and Θ(C) = Θ(Adh (C)).

Proof. It is clear that Θ(C) is closed. Since C ⊆ Fix (Θ(C)), it holds that
Adh (C) ⊆ Adh (Fix (Θ(C))) = Fix (Θ(C)), and hence Θ(C) ⊆ Θ(Adh (C)). The
converse inclusion is immediate. �

Proposition 32. Let R be a family of rules with radius r and C ⊆ AZ. If C is
a pointed ζ-rational language, then Θ(C) is too.

Proof. With an abuse of notation, for any x ∈ AN and any θ ∈ RN, in this proof
we means by Hθ(x) the element from AN such that Hθ(x)i = θi(x[i,i+2r]) for all
i ∈ N.

First of all, we are going to prove that for any ω-rational language L and
any u ∈ A2r,

Lu :=
{
θ ∈ RN : ∀x ∈ L ∩ u[r,2r−1]Aω, Hθ(u[0,r−1]x) = x

}
is an ω-rational language. Consider an arbitrary ω-rational language L and a
word u ∈ A2r and let A = (Q,A, T, i, F ) be an automaton recognizing L. Build
the automaton A′ = (Q′,R′, T ′, (i, u), F ′) where Q′ = Q×A2r, R′ = R∪ {id},
F ′ = F ×A2r, and

T ′ = {((p, av), f, (q, vb)) : p, q ∈ Q, f ∈ R, a, b ∈ A, v ∈ A2r−1,

(p, f(avb), q) ∈ T and f(avb) = vr−1}

The automaton A′ endows A with the structure of the De Bruijn graph of R
in such a way that accepting paths in A and accepting paths in A′ with label
idω are in a one-to-one correspondence. As it is possible to rebuild the label of
a path in A using the state sequence of the corresponding path in A′, there is
no loss of information. Delete now all nodes and edges which do not belong to
some accepting path. For the sake of simplicity, we use the same notation A′
for the simplified graph.

Consider now the automaton A′′ = (Q′ ∪ {⊥} ,R, T ′′, (i, u), {⊥}) where

T ′′ = (T ′ ∩ (Q′ ×R×Q′))
∪ {((p, av), f,⊥) : p ∈ Q, f ∈ R, a ∈ A, v ∈ A2r−1,

∃q ∈ Q,∃b ∈ A, ((p, av), id, (q, vb)) ∈ T ′ and ((p, av), f, (q, vb)) 6∈ T ′}
∪ {(⊥, f,⊥) : f ∈ R}
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The intersection T ′ ∩ (Q′ × R × Q′) allows to eliminate from A′ the edges
originated by the addition of the identity toR (if any). Furthermore, transitions
leading to the accepting state are added. Their labels are those rules which do
not keep unchanged a letter of some element of L ∩ u[r,2r−1]Aω as it should be
with the identity rule. Then, Lu = L(A′′)c and so Lu is ω-rational.

By hypothesis, C =

n⋃
i=1

[U (i), V (i)] for some ω-rational languages U (1), . . . , U (n),

and V (1), . . . , V (i). Finally, it holds that Θ(C) =

n⋃
i=1

⋃
u∈A2r

[U
(i)
ũ , V (i)

u ] where ũ is

the mirror of u and this concludes the proof. �

7. Conclusions

The papers deals with three main research directions in the study of ν-CA
dynamics. The first one simply aims at understanding if and how classical results
of CA theory translate into the new setting. Although most of the results are
no-go theorems, they are interesting since they can guide the search for further
results more properly related to the ν-CA.

An important issue in this context is structural stability, namely the study
of properties of the dynamics which are robust to small perturbations in the
distribution of local rules. A question arises naturally here. Is there any in-
teresting robust property other than equicontinuity? What does it determine
robustness?

The second research direction tries to classify the complexity of dynamical
properties by means of the complexity of languages of distributions of local
rules. We have seen that there is a gap between the complexity of surjectivity
(sofic subshift language) and injectivity (ζ-rational language). All the dynamical
properties that we have been able to characterize fall in ζ-rational languages.
It would be therefore interesting to refine results in order to understand if these
properties fit know proper subsets of ζ-rational languages. Of course, as a
preliminary step, perhaps one should refine the class structure of ζ-rational
languages, similarly to what has been done for ω-rational language in [19].

The third direction aims at completing the understanding of basic set prop-
erties of ν-CA as the set of fixed points. It would be nice to understand how the
properties of the local rules used to build a perturbation in a CA influence its
set of fixed points. Moreover, classical and not fully understood CA questions
also apply here when focusing on periodic points. Is it possible to character-
ize the Artin-Mazur zeta function (i.e., the function that associates with each
integer n the cardinality of the set of periodic points of period n)? Of course,
finding analytic expressions for the zeta function is pretty ambitious but finding
them at least in some simple cases might reveal important information about
the whole class of ν-CA.
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[35] Petr Kůrka. Topological and symbolic dynamics, volume 11 of Cours
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