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Abstract. ν-CA are cellular automata which can have different local
rules at each site of their lattice. Indeed, the spatial distribution of local
rules completely characterizes ν-CA. In this paper, sets of distributions
sharing some interesting properties are associated with languages of bi-
infinite words. The complexity classes of these languages are investigated
providing an initial rough classification of ν-CA.

1 Introduction

Cellular automata (CA) are discrete dynamical systems consisting in an infinite
number of finite automata arranged on a regular lattice. All automata of the
lattice are identical and work synchronously. The new state of each automaton
is computed by a local rule on the basis of its current state and the one of a
fixed set of neighboring automata. This simple definition contrasts the huge num-
ber of different dynamical behaviors that made the model widely used in many
scientific disciplines for simulating phenomena characterized by the emergency
of complex behaviors from simple local interactions (particle reaction-diffusion,
pseudo-random number generation, cryptography, etc.), see for instance [4].

In many cases, the uniformity of the local rule is more a constraint than a
helping feature. Indeed, the uniformity constraint has been relaxed, for example,
for modeling cell colonies growth, fast pseudo-random number generation, and
VLSI circuit design and testing. This gave rise to new models, called non-uniform
cellular automata (ν-CA) or hybrid cellular automata (HCA), in which the local
rule of the finite automaton at a given site depends on its position. If the study
of dynamical behavior has just started up [3,6], applications and analysis of
structural properties have already produced a wide literature (see [10,11]).

In this paper, we adopt a formal languages complexity point of view. Consider
a finite set R of local rules defined over the same finite state set A. A (one-
dimensional) ν-CA is essentially defined by the distribution or assignment of local
? Corresponding author.
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rules in R to sites of the lattice. Whenever R contains a single rule, the standard
cellular automata model is obtained. Therefore, each ν-CA can be associated
with a unique bi-infinite word over R. Consider now the class C of ν-CA defined
over R and sharing a certain property P (for example surjectivity, injectivity,
etc.). Clearly, C can be identified as a set of bi-infinite words contained in ωRω. In
this paper, we analyze the language complexity of C w.r.t. several well-known
properties, namely number-conservation, surjectivity, injectivity, sensitivity to
initial conditions and equicontinuity. We have proved that C is a subshift of
finite type and sofic, respectively, for the first two properties, while it is ζ-
rational for the last three properties in the list. Remark that for sensitivity
to initial conditions and equicontinuity, the results are proved when R contains
only linear local rules (i.e. local rules satisfying a certain additivity property)
with radius 1. The general case seems very complicated and it is still open.

In order to prove the main theorems, some auxiliary results, notions and con-
structions have been introduced (variants of De Bruijn graphs and their prod-
ucts, etc.). We believe that they can be interesting in their own to prove further
properties.

In the paper, for lack of space most of proofs have been removed. They will
appear in the long version of the paper. They can also be found at [5].

2 Notations and Definitions

For all i, j ∈ Z with i ≤ j (resp. i < j), let [i, j] = {i, i+ 1, . . . , j} (resp.
[i, j) = {i, . . . , j − 1}).

Configurations and non-uniform automata. Let A be a finite alphabet.
A configuration or bi-infinite word is a function from Z to A. For any configura-
tion x and any integer i, xi denotes the element of x at index i. The configuration
set AZ is usually equipped with the metric d defined as follows

∀x, y ∈ AZ, d(x, y) = 2−n, where n = min {i ≥ 0 : xi 6= yi or x−i 6= y−i} .

The metric d induces the Cantor topology on AZ. For any pair i, j ∈ Z, with
i ≤ j, and any configuration x ∈ AZ we denote by x[i,j] the word w = xi . . . xj ∈
Aj−i+1, i.e., the portion of x inside [i, j], and we say that the word w appears
in x. Similarly, u[i,j] = ui . . . uj is the portion of a word u ∈ Al inside [i, j] (here,
i, j ∈ [0, l)). In both the previous notations, [i, j] can be replaced by [i, j) with
the obvious meaning. For any word u ∈ A∗, |u| denotes its length. With 0 ∈ A,
a configuration x is said to be finite if the number of positions i at which xi 6= 0
is finite.

A local rule of radius r ∈ N on the alphabet A is a map from A2r+1 to
A. Local rules are crucial in both the definitions of cellular automata and non-
uniform cellular automata. A function F : AZ → AZ is a cellular automaton
(CA) if there exist r ∈ N and a local rule f of radius r such that

∀x ∈ AZ,∀i ∈ Z, F (x)i = f(x[i−r,i+r]) .
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The shift map σ : AZ → AZ defined as σ(x)i = xi+1,∀x ∈ AZ,∀i ∈ Z is one
among the simplest examples of CA.

Let R be a set of local rules on A. A distribution on R is a function θ from
Z to R, i.e., a bi-infinite word on R. Denote by Θ the set of all distributions on
R. A non-uniform cellular automaton (ν-CA) is a triple (A, θ, (ri)i∈N) where A
is an alphabet, θ a distribution on the set of all possible local rules on A and ri
is the radius of θi. A ν-CA defines a global transition function Hθ : A

Z → AZ by

∀x ∈ AZ,∀i ∈ Z, Hθ(x)i = θi(x[i−ri,i+ri]) .

In the sequel, when no misunderstanding is possible, we will identify a ν-CA
with its global transition function. From [3], recall that a function H : AZ → AZ

is the global transition function of a ν-CA if and only if it is continuous. In this
paper, we will consider distributions on a finite set of local rules. In that case,
one can assume without loss of generality that there exists an integer r such that
all the rules in R have the same radius r. ν-CA constructed on such finite sets
of local rules are called rν-CA (of radius r).

A finite distribution is a word ψ ∈ Rn, i.e., a sequence of n rules of R. Each
finite distribution ψ defines a function hψ : An+2r → An by

∀u ∈ An+2r,∀i ∈ [0, n), hψ(u)i = ψi(u[i,i+2r]) .

These functions are called partial transition functions since they express the
behavior of a ν-CA on a finite set of sites: if θ is a distribution and i ≤ j are
integers, then

∀x ∈ AZ, Hθ(x)[i,j] = hθ[i,j](x[i−r,j+r]) .

Languages. Recall that a language is any set L ⊆ A∗ and a finite state
automaton is a tuple A = (Q,A, T, I, F ), where Q is a finite set of states, A is
the alphabet, T ⊆ Q × A × Q is the set of transitions, and I, F ⊆ Q are the
sets of initial and final states, respectively. A path p in A is a finite sequence
q0

a0−→ q1
a1−→ . . .

an−1−−−→ qn visiting the states q0, . . . , qn and with label a0 . . . an−1
such that (qi, ai, qi+1) ∈ T for each i ∈ [0, n). A path is successful if q0 ∈ I and
qn ∈ F . The language L(A) of an automaton A is the set of the labels of all
successful paths in A. A language L is rational if there exists a finite automaton
A such that L = L(A).

A bi-infinite language is any subset of AZ. Let A = (Q,A, T, I, F ) be a finite
automaton. A bi-infinite path p in A is a bi-infinite sequence . . .

a−2−−→ q−1
a−1−−→

q0
a0−→ q1

a1−→ . . . such that (qi, ai, qi+1) ∈ T for each i ∈ Z. The bi-infinite word
. . . a−1a0a1 . . . is the label of the bi-infinite path p. A bi-infinite path is successful
if the sets {i ∈ N : q−i ∈ I} and {i ∈ N : qi ∈ F} are infinite. By similarity
with the uniform case, we call this condition the Büchi acceptance condition.
The bi-infinite language Lζ(A) of the automaton is the set of the labels of all
successful bi-infinite paths in A. A bi-infinite language L is ζ-rational if there
exists a finite automaton A such that L = Lζ(A).

A bi-infinite language X is a subshift if X is (topologically) closed and σ–
invariant, i.e., σ(X) = X. For any F ⊆ A∗ let XF be the bi-infinite language
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of all bi-infinite words x such that no word u ∈ F appears in x. A bi-infinite
language X is a subshift iff X = XF for some F ⊆ A∗. The set F is a set of
forbidden words for X. A subshift X is said to be a subshift of finite type (resp.
sofic) iff X = XF for some finite (resp. rational) F .

For a more in deep introduction to the theory of formal languages, the reader
can refer to [13] for rational languages,[16] for subshifts and [21,22] for ζ-rational
languages.

Properties of non-uniform CA. A ν-CA is sujective (resp. injective) iff
its defining map H : AZ → AZ is surjective (resp. injective). A ν-CA H is
equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ AZ, d(y, x) < δ
implies that ∀n ∈ N, d(Hn(y), Hn(x)) < ε. A ν-CA H is sensitive to the initial
conditions (or simply sensitive) if there exists a constant ε > 0 such that for any
element x ∈ AZ and any δ > 0 there is a point y ∈ AZ such that d(y, x) < δ and
d(Hn(y), Hn(x)) > ε for some n ∈ N.

Given a finite set of local rules R, a predicate P over distributions is a func-
tion from Θ to {⊥,>}, where ⊥,> are the false and true symbols, respectively.
In the sequel, we are interested in the complexity of the following language of
bi-infinite words

LP = {θ ∈ Θ : P (θ) = >} .

3 Number Conservation

In physics, a lot of transformations are conservative: a certain quantity remains
invariant during a whole experiment. Think to conservation laws of mass and
energy for example. Both CA and ν-CA are used to represent phenomena from
physics and it is therefore interesting to decide when they represent a conser-
vative transformation. The case of uniform CA has been treated in [8], here we
generalize those results to ν-CA. Finally, we prove that the language of the set
of distributions representing conservative rν-CA is a subshift of finite type.

In this section, without loss of generality, A is {0, 1, . . . , s− 1}. Indeed, given
any alphabet A, let φ : A→ N be a morphism such that 0 ∈ φ(A), then all the
following results will hold by replacing A by φ(A). Denote by 0 the configuration
in which every element is 0. For all configuration x ∈ AZ, define the partial charge
of x between the index −n and n as µn(x) =

∑n
i=−n xi and the global charge of

x as µ(x) = limn→∞ µn(x). Clearly µ(x) =∞, if x is not a finite configuration.

Definition 1 (FNC). A ν-CA H is number-conserving on finite configurations
(FNC) if for all finite configurations x, µ(x) = µ(H(x)).

Remark that if H is FNC then H(0) = 0 and, for any finite configuration x,
H(x) is a finite configuration.

Definition 2 (NC). A ν-CA H is number-conserving (NC) if both the follow-
ing conditions hold: 1) H(0) = 0, 2) ∀x ∈ AZ r {0}, lim

n→∞
µn(H(x))
µn(x)

= 1.
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Remark that if x 6= 0 the fraction µn(H(x))
µn(x)

is well-defined for n sufficiently large.
In the general case, a ν-CA can be FNC without being NC. Indeed, consider

the following example.

Example 3. Let H : AZ → AZ be the ν-CA such that for all configuration x, for
all integer i, H(x)2i = xi and H(x)2i+1 = 0. Then H is FNC but not NC. The
configuration 1 in which every element is 1 verifies lim

n→∞
µn(H(1))
µn(1)

= 1
2 .

On the other hand, the following proposition shows that is not possible in the
case of rν-CA.

Proposition 4. Any rν-CA of radius r is NC if and only if it is FNC.

Theorem 5. Let R be a finite set of local rules. Consider the predicate P (θ) =
"Hθ is number conserving" over distributions θ ∈ Θ on R. Then, LP is a sub-
shift of finite type.

Proof. We are going to prove that LP = XF where F is the following set{
ψ ∈ R2r+1 : ∃u ∈ A2r+1, ψ2r(u) 6= u0 +

∑2r−1
i=0 ψi+1(0

2r−iu[1,i+1])− ψi(02r−iu[0,i])
}
.

Assume that θ ∈ LP and let j ∈ Z. For any u ∈ A2r+1, let x, y be two finite
configurations such that x[j−r,j+r] = u and y[j−r,j+r] = 0u[1,2r]. As Hθ is NC,
by Proposition 4, conditions µ(H(x)) = µ(x) and µ(H(y)) = µ(y) are true. So,∑2r

i=0 θj+i−2r(0
2r−iu[0,i]) +

∑2r
i=1 θj+i(u[i,2r]0

i) =
∑2r
i=0 ui , (1)∑2r

i=1 θj+i−2r(0
2r−i+1u[1,i]) +

∑2r
i=1 θj+i(u[i,2r]0

i) =
∑2r
i=1 ui . (2)

Subtracting (2) from (1), we obtain θj(u) = u0 +
∑2r
i=1 θj+i−2r(0

2r−i+1u[1,i])−∑2r−1
i=0 θj+i−2r(0

2r−iu[0,i]) which can be rewritten as

θj(u) = u0 +
∑2r−1
i=0 θj+i+1−2r(0

2r−iu[1,i+1])− θj+i−2r(0
2r−iu[0,i]) .

Thus, for all j ∈ Z, θ[j−2r,j] /∈ F , meaning that θ ∈ XF . So, LP ⊆ XF
Suppose now that θ ∈ XF , i.e., for all integer j, θ[j−2r,j] /∈ F . Taking u =

02r+1, for all j we have θj+2r(0
2r+1) = 0 +

∑2r−1
i=0 θj+i+1(0

2r+1) − θj+i(02r+1)
which leads to θj(02r+1) = 0. For any finite configuration x, µ(Hθ(x)) =

=
∑
j∈ZHθ(x)j =

∑
j∈Z θj(x[j−r,j+r])

=
∑
j∈Z
(
xj +

∑2r−1
i=0 θj+i+1−2r(0

2r−ix[j−r+1,j−r+i+1])− θj+i−2r(0
2r−ix[j−r,j−r+i])

)
=
∑
j∈Z xj +

∑2r−1
i=0

(∑
j∈Z θj+i+1−2r(0

2r−ix[j−r+1,j−r+i+1])

−
∑
j∈Z θj+i−2r(0

2r−ix[j−r,j−r+i])
)

Since
∑
j∈Z θj+i+1−2r(0

2r−ix[j−r+1,j−r+i+1]) =
∑
j∈Z θj+i−2r(0

2r−ix[j−r,j−r+i]),
we obtain µ(Hθ(x)) =

∑
j∈ZHθ(x)j =

∑
j∈Z xj = µ(x). Thus, Hθ is FNC and,

by Proposition 4, NC. Hence, θ ∈ LP . So, XF ⊆ LP . ut
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4 Surjectivity and Injectivity

In standard CA setting, injectivity is a fundamental property which is equivalent
to reversibility [12]. It is well-known that it is decidable for one-dimensional CA
and undecidable in higher dimensions [1,14]. Surjectivity is also a dimension
sensitive property (i.e. decidable in dimension one and undecidable for higher
dimensions) and it is a necessary condition for many types of chaotic behaviors.

In this paper, we prove that the language associated with distributions in-
ducing surjective (resp. injective) ν-CA is sofic (resp. ζ-rational). Remark that
constructions for surjectivity and injectivity are noticeably different, contrary to
what happens for the classical CA when dealing with the decidability of those
properties. Indeed in the uniform case, thanks to the Garden of Eden theo-
rem [19,20], one construction is sufficient [23]. However the Garden of Eden the-
orem does not hold on ν-CA [3], therefore distinct constructions are necessary.

Before proceeding to the main results of the section we need some technical
lemma and new constructions. We believe that these constructions, inspired
by [23], might be of interest in their own and could be of help for proving new
results.

Lemma 6. For any fixed θ ∈ Θ, the ν-CA Hθ is surjective if and only if hθ[i,j]
is surjective for all integers i, j with i ≤ j.

Definition 7. Let R be a finite set of rules of radius r. The De Bruijn graph
of R is the labeled multi-edge graph G = (V,E), where V = A2r and edges in
E are all the pairs (aw,wb) with label (f, f(awb)), obtained varying a, b ∈ A,
w ∈ A2r−1, and f ∈ R.

Example 8. Let A = {0, 1} and consider the set R = {⊕, id} where ⊕ and id
are the rules of radius 1 defined as ∀x, y, z ∈ A, ⊕(x, y, z) = (x+ z) mod 2, and
id(x, y, z) = y. The De Bruijn graph of R is the graph G in Figure 1.

Given two alphabets A,B and a finite word w = (a0, b0) . . . (an, bn) ∈ (A ×
B)∗, the words a = Pr1(w), b = Pr2(w), are the projections of w on A and B,
respectively. By abuse of notation, we will write (a, b) ∈ (A × B)∗ instead of
w ∈ (A×B)∗, a = Pr1(w), b = Pr2(w). The same holds for bi-infinite words.

Lemma 9. Let G be the De Bruijn graph of a finite set of rules R. Consider
G as an automaton where all states are both initial and final. Then, L(G) =
{(ψ, u) ∈ (R×A)∗ : h−1ψ (u) 6= ∅}.

Theorem 10. Let R be a finite set of local rules. Consider the predicate P (θ) =
"Hθ is surjective" over distributions θ ∈ Θ on R. Then LP is a sofic subshift.

Proof. Set F = {ψ ∈ R∗ : hψ is not surjective}. By Lemma 6, LP is just the
subshift XF . Consider the De Bruijn graph G of R as an automaton A where
all states are both initial and final. By Lemma 9, L(A) = {(ψ, u) ∈ (R× A)∗ :
h−1ψ (u) 6= ∅}. Build now the automaton Ac that recognizes Lc = {(ψ, u) ∈
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00

01

11

10

(id, 0), (⊕, 1)

(id, 0), (⊕, 0)

(id, 1), (⊕, 1)

(id, 1), (⊕, 0)

(id, 1), (⊕, 1)

(id, 1), (⊕, 0)

(id, 0), (⊕, 1)

(id, 0), (⊕, 0)

Fig. 1. De Bruijn graph of R = {⊕, id} (every printed edge represents two edges of
the graph, labels are concatenated)

(R× A)∗ : h−1ψ (u) = ∅}. Remove from Ac all second components of edge labels
and let Ã be the obtained automaton. A word ψ ∈ R∗ is recognized by Ã if and
only if there exists u ∈ A∗ such that (ψ, u) ∈ Lc, i.e., iff hψ is not surjective.
Thus, L(Ã) = F and LP = XF is a sofic subshift. ut

The proof of Theorem 10 provides an algorithm to build an automaton that
recognizes the language F of the forbidden words for the sofic subshift LP of
distributions on a given finite set of rules R. It consists of the following steps:
1) Build the De Bruijn graph G of R; 2) Consider G as an automaton whose all
states are both initial and final and determinize it to obtain the automaton A;
3) Complete A if necessary and make all final states non-final and vice versa to
obtain Ac; 4) Delete all second components of edge labels of Ac to obtain Ã.

Example 11. With the set R from the Example 8 as input, this algorithm gives
the automaton in Figure 2. Thus, we deduce that F = R∗id ⊕ (⊕⊕)∗idR∗ and
LP is the well-known even subshift.

⊕

id

id

⊕

⊕

id

id,⊕

Fig. 2. The automaton Ã obtained from the set R = {id,⊕}
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In the final part of this section, we will use product graphs to study the
injectivity property. Those graphs were first defined to deal with the decidability
of the ambiguity of finite automata in [2].

Definition 12. Let R be a finite set of rules of radius r. Consider the De Bruijn
graph G = (V,E) of R. The product graph P of R is the labeled graph (V ×V,W )
where ((u, u′), (v, v′)) ∈W with label (f, a) ∈ R×A if and only if (u, v), (u′, v′) ∈
E both with the same label (f, a).

Remark 13. Any bi-infinite path in P with label (θi, zi)i∈Z ∈ (R × A)Z corre-
sponds to two bi-infinite paths in G in which the visited vertexes define two
configurations x and y such that Hθ(x) = Hθ(y) = z.

We call quick-fail acceptance condition for bi-infinite paths in a finite automa-
ton A, the acceptance condition which accepts bi-infinite paths visiting at least
once a final state. The set of labels of all such successful bi-infinite paths is said
to be the language recognized by A under the quick-fail acceptance condition.
We chose this terminology since the words belonging to the language recognized
by A fail to induce injective ν-CA (Theorem 15).

Lemma 14. Let A = (Q,A, T, I, F ) be a finite automaton. The bi-infinite lan-
guage L recognized by A with the quick-fail acceptance condition is ζ-rational.

Theorem 15. Let R be a finite set of local rules. Consider the predicate P (θ) =
"Hθ is injective" over distributions θ ∈ Θ on R. Then, LP is ζ-rational.

Proof. Let P be the product graph of R. Consider now P as a finite automaton
where all the states are initial and the final states are the pairs (u, u′) with
u 6= u′. Remove from P all second components of edge labels and let P̃ be the
obtained automaton. Then, the language recognized by P̃ with the quick-fail
acceptance condition is LcP . By Lemma 14, LcP is ζ-rational and, therefore, LP
is ζ-rational too. ut

5 Equicontinuity and Sensitivity for Linear rν-CA

Sensitivity to initial conditions is a widely known property indicating a possible
chaotic behavior of a dynamical system and it is often popularized under the
metaphor of butterfly effect [7]. At the opposite equicontinuity is an element of
stability of a system. In this section, we are going to study these properties in
the context of ν-CA.

In the uniform case, equicontinuity points are characterized by blocking
words [15]. Some extensions have been made in the case of ν-CA [3]. In general,
the problem of establishing if a CA admits a blocking word is undecidable [9]
but, in the case of linear CA, the problem turns out to be decidable [18]. More-
over, the dichotomy theorem between sensitivity and presence of equicontinuity
points [15] is not ensured in the context of ν-CA. Therefore, in this preliminary



Complexity of Non-Uniform Cellular Automata 9

study of the complexity of distributions, we preferred to focus on a sub-class in
which the dichotomy theorem still holds, namely linear ν-CA (Proposition 17).

In order to consider linear ν-CA, the alphabet A is endowed with a sum (+)
and a product (·) operation that make it a commutative ring and we denote by
0 and 1 the neutral elements of + and ·, respectively. Of course, An and AZ

are also commutative rings where sum and product are defined component-wise
and, with an abuse of notation, they will be denoted by the the same symbols.

Definition 16. A local rule f of radius r is said to be linear if and only if there
exists a word λ ∈ A2r+1 such that ∀u ∈ A2r+1, f(u) =

∑2r
i=0 λi · ui. A ν-CA H

is said to be linear if it is defined by a distribution of linear local rules.

Proposition 17. Any linear ν-CA H is either sensitive or equicontinuous.

From now on we consider finite sets R in which all rules are linear of radius r.

Definition 18 (Wall). A right-wall is any element ψ ∈ R∗ of length n ≥ r
such that, for all word v ∈ Ar, the sequence uψ(v) : N→ An recursively defined
by uψ(v)0 = 0n, uψ(v)1 = hψ(0

ruψ(v)0v), and uψ(v)k+1 = hψ(0
ruψ(v)k0

r) for
k > 1, verifies ∀k ∈ N, (uψ(v)k)[0,r−1] = 0r. Left-walls are defined similarly.

Roughly speaking, the sequence uψ(v) gives the dynamical evolution of the
function hψ when the leftmost and rightmost inputs are fixed.

Lemma 19. For any right-wall ψ ∈ Rn and any f ∈ R, both fψ and ψf are
right-walls. Furthermore, if ψ ∈ R∗ is a right-wall, then ψ′ψψ′′ is a right-wall
for any ψ′, ψ′′ ∈ R∗. Similar results hold for left-walls.

Proposition 20. For any θ ∈ Θ, Hθ is sensitive if and only if one of the
two following conditions holds: 1) There exists n ∈ N such that for all integer
m ≥ n + r, θ[n+1,m] is not a right-wall; 2) There exists n ∈ N such that for all
integer m ≤ −n− r, θ[m,−n−1] is not a left-wall.

The characterization of walls for the general case is still under investigation.
However, remark that, given any set of linear local rules with radius r ≥ 1 on
a ring (A,+, ·), it is possible to transform it in a set of linear local rules with
radius 1 on a non-commutative ring. In this case, Lemma 19 and Proposition 20
remain true whereas the characterisation of walls of the Proposition 21 does not
hold anymore. For these reasons, in the remaining part of this section, we will
assume that R is a finite set of linear rules of radius 1 (over a commutative
ring). In this case, any rule f ∈ R will be expressed in the following form:
∀a, b, c ∈ A, f(a, b, c) = λ−f · a+ λ̃f · b+ λ+f · c for some λ−f , λ̃f , λ

+
f ∈ A.

Proposition 21. A finite distribution ψ ∈ Rn is a right-wall (resp. a left-wall),
if and only if

∏n−1
i=0 λ

+
ψi

= 0 (resp.
∏n−1
i=0 λ

−
ψi

= 0).

For any set R of linear rules of radius r = 1, an automaton A = (Q,Z, T, I, F )
recognizing walls can be constructed. The alphabet Z is R, the set of states Q
is {−,+}×A, I = {(−, 0)}, F = {(+, 0)} and the transition rule T is as follows
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1. ((−, a), f, (−, λ−f · a)), ∀a ∈ Ar {0},∀f ∈ R (minimal left-wall detection).
2. ((−, 0), f, (−, 1)), ∀f ∈ R (end of detection).
3. ((−, 1), f, (−, 1)), ∀f ∈ R (waiting).
4. ((−, 1), f, (+, 1)), ∀f ∈ R (transition from left part to right part).
5. ((+, 1), f, (+, 1)), ∀f ∈ R (waiting).
6. ((+, 1), f, (+, 0)), ∀f ∈ R (beginning of detection).
7. ((+, λ+f · a), f, (+, a)), ∀a ∈ Ar {0},∀f ∈ R (minimal right-wall detection).

Practically speaking, A consists of two components, the left and the right
part, with a non-deterministic transition from left to right. Each component has
two special states: the first one (the state (−, 1) for the left part or (+, 1) for
the right part) on which A loops waiting for the detection of a minimal (wrt the
length) wall, the second one on which A starts ((+, 0) for the right part) or ends
((−, 0) for the left part) the detection of such a wall. The graph structure of A
is schematized in Figure 3.

−, 1

Minimal left-wall
detection

−, 0 +, 0

+, 1

Minimal right-wall
detection

Waiting Transition form left part
to right part

End of
detection

Waiting

Beginning of
detection

Fig. 3. Conceptual structure of the automaton A for walls detection

Theorem 22. Let R be a finite set of linear local rules of radius r = 1. Consider
the predicates P1(θ) = "Hθ is equicontinuous" and P2(θ) = "Hθ is sensitive"
over distributions θ ∈ Θ on R. Then, both LP1

and LP2
are ζ-rational.

Proof. We are going to prove that Lζ(A) = LP1
where A is the automaton

above introduced for the set R with Büchi acceptance condition. This permits
to immediately state that LP1 is ζ-rational, and that, by Proposition 17, LP2 is
ζ-rational too.

Let θ ∈ Lζ(A). We show that for any n ∈ N, there exists m ≤ −n − 1 such

that θ[m,−n−1] is a left-wall. Let n ∈ N. There is a successful path p = . . .
θ−1−−→

(s0, a0)
θ0−→ (s1, a1) . . . in A and integers i, j with i < j < −n such that (si, ai) =

(sj , aj) = (−, 0) are two successive initial states. If m ∈ (i, j) is the greatest
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integer with (sm, am) = (−, 1), the finite path (sm, am)
θm−−→ (sm+1, am+1)

θm+1−−−→
. . .

θj−1−−−→ (sj , aj) is obtained by transitions of A from 1). Then, 0 = aj =

am ·
∏j−1
l=m λ

−
θl
, and, by Proposition 21, θ[m,j−1] is a left-wall. By Lemma 19,

θ[m,−n−1] is a left-wall too. Similarly, it holds that for any n ∈ N, there exists
m ≥ n + 1 such that θ[n+1,m] is a right-wall. Hence, by Propositions 20, Hθ is
equicontinuous, i.e., θ ∈ LP1 .

Let θ ∈ LP1
. By Proposition 20, the sequence (ik)k∈Z such that i0 = 0

and ∀k ≤ 0, ik−1 = max{j ∈ Z : j < ik and θ[j,ik−2] is a left-wall}, and ∀k ≥
0, ik+1 = min{j ∈ Z : j > ik and θ[ik+2,j] is a right-wall} is well-defined. For
any k < 0, θ[ik,ik+1−2] is a left-wall and then

∏ik+1−2
j=ik

λ−θj = 0. So, for any k < 0,

setting n = min{l ∈ Z :
∏l
j=ik

λ−θj = 0}, pk = (−, 1)
θik−−→ (−, λ−θik )

θik+1−−−→ . . .
θn−→

(−,
∏n
j=ik

λ−θj )
θn+1−−−→ (−, 1) . . .

θik+1−1

−−−−−→ (−, 1) is a finite path in A from (−, 1) to
(−, 1) with label θ[ik,ik+1−1] which visits an initial state. Similarly, for any k ≥ 0,
there exists a finite path pk in A from (+, 1) to (+, 1) with label θ[ik+1,ik+1]

which visits a final state. Then, p = (pk)k∈N is a successful bi-infinite path in A
with label θ. Hence, θ ∈ Lζ(A). ut

6 Conclusions

This paper investigates complexity classes associated to languages characterizing
distributions of local rules in ν-CA. Several interesting research directions should
be explored.

First, we have proved that the language associated with distributions of
equicontinuous or sensitive ν-CA is ζ-rational for the class of linear ν-CA with
radius 1. It would be interesting to extend this result to sets of local rule distribu-
tions with higher radius. This seems quite difficult because this problem reduces
to the study of the equicontinuity of ν-CA of radius 1 on a non-commutative
ring, loosing in this way “handy” results like Proposition 21.

Second, there is no complexity gap between sets of distributions which give
injective ν-CA and sensitive (plus the previously mentioned constraints). This
is contrary to intuition since injectivity is a property of the global transition
function whereas sensitivity is a property of its iterates. Indeed, we suspect that
the characterization of distributions giving injective ν-CA could be strengthened
to deterministic ζ-rational languages.

As a third research direction, it would be interesting to study which dynam-
ical property of ν-CA is associated with languages of complexity higher than
ζ-rational. We believe that sensitivity to initial conditions (with no further con-
straints) is a good candidate.

A further research direction would diverge from ν-CA domain and investi-
gate the topological structure of languages given by the quick-fail acceptance
condition for finite automata in the vein of [17]. The authors have just started
investigating this last subject.



12 A. Dennunzio, E. Formenti, and J. Provillard

References

1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of
parallel maps for tessellation structures. J. Comput. Syst. Sci. 6(5), 448–464 (1972)

2. Berstel, J., Perrin, D.: Theory of Codes. Academic Press (1985)
3. Cattaneo, G., Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular

automata. In: Language and Automata Theory and Applications, LATA 2009.
Lecture Notes in Computer Science, vol. 5457, pp. 302–313 (2009)

4. Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular
Automata Theory and Applications, vol. 1. IEEE Press (1997)

5. Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language com-
plexity and non-uniform cellular automata. ArXiv e-prints (2011)

6. Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: classes,
dynamics, and decidability. ArXiv e-prints (2011)

7. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd Edition. West-
view Pr (Short Disc) (2003)

8. Durand, B., Formenti, E., Róka, Z.: Number-conserving cellular automata i: de-
cidability. Theoretical Computer Science 299(1-3), 523–535 (2003)

9. Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity clas-
sification for cellular automata. DMTCS AB, 117–128 (2003)

10. Fúster-Sabater, A., Caballero-Gil, P., Pazo-Robles, M.: Application of linear hy-
brid cellular automata to stream ciphers. In: Computer Aided Systems Theory –
EUROCAST 2007. LNCS, vol. 4739, pp. 564–571. Springer (2007)

11. Gerlee, P., Anderson, A.R.A.: Stability analysis of a hybrid cellular automaton
model of cell colony growth. Phys. Rev. E 75, 051911 (2007)

12. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Theory of computing systems 3(4), 320–375 (1969)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley (2006)

14. Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of
Computer and System Sciences 48, 149–182 (1994)

15. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theory and Dynamical Systems 17(2), 417–433 (1997)

16. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cam-
bridge University Press, New York, NY, USA (1995)

17. Litovsky, I., Staiger, L.: Finite acceptance of infinite words. Theoretical Computer
Science 174, 1–21 (1997)

18. Manzini, G., Margara, L.: A complete and efficiently computable topological clas-
sification of d-dimensional linear cellular automata over Zm. Theoretical computer
science 221(1-2), 157–177 (1999)

19. Moore, E.F.: Machine models of self-reproduction. Proceedings of symposia in
applied mathematics 14, 17–33 (1962)

20. Myhill, J.: The converse of moore’s garden-of-eden theorem. Proceedings of the
american mathematical society 14(4), 685–686 (1963)

21. Nivat, M., Perrin, D.: Ensembles reconnaissables de mots biinfinis. In: STOC. pp.
47–59. ACM (1982)

22. Perrin, D., Pin, J.E.: Infinite Words, Pure and Applied Mathematics, vol. 141.
Elsevier (2004)

23. Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5,
19–30 (1991)


	Computational Complexity of Rule Distributions of Non-Uniform Cellular Automata

