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Introduction

Languages over innite words have been used since the very introduction of symbolic dynamics. Afterwards, they have spread in a multitude of scientic elds. Computer science is more directly concerned for example by their application in formal specication and verication, game theory, logics, etc.. ω-rational languages have been introduced as a natural extension of languages of nite words recognized by nite automata. Indeed, a nite automaton accepts some input u if at the end of the reading of u, the automaton reaches a nal state. Clearly, when generalizing to innite words, this accepting condition has to be changed. For this reason, new accepting conditions have been introduced in literature. For example, an innite word w is accepted by a nite automaton A under the Büchi acceptance condition if and only if there exists a run of A which passes innitely often through a set of accepting states while reading w. Indeed, this was introduced by Richard Büchi in the seminal work [START_REF] Richard | Symposium on decision problems: On a decision method in restricted second order arithmetic[END_REF] in 1960.

Later on, David Muller characterized runs that pass through all elements of a given set of accepting states and visit them innitely often [START_REF] Muller | Innite sequences and nite machines[END_REF]. Afterwards, more acceptance conditions appeared in a series of papers [START_REF] Hartmanis | Sets of numbers dened by nite automata[END_REF][START_REF] Landweber | Decision problems for omega-automata[END_REF][START_REF] Staiger | Automatentheoretische und automatenfreie charakterisierungen topologischer klassen regulärer folgenmengen[END_REF][START_REF] Moriya | Accepting conditions for automata on ωlanguages[END_REF][START_REF] Litovsky | Finite acceptance of innite words[END_REF]. Each of these works was trying to capture a particular semantic on the runs or to ll some conceptual gap. Acceptance conditions are selectors for runs of the automaton under consideration. Of course, the set of selected runs is also deeply inuenced by the structural properties of the FA: deterministic vs. non-deterministic, complete vs. non complete (see for instance [START_REF] Litovsky | Finite acceptance of innite words[END_REF]).

Each acceptance condition characterizes a class of languages. In [START_REF] Cervelle | Acceptance conditions for ω-languages and the Borel hierarchy[END_REF], it is proved that if the acceptance condition is denable in MSO (monadic second order) logic then the class of languages it induces is ω-rational. However, more work was necessary to nd which was the overall picture i.e. which are the relations between classes of languages induced by the acceptance conditions appeared in literature so far. The well-known Borel hierarchy constitute the backbone of such a picture. Classes in the hierarchy are ordered by set inclusion.

This paper continues the classication work closing some open questions concerning the positioning of the class of languages induced by CDFA(fin, =) (i.e. languages characterized by runs that pass nitely many times through all the elements of a given set of nal states, recognized by Complete Deterministic Finite Automata). The motivation for a further study of the condition (fin, =) is twofold. From one hand, this class is, in a sense, surprising. Indeed, it is as high as the highest classes of the Borel hierachy but it is distinct from them. The interest of such a result is to have examples of languages that have high complexity but in which the complexity is not just determined by the topology one denes over the words (the Cantor topology here) but the complexity is determined by the intrinsic combinatorial complexity of the words themselves.

From the other hand, it is another step in the understanding of the theory of formal specication and verication of daemon processes (non-terminating processes). In this case, a run of the process is accepted only if it passes through a nite number of exceptions.

The paper also highlights an interesting phenomenon: the complexity class can be greatly inuenced by the fact that one considers the very rst elements of the paths (initial node) or not. In the sequel given an acceptance condition (c, R), the version in which the initial node is considered is denoted (c , R).

For example run is the set of states visited by the nite automaton while reading the input word, excluding the initial state; run is the same as run but includes the initial state. By Proposition 21, one nds that CDFA(fin, =) CDFA(fin , =) (CDFA stands for complete deterministic nite automata). As a consequence CDFA(fin , =) is even higher than CDFA(fin, =). The rest of the paper is devoted in proving (or disproving) the inclusion relations wrt. all previously known classes. The resulting hierarchy is illustrated in Figure 5.

Most of the proofs have been omitted due to a lack of space. They will appear in the long version of this article.
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Languages and automata Let N denote the set of non-negative integers. For all i, j ∈ N, [i, j] is the set {i, i + 1, . . . , j}. For a set A, |A| denotes the cardinality of A and P (A) the powerset of A. An alphabet is a nite set and a letter is an element of an alphabet. Given an alphabet Σ, a word over Σ is a sequence of letters from Σ. Let Σ * and Σ ω denote the set of all nite words and the set of all innite words over Σ, respectively. Let Σ ∞ denote Σ * ∪ Σ ω . For a word u, |u| denotes the length of u and |u| a denotes the number of occurrences of the letter a in u. The empty word ε is the only word of length zero. For all words u ∈ Σ * and v ∈ Σ ∞ , uv denotes the concatenation of u with v. For all word u ∈ Σ ∞ , for all 0 ≤ i ≤ j < |u|, the word u i u i+1 . . . u j is denoted by

u [i,j] .
A language is a subset of Σ * , similarly an ω-language is a subset of Σ ω . For a language L 1 and for

L 2 ∈ Σ ∞ , L 1 L 2 = {uv ∈ Σ * : u ∈ L 1 , v ∈ L 2 } denotes the concatenation of L 1 with L 2 . For a language L ⊆ Σ * , let L 0 = {ε}, L n+1 = L n L and L * = n∈N L n the Kleene star of L. For a language L, the innite iteration of L is the ω-language L ω = {u 0 u 1 u 2 • • • : ∀i ∈ N, u i ∈ L { }} .
The class of rational languages is the smallest class of languages containing ∅, all sets {a} (for a ∈ Σ) and which is closed under union, concatenation and Kleene star operations. An ω-language L is ω-rational if there exist n ∈ N and two families {L i } and {L i } of n rational languages such that

L = n-1 i=0 L i L ω i .
Let RAT denote the set of all ω-rational languages.

Rational languages and ω-rational languages are denoted by rational expressions. For instance, for the alphabet Σ = {0, 1}, Σ * 1 denotes the language of words ending with a 1 while (Σ * 1) ω and Σ * (0 ω + 1 ω ) denote the ω-languages of words containing an innite number of 1's, and a nite number of 0's or a nite number of 1's, respectively.

A nite automaton (FA) is a tuple (Σ, Q, T, I, F) where Σ is an alphabet, Q a nite set of states, T ⊆ Q × Σ × Q is the set of transitions, I ⊆ Q is the set of initial states and F ⊆ P (Q) is the acceptance table. A FA is a deterministic nite automaton (DFA) if |I| = 1 and |{q ∈ Q : (p, a, q) ∈ T }| ≤ 1 for all p ∈ Q, a ∈ Σ. It is a complete nite automaton (CFA) if |{q ∈ Q : (p, a, q) ∈ T }| ≥ 1 for all p ∈ Q, a ∈ Σ. A CDFA is a FA which is both deterministic and complete.

A CDFA induces a transition function δ : Q × Σ → Q such that for all p ∈ Q and a ∈ Σ, δ(p, a) is the only state such that (p, a, δ(p, a)) ∈ T . The transition function can be extended to a function δ : Q×Σ * → Q by dening for all p ∈ Q, δ (p, ε) = p and for all p ∈ Q, a ∈ Σ and u ∈ Σ * , δ (p, au) = δ (δ(p, a), u). We usually make no distinction between δ and δ .

If

I = {q 0 } for some state q 0 ∈ Q, we shall write (Σ, Q, T, q 0 , F) instead of (Σ, Q, T, I, F). Similarly, if F = {F } or F = {{f }}, we shall write (Σ, Q, T, I, F ) or (Σ, Q, T, I, f ) instead of (Σ, Q, T, I, F), respectively. An innite path in a FA A = (Σ, Q, T, I, F) is a sequence (p i , x i ) i∈N such that (p i , x i , p i+1 ) ∈ T for all i ∈ N. The (innite) word x is the label of the path. A nite path from p to q is a sequence (p i , u i ) i∈[0,n] for some n such that p 0 = p, for all i ∈ [0, n -1], (p i , u i , p i+1 ) ∈ T and (p n , u n , q) ∈ T . The (nite) word u is the label of the path. A path is initial if p 0 ∈ I.
A state q is accessible if there exists an initial path to q and A is accessible if all its states are. A loop is a path from a state to the same state. The FA A is normalized if it is accessible, I = {q 0 } for some q 0 ∈ Q and q 0 does not belong to a loop.
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Acceptance conditions, classes of languages and topology Denition 1. Let A = (Σ, Q, T, I, F) be a FA and p = (p i , x i ) i∈N a path in A.

Dene the sets

run A (p) = {q ∈ Q : ∃i > 0, p i = q}, run A (p) = {q ∈ Q : ∃i ≥ 1, p i = q}, inf A (p) = {q ∈ Q : ∀i > 0, ∃j ≥ i, p j = q}, fin A (p) = run A (p) inf A (p), fin A (p) = run A (p) inf A (p), ninf A (p) = Q inf A (p)
as the sets of states appearing at least one time (counting or not the rst state of the path), innitely many times, nitely many times but at least once (counting or not the rst state of the path), and either nitely many times including never in p, respectively.

An acceptance condition for A is a subset of all the initial innite paths of A. The paths inside such a subset are called accepting paths. Let A be a FA and cond be an acceptance condition for A, a word x is accepted by A (under condition cond) if and only if it is the label of some accepting path.

Let be the binary relation over sets such that for all sets A and B, A B if and only if

A ∩ B = ∅.
In this paper, we consider acceptance conditions induced by pairs (c, R) ∈ {run, run , inf, fin, fin , ninf} × { , ⊆, =}. A pair cond = (c, R) denes an acceptance condition cond A on an automaton A = (Σ, Q, T, I, F) as follows: an initial innite path p = (p i , x i ) i∈N is accepting if and only if there exists a set F ∈ F such that c A (p) R F . We denote by L cond A the language accepted by A under the acceptance condition cond A , i.e., the set of all words accepted by A under cond A . Remark 2. For acceptance conditions which use the relation , we can assume that the acceptance table is reduced to one set of states, taking, if necessary, the union of all sets in the acceptance table .   Denition 3. For all pairs cond ∈ {run, run , inf, fin, fin , ninf} × { , ⊆, =} and for all nite alphabets Σ, dene the following sets

FA (Σ) (cond) = L cond A , A is a FA on Σ , DFA (Σ) (cond) = L cond A , A is a DFA on Σ , CFA (Σ) (cond) = L cond A , A is a CFA on Σ , CDFA (Σ) (cond) = L cond A , A is a CDFA on Σ
as the classes of ω-languages on Σ accepted by FA, DFA, CFA, and CDFA, respectively, under the acceptance condition derived by cond. When it is not confusing, we omit to precise the alphabet in these notations.

When Σ is endowed with discrete topology and Σ ω with the induced product topology, let F, G, F σ and G δ be the collections of all closed sets, open sets, countable unions of closed set and countable intersections of open sets, respectively. For any pair A, B of collections of sets, denote by B (A), A ∆ B, and A R the Boolean closure of A, the set {U ∩ V : U ∈ A, V ∈ B} and the set A ∩ RAT, respectively. These, indeed, are the lower classes of the Borel hierarchy. For more on this subject we refer the reader to [START_REF] Wagner | On ω-regular sets[END_REF] or [START_REF] Perrin | Innite words, automata, semigroups, logic and games[END_REF], for instance. Some of the acceptance conditions derived by pairs (c, R) have been studied in the literature (see [START_REF] Richard | Symposium on decision problems: On a decision method in restricted second order arithmetic[END_REF][START_REF] Muller | Innite sequences and nite machines[END_REF][START_REF] Hartmanis | Sets of numbers dened by nite automata[END_REF][START_REF] Landweber | Decision problems for omega-automata[END_REF][START_REF] Staiger | Automatentheoretische und automatenfreie charakterisierungen topologischer klassen regulärer folgenmengen[END_REF][START_REF] Moriya | Accepting conditions for automata on ωlanguages[END_REF][START_REF] Litovsky | Finite acceptance of innite words[END_REF][START_REF] Staiger | ω-languages[END_REF]3]). It is known that all the classes of languages induced are subclasses of RAT because the acceptance conditions are MSO-denable, see [START_REF] Richard | Symposium on decision problems: On a decision method in restricted second order arithmetic[END_REF][START_REF] Cervelle | Acceptance conditions for ω-languages and the Borel hierarchy[END_REF]. The known inclusions are depicted in Figure 5.

In the sequel, we deal with languages sharing the same structure. For an alphabet Σ, a ∈ Σ, k ≥ 0 and n > 0, we denote the language

{x ∈ Σ ω : |x| a = k (mod n)} by L Σ,a
k,n and LΣ,a k,n denotes the language L Σ,a k,n + (Σ * a) ω .

4 Some relations between run and run , and fin and fin

The following lemma is immediate.

Lemma 4. Let cond ∈ {run, inf, fin, ninf} × { , ⊆, =}. If a language L is recognized by an automaton under condition cond, then it is recognized by a normalized automaton which is complete (resp. deterministic) if the initial one is complete (resp. deterministic) under condition cond.

Corollary 5. Let (c, R) ∈ {run, fin} × { , ⊆, =}. The class of languages induced by (c, R) is included in the respective class of languages induced by (c , R). Lemma 6. Let R ∈ { , ⊆, =} and cond = (run , R). If a language L is recognized by an automaton under condition cond, then it is recognized by a normalized automaton which is complete (resp. deterministic) if the initial one is complete (resp. deterministic) under condition cond.

Proposition 7. Let R ∈ { , ⊆, =}. The conditions (run, R) and (run , R) induce the same classes of languages.

We will see later that Proposition 7 has no equivalence for condition based on fin. In general, the inclusion of classes induced by fin in the respective class induced by fin is strict.

From now on, without loss of generality, we assume that Σ is an alphabet containing {0, 1} and we denote the set Σ {1} by Σ 0 and the set Σ {0} by Σ 1 .
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The acceptance conditions (fin, ) and (fin , )

The acceptance condition (fin, ) has already been studied in [START_REF] Litovsky | Finite acceptance of innite words[END_REF]. In this paper, we prove that the condition (fin , ) denes new classes for deterministic or complete automata. Proposition 8. The class FA(fin , ) is included in the class FA(fin, ).

Proposition 9. The language L Σ,1 0,2 is in CDFA(fin , ) but not in CFA(fin, ) or in DFA(fin, ).

Proof. Remark that L Σ,1

0,2 = L (fin , ) A
for the CDFA A = (Σ, {q 0 , q 1 } , T, q 0 , q 1 ) where (p, a, q) ∈ T if and only if a = 1 and p = q or a = 1 and p = q.

For the sake of argument, assume that L Σ,1

0,2 = L (fin, ) A
for a CFA A. The word x = 0 ω is in L Σ,1 0,2 so there exists an accepting path p = (p i , x i ) i∈N in A under (fin, ). Let k > 0 such that p k ∈ F is visited nitely often in p. Let y = 0 k 10 ω , y is not in L, then all paths starting from p k and labeled by 10 ω visit p k innitely often. Therefore, there exists a loop on p k labeled by 10 k for some k ∈ N. Inserting this loop one time in the rst path, we nd an accepting path labeled by y, this is a contradiction.

For the sake of argument, assume that L Σ,1

0,2 = L (fin, ) A
for a DFA A. Without loss of generality, we can assume that A is accessible. As for all u ∈ Σ * , u0 ω or u10 ω is in L Σ,1 0,2 , there exists a nite initial path labeled by u and A is complete. We have just shown that this is not possible. Theorem 10. The following relations hold for the classes induced by (fin , ):

1. CDFA(fin, ) CDFA(fin , ), DFA(fin, ) DFA(fin , ), CFA(fin, ) CFA(fin , ), 2. FA(fin, ) = FA(fin , ), 3. CDFA(fin , ) CFA(fin , ) FA(fin , ), 4. CDFA(fin , ) DFA(fin , ) FA(fin , ).

There are no other relations for the classes induced by (fin , ) except those obtained by transitivity with previously known classes.

Proof. The rst point follows from Corollary 5 and Proposition 9. The equality FA(fin, ) = FA(fin , ) holds from Corollary 5 and Proposition 8. The incomparability of DFA(fin , ) with CFA(fin , ) and the fact there is no other inclusions come from results of [START_REF] Litovsky | Finite acceptance of innite words[END_REF]. Indeed, at the one hand, F R ⊆ DFA(fin, ) but F R ⊆ CFA(fin , ). And, at the other hand, the language Σ * 10Σ ω +Σ * 0 ω is in (CDFA(ninf, ) ∩ CFA(fin, )) DFA(fin , ). Finally, the language

Σ * 0 ω is in CDFA(fin, ) ∩ (F R σ G R δ ). 6 
The acceptance conditions (fin, ⊆) and (fin , ⊆)

In [3], it is proved that an automaton using the acceptance condition (fin, ⊆) and (fin, =) can be completed without changing the recognized language. It follows that the completeness does not matter for classes induced by those conditions. The same holds for (fin , ⊆) and (fin , =).

Proposition 11. The class F is included in CDFA(fin, ⊆) and the class F σ ∩G δ is included in CDFA(fin, =).

Proposition 12 ([2]

). The class CDFA(fin , ⊆) is included in G δ .

Proposition 13. The language (Σ * 1) ω is in CDFA(fin, ⊆) F R σ . Lemma 14. Let L be a language in FA(fin, ⊆) (resp. in FA(fin , ⊆)) such that there exists a, b ∈ Σ, u ∈ Σ * and for all k ∈ N, ba k ua ω ∈ L (resp. a k ua ω ∈ L). Then ba ω (resp. a ω ) is in L.

Proof. Let

A = (Σ, Q, T, I, F) such that L = L (fin,⊆) A (resp. L = L (fin ,⊆) A ). Let n = |Q|, as x = ba n ua ω (resp. x = a n ua ω ) is in L, there exists an accepting path p = (p i , x i ) i∈N in A. There exists k, k such that 1 ≤ k < k ≤ n + 1 (resp. 0 ≤ k < k ≤ n) and p k = p k . Choose k minimal. We dene a path p = (p i , y i ) i∈N in A where y = ba ω (resp. y = a ω ), for all i ∈ [0, k], p i = p i and for all i ∈ N, p k+i = p k+(i (mod k -k)) . If p is accepting, we can conclude. If not, then, by minimality of k, fin(p ) = {p i : i ∈ [1, k -1]} (resp. fin (p ) = {p i : i ∈ [0, k -1]}) is not included in any F ∈ F.
But as p is accepting, there exists F ∈ F such that fin(p) ⊆ F (resp. fin (p) ⊆ F ). That means there exists q ∈ fin(p ) (resp. q ∈ fin (p )) such that q ∈ inf(p).

Let k 0 ∈ [1, k -1] (resp. k 0 ∈ [0, k -1]
) be minimal such that p k0 ∈ inf(p). Then by denition of inf(p), we can nd an index k 0 such that p k 0 = p k0 , k 0 ≥ |u| + n + 1 and for all i ≥ k 0 , p i ∈ inf(p). We dene a path p = (p i , y i ) i∈N in A where for all i ∈ [0, k 0 ], p i = p i and for all i ∈ N, p k0+i = p k 0 +i . By minimality of k 0 and by denition of k 0 , fin(p

) = {p i : i ∈ [1, k 0 -1]} ⊆ fin(p) ⊆ F (resp. fin (p ) = {p i : i ∈ [0, k 0 -1]} ⊆ fin (p) ⊆ F
) and p is an accepting path labeled by y.

Proposition 15. The language Σ * 1Σ ω is in CDFA(ninf, )∩G R FA(fin , ⊆).

Proposition 16. The language LΣ,1 0,2 is in CDFA(fin , ⊆) FA(fin, ⊆).

Proposition 17. The language L = Σ 0 ( LΣ,1

0,2 + LΣ,1 0,3 ) is in FA(fin, ⊆) but not in CDFA(fin , ⊆).
Proof. We have L = L (fin,⊆) A for the FA A = (Σ, {q 0 , q 1 , q 2 , q 3 , q 4 , q 5 } , T, q 0 , {{q 2 } , {q 4 , q 5 }}) where T is depicted on Figure 1. For the sake of argument, assume that L = L (fin ,⊆)

A for a CDFA A = (Σ, Q, T, q 0 , F). Let δ : Q → Q be the transition function of A.
We rst show that if u and v are two words such that u is a prex of v starting by a 0 and δ(q 0 , u) = δ(q 0 , v) then |u| 1 = |v| 1 (mod 6). Let us denote k = |u| 1 (mod 6) and k = |v| 1 (mod 6). If x is an ω-word, then the set of states visited nitely often by the path labeled by ux is included in the set of states visited nitely often by the path labeled by vx. Then, whenever ux is rejected for some x, vx is rejected. We take x = 1 (5-k) 0 ω (resp. x = 1 (7-k) 0 ω ), as ux is not in the language, it is rejected and vx is also rejected. We deduce that |vx| 1 = k + 5 -k (resp. |vx| 1 = k + 7 -k) is congruent to 1 or 5 modulo 6. This implies that k = k . Let n = |Q| and x = 010 n 10 ω . As x is in L, there exists F ∈ F such that fin (p) ⊆ F where p is the path labeled by x.

Let S = {q 0 } ∪ δ(q 0 , x [0,k] ) : k ∈ [0, n + 1]
, according to the above lemma, S ⊆ fin (p). Moreover, we can nd two integers i < j such that δ(q 0 , 010 i ) = δ(q 0 , 010 j ), then the path p labeled by y = 010 ω is such that run (p ) = S. Finally, fin (p ) ⊆ run (p ) = S ⊆ fin (p) ⊆ F and y is recognized by A but y ∈ L. We get a contradiction.

q0 q1 q2 q3 q4 q5 Σ0 Σ0 Σ0 1 Σ0 1 Σ0 1 Σ0 1 Σ0 1 Fig. 1. A FA recognizing Σ0( LΣ,1 0,2 + LΣ,1 0,3 ) under the condition (fin, ⊆).
Proposition 18. The language

L = Σ(11Σ * + 0) ω is in FA(fin, ⊆) G δ .
Proof. We have L = L (fin,⊆)

A for the FA A = (Σ, {q 0 , q 1 , q 2 , q 3 } , T, q 0 , q 1 ) where T is depicted on Figure 2. It is straightforward to prove that L is not in G δ .

q0 q1 q2 q3 Σ 0 1 1 1 Σ Σ Fig. 2. A FA recognizing Σ(11Σ * + 0) ω under the condition (fin, ⊆).
Theorem 19. The classes induced by (fin, ⊆) and (fin , ⊆) satisfy the following relations:

1. F CDFA(fin, ⊆) CDFA(fin , ⊆) G δ , 2. CDFA(fin, ⊆) FA(fin, ⊆) and CDFA(fin , ⊆) FA(fin , ⊆), 3. FA(fin, ⊆) FA(fin , ⊆).
There is no other relation for the classes induced by (fin, ⊆) and (fin , ⊆) except those obtained by transitivity with previously known classes.

Proof. The inclusions of the rst point comes from the Proposition 11, Corollary 5 and Proposition 12, respectively. By Propositions 13, 16 and 15, respectively, the inclusions are strict. The inclusions of the second point are clear and by Proposition 17 it is strict. The inclusions of the third point are a consequence of the Corollary 5 and by Proposition 16 they are strict.

The incomparability with the other known classes comes from Proposition 15 which proves that G and CDFA(ninf, ) are not subclasses of FA(fin , ⊆) and from Propositions 13 and 18 which prove that CDFA(fin, ⊆) is not a subclass of F σ and FA(fin, ⊆) is not a subclass of G δ , respectively. The acceptance condition (fin, =) and (fin , =)

In the previous section we have proved that the class CFA(fin, ⊆) is pretty high in the hierarchy. However, it is incomparable with F R σ ∩G R δ and it does contain any open language. In this section, we are going to show two more classes which have nicer properties.

Lemma 20. Let a, b ∈ Σ be two distinct letters and L a language such that

L ∩ {a, b} * b ω = L {a,b},a 0,2 . If L = L (fin,=) A or L = L (fin ,=)
A for a CDFA A then A has a loop on its initial state labeled by b k for some k > 0.

Proof. Let A = (Σ, Q, T, q 0 , F) be a DFA such that L = L (fin,=)

A or L = L (fin ,=) A
. For the sake of argument, assume that q 0 does not belong to a loop labeled by b's. Let δ be the transition function of A. For all word x, denote by p x the path in A labeled by the word x.

Dene a sequence of integers (k i ) i∈N such that, denoting the nite word b k0 ab k1 a . . . ab ki by u i , for all i ∈ N, δ(q 0 , u i ) does not belong to a loop labeled by b's but δ(q 0 , u i 0) does. As q 0 is not on a loop labeled by b's, we dene k 0 as max j ∈ N : ∀j > j, δ(q 0 , b j ) = δ(q 0 , b j ) . Assume that k i is dened for some i ∈ N. Then, the state δ(q 0 , u i a) does not belong to a loop labeled by b's. Indeed, otherwise the words x = u i b ω and y = u i ab ω verify fin A (p x ) = fin A (p y ) and fin A (p x ) = fin A (p y ) (in both cases, the states which appear in those sets are states reached by reading u i in A counting or not the rst state). This is not possible because only one of this words is accepted by A. We dene k i+1 as max j ∈ N : ∀j > j, δ(q 0 , u i 10 j ) = δ(q 0 , u i 10 j ) .

Since Q is nite, there exists i < j such that δ(q 0 , u i ) = δ(q 0 , u j ). The words x = u j b ω and y = u j ab ω verify fin A (p x ) = fin A (p y ) and fin A (p x ) = fin A (p y ) (see Figure 3) but as above only one of these words is accepted by A. We get a contradiction.

Proposition 21. The language L Σ,1 0,2 is in CDFA(fin , =) CDFA(fin, =).

Proof. We have L Σ,1 0,2 = L (fin ,=) A for the CDFA A = (Σ, {q 0 , q 1 , q 2 } , T, q 0 , {∅, {q 0 , q 1 }}) where (p, a, q) ∈ T if and only if a = 1 and p = q or a = 1

b k 0 ab k 1 b ab k 2 b ab k 3 b ab k j-1 b b k 0 b k 1 b k 2 b k j-1
ab k j Fig. 3. A gure illustrating the construction in Lemma 20 with i = 1.

and (p, q) ∈ {(q 0 , q 1 ), (q 1 , q 2 ), (q 2 , q 1 )}. If L Σ,1 0,2 would be recognized by a CDFA B under condition (fin, =), B could be assumed normalized by Lemma 4. But as

L Σ,1 0,2 ∩ {0, 1} * 0 ω = L {0,1},1 0,2
, by Lemma 20, this automaton should have a loop on its initial state. This is not possible and L Σ,1 0,2 is not in CDFA(fin, =). Proposition 22. The language L = L Σ,0 0,2 + L Σ,1 0,2 is not in CDFA(fin , =).

Proof. For the sake of argument, assume that L = L (fin ,=) A for a CDFA A = (Σ, Q, T, q 0 , F ). As L ∩ {0, 1} * 0 ω = L Σ,1 0,2 , by Lemma 20, there exists k such that there exists a loop on q 0 labeled by 0 k . Symmetrically, there exists k such that there exists a loop on q 0 labeled by 1 k . As 0 ω ∈ L, ∅ ∈ F. The path p labeled by x = (0 k 1 k ) ω veries fin (p) = ∅ ∈ F. Then x is recognized but x is not in L. We have a contradiction. Remark 23. Using similar methods as in the proof of Lemma 20 and Proposition 22, we can prove that the language Σ(L Σ,0

1,2 +L Σ,1 1,2 ) is not in CDFA(fin , =). Since CDFA(fin , =) is clearly closed under complementation, Σ( LΣ,0 0,2 ∩ LΣ,1 0,2 )
is not in CDFA(fin , =).

Proposition 24. The language L = L Σ,0

1,2 + L Σ,1
1,2 is in CFA(fin, ) but not in CDFA(fin , =).

Proof. By Proposition 9 and using the non-determinism, it is clear that L is in CFA(fin, ). By Remark 23, L ∈ CDFA(fin , =).

Proposition 25. The language L = Σ( LΣ,0 0,2 ∩ LΣ,1 0,2 ) is in FA(fin, ⊆) but not in CDFA(fin , =).

Proof. We have L = L (fin,⊆) A for the CFA A = (Σ, {q 0 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 } , T, q 0 , {q 2 , q 3 , q 4 , q 6 }) where T is depicted in Figure 4 (here Σ means Σ {0, 1}). This automaton is split in two disjoint parts. A path which visits the state q 5 is successful if and only if q 5 (and then q 7 ) is visited an innite number of times, if and only if its label contains an innite number of occurrences of the pattern 01, if and only if its label contains in innite number of a's and b's.

A path visiting q 1 is successful if and only if q 1 is visited an innite number of times. Let p be a successful path visiting q 1 , let ax be its label where a ∈ Σ and

x ∈ Σ ω . If |x| 0 (resp. |x| 1 ) is nite, the set inf A (p) is included in {q 1 , q 2 } or in {q 3 , q 4 } (resp., in {q 1 , q 3 } or in {q 2 , q 4 }). Since p is successful, q 1 is in inf A (p), therefore inf A (p) is included in {q 1 , q 2 } (resp., in {q 1 , q 3 }) and |x| 0 (resp., |x| 1 ) is even. The converse is clear. By Remark 23, L ∈ CDFA(fin , =). This paper is a step further in the study of the hierarchy of ω-languages induced by accepting conditions found in the literature. Figure 5 illustrates the hierarchy and highlights the contribution of this paper. This research can be continued along several directions. First of all, some inclusions of classes induced by (ninf, ) into CDFA(fin , =) are still open.

Secondly, in [START_REF] Cervelle | Acceptance conditions for ω-languages and the Borel hierarchy[END_REF], the authors proved that a slight generalization of classical Büchi result: all second order denable accepting conditions induce ω-rational languages. It would be very interesting to study what is the impact of weaker fragments of logic over the classication provided here.

Another promising research direction considers the closure properties of the newly found classes of ω-languages.

Finally, the decidability of the new classes is certainly a promising research direction.
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1 Fig. 4 .

 14 Fig.4. A FA recognizing Σ( LΣ,0 0,2 ∩ LΣ,1 0,2 ) under the condition (fin, ⊆).
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