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This paper investigates a variant of cellular automata, namely ν-CA. Indeed, ν-CA are cellular automata which can have dierent local rules at each site of their lattice. The assignment of local rules to sites of the lattice completely characterizes ν-CA. In this paper, sets of assignments sharing some interesting properties are associated with languages of bi-innite words. The complexity classes of these languages are investigated providing an initial rough classication of ν-CA.

Introduction

Cellular automata (CA) are discrete dynamical systems consisting in an innite number of nite automata arranged on a regular lattice. All automata of the lattice are identical and work synchronously. The new state of each automaton is computed by a local rule on the basis of the current state and the one of a xed set of neighboring automata. This simple denition contrasts the huge number of dierent dynamical behaviors that made the model widely used in many scientic disciplines for simulating phenomena characterized by the emergency of complex behaviors from simple local interactions (chemical reactions, disease diusion, particle reaction-diusion, pseudo-random number generation, cryptography, etc.). For recent results on CA dynamics and an up-to-date bibliography see for instance [START_REF] Rka | Topological and Symbolic Dynamics[END_REF][START_REF] Farina | A predator-prey ca with parasitic interactions and environmental eects[END_REF][START_REF] Di Lena | On the undecidability of the limit behavior of cellular automata[END_REF][START_REF] Acerbi | Conservation of some dynamcal properties for operations on cellular automata[END_REF][START_REF] Dennunzio | On the directional dynamics of additive cellular automata[END_REF][START_REF] Dennunzio | Sand automata as cellular automata[END_REF][START_REF] Dennunzio | Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues[END_REF].

In many cases, the uniformity of the local rule is more a constraint than a helping feature. Indeed, the uniformity constraint has been relaxed, for example, for modeling cell colonies growth, fast pseudo-random number generation, and VLSI circuit design and testing. This gave rise to new models, called nonuniform cellular automata (ν-CA) or hybrid cellular automata (HCA), in which the local rule of the nite automaton at a given site depends on its position.

If the study of dynamical behavior has just started up [START_REF] Cattaneo | Non-uniform cellular automata[END_REF][START_REF] Dennunzio | Non-uniform cellular automata: classes, dynamics, and decidability[END_REF], applications and analysis of structural properties have already produced a wide literature (see, for instance, [START_REF] Fúster-Sabater | Application of linear hybrid cellular automata to stream ciphers[END_REF][START_REF] Gerlee | Stability analysis of a hybrid cellular automaton model of cell colony growth[END_REF]).

In this paper, we adopt a formal languages complexity point of view. Consider a nite set R of local rules dened over the same nite state set A. A (one-dimensional) ν-CA is essentially dened by the distribution or assignment of local rules in R to sites of the lattice. Whenever R contains a single rule, the standard cellular automata model is obtained. Therefore, each ν-CA can be associated with a unique bi-innite word over R. Consider now the class C of ν-CA dened over R and sharing a certain property P (for example surjectivity, injectivity, etc.). Clearly, C can be identied as a set of bi-innite words contained in ω R ω . In this paper, we analyze the language complexity of C w.r.t. several well-known properties, namely number-conservation, surjectivity, injectivity, sensitivity to initial conditions and equicontinuity. We have proved that C is a subshift of nite type and soc, respectively, for the rst two properties, while it is ζ-rational for the last three properties in the list. Remark that for sensitivity to initial conditions and equicontinuity, the results are proved when R contains only linear local rules (i.e. local rules satisfying a certain additivity property) with radius 1. The general case seems very complicated and it is still open.

In order to prove the main theorems, some auxiliary results, notions and constructions have been introduced (variants of De Bruijn graphs and their products, etc.). We believe that they can be interesting in their own to prove further properties.

Notations and denitions

For all i, j ∈ Z with i ≤ j (resp., i < j), let [i, j] = {i, i + 1, . . . , j} (resp., [i, j) = {i, . . . , j -1}).

Congurations and non uniform automata. Let A be a nite alphabet. A conguration or bi-innite word is a function from Z to A. For any conguration x and any integer i, x i denotes the element of x at index i. The conguration set A Z is usually equipped with the metric d dened as follows ∀x, y ∈ A Z , d(x, y) = 2 -n , where n = min {i ≥ 0 : x i = y i or x -i = y -i } .

For any pair i, j ∈ Z, with i ≤ j, and any conguration x ∈ A Z we denote by x [i,j] the word w = x i . . . x j ∈ A j-i+1 , i.e., the portion of x inside [i, j], and we say that the word w occurs in x. Similarly, u [i,j] = u i . . . u j is the portion of a word u ∈ A l inside [i, j] (here, i, j ∈ [0, l)). In both the previous notations, [i, j] can be replaced by [i, j) with the obvious meaning. For any word u ∈ A * , |u| denotes its length. A cylinder of block u ∈ A k and position i ∈ Z is the set [u] 

i = {x ∈ A Z : x [i,i+k) = u}.
Cylinders are clopen sets w.r.t. the metric d and they form a basis for the topology induced by d. For 0 ∈ A, a conguration x is said to be nite if the number of positions i at which x i = 0 is nite.

A local rule of radius r ∈ N on the alphabet A is a map from A 2r+1 to A. Local rules are crucial in both the denitions of cellular automata and nonuniform cellular automata. A function F : A Z → A Z is a cellular automaton (CA) if there exist r ∈ N and a local rule f of radius r such that

∀x ∈ A Z , ∀i ∈ Z, F (x) i = f (x [i-r,i+r] ) . The shift map σ : A Z → A Z dened as σ(x) i = x i+1 , ∀x ∈ A Z , ∀i ∈ Z is one among the simplest examples of CA.
Let R be a set of local rules on A. A distribution on R is an application θ from Z to R, i.e., a bi-innite word on R. Denote by Θ the set of all distributions on R. A non-uniform cellular automaton (ν-CA) is a triple (A, θ, (r i ) i∈N ) where A is an alphabet, θ a distribution on the set of all possible local rules on A and r i is the radius of θ i . A ν-CA denes a global transition function H θ :

A Z → A Z by ∀x ∈ A Z , ∀i ∈ Z, H θ (x) i = θ i (x [i-ri,i+ri] ) .
In the sequel, when no misunderstanding is possible, we will identify a ν-CA with its global transition function. From [START_REF] Cattaneo | Non-uniform cellular automata[END_REF], recall that a function H : A Z → A Z is the global transition function of a ν-CA if and only if it is continuous. For all integer k and H : A Z → A Z , let H k denote the composition of H with itself k times, i.e. for all conguration x ∈ A Z , H 0 (x) = x and for k > 0, H k (x) = H(H k-1 (x)). In this paper, we will consider distributions on a nite set of local rules. In that case, one can assume without loss of generality that there exists an integer r such that all the rules in R have the same radius r. All ν-CA constructed on such nite sets of local rules are called rν-CA (of radius r).

A nite distribution is a word ψ ∈ R n , i.e., a sequence of n rules of R. Each nite distribution ψ denes a function h ψ :

A n+2r → A n by ∀u ∈ A n+2r , ∀i ∈ [0, n), h ψ (u) i = ψ i (u [i,i+2r] ) .
These functions are called partial transition functions since they express the behavior of a ν-CA on a nite set of sites: if θ is a distribution and i ≤ j are integers, then

∀x ∈ A Z , H θ (x) [i,j] = h θ [i,j] (x [i-r,j+r] ) .
Languages. Recall that a language is any set L ⊆ A * and a nite state automaton is a tuple A = (Q, A, T, I, F ), where Q is a nite set of states, A is the alphabet, T ⊆ Q × A × Q is the set of transitions, and I, F ⊆ Q are the sets of initial and nal states, respectively. A path p in A is a nite sequence q 0 a0 -→ q 1 a1 -→ q 2 . . . q n-1 an-1 ---→ q n visiting the states q 0 , . . . , q n and with label a 1 . . . a n-1 such that (q i , a i , q i+1 ) ∈ T for each i ∈ [0, n). A path is successful if q 0 ∈ I and q n ∈ F . The language L(A) recognized by A is the set of labels of all successful paths in A. A language L is rational if there exists a nite automaton A such that L = L(A).

A bi-innite language is any subset of A Z . Let A = (Q, A, T, I, F ) be a nite automaton. A bi-innite path p in A is a bi-innite sequence . . .

a-2 --→ q -1 a-1 --→ q 0 a0 -→ q 1 a1 -→ q 2 a2
-→ . . . such that (q i , a i , q i+1 ) ∈ T for each i ∈ Z. The bi-innite word . . . a -1 a 0 a 1 . . . is the label of the bi-innite path p. A biinnite path is successful if the sets {i ∈ N : q -i ∈ I} and {i ∈ N : q i ∈ F } are innite. This condition is known as the Büchi acceptance condition. The bi-innite language L ζ (A) recognized by A is the set of labels of all successful bi-innite paths in A. A bi-innite language L is ζrational if there exists a nite automaton A such that L = L ζ (A).

A bi-innite language X is a subshift if X is (topologically) closed and σ invariant, i.e., σ(X) = X. Let F ⊆ A * and X F be the bi-innite language of all bi-innite words x such that no word u ∈ F occurs in x. It is known that a bi-innite language X is a subshift i X = X F for some F ⊆ A * [START_REF] Lind | An introduction to symbolic dynamics and coding[END_REF]. The set F is a set of forbidden words for X. A subshift X is said to be a subshift of nite type (resp. soc) i X = X F for some nite (resp. rational) F.

For a more in deep introduction to the theory of formal languages, the reader can refer to [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF] for rational languages, [START_REF] Berstel | Finite and innite words[END_REF][START_REF] Lind | An introduction to symbolic dynamics and coding[END_REF] for subshifts and [START_REF] Perrin | Innite Words[END_REF] for ζ-rational languages.

Properties of non-uniform CA. A ν-CA is sujective (resp., injective) i its global transition function H is surjective (resp., injective). A ν-CA H is equicontinuous if for all ε > 0, there exists δ > 0 such that for all x, y ∈ A Z , d(x, y) < δ implies that ∀n ∈ N, d(H n (x), H n (y)) < ε. A νCA H is sensitive to the initial conditions (or simply sensitive) if there exists a constant ε > 0 such that for all element x ∈ A Z , for all δ > 0 there is a point y ∈ A Z such that d(x, y) < δ and d(H n (x), H n (y)) > ε for some n ∈ N.

Number conservation

In physics, a lot of transformations are conservative: a certain quantity remains invariant along time (conservation laws of mass and energy for example).

Both CA and ν-CA are used to represent phenomena from physics and it is therefore interesting to decide when they represent a conservative transformation. The case of uniform CA has been treated in a number of papers, see for instance [START_REF] Boccara | Number-conserving cellular automaton rules[END_REF][START_REF] Durand | Number-conserving cellular automata i: decidability[END_REF]. Here, we generalize those results to ν-CA. Indeed, we prove that the language of the set of distributions representing number conserving rν-CA is a subshift of nite type (SFT).

In this section, without loss of generality, A is {0, 1, . . . , s -1}. Denote by 0 the conguration in which every element is 0. For all conguration x ∈ A Z , dene the partial charge of x between the index -n and n as µ n (x) = n i=-n x i and the global charge of x as µ(x) = lim n→∞ µ n (x). Clearly µ(x) = ∞, if x is not a nite conguration. Denition 1 (FNC). A ν-CA H is number-conserving on nite congurations (FNC) if for all nite conguration x, µ(x) = µ(H(x)).

Remark that if H is FNC then H(0) = 0 and, for all nite conguration x, H(x) is a nite conguration. Denition 2 (NC). A ν-CA H is said to be number-conserving (NC) if both the following conditions hold

(1) H(0) = 0 (2) ∀x ∈ A Z {0}, lim n→∞ µn(H(x)) µn(x) = 1.
Remark 1. Condition [START_REF] Acerbi | Conservation of some dynamcal properties for operations on cellular automata[END_REF] in Denition 2 is implied by [START_REF] Amoroso | Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures[END_REF] for all rν-CA while it is not redundant in the more general case of ν-CA. Indeed, for a rν-CA H of radius r, assume that (2) holds but H(0) = 0 and let k ∈ Z be such that H(0) k = 0. For all integer i, denote by δ i ∈ A Z the conguration dened as ∀j ∈ Z, (δ i ) j = δ i,j , where δ i,j is the Kronecker function ( i.e., δ i,j = 1 if i = j, 0, otherwise). Clearly,

H(δ k-r-1 ) k = H(δ k+r+1 ) k = H(0) k = 0, and, by condition (2), 1 = µ(H(δ j )) ≥ H(0) k > 0 for both j = k -r -1 and j = k + r + 1. Hence, it holds that H(δ k-r-1 ) = H(δ k+r+1 ) = δ k and for the conguration x = δ k-r-1 + δ k+r+1 we get H(x) = δ k and so 2 = µ(x) = µ(H(x)) = 1, which contradicts (2). Therefore, (2) ⇒ (1). Consider now the ν-CA H dened on A = {0, 1} as ∀x ∈ A Z , ∀i ∈ Z, H(x) i = 1 if (i = 0) ∨ (i > 0 ∧ x [-i+1,i] = 1 2i-1 0) ∨ (i < 0 ∧ x [i,-i] = 01 -2i ) x i otherwise
For the ν-CA H, condition (2) holds but H(0) = 0. Therefore, condition (1) is not redundant for ν-CA.

Proposition 1. Let H be a rν-CA of radius r. Then, H is NC if and only if it is F N C.
Proof. Assume that H is NC. Since H(0) = 0, the images of nite congurations are nite congurations. Then, for all nite conguration x = 0, µ(H(x))

µ(x) = lim n→∞ µn(H(x)) µn(x) = 1. Therefore, µ(x) = µ(H(x)
) and H is FNC. Conversely, suppose that H is not NC. By Remark 1, we can assume that condition (2) does not hold. So, there exists a conguration

x ∈ A Z {0} such that either M = lim sup n→∞ µn(H(x)) µn(x) > 1 or m = lim inf n→∞ µn(H(x)) µn(x) < 1. If x is a nite conguration then µ(x) = µ(H(x)
) and, hence, H is not FNC. We now deal with the case in which x is not nite. Assume that M > 1 (the proof for m < 1 is similar).

M = lim sup n→∞ µn(H(x)) µn(x) then there exists an increasing sequence

(n i ) i∈N ∈ N N such that lim i→∞ µn i (H(x)) µn i (x)
= M and, as lim i→∞ µ ni (x) = ∞, there exists some j ∈ N such that µ nj (H(x)) > µ nj (x) + 2r(s -1). Let n = n j and y be the nite conguration such that y

[-n,n] = x [-n,n] and ∀i / ∈ [-n, n], y i = 0. We have µ(H(y)) = µ n+r (H(y)) ≥ µ n-r (H(y)) = µ n-r (H(x)) ≥ µ n (H(x)) -2r(s -1) > µ n (x) = µ(y).
Hence, H is not FNC.

Remark 2. The Proposition 1 does not hold in the general case. For ex-

ample the ν-CA H on A = {0, 1} dened by ∀x ∈ A Z , ∀i ∈ Z, H(x) 2i = x i and H(x) 2i+1 = 0 is FNC but not NC. For the conguration x such that ∀i ∈ Z, x i = 1 we have lim n→∞ µn(H(x)) µn(x) = 1 2 . Theorem 2. Given a nite set of local rules R, let L = {θ ∈ Θ : H θ is NC}.
Then, L is a subshift of nite type.

Proof. We are going to prove that L = X F where

F = ψ ∈ R 2r+1 : ∃u ∈ A 2r+1 , ψ2r(u) = u0 + 2r-1 i=0 ψi+1(0 2r-i u [1,i+1] ) -ψi(0 2r-i u [0,i] ) .
Assume that θ ∈ L and let j ∈ Z. For all u ∈ A 2r+1 , let x, y be two nite congurations such that x [j-r,j+r] = u and y [j-r,j+r] = 0u [1,2r] . Since H θ is NC, by Proposition 1, µ(H(x)) = µ(x) and µ(H(y)) = µ(y), and hence

2r i=0 θ j+i-2r (0 2r-i u [0,i] ) + 2r i=1 θ j+i (u [i,2r] 0 i ) = 2r i=0 u i , (1) 
2r i=1 θ j+i-2r (0 2r-i+1 u [1,i] ) + 2r i=1 θ j+i (u [i,2r] 0 i ) = 2r i=1 u i . (2) 
Subtracting ( 2) to (1), we obtain

θ j (u) = u 0 + 2r i=1 θ j+i-2r (0 2r-i+1 u [1,i] ) - 2r-1 i=0 θ j+i-2r (0 2r-i u [0,i] )
which can be rewritten as

θ j (u) = u 0 + 2r-1 i=0 θ j+i+1-2r (0 2r-i u [1,i+1] ) -θ j+i-2r (0 2r-i u [0,i] ) .
Thus, for all j ∈ Z, θ [j-2r,j] / ∈ F, meaning that θ ∈ X F . So, L ⊆ X F Suppose now that θ ∈ X F , i.e., for all integer j, θ [j-2r,j] / ∈ F. Taking u = 0 2r+1 , for all j we have

θ j+2r (0 2r+1 ) = 0 + 2r-1 i=0 θ j+i+1 (0 2r+1 ) -θ j+i (0 2r+1 ) which leads to θ j (0 2r+1 ) = 0. For all nite conguration x, it holds that µ(H θ (x)) = j∈Z H θ (x) j = j∈Z θ j (x [j-r,j+r] ) = j∈Z x j + 2r-1 i=0 θ j+i+1-2r (0 2r-i x [j-r+1,j-r+i+1] )- -θ j+i-2r (0 2r-i x [j-r,j-r+i] ) = j∈Z x j + 2r-1 i=0   j∈Z θ j+i+1-2r (0 2r-i x [j-r+1,j-r+i+1] )- - j∈Z θ j+i-2r (0 2r-i x [j-r,j-r+i] )   Since j∈Z θ j+i+1-2r (0 2r-i x [j-r+1,j-r+i+1] ) = j∈Z θ j+i-2r (0 2r-i x [j-r,j-r+i] ) , we obtain µ(H θ (x)) = j∈Z H θ (x) j = j∈Z x j = µ(x).
Thus, H θ is FNC and, by Proposition 1, NC. Hence, θ ∈ L. So, X F ⊆ L.

The following example shows that number conservation property can sometimes be the result of some kind of cooperation between rules that when considered as local rules of a CA might not be number-conserving.

Example 1. Let R = {f, g, h} where f, g, h are the rules of radius 1 on the

alphabet A = {0, 1} dened as follows: ∀x, y, z ∈ A f (x, y, z) = 1 if y = 1 and z = 1 0 otherwise g(x, y, z) = 1 if x = 1 and y = 0, or y = 1 and z = 0 0 otherwise h(x, y, z) = 0 if x = 0 and y = 0 1 otherwise .
Note that f, g, h are the so-called elementary rules 136, 184 and 252, respectively. If we are interested in the language L of distributions θ on R such that H θ is number-conserving, according to the proof of Theorem 2, L is the subshift of nite type X F where the set of forbidden words is

F = {f f f, f gf, f hg, f hh, gf f, ggf, ghg, ghh, hf f, hgf, hhg, hhh} ,
Remark that X F = X {f f,gf,hh,hg} . Moreover, since f f and hh are forbidden patterns, the rules f and h dene CA which are not number-conserving but there exist suitable distributions θ ∈ Θ giving number-conserving ν-CA, namely, all those which do not contain patterns from {f f, gf, hh, hg}.

Surjectivity and injectivity

In standard CA setting, injectivity is a fundamental property which is equivalent to reversibility [START_REF] Hedlund | Endomorphisms and automorphisms of the shift dynamical system[END_REF]. It is well-known that it is decidable for one-dimensional CA and undecidable in higher dimensions [START_REF] Amoroso | Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures[END_REF][START_REF] Kari | The nilpotency problem of one-dimensional cellular automata[END_REF]. Surjectivity is also a dimension sensitive property (i.e. decidable in dimension one and undecidable for higher dimensions) and it is a necessary condition for many types of chaotic behaviors.

In this paper, we prove that the language associated with distributions inducing surjective (resp. injective) ν-CA is soc (resp. ζ-rational). Remark that constructions for surjectivity and injectivity are sensibly dierent, contrary to what happens for the classical CA when dealing with the decidability of those properties.

Before proceeding to the main results of the section we need some technical lemma and new constructions. We believe that these constructions, inspired by [START_REF] Sutner | De Bruijn graphs and linear cellular automata[END_REF], might be of interest in their own and could be of help for proving new results.

Lemma 3. For any xed

θ ∈ Θ, the νCA H θ is surjective if and only if h θ [i,j]
is surjective for all integers i, j with i ≤ j.

Proof. Fix θ ∈ Θ and assume now that H θ is surjective. Let i, j be two integers such that i ≤ j and a word w ∈ A j-i+1 . Let x be any conguration such that x [i,j] = w. By hypothesis, there exists y such that H θ (y) = x. Then, h θ [i,j] (y [i-r,j+r] ) = w and, hence, h θ [i,j] is surjective.

As to the converse, suppose that h θ [i,j] is surjective for all integers i, j with i ≤ j. Let x ∈ A Z and, for all n ∈ N, dene (id, 0)(⊕, 0) Proof. Any (ψ, u) ∈ (R × A) n is such that h -1 ψ (u) = ∅ i there exists w ∈ A n+2r such that h ψ (w) = u. By Denition 3, this happens i there is a path in G visiting the states w [0,2r) , . . . , w [n,n+2r) with labels (ψ 0 , u 0 ), . . . , (ψ n-1 , u n-1 ), i.e., i (ψ, u) ∈ L(G).

Y n = {y ∈ A Z : H θ (y) [-n,n] = x [-n,n] }. Every Y n is
(G) = {(ψ, u) ∈ (R × A) * : h -1 ψ (u) = ∅}.
Theorem 5. Given a nite set of local rules R, let L = {θ ∈ Θ : H θ is surjective}.

Then, L is a soc subshift.

Proof. Let F = {ψ ∈ R * : h ψ is not surjective}. By Lemma 3, L is just the subshift X F . Consider the De Bruijn graph G of R as an automaton A where all states are both initial and nal. By Lemma 4,

L(A) = {(ψ, u) ∈ (R × A) * : h -1 ψ (u) = ∅}. Build now the automaton A c that recognizes L c = {(ψ, u) ∈ (R × A) * : h -1 ψ (u) = ∅}.
Remove from A c all second components of edge labels and let à be the obtained automaton. A word ψ ∈ R * is recognized by à if and only if there exists u ∈ A * such that (ψ, u) ∈ L c , i.e., i h ψ is not surjective. Thus, L( Ã) = F and L = X F is a soc subshift.

The proof of the Theorem 5 provides an algorithm to build an automaton that recognizes the language F of the forbidden words for the soc subshift L. 

(V × V, W ) where ((u, u ), (v, v )) ∈ W with label (f, a) ∈ R × A if and only if (u, v) and (u , v ) belong to E both with the same label (f, a). Theorem 6. Given a nite set of local rules R, let L = {θ ∈ Θ : H θ is injective}. Then, L is ζ-rational.
Proof. Let P be the product graph of R. Consider now P as a nite automaton where all the states are initial and the nal states are the pairs (u, u ) with u = u . Remove from P all second components of edge labels and let P be the obtained automaton. We said that a bi-innite path is successful in P if and only if it visits an accepting state. It is well known that the set of labels of successful paths denes a ζ-rational language [START_REF] Landweber | Decision problems for omega-automata[END_REF][START_REF] Perrin | Innite Words[END_REF].

Any bi-innite path in P with label (θ i , z i ) i∈Z ∈ Θ × A Z corresponds to two bi-innite paths in G in which the visited vertexes dene two congurations x and y such that H θ (x) = H θ (y) = z. Then, a path p in P labeled by θ denes two congurations x and y such that H θ (x) = H θ (y). Conversely, a distribution θ ∈ Θ and two congurations x and y such that H θ (x) = H θ (y) dene an unique path p in P. Moreover p visits an accepting state if and only if x = y. Then the language recognized by P is the set {θ ∈ Θ : ∃x,

y ∈ A Z , x = y and H θ (x) = H θ (y)} = L c . Since the complementary of a ζ-rational language is ζ-rational, L is ζ- rational.
Example 4. Let R be the set of rules from the Example 2. The graph P obtained by the product graph P of R is shown in Figure 3. According to the proof of Theorem 6, P is obtained by removing from P all second components of edge labels. 

Equicontinuity and sensitivity for linear rν-CA

Sensitivity to initial conditions is a widely known property indicating a possible chaotic behavior of a dynamical system and it is often popularized under the metaphor of the buttery eect. At the opposite, equicontinuity is an element of stability of a system. In this section, we are going to study these properties in the context of linear ν-CA.

In order to consider linear ν-CA, the alphabet A is endowed with a sum (+) and a product (•) operations that make it a commutative ring and we denote by 0 and 1 the neutral elements of + and •, respectively. Of course, A n and A Z are also commutative rings where sum and product are dened component-wise and, with some abuse of notation, they will be denoted by the the same symbols.

Remark that in the sequel uv still denote the concatenation of words u and v and u n the concatenation of u with itself n times. The multiplication will always be denoted by a • or the usual symbol Π. Denition 5. A local rule f of radius r is linear if and only if there exists a

word λ ∈ A 2r+1 such that ∀u ∈ A 2r+1 , f (u) = 2r i=0 λ i • u i . A ν-CA H is linear if it is dened by a distribution of linear local rules.
Remark 3. The notion of linearity dened here matches with the usual notion of linearity in linear algebra, i.e. a ν-CA H is linear (in our sens) i for all congurations x and y and for all a ∈ A, H(a • x + y) = a • H(x) + H(y). This is also true for partial transition functions. Proposition 7. Any linear ν-CA H is either sensitive or equicontinuous.

Proof. For all integers k ∈ N and i ∈ Z, let λ i,k be the word expressing the ith linear local rule of radius r i,k in a family dening the (linear) νCA H k . Without loss of generality, we can assume that either (λ i,k ) 0 = 0 or (λ i,k ) 2r i,k = 0. Consider the following statement: for all integer i ∈ Z the sequence (r i,k ) k∈N is bounded (by some integer M i > 0). We are going to show that if this statement is true, resp., false, then H is equicontinuous, resp., sensitive.

Assume that the statement is true. Let n ∈ N and m = n + M where M = max{M i : -n ≤ i ≤ n}. Let x and y be two congurations such that

x [-m,m] = y [-m,m] . We have that H k (x) [-n,n] = H k (y) [-n,n]
, for all integer k ∈ N. We have shown that for all ε = 2 -n , there exists δ = 2 -m such that for all x, y ∈ A Z , d(y, x) < δ implies that ∀k ∈ N, d(H k (y), H k (x)) < ε and, hence, H is equicontinuous.

If the statement is false, there exists i ∈ Z such that the sequence (r i,k 0). We have shown there exists ε = 2 -i such that for all element x ∈ A Z , for all δ = 2 -m there exists y ∈ A Z such that d(x, y) < δ and d(H k (x), H k (y)) > ε for some k ∈ N. Thus, H is sensitive with sensitivity constant 2 -i .

) k∈N is not bounded. Let x ∈ A Z , m ∈ N and k ∈ N such that r i,k > 2|i| + 1 + m. Dene y -, y + ∈ A Z as follows ∀j ∈ Z, y - j = 1 if j = i -r i,k 0 otherwise and y + j = 1 if j = i + r i,k 0 otherwise . Then, x [-m,m] = (x + y -) [-m,m] = (x + y + ) [-m,m] and either H k (x) [-i,i] = H k (x + y -) [-i,i] (if (λ i,k ) 0 = 0) or H k (x) [-i,i] = H k (x + y + ) [-i,i] (if (λ i,k ) 2r i,k = Fixed Application of h ψ Fixed 0 r 0 n = u ψ (v) 0 v 0 r u ψ (v) 1 0 r 0 r u ψ (v) 2 0 r 0 r u ψ (v) k 0 r
Remark 4. In the non-linear case, there exists ν-CA which are neither sensitive nor equicontinuous [START_REF] Cattaneo | Non-uniform cellular automata[END_REF].

The previous denition and proposition allow linear ν-CA dened on a possibly innite set of local rules. However, from now on we consider nite sets R in which all rules are linear and have radius r.

Denition 6 (Wall).

A right-wall is any element ψ ∈ R * of length n ≥ r such that, for all word v ∈ A r , the sequence u ψ (v) : N → A n recursively dened by

u ψ (v) 0 = 0 n u ψ (v) 1 = h ψ (0 r u ψ (v) 0 v) u ψ (v) k+1 = h ψ (0 r u ψ (v) k 0 r ) for k > 1 veries ∀k ∈ N, (u ψ (v) k ) [0,r-1] = 0 r . Left-walls are dened similarly.
Roughly speaking, the sequence u ψ (v) gives the dynamical evolution of the function h ψ when the leftmost and rightmost inputs are xed (see Figure 4).

The idea we develop here, in view of Propositon 12, is that a right (resp., left) wall completely lters out the information coming from its right (resp., left) while it may allow information coming from the opposite direction pass through. Lemma 8. For all right-wall ψ ∈ R n and any f ∈ R, f ψ is a right-wall.

Proof. Let v ∈ A r . We are going to prove by induction that for all k ∈ N u f ψ (v) k = 0u ψ (v) k . This is enough to conclude that f ψ is a right-wall.

Clearly, for k = 0, it holds that u f ψ (v) 0 = 0u ψ (v) 0 . For k = 1, we obtain

u f ψ (v) 1 = h f ψ (0 n+r+1 v) = f (0 2r+1 )h ψ (0 n+r v) = 0u ψ (v) 1 . Assume now that u f ψ (v) k = 0u ψ (v) k for k > 0. Then, u f ψ (v) k+1 = h f ψ (0 r u f ψ (v) k 0 r ) = h f ψ (0 r+1 u ψ (v) k 0 r ) = f (0 2r+1 )h ψ (0 r u ψ (v) k 0 r ) = 0u ψ (v) k+1 .
Lemma 9. For all right-wall ψ ∈ R n and any f ∈ R, ψf is a right-wall.

Proof. Let v ∈ A r . Denote by α k the last letter of u ψf (v) k and let β k = α k 0 r-1 and γ = 0v [0,r-2] . We are going to prove by induction that for all k ∈ N

u ψf (v) k = u ψ (γ) k + k-1 i=1 u ψ (β k-i ) i α k . (3) 
This would permit to conclude that, using the fact that ψ is a right-wall,

(u ψf (v) k ) [0,r-1] = (u ψ (γ) k ) [0,r-1] + k-1 i=1 (u ψ (β k-i ) i ) [0,r-1] = 0 r , i.e., ψf is a right-wall.
Clearly, for k = 0, it holds that u ψf (v) 0 = 0 n+1 = u ψ (γ) 0 α 0 . For k = 1, we have

u ψf (v) 1 = h ψf (0 r u ψf (v) 0 v) = h ψf (0 n+r+1 v) = h ψ (0 n+r γ)α 1 = u ψ (γ) 1 α 1 .
Assume now that (3) holds for k > 0. Then,

u ψf (v) k+1 = h ψf (0 r u ψf (v) k 0 r ) . (4) 
Using the induction hypothesis on u ψf (v) k , Equation 4 turns into

u ψf (v) k+1 = h ψf 0 r u ψ (γ) k + k-1 i=1 u ψ (β k-i ) i α k 0 r . ( 5 
)
Now, rewriting the previous equation using the denitions of β k and α k+1 , one nds

u ψf (v) k+1 = h ψ 0 r u ψ (γ) k + k-1 i=1 u ψ (β k-i ) i β k α k+1 (6) = h ψ 0 r u ψ (γ) k 0 r + k-1 i=1 0 r u ψ (β k-i ) i 0 r + 0 n+r β k α k+1 (7)
Finally, using the linearity of h ψ in Equation 7u ψf (v

) k+1 = (h ψ (0 r u ψ (γ) k 0 r )+ k-1 i=1 h ψ (0 r u ψ (β k-i ) i 0 r ) + h ψ (0 n+r β k ) α k+1 = u ψ (γ) k+1 + k-1 i=1 u ψ (β k-i ) i+1 + u ψ (β k ) 1 α k+1 = u ψ (γ) k+1 + k i=1 u ψ (β k+1-i ) i α k+1 . Proposition 10. If ψ ∈ R * is a right-wall, then ψ ψψ is a right-wall for all ψ , ψ ∈ R * .
Proof. This is a direct consequence of Lemmata 8 and 9.

Similar results hold for left-walls.

Lemma 11. Let θ ∈ Θ, n ∈ Z, m ≥ n + r and x ∈ A Z such that for all l ≤ m,

x l = 0. Denote ψ = θ [n+1,m] and, for any i ∈ N, α i = H i θ (x) [m+1,m+r] .
Then, the statement

Q(k) =   ∀i ∈ [0, k), H i θ (x) [n-r+1,n] = 0 r ⇒ H k θ (x) [n+1,m] = k j=0 u ψ (α k-j ) j   is true for all integer k ≥ 0. Proof. Q(0) is clearly true. Assume that Q(k) is true for an integer k ∈ N and suppose that ∀i ∈ [0, k], H i θ (x) [n-r+1,n] = 0 r . Since H k θ (x) [n+1,m] = k i=0 u ψ (α k-i ) i , we obtain H k+1 θ (x) [n+1,m] = h ψ (H k θ (x) [n-r+1,m+r] ) = h ψ 0 r k i=0 u ψ (α k-i ) i α k = h ψ 0 n+2r + 0 r u ψ (α k ) 0 α k + k i=1 0 r u ψ (α k-i ) i )0 r = 0 n + h ψ (0 r u ψ (α k ) 0 α k ) + k i=1 h ψ (0 r u ψ (α k-i ) i )0 r ) .
By linearity of h ψ , the previous equation becomes

H k+1 θ (x) [n+1,m] = u ψ (α k+1 ) 0 + u ψ (α k ) 1 + k i=1 u ψ (α k-i ) i+1 = k+1 i=0 u ψ (α k+1-i ) i .
Hence, Q(k + 1) is true.

Proposition 12. Let θ ∈ Θ, H θ is sensitive if and only if one of the two following conditions holds.

1. There exists n ∈ N such that for all integer m ≥ n + r, θ [n+1,m] is not a right-wall.

2. There exists n ∈ N such that for all integer m ≤ -n -r, θ [m,-n-1] is not a left-wall.

Proof. Suppose that condition 1. holds (the proof with 2. as assumption is similar

). Let m ≥ n + r. Since ψ := θ [n+1,m] is not a right-wall there exists v ∈ A r and k > 0 such that (u ψ (v) k ) [0,r-1] = 0 r . Let v be such that k is minimal. Let x be the conguration such that x [m+1,m+r] = v and x i = 0 for i ∈ [m + 1, m + r]. Let α i = H i θ (x) [m+1,m+r] .
We are going to prove that for all i ∈ [0, k], the statement S(i) = ∀l ∈ Z, l ≤ n ⇒ H i θ (x) l = 0 is true.

S(0) is clearly true. For an arbitrary i ∈ [0, k -1], assume that S(j) holds ∀j ∈ [0, i]. By Lemma 11, H i θ (x) [n+1,m] = i j=0 u ψ (α i-j ) j and then, by minimality of k, it holds that

H i θ (x) [n+1,n+r] = i j=0 (u ψ (α i-j ) j ) [0,r-1] = 0 r .
Hence, for all integers l ≤ n + r, H i θ (x) l = 0 and so, for all integers l ≤ n, H i+1 θ (x) l = 0, i.e., S(i + 1) is true.

Since S(i) is true for all i ∈ [0, k], again by Lemma 11 and minimality of k, we obtain

H k θ (x) [n+1,n+r] = k j=0 (u ψ (α k-j ) j ) [0,r-1] = (u ψ (v) k ) [0,r-1] = 0 r .
Thus, for all conguration y, we have y

[-m,m] = (x + y) [-m,m] but H k θ (y) [-n-r,n+r] = H k θ (x) [-n-r,n+r] + H k θ (y) [-n-r,n+r] = H k θ (x + y) [-n-r,n+r] ,
which means that H θ is sensitive with sensitivity constant 2 -n-r .

As to the converse, assume now that neither condition 1. nor 2. holds and let us prove that H θ is equicontinuous. Let n ∈ N, there exists m 1 ≥ n + r and m 2 ≤ -n -r such that θ [n+1,m1] is a right-wall and θ [m2,-n-1] is a left-wall. Let m = max(m 1 , -m 2 ). By Proposition 10, θ [n+1,m] is a right-wall and θ [-m,-n-1] is a left-wall. For any conguration z, let z -, z and z + denote the congurations such that z - i = z i for i < -m, 0 otherwise; zi = z i for i ∈ [-m, m], 0 otherwise; z + i = z i for i > m, 0 otherwise. Let z be a conguration, we now prove that ∀k ∈ N, the statement

S (k) = ∀j ≤ n, H k θ (z + ) j = 0 is true. Clearly S (0) is true. For an arbitrary k ∈ N, assume that ∀i ∈ [0, k], S (i) holds. Let ψ = θ [n+1,m] and α i = H i θ (z + ) [m+1,m+r] . By Lemma 11, H k θ (z + ) [n+1,m] = k i=0 u ψ (α k-i ) i
and, since ψ is a right-wall, we obtain

H k θ (z + ) [n+1,n+r] = k i=0 (u ψ (α k-i ) i ) [0,r-1] = 0 r .
Therefore, for all integers j ≤ n + r, H k θ (z + ) j = 0 and so ∀j ≤ n, H k+1 θ (z + ) j = 0 , i.e., S (k + 1) holds.

Similarly, ∀k ∈ N, the following statement holds: ∀j ≥ -n, H k θ (z -) j = 0. To conclude, let x, y be two arbitrary congurations such that y [-m,m] = x [-m,m] . Then, since both the above statements S and S are true, it holds that ∀k ∈ N

H k θ (y) [-n,n] = H k θ (y -) [-n,n] + H k θ (ỹ) [-n,n] + H k θ (y + ) [-n,n] = 0 2n+1 + H k θ (x) [-n,n] + 0 2n+1 = H k θ (x -) [-n,n] + H k θ (x) [-n,n] + H k θ (x + ) [-n,n] = H k θ (x) [-n,n] .
Thus, H θ is equicontinuous and, by Proposition 7, it is not sensitive.

In the following results of this section, we assume that R is a nite set of linear rules of radius 1. In this case, any rule f ∈ R will be expressed in the following form: ∀a, b, c

∈ A, f (a, b, c) = λ - f • a + λf • b + λ + f • c for some λ - f , λf , λ + f ∈ A.
Proposition 13. A nite distribution ψ ∈ R n is a right-wall (resp., left-wall)

if and only if n-1 i=0 λ + ψi = 0 (resp., n-1 i=0 λ - ψi = 0).

Proof. Assume that n-1 i=0 λ + ψi = 0 and let v ∈ A. We prove that ∀k ∈ N the statement

S(k) =   ∀i ∈ [0, n), ∃α i ∈ A, (u ψ (v) k ) i = α i • n-1 j=i λ + ψj  
is true, that immediately implies that for all k ∈ N, (u ψ (v) k ) 0 = 0, i.e., and ψ is a right-wall. We proceed by induction. Taking α i = 0 for all i ∈ [0, n), we have that S(0) is true. Assume now that S(k) is true for k ∈ N. With i = 0 we can write

(u ψ (v) k+1 ) 0 = ψ 0 (0(u ψ (v) k ) [0,1] ) = λψ0 • α 0 • n-1 j=0 λ + ψj + λ + ψ0 • α 1 • n-1 j=1 λ + ψj = λψ0 • α 0 + α 1 • n-1 j=0 λ + ψj .
For all integer i ∈ [1, n -2], we obtain

(u ψ (v) k+1 ) i = ψ i ((u ψ (v) k ) [i-1,i+1] ) = λ - ψi • α i-1 • n-1 j=i-1 λ + ψj + λψi • α i • n-1 j=i λ + ψj + λ + ψi • α i+1 • n-1 j=i+1 λ + ψj = λ - ψi • λ + ψi-1 • α i-1 + λψi • α i + α i+1 • n-1 j=i λ + ψj .
while for i = n -1, we have

(u ψ (v) k+1 ) n-1 = ψ n-1 ((u ψ (v) k ) [n-2,n-1] β) = λ - ψn-1 • α n-2 • λ + ψn-2 • λ + ψn-1 + λψn-1 • α n-1 • λ + ψn-1 + λ + ψn-1 • β = λ - ψn-1 • λ + ψn-2 • α n-2 + λψn-1 • α n-1 + β • λ + ψn-1
where β = v if k = 1, and β = 0 otherwise. Hence, S(k + 1) holds.

Concerning the converse, assume now that n-1

i=0 λ + ψi = 0. It is easy to see that for all k ∈ [1, n], (u ψ (1) k ) n-k = n-1 i=n-k λ + ψi . Hence, (u ψ (1) n ) 0 =
n-1 i=0 λ + ψi = 0 and ψ is not a right-wall. The proof for left-walls is similar.

For any set R of linear rules of radius r = 1, a nite automaton A = (Q, Z, T, I, F ) recognizing walls can be constructed as follows. The alphabet Z is R, the set of states Q is {-, +} × A, I = {(-, 0)}, F = {(+, 0)} and the set T of transitions is as follows 1. ((-, a), f, (-, λ - f • a)), ∀a ∈ A {0}, ∀f ∈ R (minimal left-wall detection). 2. ((-, 0), f, (-, 1)), ∀f ∈ R (end of detection). 3. ((-, 1), f, (-, 1)), ∀f ∈ R (waiting). 4. ((-, 1), f, (+, 1)), ∀f ∈ R (transition from left part to right part). 5. ((+, 1), f, (+, 1)), ∀f ∈ R (waiting). 6. ((+, 1), f, (+, 0)), ∀f ∈ R (beginning of detection). Proof. We are going to prove that L ζ (A) = L where A is the automaton above introduced for the set R. This permits to immediately state that L is ζ-rational, and that, by Proposition 7, L is ζ-rational too. Let θ ∈ L ζ (A). We show that for all n ∈ N, there exists m ≤ -n -1 such that θ [m,-n-1] is a left-wall. Let n ∈ N. There is a successful path p = . . . θ-1 --→ (s 0 , a 0 ) θ0 -→ (s 1 , a 1 ) . . . in A and integers i, j with i < j < -n such that (s i , a i ) = (s j , a j ) = (-, 0) are two successive initial states. Let m ∈ (i, j) be the greatest integer such that (s m , a m ) = (-, 1) (m exists because (s i+1 , a i+1 ) = (-, 1)), the nite path (s m , a m )

θm --→ (s m+1 , a m+1 ) θm+1 ---→ . . . θj-1 ---→ (s j , a j ) is obtained by transitions of A from item 1.. Then, 0 = a j = a m . j-1 l=m λ - θ l
, and, by Proposition 13, θ [m,j-1] is a left-wall. By Proposition 10, θ [m,-n-1] is a leftwall too. Similarly, it holds that for all n ∈ N, there exists m ≥ n + 1 such that θ [n+1,m] is a right-wall. Hence, by Propositions 12, H θ is equicontinuous, i.e., θ ∈ L. Therefore, L ζ (A) ⊆ L.

Let θ ∈ L. By Proposition 12, the sequence (i k ) k∈Z such that i 0 = 0 and ∀k ≤ 0 is well-dened. For all k < 0, θ [i k ,i k+1 -2] is a left-wall and then

, i k-1 = max{j ∈ Z : j < i k and θ [j,i k -2] is a left-wall} ∀k ≥ 0, i k+1 = min{j ∈ Z : j > i k and θ [i k +2,j] is a right-wall} -,1 -,0 -,2 -,3 +,1 +,0 +,2 +,3 f, g, h g h f, g, h f, h g f g h f, g, h f, g, h f, g, h h g f, h g g f h
i k+1 -2 j=i k λ - θj = 0. So, for all k < 0, setting n = min{l ∈ Z : l j=i k λ - θj = 0}, p k = (-, 1) θ i k --→ (-, λ - θ i k ) θ i k +1 ----→ . . . θn --→ (-, n j=i k λ - θ j ) θ n+1 ----→ (- , 1) θ n+2 
----→ . . .

θ i k+1 -1 ------→ (-, 1)
is a nite path in A from (-, 1) to (-, 1) with label θ [i k ,i k+1 -1] which visits an initial state. Similarly, for all k ≥ 0, there exists a nite path p k in A from (+, 1) to (+, 1) with label θ [i k +1,i k+1 ] which visits a nal state. Then, p = (p k ) k∈N is a successful bi-innite path in A with label θ. Hence, θ ∈ L ζ (A) and so L ⊆ L ζ (A).

Example 5. Let A = {0, 1, 2, 3} and R = {f, g, h}, where f, g, h are the rules dened by

∀x, y, z ∈ A, f (x, y, z) = x + z (mod 4) g(x, y, z) = 2 • (x + z) (mod 4) h(x, y, z) = 3 • (x + z) (mod 4)
The automaton which recognizes the distributions inducing equicontinuous ν-CA is depicted on Figure 6. Due to the symmetry of the rules in R, both the left and right walls are the nite distributions in R * gR * gR * , i.e. the nite distributions containing at least two occurrences of the rule g. θ] is recognized by A . Looking back at Example 6, the above remark means that (-, 1) ∼ (-, 3) and (+, 1) ∼ (+, 3).

The following example witnesses the usefulness of the previous construction. Example 6. Let A = Z/2 n Z for some integer n > 0 and R be some set of linear local rules of radius 1. Then, A has 2 n+1 states but, using the previous remark, one nds A| ∼ = [0], [START_REF] Acerbi | Conservation of some dynamcal properties for operations on cellular automata[END_REF], [START_REF] Amoroso | Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures[END_REF], [2 2 ], [2 3 ], . . . , [2 n-1 ] and hence A has 2(n + 1) states. Indeed, for all integer k ∈ [0, 2 n -1], k = 2 i k for some i ∈ [0, n] and some odd integer k . Since k is odd, it is invertible and k ∈ [2 i ]. In other words, for all integers i and j such that 0 ≤ i < j ≤ n, 2 i and 2 j are in dierent equivalence classes, otherwise we could nd some k such that 2 i = 2 j k and multiplying by 2 n-j , we get 2 n-j+i = 0 which is false.

Conclusions

This paper investigates the complexity classes associated to languages characterizing distributions of local rules in ν-CA. Several interesting research directions should be explored.

First, we have proved that the language associated with distributions of equicontinuous or sensitive ν-CA is ζ-rational for the class of linear ν-CA with radius 1. It would be interesting to extend this result to sets of local rule distributions with higher radius. This seems quite dicult because this problem reduces to the study of the equicontinuity of ν-CA of radius 1 on a noncommutative ring, loosing in this way handy results like Proposition 13.

Second, there is no complexity gap between sets of distributions which give injective and sensitive (plus the previously mentioned constraints) ν-CA. This is contrary to intuition. Indeed, we suspect that the characterization of distributions giving injective ν-CA might be strengthened to deterministic ζ-rational languages.

As a third research direction, it would be interesting to study which dynamical property of ν-CA is associated with languages of complexity higher than ζ-rational. We believe that sensitivity to initial conditions (with no further constraints) is a good candidate.

A further research direction would diverge from ν-CA and investigate the topological structure of languages as the one given the previous sections which use some non-standard acceptance condition for nite automata in the vein of [START_REF] Litovsky | Finite acceptance of innite words[END_REF]. The authors have just started investigating this last subject.
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 6 Figure 6: The automaton which recognizes the distributions over the rules {f, g, h} inducing equicontinuous ν-CA (see Example 5).
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 5 Remark that the automaton A, built in Theorem 14 to recognize distributions of equicontinous additive (radius 1) ν-CA has, in general, a huge number of states. However, it is possible to greatly reduce the number of states by considering the relation ∼ on A dened by a ∼ b if and only if there exists an invertible element c of A such that a = b.c. This is clearly an equivalence relation. Moreover the relation ∼ is compatible with the addition and the multiplication on A, i.e., for all a, b, c ∈ A, a ∼ b ⇒ a + c ∼ b + c and a.c ∼ b.c. Let [a] denote the equivalence class of a and A| ∼ the set of all equivalence classes. For f ∈ R, let [f ] be the local rule of radius 1 on A| ∼ dened by [f ]([x], [y], [z]) = [f (x, y, z)] and let R ∼ be the set of all those local rules. If ψ is a nite distribution on R, [ψ] denotes the nite distribution on R ∼ such that |[ψ]| = |ψ| and for all integer i, 0 ≤ i < |ψ|, [ψ] i = [ψ i ]. Similar notation is used for distributions. Consider now the automaton A which recognizes the distributions inducing equicontinuous ν-CA on R ∼ . Since [0] = {0} and ∼ is compatible with multiplication, by Proposition 13, a nite distribution ψ on R is a left-wall (resp. a right-wall) if and only if [ψ] is a left-wall (resp. a right-wall). Then, θ is recognized by A if and only if
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