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Abstract

This paper investigates a variant of cellular automata, namely ν-CA. Indeed,
ν-CA are cellular automata which can have di�erent local rules at each site of
their lattice. The assignment of local rules to sites of the lattice completely
characterizes ν-CA. In this paper, sets of assignments sharing some interesting
properties are associated with languages of bi-in�nite words. The complexity
classes of these languages are investigated providing an initial rough classi�ca-
tion of ν-CA.

Keywords: non-uniform cellular automata, bi-in�nite words, ζ-rational
languages

1. Introduction

Cellular automata (CA) are discrete dynamical systems consisting in an
in�nite number of �nite automata arranged on a regular lattice. All automata
of the lattice are identical and work synchronously. The new state of each
automaton is computed by a local rule on the basis of the current state and
the one of a �xed set of neighboring automata. This simple de�nition contrasts
the huge number of di�erent dynamical behaviors that made the model widely
used in many scienti�c disciplines for simulating phenomena characterized by
the emergency of complex behaviors from simple local interactions (chemical
reactions, disease di�usion, particle reaction-di�usion, pseudo-random number
generation, cryptography, etc.). For recent results on CA dynamics and an
up-to-date bibliography see for instance [18, 12, 10, 1, 6, 9, 8].

In many cases, the uniformity of the local rule is more a constraint than a
helping feature. Indeed, the uniformity constraint has been relaxed, for example,
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for modeling cell colonies growth, fast pseudo-random number generation, and
VLSI circuit design and testing. This gave rise to new models, called non-
uniform cellular automata (ν-CA) or hybrid cellular automata (HCA), in which
the local rule of the �nite automaton at a given site depends on its position.
If the study of dynamical behavior has just started up [5, 7], applications and
analysis of structural properties have already produced a wide literature (see,
for instance, [13, 14]).

In this paper, we adopt a formal languages complexity point of view. Con-
sider a �nite set R of local rules de�ned over the same �nite state set A. A
(one-dimensional) ν-CA is essentially de�ned by the distribution or assignment
of local rules in R to sites of the lattice. Whenever R contains a single rule,
the standard cellular automata model is obtained. Therefore, each ν-CA can be
associated with a unique bi-in�nite word over R. Consider now the class C of
ν-CA de�ned over R and sharing a certain property P (for example surjectivity,
injectivity, etc.). Clearly, C can be identi�ed as a set of bi-in�nite words con-
tained in ωRω. In this paper, we analyze the language complexity of C w.r.t.
several well-known properties, namely number-conservation, surjectivity, injec-
tivity, sensitivity to initial conditions and equicontinuity. We have proved that
C is a subshift of �nite type and so�c, respectively, for the �rst two properties,
while it is ζ-rational for the last three properties in the list. Remark that for
sensitivity to initial conditions and equicontinuity, the results are proved when
R contains only linear local rules (i.e. local rules satisfying a certain additivity
property) with radius 1. The general case seems very complicated and it is still
open.

In order to prove the main theorems, some auxiliary results, notions and
constructions have been introduced (variants of De Bruijn graphs and their
products, etc.). We believe that they can be interesting in their own to prove
further properties.

2. Notations and de�nitions

For all i, j ∈ Z with i ≤ j (resp., i < j), let [i, j] = {i, i+ 1, . . . , j} (resp.,
[i, j) = {i, . . . , j − 1}).

Con�gurations and non uniform automata. Let A be a �nite alpha-
bet. A con�guration or bi-in�nite word is a function from Z to A. For any
con�guration x and any integer i, xi denotes the element of x at index i. The
con�guration set AZ is usually equipped with the metric d de�ned as follows

∀x, y ∈ AZ, d(x, y) = 2−n, where n = min {i ≥ 0 : xi 6= yi or x−i 6= y−i} .

For any pair i, j ∈ Z, with i ≤ j, and any con�guration x ∈ AZ we denote
by x[i,j] the word w = xi . . . xj ∈ Aj−i+1, i.e., the portion of x inside [i, j], and
we say that the word w occurs in x. Similarly, u[i,j] = ui . . . uj is the portion

of a word u ∈ Al inside [i, j] (here, i, j ∈ [0, l)). In both the previous notations,
[i, j] can be replaced by [i, j) with the obvious meaning. For any word u ∈ A∗,
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|u| denotes its length. A cylinder of block u ∈ Ak and position i ∈ Z is the set
[u]i = {x ∈ AZ : x[i,i+k) = u}. Cylinders are clopen sets w.r.t. the metric d and
they form a basis for the topology induced by d. For 0 ∈ A, a con�guration x
is said to be �nite if the number of positions i at which xi 6= 0 is �nite.

A local rule of radius r ∈ N on the alphabet A is a map from A2r+1 to
A. Local rules are crucial in both the de�nitions of cellular automata and non-
uniform cellular automata. A function F : AZ → AZ is a cellular automaton
(CA) if there exist r ∈ N and a local rule f of radius r such that

∀x ∈ AZ,∀i ∈ Z, F (x)i = f(x[i−r,i+r]) .

The shift map σ : AZ → AZ de�ned as σ(x)i = xi+1,∀x ∈ AZ,∀i ∈ Z is one
among the simplest examples of CA.

Let R be a set of local rules on A. A distribution on R is an application θ
from Z toR, i.e., a bi-in�nite word onR. Denote by Θ the set of all distributions
on R. A non-uniform cellular automaton (ν-CA) is a triple (A, θ, (ri)i∈N) where
A is an alphabet, θ a distribution on the set of all possible local rules on A and
ri is the radius of θi. A ν-CA de�nes a global transition function Hθ : AZ → AZ

by
∀x ∈ AZ,∀i ∈ Z, Hθ(x)i = θi(x[i−ri,i+ri]) .

In the sequel, when no misunderstanding is possible, we will identify a ν-CA
with its global transition function. From [5], recall that a function H : AZ → AZ

is the global transition function of a ν-CA if and only if it is continuous. For
all integer k and H : AZ → AZ, let Hk denote the composition of H with
itself k times, i.e. for all con�guration x ∈ AZ, H0(x) = x and for k > 0,
Hk(x) = H(Hk−1(x)). In this paper, we will consider distributions on a �nite
set of local rules. In that case, one can assume without loss of generality that
there exists an integer r such that all the rules in R have the same radius r. All
ν-CA constructed on such �nite sets of local rules are called rν-CA (of radius
r).

A �nite distribution is a word ψ ∈ Rn, i.e., a sequence of n rules of R. Each
�nite distribution ψ de�nes a function hψ : An+2r → An by

∀u ∈ An+2r,∀i ∈ [0, n), hψ(u)i = ψi(u[i,i+2r]) .

These functions are called partial transition functions since they express the
behavior of a ν-CA on a �nite set of sites: if θ is a distribution and i ≤ j are
integers, then

∀x ∈ AZ, Hθ(x)[i,j] = hθ[i,j](x[i−r,j+r]) .

Languages. Recall that a language is any set L ⊆ A∗ and a �nite state
automaton is a tuple A = (Q,A, T, I, F ), where Q is a �nite set of states, A is
the alphabet, T ⊆ Q × A × Q is the set of transitions, and I, F ⊆ Q are the
sets of initial and �nal states, respectively. A path p in A is a �nite sequence

q0
a0−→ q1

a1−→ q2 . . . qn−1
an−1−−−→ qn visiting the states q0, . . . , qn and with label

a1 . . . an−1 such that (qi, ai, qi+1) ∈ T for each i ∈ [0, n). A path is successful
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if q0 ∈ I and qn ∈ F . The language L(A) recognized by A is the set of labels
of all successful paths in A. A language L is rational if there exists a �nite
automaton A such that L = L(A).

A bi-in�nite language is any subset of AZ. Let A = (Q,A, T, I, F ) be a

�nite automaton. A bi-in�nite path p in A is a bi-in�nite sequence . . .
a−2−−→

q−1
a−1−−→ q0

a0−→ q1
a1−→ q2

a2−→ . . . such that (qi, ai, qi+1) ∈ T for each i ∈ Z.
The bi-in�nite word . . . a−1a0a1 . . . is the label of the bi-in�nite path p. A bi-
in�nite path is successful if the sets {i ∈ N : q−i ∈ I} and {i ∈ N : qi ∈ F}
are in�nite. This condition is known as the Büchi acceptance condition. The
bi-in�nite language Lζ(A) recognized by A is the set of labels of all successful
bi-in�nite paths in A. A bi-in�nite language L is ζ�rational if there exists a
�nite automaton A such that L = Lζ(A).

A bi-in�nite language X is a subshift if X is (topologically) closed and σ�
invariant, i.e., σ(X) = X. Let F ⊆ A∗ and XF be the bi-in�nite language of
all bi-in�nite words x such that no word u ∈ F occurs in x. It is known that
a bi-in�nite language X is a subshift i� X = XF for some F ⊆ A∗ [20]. The
set F is a set of forbidden words for X. A subshift X is said to be a subshift of
�nite type (resp. so�c) i� X = XF for some �nite (resp. rational) F .

For a more in deep introduction to the theory of formal languages, the reader
can refer to [16] for rational languages, [3, 20] for subshifts and [22] for ζ-rational
languages.

Properties of non-uniform CA. A ν-CA is sujective (resp., injective) i�
its global transition function H is surjective (resp., injective). A ν-CA H is
equicontinuous if for all ε > 0, there exists δ > 0 such that for all x, y ∈ AZ,
d(x, y) < δ implies that ∀n ∈ N, d(Hn(x), Hn(y)) < ε. A ν�CA H is sensitive
to the initial conditions (or simply sensitive) if there exists a constant ε > 0
such that for all element x ∈ AZ, for all δ > 0 there is a point y ∈ AZ such that
d(x, y) < δ and d(Hn(x), Hn(y)) > ε for some n ∈ N.

3. Number conservation

In physics, a lot of transformations are conservative: a certain quantity re-
mains invariant along time (conservation laws of mass and energy for example).
Both CA and ν-CA are used to represent phenomena from physics and it is
therefore interesting to decide when they represent a conservative transforma-
tion. The case of uniform CA has been treated in a number of papers, see for
instance [4, 11]. Here, we generalize those results to ν-CA. Indeed, we prove
that the language of the set of distributions representing number conserving
rν-CA is a subshift of �nite type (SFT).

In this section, without loss of generality, A is {0, 1, . . . , s − 1}. Denote by
0 the con�guration in which every element is 0. For all con�guration x ∈ AZ,
de�ne the partial charge of x between the index −n and n as µn(x) =

∑n
i=−n xi

and the global charge of x as µ(x) = limn→∞ µn(x). Clearly µ(x) = ∞, if x is
not a �nite con�guration.
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De�nition 1 (FNC). A ν-CA H is number-conserving on �nite con�gura-
tions (FNC) if for all �nite con�guration x, µ(x) = µ(H(x)).

Remark that if H is FNC then H(0) = 0 and, for all �nite con�guration x, H(x)
is a �nite con�guration.

De�nition 2 (NC). A ν-CA H is said to be number-conserving (NC) if both
the following conditions hold

(1) H(0) = 0

(2) ∀x ∈ AZ r {0}, limn→∞
µn(H(x))
µn(x)

= 1.

Remark 1. Condition (1) in De�nition 2 is implied by (2) for all rν-CA while
it is not redundant in the more general case of ν-CA.

Indeed, for a rν-CA H of radius r, assume that (2) holds but H(0) 6= 0
and let k ∈ Z be such that H(0)k 6= 0. For all integer i, denote by δi ∈ AZ the
con�guration de�ned as ∀j ∈ Z, (δi)j = δi,j, where δi,j is the Kronecker function
( i.e., δi,j = 1 if i = j, 0, otherwise). Clearly, H(δk−r−1)k = H(δk+r+1)k =
H(0)k 6= 0, and, by condition (2), 1 = µ(H(δj)) ≥ H(0)k > 0 for both j =
k − r − 1 and j = k + r + 1. Hence, it holds that H(δk−r−1) = H(δk+r+1) = δk
and for the con�guration x = δk−r−1 + δk+r+1 we get H(x) = δk and so 2 =
µ(x) 6= µ(H(x)) = 1, which contradicts (2). Therefore, (2)⇒ (1).

Consider now the ν-CA H de�ned on A = {0, 1} as ∀x ∈ AZ,∀i ∈ Z,

H(x)i =

{
1 if (i = 0) ∨ (i > 0 ∧ x[−i+1,i] = 12i−10) ∨ (i < 0 ∧ x[i,−i] = 01−2i)

xi otherwise

For the ν-CA H, condition (2) holds but H(0) 6= 0. Therefore, condition (1)
is not redundant for ν-CA.

Proposition 1. Let H be a rν-CA of radius r. Then, H is NC if and only if
it is FNC.

Proof. Assume thatH is NC. SinceH(0) = 0, the images of �nite con�gurations

are �nite con�gurations. Then, for all �nite con�guration x 6= 0, µ(H(x))
µ(x) =

limn→∞
µn(H(x))
µn(x)

= 1. Therefore, µ(x) = µ(H(x)) and H is FNC.

Conversely, suppose that H is not NC. By Remark 1, we can assume that
condition (2) does not hold. So, there exists a con�guration x ∈ AZ r {0} such
that either M = lim supn→∞

µn(H(x))
µn(x)

> 1 or m = lim infn→∞
µn(H(x))
µn(x)

< 1. If

x is a �nite con�guration then µ(x) 6= µ(H(x)) and, hence, H is not FNC. We
now deal with the case in which x is not �nite. Assume that M > 1 (the proof
for m < 1 is similar).

M = lim supn→∞
µn(H(x))
µn(x)

then there exists an increasing sequence (ni)i∈N ∈

NN such that limi→∞
µni (H(x))

µni (x)
= M and, as limi→∞ µni(x) = ∞, there exists

some j ∈ N such that µnj (H(x)) > µnj (x) + 2r(s − 1). Let n = nj and y be
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the �nite con�guration such that y[−n,n] = x[−n,n] and ∀i /∈ [−n, n], yi = 0. We
have

µ(H(y)) = µn+r(H(y)) ≥ µn−r(H(y)) = µn−r(H(x)) ≥ µn(H(x))− 2r(s− 1)

> µn(x) = µ(y).

Hence, H is not FNC. �

Remark 2. The Proposition 1 does not hold in the general case. For ex-
ample the ν-CA H on A = {0, 1} de�ned by ∀x ∈ AZ,∀i ∈ Z, H(x)2i =
xi and H(x)2i+1 = 0 is FNC but not NC. For the con�guration x such that

∀i ∈ Z, xi = 1 we have limn→∞
µn(H(x))
µn(x)

= 1
2 .

Theorem 2. Given a �nite set of local rules R, let L = {θ ∈ Θ : Hθ is NC}.
Then, L is a subshift of �nite type.

Proof. We are going to prove that L = XF where

F =

{
ψ ∈ R2r+1

: ∃u ∈ A2r+1
, ψ2r(u) 6= u0 +

2r−1∑
i=0

ψi+1(0
2r−i

u[1,i+1])− ψi(0
2r−i

u[0,i])

}
.

Assume that θ ∈ L and let j ∈ Z. For all u ∈ A2r+1, let x, y be two �nite
con�gurations such that x[j−r,j+r] = u and y[j−r,j+r] = 0u[1,2r]. Since Hθ is
NC, by Proposition 1, µ(H(x)) = µ(x) and µ(H(y)) = µ(y), and hence

2r∑
i=0

θj+i−2r(0
2r−iu[0,i]) +

2r∑
i=1

θj+i(u[i,2r]0
i) =

2r∑
i=0

ui , (1)

2r∑
i=1

θj+i−2r(0
2r−i+1u[1,i]) +

2r∑
i=1

θj+i(u[i,2r]0
i) =

2r∑
i=1

ui . (2)

Subtracting (2) to (1), we obtain

θj(u) = u0 +
2r∑
i=1

θj+i−2r(0
2r−i+1u[1,i])−

2r−1∑
i=0

θj+i−2r(0
2r−iu[0,i])

which can be rewritten as

θj(u) = u0 +

2r−1∑
i=0

θj+i+1−2r(0
2r−iu[1,i+1])− θj+i−2r(02r−iu[0,i]) .

Thus, for all j ∈ Z, θ[j−2r,j] /∈ F , meaning that θ ∈ XF . So, L ⊆ XF
Suppose now that θ ∈ XF , i.e., for all integer j, θ[j−2r,j] /∈ F . Taking

u = 02r+1, for all j we have

θj+2r(0
2r+1) = 0 +

2r−1∑
i=0

θj+i+1(02r+1)− θj+i(02r+1)

6



which leads to θj(0
2r+1) = 0. For all �nite con�guration x, it holds that

µ(Hθ(x)) =
∑
j∈Z

Hθ(x)j =
∑
j∈Z

θj(x[j−r,j+r])

=
∑
j∈Z

(
xj +

2r−1∑
i=0

θj+i+1−2r(0
2r−ix[j−r+1,j−r+i+1])−

− θj+i−2r(02r−ix[j−r,j−r+i])

)

=
∑
j∈Z

xj +

2r−1∑
i=0

∑
j∈Z

θj+i+1−2r(0
2r−ix[j−r+1,j−r+i+1])−

−
∑
j∈Z

θj+i−2r(0
2r−ix[j−r,j−r+i])


Since∑

j∈Z
θj+i+1−2r(0

2r−ix[j−r+1,j−r+i+1]) =
∑
j∈Z

θj+i−2r(0
2r−ix[j−r,j−r+i]) ,

we obtain
µ(Hθ(x)) =

∑
j∈Z

Hθ(x)j =
∑
j∈Z

xj = µ(x).

Thus, Hθ is FNC and, by Proposition 1, NC. Hence, θ ∈ L. So, XF ⊆ L. �

The following example shows that number conservation property can some-
times be the result of some kind of �cooperation� between rules that when con-
sidered as local rules of a CA might not be number-conserving.

Example 1. Let R = {f, g, h} where f, g, h are the rules of radius 1 on the
alphabet A = {0, 1} de�ned as follows: ∀x, y, z ∈ A

f(x, y, z) =

{
1 if y = 1 and z = 1
0 otherwise

g(x, y, z) =

{
1 if x = 1 and y = 0, or y = 1 and z = 0
0 otherwise

h(x, y, z) =

{
0 if x = 0 and y = 0
1 otherwise .

Note that f, g, h are the so-called elementary rules 136, 184 and 252, respectively.
If we are interested in the language L of distributions θ on R such that Hθ is
number-conserving, according to the proof of Theorem 2, L is the subshift of
�nite type XF where the set of forbidden words is

F = {fff, fgf, fhg, fhh, gff, ggf, ghg, ghh, hff, hgf, hhg, hhh} ,
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Remark that XF = X{ff,gf,hh,hg}. Moreover, since ff and hh are forbidden
patterns, the rules f and h de�ne CA which are not number-conserving but
there exist suitable distributions θ ∈ Θ giving number-conserving ν-CA, namely,
all those which do not contain patterns from {ff, gf, hh, hg}.

4. Surjectivity and injectivity

In standard CA setting, injectivity is a fundamental property which is equiva-
lent to reversibility [15]. It is well-known that it is decidable for one-dimensional
CA and undecidable in higher dimensions [2, 17]. Surjectivity is also a dimension
sensitive property (i.e. decidable in dimension one and undecidable for higher
dimensions) and it is a necessary condition for many types of chaotic behaviors.

In this paper, we prove that the language associated with distributions in-
ducing surjective (resp. injective) ν-CA is so�c (resp. ζ-rational). Remark that
constructions for surjectivity and injectivity are sensibly di�erent, contrary to
what happens for the classical CA when dealing with the decidability of those
properties.

Before proceeding to the main results of the section we need some technical
lemma and new constructions. We believe that these constructions, inspired
by [23], might be of interest in their own and could be of help for proving new
results.

Lemma 3. For any �xed θ ∈ Θ, the ν�CA Hθ is surjective if and only if hθ[i,j]
is surjective for all integers i, j with i ≤ j.

Proof. Fix θ ∈ Θ and assume now that Hθ is surjective. Let i, j be two integers
such that i ≤ j and a word w ∈ Aj−i+1. Let x be any con�guration such
that x[i,j] = w. By hypothesis, there exists y such that Hθ(y) = x. Then,
hθ[i,j](y[i−r,j+r]) = w and, hence, hθ[i,j] is surjective.

As to the converse, suppose that hθ[i,j] is surjective for all integers i, j with

i ≤ j. Let x ∈ AZ and, for all n ∈ N, de�ne Yn = {y ∈ AZ : Hθ(y)[−n,n] =
x[−n,n]}. Every Yn is non-empty by hypothesis and compact as the pre-image
of a cylinder by a continuous function. Moreover, Yn+1 ⊆ Yn. Thus, Y =⋂
n∈N Yn 6= ∅ and H(Y ) = {x}. Therefore, Hθ is surjective. �

De�nition 3. Let R be a �nite set of rules of radius r. The De Bruijn graph
of R is the labeled multi-edge graph G = (V,E), where V = A2r and edges in
E are all the pairs (aw,wb) with label (f, f(awb)), obtained varying a, b ∈ A,
w ∈ A2r−1, and f ∈ R.

Example 2. Let A = {0, 1} and consider the set R = {⊕, id} where ⊕ and id
are the rules of radius 1 de�ned as ∀x, y, z ∈ A, ⊕(x, y, z) = (x+ z) mod 2, and
id(x, y, z) = y. The De Bruijn graph of R is the graph G in Figure 1.

Lemma 4. Let G be the De Bruijn graph of a �nite set of rules R. Consider
G as an automaton where all states are both initial and �nal. Then, L(G) =
{(ψ, u) ∈ (R×A)∗ : h−1ψ (u) 6= ∅}.
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00

01

11

10

(id, 0)(⊕, 1)

(id, 0)(⊕, 0)

(id, 1)(⊕, 1)

(id, 1)(⊕, 0)

(id, 1)(⊕, 1)

(id, 1)(⊕, 0)

(id, 0)(⊕, 1)

(id, 0)(⊕, 0)

Figure 1: De Bruijn graph of R = {⊕, id} (every printed edge represents two edges of the
graph, labels are concatenated).

Proof. Any (ψ, u) ∈ (R×A)n is such that h−1ψ (u) 6= ∅ i� there exists w ∈ An+2r

such that hψ(w) = u. By De�nition 3, this happens i� there is a path in G
visiting the states w[0,2r), . . . , w[n,n+2r) with labels (ψ0, u0), . . . , (ψn−1, un−1),
i.e., i� (ψ, u) ∈ L(G). �

Theorem 5. Given a �nite set of local rules R, let L = {θ ∈ Θ : Hθ is surjective}.
Then, L is a so�c subshift.

Proof. Let F = {ψ ∈ R∗ : hψ is not surjective}. By Lemma 3, L is just the
subshift XF . Consider the De Bruijn graph G of R as an automaton A where
all states are both initial and �nal. By Lemma 4, L(A) = {(ψ, u) ∈ (R× A)∗ :
h−1ψ (u) 6= ∅}. Build now the automaton Ac that recognizes Lc = {(ψ, u) ∈
(R×A)∗ : h−1ψ (u) = ∅}. Remove from Ac all second components of edge labels

and let Ã be the obtained automaton. A word ψ ∈ R∗ is recognized by Ã if and
only if there exists u ∈ A∗ such that (ψ, u) ∈ Lc, i.e., i� hψ is not surjective.

Thus, L(Ã) = F and L = XF is a so�c subshift. �

The proof of the Theorem 5 provides an algorithm to build an automaton
that recognizes the language F of the forbidden words for the so�c subshift L.
It consists of the following steps

1. Build the De Bruijn graph G of R.
2. Consider G as an automaton in which all states are both initial and �nal

and determinize it to obtain the automaton A.

9



⊕

id

id

⊕

⊕

id

id,⊕

Figure 2: The automaton Ã obtained from the set R = {id,⊕}.

3. Complete A if necessary and make all �nal states non-�nal and vice versa
to obtain Ac.

4. Delete all second components of edge labels of Ac to obtain Ã.

Example 3. With the set R from the Example 2 as input, this algorithm gives
the automaton in Figure 2. Thus, we deduce that F = R∗id⊕ (⊕⊕)∗idR∗ and
LP is the well-known even subshift.

De�nition 4. Let R be a �nite set of rules of radius r and G = (V,E) the De
Bruijn graph of R. The product graph P of R is the labeled graph (V × V,W )
where ((u, u′), (v, v′)) ∈ W with label (f, a) ∈ R × A if and only if (u, v) and
(u′, v′) belong to E both with the same label (f, a).

Theorem 6. Given a �nite set of local rules R, let L = {θ ∈ Θ : Hθ is injective}.
Then, L is ζ-rational.

Proof. Let P be the product graph of R. Consider now P as a �nite automaton
where all the states are initial and the �nal states are the pairs (u, u′) with
u 6= u′. Remove from P all second components of edge labels and let P̃ be the
obtained automaton. We said that a bi-in�nite path is successful in P̃ if and
only if it visits an accepting state. It is well known that the set of labels of
successful paths de�nes a ζ-rational language [19, 22].

Any bi-in�nite path in P with label (θi, zi)i∈Z ∈ Θ×AZ corresponds to two
bi-in�nite paths in G in which the visited vertexes de�ne two con�gurations x
and y such that Hθ(x) = Hθ(y) = z. Then, a path p in P̃ labeled by θ de�nes
two con�gurations x and y such that Hθ(x) = Hθ(y). Conversely, a distribution
θ ∈ Θ and two con�gurations x and y such that Hθ(x) = Hθ(y) de�ne an unique
path p in P̃. Moreover p visits an accepting state if and only if x 6= y. Then
the language recognized by P̃ is the set {θ ∈ Θ : ∃x, y ∈ AZ, x 6= y and Hθ(x) =
Hθ(y)} = Lc.

Since the complementary of a ζ-rational language is ζ-rational, L is ζ-
rational. �

Example 4. Let R be the set of rules from the Example 2. The graph P̃ ob-
tained by the product graph P of R is shown in Figure 3. According to the proof
of Theorem 6, P̃ is obtained by removing from P all second components of edge
labels.
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Figure 3: The graph P obtained by the product graph P̃ from the set R = {id,⊕} removing
all the second components of edge labels. (every printed edge represents one or two edges of
the graph, labels are concatenated in the second case)
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5. Equicontinuity and sensitivity for linear rν-CA

Sensitivity to initial conditions is a widely known property indicating a pos-
sible chaotic behavior of a dynamical system and it is often popularized under
the metaphor of the butter�y e�ect. At the opposite, equicontinuity is an el-
ement of stability of a system. In this section, we are going to study these
properties in the context of linear ν-CA.

In order to consider linear ν-CA, the alphabet A is endowed with a sum (+)
and a product (·) operations that make it a commutative ring and we denote
by 0 and 1 the neutral elements of + and ·, respectively. Of course, An and AZ

are also commutative rings where sum and product are de�ned component-wise
and, with some abuse of notation, they will be denoted by the the same symbols.

Remark that in the sequel uv still denote the concatenation of words u and
v and un the concatenation of u with itself n times. The multiplication will
always be denoted by a · or the usual symbol Π.

De�nition 5. A local rule f of radius r is linear if and only if there exists a
word λ ∈ A2r+1 such that ∀u ∈ A2r+1, f(u) =

∑2r
i=0 λi · ui. A ν-CA H is linear

if it is de�ned by a distribution of linear local rules.

Remark 3. The notion of linearity de�ned here matches with the usual notion
of linearity in linear algebra, i.e. a ν-CA H is linear (in our sens) i� for all
con�gurations x and y and for all a ∈ A, H(a · x+ y) = a ·H(x) +H(y). This
is also true for partial transition functions.

Proposition 7. Any linear ν-CA H is either sensitive or equicontinuous.

Proof. For all integers k ∈ N and i ∈ Z, let λi,k be the word expressing the i�th
linear local rule of radius ri,k in a family de�ning the (linear) ν�CAHk. Without
loss of generality, we can assume that either (λi,k)0 6= 0 or (λi,k)2ri,k 6= 0.
Consider the following statement: �for all integer i ∈ Z the sequence (ri,k)k∈N is
bounded (by some integerMi > 0)�. We are going to show that if this statement
is true, resp., false, then H is equicontinuous, resp., sensitive.

Assume that the statement is true. Let n ∈ N and m = n + M where
M = max{Mi : −n ≤ i ≤ n}. Let x and y be two con�gurations such that
x[−m,m] = y[−m,m]. We have that Hk(x)[−n,n] = Hk(y)[−n,n], for all integer
k ∈ N. We have shown that for all ε = 2−n, there exists δ = 2−m such that for
all x, y ∈ AZ, d(y, x) < δ implies that ∀k ∈ N, d(Hk(y), Hk(x)) < ε and, hence,
H is equicontinuous.

If the statement is false, there exists i ∈ Z such that the sequence (ri,k)k∈N
is not bounded. Let x ∈ AZ, m ∈ N and k ∈ N such that ri,k > 2|i| + 1 + m.
De�ne y−, y+ ∈ AZ as follows

∀j ∈ Z, y−j =

{
1 if j = i− ri,k
0 otherwise

and y+j =

{
1 if j = i+ ri,k
0 otherwise

.

Then, x[−m,m] = (x + y−)[−m,m] = (x + y+)[−m,m] and either Hk(x)[−i,i] 6=
Hk(x+y−)[−i,i] (if (λi,k)0 6= 0) or Hk(x)[−i,i] 6= Hk(x+y+)[−i,i] (if (λi,k)2ri,k 6=

12



Fixed Application of hψ Fixed

0r 0n = uψ(v)0 v

0r uψ(v)1 0r

0r uψ(v)2 0r

0r uψ(v)k 0r

Figure 4: The sequence uψ(v).

0). We have shown there exists ε = 2−i such that for all element x ∈ AZ, for all
δ = 2−m there exists y ∈ AZ such that d(x, y) < δ and d(Hk(x), Hk(y)) > ε for
some k ∈ N. Thus, H is sensitive with sensitivity constant 2−i. �

Remark 4. In the non-linear case, there exists ν-CA which are neither sensi-
tive nor equicontinuous [5].

The previous de�nition and proposition allow linear ν-CA de�ned on a pos-
sibly in�nite set of local rules. However, from now on we consider �nite sets R
in which all rules are linear and have radius r.

De�nition 6 (Wall). A right-wall is any element ψ ∈ R∗ of length n ≥ r such
that, for all word v ∈ Ar, the sequence uψ(v) : N→ An recursively de�ned by

uψ(v)0 = 0n

uψ(v)1 = hψ(0ruψ(v)0v)
uψ(v)k+1 = hψ(0ruψ(v)k0r) for k > 1

veri�es ∀k ∈ N, (uψ(v)k)
[0,r−1] = 0r. Left-walls are de�ned similarly.

Roughly speaking, the sequence uψ(v) gives the dynamical evolution of the
function hψ when the leftmost and rightmost inputs are �xed (see Figure 4).
The idea we develop here, in view of Propositon 12, is that a right (resp.,
left) wall completely �lters out the information coming from its right (resp.,
left) while it may allow information coming from the opposite direction pass
through.

Lemma 8. For all right-wall ψ ∈ Rn and any f ∈ R, fψ is a right-wall.

Proof. Let v ∈ Ar. We are going to prove by induction that for all k ∈ N
ufψ(v)k = 0uψ(v)k. This is enough to conclude that fψ is a right-wall.

13



Clearly, for k = 0, it holds that ufψ(v)0 = 0uψ(v)0. For k = 1, we obtain

ufψ(v)1 = hfψ(0n+r+1v) = f(02r+1)hψ(0n+rv) = 0uψ(v)1 .

Assume now that ufψ(v)k = 0uψ(v)k for k > 0. Then,

ufψ(v)k+1 = hfψ(0rufψ(v)k0r)

= hfψ(0r+1uψ(v)k0r)

= f(02r+1)hψ(0ruψ(v)k0r)

= 0uψ(v)k+1 .

�

Lemma 9. For all right-wall ψ ∈ Rn and any f ∈ R, ψf is a right-wall.

Proof. Let v ∈ Ar. Denote by αk the last letter of uψf (v)k and let βk = αk0r−1

and γ = 0v[0,r−2]. We are going to prove by induction that for all k ∈ N

uψf (v)k =

(
uψ(γ)k +

k−1∑
i=1

uψ(βk−i)i

)
αk . (3)

This would permit to conclude that, using the fact that ψ is a right-wall,

(uψf (v)k)[0,r−1] = (uψ(γ)k)[0,r−1] +

k−1∑
i=1

(uψ(βk−i)i)[0,r−1] = 0r ,

i.e., ψf is a right-wall.
Clearly, for k = 0, it holds that uψf (v)0 = 0n+1 = uψ(γ)0α0. For k = 1, we

have

uψf (v)1 = hψf (0ruψf (v)0v) = hψf (0n+r+1v) = hψ(0n+rγ)α1 = uψ(γ)1α1 .

Assume now that (3) holds for k > 0. Then,

uψf (v)k+1 = hψf (0
ruψf (v)k0

r) . (4)

Using the induction hypothesis on uψf (v)k, Equation 4 turns into

uψf (v)k+1 = hψf

(
0r

(
uψ(γ)k +

k−1∑
i=1

uψ(βk−i)i

)
αk0r

)
. (5)

Now, rewriting the previous equation using the de�nitions of βk and αk+1, one
�nds

uψf (v)k+1 = hψ

(
0r

(
uψ(γ)k +

k−1∑
i=1

uψ(βk−i)i

)
βk

)
αk+1 (6)

= hψ

(
0ruψ(γ)k0r +

k−1∑
i=1

0ruψ(βk−i)i0
r + 0n+rβk

)
αk+1 (7)

14



Finally, using the linearity of hψ in Equation 7

uψf (v)k+1 = (hψ(0ruψ(γ)k0r)+

k−1∑
i=1

hψ(0ruψ(βk−i)i0
r) + hψ(0n+rβk)

)
αk+1

=

(
uψ(γ)k+1 +

k−1∑
i=1

uψ(βk−i)i+1 + uψ(βk)1

)
αk+1

=

(
uψ(γ)k+1 +

k∑
i=1

uψ(βk+1−i)i

)
αk+1 .

�

Proposition 10. If ψ ∈ R∗ is a right-wall, then ψ′ψψ′′ is a right-wall for all
ψ′, ψ′′ ∈ R∗.

Proof. This is a direct consequence of Lemmata 8 and 9. �

Similar results hold for left-walls.

Lemma 11. Let θ ∈ Θ, n ∈ Z, m ≥ n+ r and x ∈ AZ such that for all l ≤ m,
xl = 0. Denote ψ = θ[n+1,m] and, for any i ∈ N, αi = Hi

θ(x)[m+1,m+r]. Then,
the statement

Q(k) =

(∀i ∈ [0, k), Hi
θ(x)[n−r+1,n] = 0r

)
⇒ Hk

θ (x)[n+1,m] =

k∑
j=0

uψ(αk−j)j


is true for all integer k ≥ 0.

Proof. Q(0) is clearly true. Assume that Q(k) is true for an integer k ∈ N
and suppose that ∀i ∈ [0, k], Hi

θ(x)[n−r+1,n] = 0r. Since Hk
θ (x)[n+1,m] =∑k

i=0 uψ(αk−i)i, we obtain

Hk+1
θ (x)[n+1,m] = hψ(Hk

θ (x)[n−r+1,m+r])

= hψ

(
0r

(
k∑
i=0

uψ(αk−i)i

)
αk

)

= hψ

(
0n+2r + 0ruψ(αk)0αk +

k∑
i=1

0ruψ(αk−i)i)0
r

)

= 0n + hψ (0ruψ(αk)0αk) +

k∑
i=1

hψ (0ruψ(αk−i)i)0
r) .
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By linearity of hψ, the previous equation becomes

Hk+1
θ (x)[n+1,m] = uψ(αk+1)0 + uψ(αk)1 +

k∑
i=1

uψ(αk−i)i+1

=

k+1∑
i=0

uψ(αk+1−i)i .

Hence, Q(k + 1) is true. �

Proposition 12. Let θ ∈ Θ, Hθ is sensitive if and only if one of the two
following conditions holds.

1. There exists n ∈ N such that for all integer m ≥ n + r, θ[n+1,m] is not a
right-wall.

2. There exists n ∈ N such that for all integer m ≤ −n− r, θ[m,−n−1] is not
a left-wall.

Proof. Suppose that condition 1. holds (the proof with 2. as assumption is
similar). Let m ≥ n + r. Since ψ := θ[n+1,m] is not a right-wall there exists
v ∈ Ar and k > 0 such that (uψ(v)k)[0,r−1] 6= 0r. Let v be such that k is
minimal. Let x be the con�guration such that x[m+1,m+r] = v and xi = 0 for
i 6∈ [m+ 1,m+ r]. Let αi = Hi

θ(x)[m+1,m+r]. We are going to prove that for all

i ∈ [0, k], the statement S(i) =
(
∀l ∈ Z, l ≤ n⇒ Hi

θ(x)l = 0
)
is true.

S(0) is clearly true. For an arbitrary i ∈ [0, k−1], assume that S(j) holds

∀j ∈ [0, i]. By Lemma 11, Hi
θ(x)[n+1,m] =

∑i
j=0 uψ(αi−j)j and then, by

minimality of k, it holds that

Hi
θ(x)[n+1,n+r] =

i∑
j=0

(uψ(αi−j)j)[0,r−1] = 0r.

Hence, for all integers l ≤ n+ r, Hi
θ(x)l = 0 and so, for all integers l ≤ n,

Hi+1
θ (x)l = 0, i.e., S(i+ 1) is true.

Since S(i) is true for all i ∈ [0, k], again by Lemma 11 and minimality of k, we
obtain

Hk
θ (x)[n+1,n+r] =

k∑
j=0

(uψ(αk−j)j)[0,r−1] = (uψ(v)k)[0,r−1] 6= 0r .

Thus, for all con�guration y, we have y[−m,m] = (x+ y)[−m,m] but

Hk
θ (y)[−n−r,n+r] 6= Hk

θ (x)[−n−r,n+r] +Hk
θ (y)[−n−r,n+r] = Hk

θ (x+ y)[−n−r,n+r],

which means that Hθ is sensitive with sensitivity constant 2−n−r.
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As to the converse, assume now that neither condition 1. nor 2. holds and
let us prove that Hθ is equicontinuous. Let n ∈ N, there exists m1 ≥ n+ r and
m2 ≤ −n−r such that θ[n+1,m1] is a right-wall and θ[m2,−n−1] is a left-wall. Let
m = max(m1,−m2). By Proposition 10, θ[n+1,m] is a right-wall and θ[−m,−n−1]
is a left-wall. For any con�guration z, let z−, z̃ and z+ denote the con�gurations
such that z−i = zi for i < −m, 0 otherwise; z̃i = zi for i ∈ [−m,m], 0 otherwise;
z+i = zi for i > m, 0 otherwise. Let z be a con�guration, we now prove that
∀k ∈ N, the statement S′(k) =

(
∀j ≤ n,Hk

θ (z+)j = 0
)
is true.

Clearly S′(0) is true. For an arbitrary k ∈ N, assume that ∀i ∈ [0, k],
S′(i) holds. Let ψ = θ[n+1,m] and αi = Hi

θ(z
+)[m+1,m+r]. By Lemma 11,

Hk
θ (z+)[n+1,m] =

∑k
i=0 uψ(αk−i)i and, since ψ is a right-wall, we obtain

Hk
θ (z+)[n+1,n+r] =

k∑
i=0

(uψ(αk−i)i)[0,r−1] = 0r .

Therefore, for all integers j ≤ n + r, Hk
θ (z+)j = 0 and so ∀j ≤ n,

Hk+1
θ (z+)j = 0 , i.e., S′(k + 1) holds.

Similarly, ∀k ∈ N, the following statement holds: ∀j ≥ −n, Hk
θ (z−)j = 0. To

conclude, let x, y be two arbitrary con�gurations such that y[−m,m] = x[−m,m].
Then, since both the above statements S and S′ are true, it holds that ∀k ∈ N

Hk
θ (y)[−n,n] = Hk

θ (y−)[−n,n] +Hk
θ (ỹ)[−n,n] +Hk

θ (y+)[−n,n]

= 02n+1 +Hk
θ (x̃)[−n,n] + 02n+1

= Hk
θ (x−)[−n,n] +Hk

θ (x̃)[−n,n] +Hk
θ (x+)[−n,n]

= Hk
θ (x)[−n,n] .

Thus, Hθ is equicontinuous and, by Proposition 7, it is not sensitive. �

In the following results of this section, we assume that R is a �nite set
of linear rules of radius 1. In this case, any rule f ∈ R will be expressed in
the following form: ∀a, b, c ∈ A, f(a, b, c) = λ−f · a + λ̃f · b + λ+f · c for some

λ−f , λ̃f , λ
+
f ∈ A.

Proposition 13. A �nite distribution ψ ∈ Rn is a right-wall (resp., left-wall)

if and only if
∏n−1
i=0 λ

+
ψi

= 0 (resp.,
∏n−1
i=0 λ

−
ψi

= 0).

Proof. Assume that
∏n−1
i=0 λ

+
ψi

= 0 and let v ∈ A. We prove that ∀k ∈ N the
statement

S(k) =

∀i ∈ [0, n),∃αi ∈ A, (uψ(v)k)i = αi ·
n−1∏
j=i

λ+ψj


is true, that immediately implies that for all k ∈ N, (uψ(v)k)0 = 0, i.e., and ψ
is a right-wall. We proceed by induction. Taking αi = 0 for all i ∈ [0, n), we
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have that S(0) is true. Assume now that S(k) is true for k ∈ N. With i = 0 we
can write

(uψ(v)k+1)0 = ψ0(0(uψ(v)k)[0,1]) = λ̃ψ0 · α0 ·
n−1∏
j=0

λ+ψj + λ+ψ0
· α1 ·

n−1∏
j=1

λ+ψj

=
(
λ̃ψ0
· α0 + α1

)
·
n−1∏
j=0

λ+ψj .

For all integer i ∈ [1, n− 2], we obtain

(uψ(v)k+1)i = ψi((uψ(v)k)[i−1,i+1])

= λ−ψi · αi−1 ·
n−1∏
j=i−1

λ+ψj + λ̃ψi · αi ·
n−1∏
j=i

λ+ψj + λ+ψi · αi+1 ·
n−1∏
j=i+1

λ+ψj

=
(
λ−ψi · λ

+
ψi−1

· αi−1 + λ̃ψi · αi + αi+1

)
·
n−1∏
j=i

λ+ψj .

while for i = n− 1, we have

(uψ(v)k+1)n−1 = ψn−1((uψ(v)k)[n−2,n−1]β)

= λ−ψn−1
· αn−2 · λ+ψn−2

· λ+ψn−1
+ λ̃ψn−1

· αn−1 · λ+ψn−1
+ λ+ψn−1

· β

=
(
λ−ψn−1

· λ+ψn−2
· αn−2 + λ̃ψn−1

· αn−1 + β
)
· λ+ψn−1

where β = v if k = 1, and β = 0 otherwise. Hence, S(k + 1) holds.

Concerning the converse, assume now that
∏n−1
i=0 λ

+
ψi
6= 0. It is easy to

see that for all k ∈ [1, n], (uψ(1)k)n−k =
∏n−1
i=n−k λ

+
ψi
. Hence, (uψ(1)n)0 =∏n−1

i=0 λ
+
ψi
6= 0 and ψ is not a right-wall. The proof for left-walls is similar. �

For any set R of linear rules of radius r = 1, a �nite automaton A =
(Q,Z, T, I, F ) recognizing walls can be constructed as follows. The alphabet Z
is R, the set of states Q is {−,+} × A, I = {(−, 0)}, F = {(+, 0)} and the set
T of transitions is as follows

1. ((−, a), f, (−, λ−f ·a)), ∀a ∈ Ar{0},∀f ∈ R (minimal left-wall detection).

2. ((−, 0), f, (−, 1)), ∀f ∈ R (end of detection).

3. ((−, 1), f, (−, 1)), ∀f ∈ R (waiting).

4. ((−, 1), f, (+, 1)), ∀f ∈ R (transition from left part to right part).

5. ((+, 1), f, (+, 1)), ∀f ∈ R (waiting).

6. ((+, 1), f, (+, 0)), ∀f ∈ R (beginning of detection).

7. ((+, λ+f ·a), f, (+, a)), ∀a ∈ Ar{0},∀f ∈ R (minimal right-wall detection).

Practically speaking, A consists of two components, the left and the right
part, with a non-deterministic transition from left to right. Each component has
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Figure 5: Conceptual structure of the automaton A for walls detection.

two special states: the �rst one (the state (−, 1) for the left part or (+, 1) for
the right part) on which A loops waiting for the detection of a minimal (w.r.t.
the length) wall, the second one on which A starts ((+, 0) for the right part) or
ends ((−, 0) for the left part) the detection of such a wall. The graph structure
of A is schematized in Figure 5.

Theorem 14. Given a �nite set of linear local rules R of radius r = 1, let
L = {θ ∈ Θ : Hθ is equicontinuous} and L′ = {θ ∈ Θ : Hθ is sensitive}. Then
L and L′ are ζ-rational languages.

Proof. We are going to prove that Lζ(A) = L where A is the automaton above
introduced for the set R. This permits to immediately state that L is ζ-rational,
and that, by Proposition 7, L′ is ζ-rational too.

Let θ ∈ Lζ(A). We show that for all n ∈ N, there exists m ≤ −n − 1
such that θ[m,−n−1] is a left-wall. Let n ∈ N. There is a successful path p =

. . .
θ−1−−→ (s0, a0)

θ0−→ (s1, a1) . . . in A and integers i, j with i < j < −n such that
(si, ai) = (sj , aj) = (−, 0) are two successive initial states. Let m ∈ (i, j) be the
greatest integer such that (sm, am) = (−, 1) (m exists because (si+1, ai+1) =

(−, 1)), the �nite path (sm, am)
θm−−→ (sm+1, am+1)

θm+1−−−→ . . .
θj−1−−−→ (sj , aj) is

obtained by transitions of A from item 1.. Then, 0 = aj = am.
∏j−1
l=m λ

−
θl
, and,

by Proposition 13, θ[m,j−1] is a left-wall. By Proposition 10, θ[m,−n−1] is a left-
wall too. Similarly, it holds that for all n ∈ N, there exists m ≥ n+ 1 such that
θ[n+1,m] is a right-wall. Hence, by Propositions 12, Hθ is equicontinuous, i.e.,

θ ∈ L. Therefore, Lζ(A) ⊆ L.
Let θ ∈ L. By Proposition 12, the sequence (ik)k∈Z such that i0 = 0 and

∀k ≤ 0, ik−1 = max{j ∈ Z : j < ik and θ[j,ik−2] is a left-wall}

∀k ≥ 0, ik+1 = min{j ∈ Z : j > ik and θ[ik+2,j] is a right-wall}
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Figure 6: The automaton which recognizes the distributions over the rules {f, g, h} inducing
equicontinuous ν-CA (see Example 5).

is well-de�ned. For all k < 0, θ[ik,ik+1−2] is a left-wall and then
∏ik+1−2
j=ik

λ−θj = 0.

So, for all k < 0, setting n = min{l ∈ Z :
∏l
j=ik

λ−θj = 0},

pk = (−, 1)
θik−−→ (−, λ−

θik
)
θik+1
−−−−→ . . .

θn−−→ (−,
n∏

j=ik

λ
−
θj

)
θn+1−−−−→ (−, 1)

θn+2−−−−→ . . .
θik+1−1
−−−−−−→ (−, 1)

is a �nite path in A from (−, 1) to (−, 1) with label θ[ik,ik+1−1] which visits
an initial state. Similarly, for all k ≥ 0, there exists a �nite path pk in A
from (+, 1) to (+, 1) with label θ[ik+1,ik+1] which visits a �nal state. Then,

p = (pk)k∈N is a successful bi-in�nite path in A with label θ. Hence, θ ∈ Lζ(A)

and so L ⊆ Lζ(A). �

Example 5. Let A = {0, 1, 2, 3} and R = {f, g, h}, where f, g, h are the rules
de�ned by

∀x, y, z ∈ A, f(x, y, z) = x+ z (mod 4)
g(x, y, z) = 2 · (x+ z) (mod 4)
h(x, y, z) = 3 · (x+ z) (mod 4)

The automaton which recognizes the distributions inducing equicontinuous
ν-CA is depicted on Figure 6. Due to the symmetry of the rules in R, both
the left and right walls are the �nite distributions in R∗gR∗gR∗, i.e. the �nite
distributions containing at least two occurrences of the rule g.

Remark 5. Remark that the automaton A, built in Theorem 14 to recognize
distributions of equicontinous additive (radius 1) ν-CA has, in general, a huge
number of states. However, it is possible to greatly reduce the number of states by
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considering the relation ∼ on A de�ned by a ∼ b if and only if there exists an in-
vertible element c of A such that a = b.c. This is clearly an equivalence relation.
Moreover the relation ∼ is compatible with the addition and the multiplication
on A, i.e., for all a, b, c ∈ A, a ∼ b⇒ a+ c ∼ b+ c and a.c ∼ b.c. Let [a] denote
the equivalence class of a and A|∼ the set of all equivalence classes. For f ∈ R,
let [f ] be the local rule of radius 1 on A|∼ de�ned by [f ]([x], [y], [z]) = [f(x, y, z)]
and let R∼ be the set of all those local rules. If ψ is a �nite distribution on R,
[ψ] denotes the �nite distribution on R∼ such that |[ψ]| = |ψ| and for all integer
i, 0 ≤ i < |ψ|, [ψ]i = [ψi]. Similar notation is used for distributions. Consider
now the automaton A′ which recognizes the distributions inducing equicontinu-
ous ν-CA on R∼. Since [0] = {0} and ∼ is compatible with multiplication, by
Proposition 13, a �nite distribution ψ on R is a left-wall (resp. a right-wall) if
and only if [ψ] is a left-wall (resp. a right-wall). Then, θ is recognized by A if
and only if [θ] is recognized by A′. Looking back at Example 6, the above remark
means that (−, 1) ∼ (−, 3) and (+, 1) ∼ (+, 3).

The following example witnesses the usefulness of the previous construction.

Example 6. Let A = Z/2nZ for some integer n > 0 and R be some set of linear
local rules of radius 1. Then, A has 2n+1 states but, using the previous remark,
one �nds A|∼ =

{
[0], [1], [2], [22], [23], . . . , [2n−1]

}
and hence A′ has 2(n + 1)

states. Indeed, for all integer k ∈ [0, 2n − 1], k = 2ik′ for some i ∈ [0, n] and
some odd integer k′. Since k′ is odd, it is invertible and k ∈ [2i]. In other
words, for all integers i and j such that 0 ≤ i < j ≤ n, 2i and 2j are in di�erent
equivalence classes, otherwise we could �nd some k such that 2i = 2jk and
multiplying by 2n−j, we get 2n−j+i = 0 which is false.

6. Conclusions

This paper investigates the complexity classes associated to languages char-
acterizing distributions of local rules in ν-CA. Several interesting research di-
rections should be explored.

First, we have proved that the language associated with distributions of
equicontinuous or sensitive ν-CA is ζ-rational for the class of linear ν-CA with
radius 1. It would be interesting to extend this result to sets of local rule
distributions with higher radius. This seems quite di�cult because this prob-
lem reduces to the study of the equicontinuity of ν-CA of radius 1 on a non-
commutative ring, loosing in this way �handy� results like Proposition 13.

Second, there is no complexity gap between sets of distributions which give
injective and sensitive (plus the previously mentioned constraints) ν-CA. This
is contrary to intuition. Indeed, we suspect that the characterization of distri-
butions giving injective ν-CA might be strengthened to deterministic ζ-rational
languages.

As a third research direction, it would be interesting to study which dynam-
ical property of ν-CA is associated with languages of complexity higher than
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ζ-rational. We believe that sensitivity to initial conditions (with no further
constraints) is a good candidate.

A further research direction would diverge from ν-CA and investigate the
topological structure of languages as the one given the previous sections which
use some non-standard acceptance condition for �nite automata in the vein
of [21]. The authors have just started investigating this last subject.
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