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Abstract. This paper investigates acceptance conditions for �nite au-
tomata recognizing ω-regular languages. Their expressive power and their
position w.r.t. the Borel hierarchy is also studied. The full characteriza-
tion for the conditions (ninf,u), (ninf,⊆) and (ninf,=) is given. The
�nal section provides a partial characterization of (fin,=).

Keywords: �nite automata, acceptance conditions, ω-regular languages.

1 Introduction

In�nite words are widely used in formal speci�cation and veri�cation of non-
terminating processes (e.g. web-servers, OS daemons, etc.) [4,3,13]. The overall
state of the system is represented by an element of some �nite alphabet. Hence
runs of the systems can be conveniently represented as ω-words. Finite automata
are often used to model the transitions of the system and their accepted language
represents the set of admissible runs of the system under observation. Acceptance
conditions on �nite automata are therefore selectors of admissible runs. Main
results and overall exposition about ω-languages can be found in [12,11,9].

Seminal studies about acceptance of in�nite words by �nite automata (FA)
have been performed by Büchi while studying monadic second order theories [1].
According to Büchi an in�nite word is accepted by an FA A if there exists a run
of A which passes in�nitely often through a set of accepting states. Later, Muller
studied runs that pass through all elements of a given set of accepting states and
visit them in�nitely often [8]. Afterwards, several acceptance conditions appeared
in a series of papers [2,5,7,10,6].

Clearly, the selection on runs operated by accepting conditions is also in�u-
enced by the structural properties of the FA under consideration: deterministic
vs. non-deterministic, complete vs. non complete (see for instance [6]).
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In this work, we review the main acceptance conditions and we couple them
with structural properties like determinism or completeness in the purpose of
characterizing the relationships between the class of languages they induce. The
Borel hierarchy is another important characterization of ω-rational languages
and it is the basic skeleton of our study which helped to argue the placement
of the other classes. Figure 1 illustrates the current state of art whilst Figure 2
summarizes the results provided by the present paper.

For lack of space, several proofs of lemmata will appear only in a journal
version of this paper.

2 Notations and background

For any set A, Card (A) denotes the cardinality of A. Given a �nite alphabet Σ,
Σ∗ and Σω denote the set of all �nite words and the set of all (mono) in�nite
words on Σ, respectively. As usual, ε ∈ Σ∗ is the empty word. For any pair
u, v ∈ Σ∗, uv is the concatenation of u with v.

A language is any set L ⊆ Σ∗. For any pair of languages L1, L2, L1L2 =
{uv ∈ Σ∗ : u ∈ L1, v ∈ L2} is the concatenation of L1 and L2. For a language
L, denote L0 = {ε}, Ln+1 = LnL and L∗ =

⋃
n∈N L

n the Kleene star of L. The
collection of rational languages is the smallest class of languages containing ∅,
all sets {a} (for a ∈ Σ) and which is closed by union, concatenation and Kleene
star.

An ω-language is any subset L of Σω. For a language L, the in�nite extension
of L is the ω-language

Lω =
{
x ∈ Σω : ∃(ui)i∈N ∈ (Lr {ε})N, x = u0u1u2 . . .

}
.

An ω-language L is ω-rational if there exist two families {Li} and {L′i} of rational
languages such that L =

⋃n
i=0 L

′
iLi

ω. Denote by RAT the set of all ω-rational
languages.

A �nite state automaton (FA) is a tuple (Σ,Q, T, q0,F) where Σ is a �-
nite alphabet, Q a �nite set of states, T ⊂ Q × Σ × Q is the set of transi-
tions, q0 ∈ Q is the initial state and F ⊆ P (Q) collects the accepting sets
of (accepting) states. A FA is a deterministic �nite state automaton (DFA)
if Card ({q ∈ Q : (p, a, q) ∈ T}) ≤ 1 for all p ∈ Q, a ∈ Σ. It is a complete �-
nite state automaton (CFA) if Card ({q ∈ Q : (p, a, q) ∈ T}) ≥ 1 for all p ∈ Q,
a ∈ Σ. We write CDFA for a FA which is both deterministic and complete. An
(in�nite) path in A = (Σ,Q, T, q0,F) is a sequence (pi, xi, pi+1)i∈N such that
(pi, xi, pi+1) ∈ T for all i ∈ N. The (in�nite) word (xi)i∈N is the label of the path
p. A path is said to be initial if p0 = q0.

De�nition 1. Let A = (Σ,Q, T, q0,F) and p = (pi, xi, qi)i∈N be an automaton
and an in�nite path in A. The sets

� runA(p) := {q ∈ Q : ∃i > 0, pi = q}
� infA(p) := {q ∈ Q : ∀i > 0,∃j ≥ i, pj = q}
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� finA(p) := run(p)r inf(p)
� ninfA(p) := Qr inf(p)

contain the states appearing at least one time, in�nitely many times, �nitely
many times but at least once, and �nitely many times or never in p, respectively.

An acceptance condition is a subset of all the initial in�nite paths. The paths
inside such a subset are called accepting paths. Let A and condA be a FA and
an acceptance condition for A, respectively. A word w is accepted by A if and
only if it is the label of some accepting path. We denote by LcondAA the language
accepted by A under the acceptance condition condA, i.e., the set of all words
accepted by A under the acceptance condition condA.

Let u be the relation such that for all sets A and B, A u B if and only if
A ∩B 6= ∅.

In the sequel, we will consider acceptance conditions derived by pairs (c,R) ∈
{run, inf, fin, ninf} × {u,⊆,=}. A pair cond = (c,R) de�nes an acceptance
condition condA = (cA,R) on an automaton A = (Σ,Q, T, i,F) as follows: an
initial path p = (pi, ai, pi+1)i∈N is accepting if and only if there exists a set F ∈ F
such that cA(p) R F . Moreover, when not explicitly indicated, all automata will
be de�ned over the same �nite alphabet Σ.

De�nition 2. For any pair cond = (c,R) ∈ {run, inf, fin, ninf} × {u,⊆,=},
the following sets

� FA(cond) =
{
LcondAA , A is a FA

}
� DFA(cond) =

{
LcondAA , A is a DFA

}
� CFA(cond) =

{
LcondAA , A is a CFA

}
� CDFA(cond) =

{
LcondAA , A is a CDFA

}
are the classes of languages accepted by FA, DFA, CFA, and CDFA, respec-
tively, under the acceptance condition derived by cond.

Some of the acceptance conditions derived by pairs (c,R) have been studied in
the literature as summarized in the following table.

u ⊆ =

run Landweber [5] Hartmanis and Stearns [2] Staiger and Wagner [10]

inf Büchi [1] Landweber [5] Muller [8]

fin Litovski and Staiger [6] this paper
∗∗

ninf this paper
∗

this paper
∗

this paper

∗ These conditions have been already investigated in [7] but only in the case of
complete automata with a unique set of accepting states.
∗∗ Only FA and CFA are considered here. For DFA and CDFA the question
is still open.



4 Alberto Dennunzio, Enrico Formenti, and Julien Provillard

For Σ equipped with discrete topology and Σω with the induced product
topology, let F , G, Fσ and Gδ be the collections of all closed sets, open sets,
countable unions of closed set and countable intersections of open sets, respec-
tively. For any pair A,B of collections of sets, denote by B (A), A ∆ B, and AR

the boolean closure of A, the set {U ∩ V : U ∈ A, V ∈ B} and the set A∩RAT ,
respectively. These, indeed, are the lower classes of the Borel hierarchy, for more
on this subject we refer the reader to [14] or [9], for instance.

Figure 1 illustrates the known hierarchy of languages classes (arrows repre-
sents strict inclusions).

Let X and Y be two sets, pr1 : (X × Y )ω → Xω denotes the projection of
words in (X × Y )ω on the �rst set, i.e. pr1((xi, yi)i∈N) = (xi)i∈N.

Lemma 3 (Staiger [11, Projection lemma]).
Let cond ∈ {run, inf, fin, ninf} × {u,⊆,=}.

1. Let X, Y be two �nite alphabets and L ⊆ (X × Y )ω. L ∈ FA(cond) implies
pr1(L) ∈ FA(cond)§.

2. Let X be a �nite alphabet and L ⊆ Xω. L ∈ FA(cond)§ implies there exist a
�nite alphabet Y and a language L′ ⊆ (X×Y )ω such that L′ ∈ DFA(cond)§
and pr1(L′) = L.

3 The accepting conditions A and A′ and the Borel

hierarchy

In [7], Moriya and Yamasaki introduced two more acceptance conditions, namely
A and A′, and they compared them to the Borel hierarchy for the case of CFA
and CDFA having a unique set of accepting states. In this section, those results
are generalized to FA and DFA and to any set of sets of accepting states.

De�nition 4. Given an FA A = (Σ,Q, T, q0,F), the acceptance condition A
(resp., A′) on A is de�ned as follows: an initial path p is accepting under A
(resp., A′) if and only if there exists a set F ∈ F such that F ⊆ runA(p) (resp.,
F 6⊆ runA(p)).

Lemma 5.

1. FA(A) ⊆ FA(run,u) ,
2. DFA(A) ⊆ DFA(run,u) ,
3. CFA(A) ⊆ CFA(run,u) ,
4. CDFA(A) ⊆ CDFA(run,u) .

§ Remark that in the case 1. the languages belonging to FA(cond) are de�ned over
the alphabet X and not X × Y . Similarly, in the case 2. the languages belonging to
FA(cond) are de�ned over X and those belonging to DFA(cond) are de�ned over
X × Y .
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RAT
FA(inf,u) CFA(inf,u)

FA(inf,=) DFA(inf,=) CFA(inf,=) CDFA(inf,=)

FRσ
FA(run,u)

FA(run,=) CFA(run,=)
FA(inf,⊆) DFA(inf,⊆) CFA(inf,⊆) CDFA(inf,⊆)

FA(fin,u)

GRδ
DFA(inf,u) CDFA(inf,u)

FRσ ∩ GRδ
DFA(run,=) CDFA(run,=)

FR

FA(run,⊆) DFA(run,⊆) CFA(run,⊆) CDFA(run,⊆)
GR

CFA(run,u) CDFA(run,u)

FR ∩ GR

FRσ ∆ GRδ
DFA(run,u)

CDFA(fin,u)

DFA(fin,u) CNFA(fin,u)

Fig. 1. Currently known relations between classes of ω-languages recognized by FA
according to the considered acceptance conditions and structural properties like de-
terminism or completeness. Classes of the Borel hierarchy are typeset in bold. Arrows
mean strict inclusion. Classes in the same box coincide.

Lemma 6.

1. FA(run,u) ⊆ FA(A) ,
2. DFA(run,u) ⊆ DFA(A) ,
3. CFA(run,u) ⊆ CFA(A) ,
4. CDFA(run,u) ⊆ CDFA(A).

Lemma 7.

1. FA(A′) ⊆ FA(run,⊆) ,
2. DFA(A′) ⊆ DFA(run,⊆) ,
3. CFA(A′) ⊆ CFA(run,⊆) ,
4. CDFA(A′) ⊆ CDFA(run,⊆) .

Lemma 8.

1. FA(run,⊆) ⊆ FA(A′) ,
2. DFA(run,⊆) ⊆ DFA(A′) ,
3. CFA(run,⊆) ⊆ CFA(A′) ,
4. CDFA(run,⊆) ⊆ CDFA(A′) .
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Proof. Let cond = (run,⊆). We are going to show that for any FA A =
(Σ,Q, T, q0,F) there exists an automaton A′ under the accepting condition A′
such that LA′

A′ = LcondAA and A′ is deterministic (resp. complete) if A is de-
terministic (resp. complete). De�ne the automaton A′ = (Σ,Q′, T ′, (q0, ∅),F ′)
where Q′ = (Q× P (Q)) ∪ {⊥}, F ′ = {{⊥}}, and

T ′ = {((p, S), a, (q, S ∪ {q})) : (p, a, q) ∈ T, S ∈ P (Q) ,∃F ∈ F , S ∪ {q} ⊆ F}⋃
{((p, S), a,⊥) : S ∈ P (Q) ,∃q ∈ Q, (p, a, q) ∈ T, ∀F ∈ F , S ∪ {q} 6⊆ F}⋃
{(⊥, a,⊥) : a ∈ Σ}

Then, A′ is deterministic (resp. complete) if A is deterministic (resp. com-
plete). Moreover, x ∈ LcondAA if and only if there exists an initial path p in A
with label x and a set F ∈ F such that runA(p) ⊆ F i� there exists an initial
path p′ in A′ with label x such that p′n 6= ⊥ for all n ∈ N, i.e., i� x ∈ LA′

A′ . ut

The following result places the classes of langages characterized by A and A′
w.r.t. the Borel hierarchy.

Theorem 9.
1. CDFA(A) = CFA(A) = GR

2. DFA(A) = FRσ ∆ GRδ
3. FA(A) = FRσ
4. CDFA(A′) = DFA(A′) = CFA(A′) = FA(A′) = FR

Proof. It is a consequence of Lemmata 5, 6, 7 and 8, and the known results (see
Figure 1) on the classes of languages accepted by FA, DFA, CFA, and CDFA
under the acceptance conditions derived by (run,u) and (run,⊆). ut

Remark 10. Languages in CDFA(A) (resp. CDFA(A′) are unions of languages
in the class A (resp. A′) of [7]. This class equalsGR (resp. FR) and is closed under
union operation. These facts already prove CDFA(A) = GR (resp. CDFA(A′) =
FR).

4 The accepting conditions (ninf,u) and (ninf,⊆).

In [6], Litovsky and Staiger studied the class of languages accepted by FA under
the acceptance condition (fin,u) w.r.t. which a path is successful if it visits an
accepting state �nitely many times but at least once. It is natural to study the
expressivity of the similar accepting condition for which a path is successful if it
visits an accepting state �nitely many times or never: (ninf,u). The expressivity
of (ninf,⊆) is also analized and compared with the previous ones to complete the
picture in Figure 1. As a �rst step, we analyze two more acceptance conditions

proposed by Moriya and Yamasaki [7]: L which represents the situation of a non-
terminating process forced to pass through a �nite set of �safe� states in�nitely
often and L′ which is the negation of L. Lemma 12 proves that L is equivalent
to (ninf,u) and L′ to (ninf,⊆). Moreover, the results of [7] are extended to any
type of FA with any number of sets of accepting states.



Acceptance conditions for ω-languages 7

De�nition 11. Given an FA A = (Σ,Q, T, q0,F), the acceptance condition L
(resp., L′) on A is de�ned as follows: an initial path p is accepting under L
(resp., L′) if and only if there exists a set F ∈ F such that F ⊆ infA(p) (resp.,
F 6⊆ infA(p)).

Lemma 12. L and (ninf,⊆) (resp., L′ and (ninf,u)) de�ne the same classes
of languages.

Remark that any FA can be completed with a sink state without changing
the language accepted under L. Therefore, the following claim is true.

Lemma 13. FA(L) = CFA(L) and DFA(L) = CDFA(L).

Proposition 14. CDFA(inf,u) ⊆ CDFA(L) and CFA(inf,u) ⊆ CFA(L).

Proof. For any CDFA (resp., CFA) A = (Σ,Q, T, q0,F), de�ne the CDFA
(resp., CFA) A′ = (Σ,Q, T, q0,F ′) where F ′ = {{q} : ∃F ∈ F , q ∈ F}. Then, it
follows that L(inf,u)A

A = LL
A′ and this concludes the proof. ut

Proposition 15. CDFA(L) ⊆ CDFA(inf,u)

Proof. For any CDFA A = (Σ,Q, T, q0,F) and any q ∈ Q, de�ne the CDFA
Aq = (Σ,Q, T, q0, {{q}}). By determinism of A, it holds that

LL
A =

⋃
F∈F

⋂
q∈F
L(inf,u)Aq

Aq
.

Since CDFA(inf,u) is stable by �nite union and �nite intersection [1], there ex-

ists a CDFAA′ such that LL
A = L(inf,u)A′

A′ . Hence, CDFA(L) ⊆ CDFA(inf,u).
ut

Proposition 16. CFA(L) ⊆ CFA(inf,=).

Proof. For any CFA A = (Σ,Q, T, q0,F) de�ne A′ = (Σ,Q, T, q0,F ′), where
F ′ = {S ∈ P (Q) : ∃F ∈ F , F ⊆ S} . Then, A′ is complete and LL

A = L(inf,=)A′
A′ .

Hence, the thesis is true. ut

Theorem 17. The following equalities hold.

(1) CDFA(ninf,⊆) = DFA(ninf,⊆) = GRδ
(2) CFA(ninf,⊆) = FA(ninf,⊆) = RAT

Proof. Equality (1) follows from Lemmata 12 and 13, Proposition 15 and 14
and the known fact that DFA(inf,u) = CDFA(inf,u) = GRδ , while equality
(2) from Lemmata 12 and 13, Proposition 14 and 16 and the known fact that
CFA(inf,u) = CFA(inf,=) = RAT . ut

Lemma 18. For any automaton A = (Σ,Q, T, q0,F) there exists an automaton
A′ = (Σ′, Q′, T ′, q′0,F ′) such that F ′ = {{q′}} for some q′ ∈ Q′, LL′

A = LL′
A′ , and

A′ is deterministic (resp. complete) if A is deterministic (resp. complete).
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Proof. If either F = {} or F = {∅} then the automaton A′ de�ned by Σ′ = Σ,
Q′ = {⊥}, T ′ = {(⊥, a,⊥) : a ∈ Σ}, q′0 = q0, and F ′ = {{⊥}}) veri�es the
statement of the Lemma. Otherwise, set F =

⋃
X∈F X, choose any f ∈ F ,

and de�ne the automaton A′ by Σ′ = Σ, Q′ = Q × P (F ), q′0 = (q0, ∅), F ′ =
{{(f, F )}}, and

T ′ = {((p, S), a, (q, (S ∪ {q}) ∩ F )) : (p, a, q) ∈ T, (p, S) 6= (f, F )}⋃
{((f, F ), a, (q, ∅)) : (f, a, q) ∈ T}

Then, A′ is deterministic (resp., complete) if A is deterministic (resp., com-
plete). Moreover, LL′

A ⊆ LL′
A′ . Indeed, if x ∈ LL′

A , there exist an initial path
p = (pi, xi, pi+1)i∈N in A with label x, a set X ∈ F , and a state s ∈ X such that
s 6∈ inf(p). Consider the path p′ = ((pi, Si), xi, (pi+1, Si+1))i∈N where S0 = ∅
and Si+1 = (Si ∪ {qi})∩F if (pi, Si) 6= (f, F ), ∅ otherwise. Then, p′ is an initial
path in A′ with label x in which the state (f, F ) appears �nitely often in p′ since
s appears �nitely often in p. Hence, x ∈ LL′

A′ . Finally, the implication LL′
A′ ⊆ LL′

A
is also true.

The following series of Lemmata is useful to prove strict inclusions between
the the considered language classes.

Lemma 19 (Moriya and Yamasaki [7]). L = (a+ b)∗aω ∈ CDFA(L′).

Lemma 20. ab∗a(a+ b)ω ∈ DFA(L′)r CFA(L′).

Lemma 21. b∗ab∗a(a+ b)ω 6∈ FA(L′).

Lemma 22. (a+ b)∗baω ∈ CFA(L′)rDFA(L′).

Proposition 23. FA(L′) ( FRσ

Proof. For any FA A = (Σ,Q, T, q0,F), by Lemma 18 we can assume that F =

{{f}}. De�ne the FA A′ = (Σ,Q, T, q0, {Qr {f}}). Then, LL′
A = L(inf,⊆)A′

A′
and, so, FA(L′) ⊆ FA(inf,⊆). Moreover, by the know fact FA(inf,⊆) = FRσ ,

we obtain that L(inf,⊆)A′
A′ ∈ FRσ . Lemma 21 gives the strict inclusion. ut

Proposition 24. DFA(L′) and CFA(L′) are incomparable.

Proof. It is an immediate consequence of Lemmata 20 and 22.

Proposition 25. The following statements are true.

(1) FA(L′) and GRδ are incomparable.
(2) FA(L′) and GR are incomparable.

Proof. By Lemma 19, (a + b)∗aω ∈ CDFA(L′) r GRδ and, by Lemma 21,
b∗ab∗a(a+ b)ω ∈ GR r FA(L′). To conclude, recall that GR ⊆ GRδ . ut

Proposition 26. CDFA(L′) and DFA(fin,u) are incomparable.

Proof. By Proposition 25 and by the known fact GR ⊆ DFA(fin,u), it follows
that DFA(fin,u) 6⊆ CDFA(L′). Furthermore, it has been shown in [6] that
CDFA(L′) 6⊆ DFA(fin,u). ut
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RAT
FA(inf,u) CFA(inf,u)

FA(inf,=) DFA(inf,=) CFA(inf,=) CDFA(inf,=)
FA(ninf,⊆) CFA(ninf,⊆)

FA(ninf,=) DFA(ninf,=) CFA(ninf,=) CDFA(ninf,=)
FA(fin,=) CFA(fin,=)

FRσ
FA(run,u)

FA(run,=) CFA(run,=)
FA(inf,⊆) DFA(inf,⊆) CFA(inf,⊆) CDFA(inf,⊆)

FA(fin,u)
FA(A)

GRδ
DFA(inf,u) CDFA(inf,u)

DFA(ninf,⊆) CDFA(ninf,⊆)

FRσ ∩ GRδ
DFA(run,=) CDFA(run,=)

FR

FA(run,⊆) DFA(run,⊆) CFA(run,⊆) CDFA(run,⊆)

FA(A′) DFA(A′) CFA(A′) CDFA(A′)

GR

CFA(run,u) CDFA(run,u)
CFA(A) CDFA(A)

FR ∩ GR

FRσ ∆ GRδ
DFA(run,u)

DFA(A)
CDFA(fin,u)

DFA(fin,u) CFA(fin,u)

CDFA(ninf,u)

CFA(ninf,u)DFA(ninf,u)

FA(ninf,u)

Fig. 2. The completion of Figure 1 with the results in the paper. Classes of the Borel
hierarchy are typeset in bold. Arrows mean strict inclusion. Classes in the same box
coincide.

5 Towards a characterization of (fin,=) and (fin,⊆).

In this section we start studying the conditions (fin,=) and (fin,⊆). Concerning
(fin,=), Theorem 34 tells us that, in the non-deterministic case, the class of
recognized languages coincides with RAT . In the deterministic case, either it
again coincides with RAT or it de�nes a completely new class (Proposition 35).

Intuitively, any class of ω-languages de�ned using a MSO de�nable accept-
ing condition should be included in RAT . A formal proof for this statement is
still unknown. Anyway, we now prove this statement for the particular cases
investigated so far.

Proposition 27. The following equality holds for (ninf,=):

CDFA(ninf,=) = DFA(ninf,=) = CFA(ninf,=) = FA(ninf,=) = RAT

Proof. For any FA A = (Σ,Q, T, q0,F), let A′ = (Σ,Q, T, q0, {QrF : F ∈ F}).
Clearly,A′ is deterministic (resp. complete) ifA is deterministic (resp. complete).
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It is not di�cult to see that L(ninf,=)A
A = L(inf,=)A′

A′ and L(inf,=)A
A = L(ninf,=)A′

A′ .
Hence, it holds that FA(ninf,=) = FA(inf,=), DFA(ninf,=) = DFA(inf,=
), CFA(ninf,=) = CFA(inf,=), and CDFA(ninf,=) = CDFA(inf,=). The
known results on the language classes regarding (inf,=) conclude the proofs. ut

Proposition 28. The following equalities hold for (fin,⊆) and (fin,=):

DFA(fin,⊆) = CDFA(fin,⊆) and FA(fin,⊆) = CFA(fin,⊆),
DFA(fin,=) = CDFA(fin,=) and FA(fin,=) = CFA(fin,=).

Proof. For any FA A = (Σ,Q, T, q0,F), let A′ = (Σ,Q ∪ {⊥,⊥′} , T ′, q0,F)
where

T ′ = T ∪ {(p, a,⊥) : p ∈ Q, a ∈ Σ,∀q ∈ Q, (p, a, q) 6∈ T} ∪ {(⊥, a,⊥′) : a ∈ Σ}
∪ {(⊥′, a,⊥′) : a ∈ Σ}

The FA A′ is complete. Moreover, A′ is a DFA if and only if A is a DFA.
Furthermore, under both the conditions (fin,⊆) and (fin,=), every accepting
path in A is still an accepting path in A′, and if p is an initial path in A′ which
is not a path in A, then ⊥ ∈ fin(p). Since ∀F ∈ F ,⊥ 6∈ F , the path p is non

accepting in A′. Therefore, L(fin,⊆)A
A = L(fin,⊆)A′

A′ and L(fin,=)A
A = L(fin,=)A′

A′
and this concludes the proof.

Proposition 29 (Staiger [11]).
CDFA(fin,⊆) ⊆ CDFA(fin,=) and CFA(fin,⊆) ⊆ CFA(fin,=).

Proposition 30 (Staiger [11]).
FA(fin,u) ⊆ FA(fin,=) and DFA(fin,u) ⊆ DFA(fin,=).

Lemma 31. RAT ⊆ FA(fin,=).

Proof. We are going to show that FA(inf,u) ⊆ FA(fin,=), i.e., for any FA

A = (Σ,Q, T, q0,F) there exists a FA A′ such that L(inf,u)A
A = L(fin,=)A′

A′ . The
known fact that RAT = FA(inf,u) concludes the proof.

Let A′ = (Σ,Q ∪Q×Q,T ′, q0,F ′) where

T ′ = T ∪ {(p, a, (q, p)) : (p, a, q) ∈ T} ∪ {((p1, p2), a, q) : (p1, a, q) ∈ T, p2 ∈ Q}

and F ′ = {F r {p2} ∪ {(p1, p2)} : p1 ∈ Q,F ∈ P (Q) ,∃X ∈ F , p2 ∈ X}.
We prove that L(inf,u)A

A ⊆ L(fin,=)A′
A′ . Let x ∈ L(inf,u)A

A . There exists a path
p = (pi, xi, pi+1)i∈N in A, a state q ∈ Q and a set F ∈ F such that q ∈ F
and q = pi for in�nitely many i ∈ N. Let n > 0 be such that pn = q and let
p′ = (p′i, xi, p

′
i+1)i∈N be the initial path in A′ de�ned by ∀i 6= n+ 1, p′i = pi and

p′n+1 = (pn+1, q). As q 6∈ fin(p′), fin(p′) = (fin(p′)∩Q)r{q}∪{(pn+1, q)} ∈ F ′.
Hence, x ∈ L(fin,=)A′

A′ .

We now show that L(fin,=)A′
A′ ⊆ L(inf,u)A

A . Let x ∈ L(fin,=)A′
A′ . There exists

a path p = (pi, xi, pi+1)i∈N in A′, two states q1, q2 ∈ Q and a set F ∈ P (Q)
such that ∃X ∈ F with q2 ∈ X and fin(p) = F r {q2} ∪ {(q1, q2)}. Let p′ =
(p′i, xi, p

′
i+1)i∈N be the initial path in A de�ned by ∀i ∈ N, p′i = pi if pi ∈ Q,

p′i = ai with pi = (ai, bi) ∈ Q ×Q, otherwise. As (q1, q2) ∈ fin(p), q2 ∈ run(p)
but q2 6∈ fin(p), then q2 ∈ inf(p) ⊆ inf(p′). Hence, x ∈ L(inf,u)A

A . ut
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Lemma 32. DFA(fin,=) ⊆ RAT .

Proof. For any DFA A = (Σ,Q, T, q0,F), let AS = (Σ,Q, T, q0, {S}) for any set
S ⊆ Q. Then,

L(fin,=)
A =

⋃
S⊆Q,S′⊆Q,SrS′∈F

L(run,=)
AS

r L(inf,=)
AS′

∈ RAT .

ut

Corollary 33. FA(fin,=) ⊆ RAT .

Proof. Combine Lemmata 3 and 32. ut

Theorem 34. FA(fin,=) = RAT .

Proof. Combine Lemmata 31 and Corollary 33. ut

Proposition 35. a(a∗b)ω + b(a+ b)∗aω ∈ CDFA(fin,=)r (FRσ ∪GRδ ).

6 Conclusions

In this paper we have studied the expressivity power of acceptance condition for
�nite automata. Three new classes have been fully characterized. For a fourth
one, partial results are given. In particular, (ninf,u) provides four distinct new
classes of languages (see the diamond in the left part of Figure 2), all other
acceptance conditions considered tend to give (classes of) languages populating
known classes.

Remark that some well-known acceptance conditions like Rabin, Strett or
Parity conditions have not been taken in consideration in this work since it is
known that they are equivalent to Muller's condition.

A �rst research direction, of course, consists in completing the characterisa-
tion of (fin,=). The characterization of (fin,⊆) is still open.

A further interesting research direction consists in studying the closure prop-
erties of the above new classes of languages and see if they cram the known
classes or if they add new elements to Figure 2.
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