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Abstract

This paper is a comment on the survey paper by Biau and Scornet
(2016) about random forests. We focus on the problem of quantifying
the impact of each ingredient of random forests on their performance.
We show that such a quantification is possible for a simple pure for-
est, leading to conclusions that could apply more generally. Then, we
consider “hold-out” random forests, which are a good middle point
between “toy” pure forests and Breiman’s original random forests.

We would like to thank G. Biau and E. Scornet for their clear and
thought-provoking survey (Biau and Scornet, 2016). It shows that for under-
standing better random forests mechanisms, we must go beyond consistency
results and quantify the impact of each ingredient of random forests on their
performance.

In this comment, we prove that such a quantification is possible for a
simple pure forest, leading to conclusions that could apply more generally
(Section 1). Then, we consider in Section 2 “hold-out” random forests,
which are a good middle point between “toy” pure forests and Breiman’s
original random forests.
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1 Aggregation, two kinds of randomization and re-
sampling

As clearly shown by Biau and Scornet (2016), two key ingredients of random
forests are the aggregation process (several trees are combined to get the
final estimator) and the diversity of the trees that are aggregated. We can
distinguish two sources of diversity:

• randomization of the partition Pfinal,

• randomization of the labels, that is, of the predicted value in each cell
of Pfinal, given Pfinal.

In Breiman’s random forests, resampling acts on the two kinds of random-
ization, while the choice of Mtry at each node of each tree acts on the
randomization of the partitions only. In purely random forests, partitions
are built independently from the data, so resampling (if any) only acts on
the randomization of the labels. Therefore, the role of each kind of ran-
domization is easier to understand, and to quantify separately, for purely
random forests. In this section, we propose to do so for the one-dimensional
toy forest introduced by Arlot and Genuer (2014, Section 4).

1.1 Toy forest

We first define the toy forest model, assuming that X = [0, 1]. Let 2 ≤ k ≤
a ≤ n be some integers. The partition associated to each tree is given by[

0,
1− T
k

)
,

[
1− T
k

,
2− T
k

)
, . . . ,

[
k − 1− T

k
,
k − T
k

)
,

[
k − T
k

, 1

)
with T ∼ U([0, 1]). Then, for each tree, a subsample (Xi, Yi)i∈I of size a is
chosen (uniformly over the subsamples of size a), independently from T . The
tree estimator is defined as usual: the predicted value at x is the average
of the Yi such that Xi belongs to An(x;T ), the cell of the partition that
contains x. Finally, the forest estimator is obtained by averaging M ≥ 1
trees, where the trees are independent conditionally to Dn.

Assume that Xi ∼ U([0, 1]), the (Xi, Yi) are independent with the same
distribution, the noise-level E[(Y − m(X))2 |X] = σ2 is constant, m is of
class C3, n � 1 and a � k log(n). Let x ∈ [k−1, 1 − k−1] (to avoid border
effects, see Arlot and Genuer (2014) for details) be fixed. Then, Table 1
provides the order of magnitude of

E
[(
mtoy

M,n(x)−m(x)
)2]

,
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Table 1: Order of magnitude of the quadratic risk at x (approximation er-
ror + estimation error) for the one-dimensional toy random forest combined
with subsampling without replacement; a denotes the subsample size, 1/k
is the size of each cell in a partition, see Appendix B for precise assump-
tions and approximations. The impact of subsampling can be quantified by
comparing a = n with a < n in each formula.

Single tree Infinite forest

No randomization
of partitions

c1(m,x)

k2
+
σ2k

a

c1(m,x)

k2
+
σ2k

n

Randomization
of partitions

c1(m,x)

k2
+
σ2k

a

c2(m,x)

k4
+

2σ2k

3n

where c1(m,x) =
m′(x)2

12
and c2(m,x) =

m′′(x)2

144
.

the quadratic risk at x of a toy forest mtoy
M,n with M trees, in various situa-

tions: with or without aggregation (M = +∞ or M = 1), with or without
randomization of the partitions (we remove randomization of partitions by
putting T = 0 for all trees). Subsampling can also be removed by taking
a = n in all formulas. Note that in Table 1, the risk is written as the sum of
an approximation error and an estimation error, see Appendix A. The main
lines of the proof are given in Appendix B.

Table 1 allows to quantify the impact of aggregation, randomization of
the partitions, randomization of the labels—and their combinations—on the
performance of toy forests:

• aggregation: comparing the two columns of Table 1 shows that aggre-
gation always improve the performance (which is true for any forest
model, by Jensen’s inequality). The improvement can be huge: when
partitions and labels are randomized, a� n and k � 1, both approx-
imation and estimation errors decrease by an order of magnitude.

• randomization of the partitions: comparing the two lines of Table 1
shows that randomizing the partitions strongly improves the perfor-
mance of the infinite forest (there is no change for a single tree, of
course). The approximation error decreases by an order of magnitude,
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as previously showed by Arlot and Genuer (2014). The estimation
error also decreases—as showed by Genuer (2012) for another pure
forest—, but by a factor 3/2 only.

• randomization of the labels: comparing a = n with a � n in the for-
mulas of Table 1 shows the influence of subsampling, which is the only
randomization mechanism for the labels. Single trees perform worse
when a < n (as expected since the sample size is lowered). The per-
formance of infinite forests does not change with subsampling, which
might seem a bit surprising given several results mentioned by Biau
and Scornet (2016). This phenomenon corresponds to the fact that
subagging does not improve a stable estimator (Bühlmann and Yu,
2002), and that a regular histogram is stable. Section 1.2 below ex-
plains why there is no contradiction with the random forests literature.

1.2 Discussion

Section 1.1 sheds some light on previous theoretical results on random
forests, and suggests a few conjectures which deserve to be investigated.

Parametrization of the trees. The end of Section 3.1 of Biau and Scor-
net’s survey might seem contradictory with the above results for the toy
forest. According to most papers in the literature, “random forests reduce
the estimation error of a single tree, while maintaining the same approxi-
mation error”. Moreover, an infinite forest can be consistent even when a
single tree (grown with a sample of size n) is not. Table 1 precisely shows
the opposite situation: the estimation error is almost the same for a single
tree and for an infinite forest, while the approximation error is dramatically
smaller for an infinite forest. In addition, when an infinite forest is con-
sistent, 1 � k � n hence a single tree trained with a = n points is also
consistent.

The point is that these results and ours consider different parametriza-
tions of the trees. In Section 1.1, trees are parametrized by the number
of leaves k + 1; so, when comparing a tree with a forest, we think fair to
compare (i) a tree of k + 1 leaves trained with n data points, with (ii) a
forest where each tree has k + 1 leaves and is trained with a data points.
In the literature, trees are often parametrized by the number nodesize of
data points per cell. Then, comparisons are done between (i) a tree of
≈ n/nodesize leaves trained with n data points, and (ii) a forest where
each tree has ≈ a/nodesize leaves and is trained with a data points. So, if
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we take k ≈ a/nodesize, the two approaches consider (approximately) the
same forest (ii), but the reference trees (i) are quite different.

We do not mean that one of these two parametrizations is definitely
better than the other: nodesize is a natural parameter for Breiman’s ran-
dom forests, while toy forests are naturally parametrized by their number of
leaves. Nevertheless, one must keep in mind that any comparison between
a forest and a single tree trained with the full sample does depend on the
parametrization.

The parametrization by nodesize can also hide some difficulties. For the
toy forest model, k has to be chosen, and this is not an easy task. One could
think that this problem is solved by taking the nodesize parametrization
with, say, nodesize = 1. This is wrong because we then have to choose
the subsample size a, which is equivalent to the original problem since k ≈
a/nodesize.

What about Breiman’s forests? Section 1.1 suggests that for the toy
forest, the most important ingredient in the tree diversity is the randomiza-
tion of the partitions. We conjecture that this holds true for general random
forests.

Nevertheless, we do not mean that the resampling step should always
be discarded, since for Breiman’s random forests (for instance), resampling
also acts on the randomization of the partitions. A key open problem is
to quantify the relative roles of resampling and of the choice of Mtry on
the randomization of the partitions. Section 2 below shows that “hold-out
random forests” can be a good playground for such investigations.

Bootstrap or subsampling? Another important question is the choice
between the bootstrap and subsampling, which remains an open problem
according to Biau and Scornet (2016).

We conjecture that Table 1 is also valid for the a out of n bootstrap,
which would mean that bootstrap and subsampling are fully equivalent with
respect to the randomization of the labels, with no impact on the perfor-
mance of pure forests. Assuming this holds true, subsampling (with or
without replacement) with a� n remains interesting for reducing the com-
putational cost—Table 1 only requires that a� k log(n).

A key open problem remains: compare bootstrap and subsampling with
respect to the randomization of the partitions for Breiman’s random forests.
Again, “hold-out random forests” described in Section 2 should be a good
starting point for such a comparison.
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2 Hold-out random forests

We now consider a more complex forest model, called hold-out random
forests, which is close to Breiman’s random forests while being simpler to
analyze. Hold-out random forests have been proposed by Biau (2012, Sec-
tion 3) and appear in the experiments of Arlot and Genuer (2014, Section 7).

2.1 Definition

Hold-out random forests can be defined as follows. First, the data set Dn is
split, once and for all, into two subsamples D1

n1
and D2

n2
, of respective sizes

n1 and n2, satisfying n = n1 +n2. This split is done independently from Dn.
Then, conditionally to (D1

n1
,D2

n2
), the M trees are built independently as

follows. The partition associated with the j-th tree is built as for Breiman’s
random forests with D1

n1
as data set. In other words, it is the partition Pfinal

defined by Biau and Scornet (2016, Algorithm 1) with training set D1
n1

as
an input. The j-th tree estimate at x is defined by

mhoRF
n

(
x; Θj ,D1

n1
,D2

n2

)
:=

∑
(Xi,Yi)∈D2

n2

1Xi∈An1 (x;Θj ,D1
n1

)Yi

Nn2(x; Θj ,D1
n1
,D2

n2
)

whereAn1(x; Θj ,D1
n1

) is the cell of this partition that contains x andNn2(x; Θj ,D1
n1
,D2

n2
)

is the number of points (Xi, Yi) ∈ D2
n2

such that Xi ∈ An1(x; Θj ,D1
n1

). Fi-
nally, the hold-out forest estimate is defined by

mhoRF
M,n

(
x; Θ1...M ,D1

n1
,D2

n2

)
=

1

M

M∑
j=1

mhoRF
n

(
x; Θj ,D1

n1
,D2

n2

)
.

In the definition of mhoRF
M,n , the building of the partitions depends on the

same parameters as Breiman’s random forests: mtry, nodesize, the fact
that resampling can be done with or without replacement, and the resample
size an1 . It is also possible to add another resampling step when assigning
labels to the leaves of each tree with D2

n2
; we do not consider it here since

Section 1 suggests that this would not change much the performance (at
least for forests).

A key property of hold-out random forests is that they are purely random:
the subsamples D1

n1
and D2

n2
are independent, hence the partition associated

with the trees are independent from D2
n2

. Note however that each partition
still depends on some data (through D1

n1
), hence it could adapt to some

features of the data, such as the “sparsity” of the regression function, the
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Table 2: Numerical estimation of the quadratic risk (approximation error
+ estimation error) for the hold-out random forest; k is the number of cells
in the partition; X = [0, 1]p with p = 5. There is no randomization of the
labels.

Single tree Large forest

No bootstrap
mtry = p

0.13

k0.17
+

1.04σ2k

n2

0.13

k0.17
+

1.04σ2k

n2

Bootstrap
mtry = p

0.14

k0.17
+

1.06σ2k

n2

0.15

k0.29
+

0.08σ2k

n2

No bootstrap
mtry = bp/3c

0.23

k0.19
+

1.01σ2k

n2

0.06

k0.31
+

0.06σ2k

n2

Bootstrap
mtry = bp/3c

0.25

k0.20
+

1.02σ2k

n2

0.06

k0.34
+

0.05σ2k

n2

non-uniformity over X of the smoothness of m, or the non-uniformity of the
distribution of X. Therefore, hold-out random forests can capture much of
the complexity of Breiman’s random forests, while being easier to analyze
since they are purely random. In particular, we can apply the results proved
in Appendix A (where our D2

n2
is written Dn, and our D1

n1
is hidden in

the relationship between Θj and the partition of the j-th tree). Then, the
quadratic risk of mhoRF

M,n can be (approximately) decomposed into the sum
of an approximation error and an estimation error, and these two terms can
be studied separately. For instance, the results of Arlot and Genuer (2014)
can be applied in order to analyze the approximation error.

For now, we only study the behaviour of these two terms in a short
numerical experiment. The results are summarized by Table 2, where esti-
mated values of the approximation and estimation errors are reported as a
function of n2, σ2 and of the parameters of the partition building process
(k, mtry and bootstrap). Detailed information about this experiment can
be found in Appendix C. Let us emphasize here that we consider a single
data generation setting, hence these results must be interpreted with care.
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2.2 Discussion

Based on Table 2 and our experience about Breiman’s random forests, we
can make the following comments.

Choice of mtry. As illustrated in Table 2, choosing mtry = bp/3c instead
of p decreases the risk of an infinite forest. When there is no bootstrap, the
performance gain is significant and the reason is that it is the only source
of randomization of partitions. But, even in presence of bootstrap, it allows
to slightly reduce the approximation error. In the same experiments with
p = 10, the gain of decreasing mtry in the bootstrap case is larger (see the
supplementary material).

Our belief is that when there is some bootstrap, the additional random-
ization given by taking mtry < p can reduce the risk in some cases, where
typically n ≥ p (which holds true in our experiments). This is supported
by the experiments of Genuer et al. (2008, Section 2), where small values
of mtry give significantly lower risk than mtry = p for some classification
problems. For regression, Genuer et al. (2008, Section 2) obtain similar per-
formance when decreasing mtry, which is consistent with Table 2 since these
experiments are done in the bootstrap case.

When n � p and only a small proportion of the coordinates of x are
informative, we conjecture that the optimal mtry is close to p (provided that
there is some bootstrap step for randomizing the partitions). Indeed, if mtry
is significantly smaller than p, then, the probability to choose at least one
informative coordinate in Mtry is not close to 1, hence the randomization
of the partitions might be too strong.

Bootstrap, mtry and randomization of the partitions. When mtry =
p, according to Table 2, the bootstrap helps to significantly reduce the risk,
compared with the no randomization case. Overall, we get a significantly
smaller risk when there is at least one source of randomization of the parti-
tions.

Comparing the three combinations of parameters (bootstrap, mtry < p,
or both) for which the partitions are randomized is more difficult: the dif-
ferences observed in Table 2 might not be significant. Nevertheless, Table 2
suggests that the lowest risk might be obtained when two sources of random-
ization are present (mtry < p and bootstrap). And if we have to choose only
one source of randomization, it seems that randomizing with mtry = bp/3c
only yields a smaller risk than bootstrapping only.
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A Approximation and estimation errors

We state a general decomposition of the risk of a forest having the X-
property (that is, when partitions are built independently from (Yi)1≤i≤n),
that we need for proving the results of Section 1, but can be useful more
generally. We assume that E[Y 2

i ] < +∞ for all i.
For any random forest mM,n having the X-property, following Biau and

Scornet (2016, Sections 2 and 3.2), we can write

mM,n(x; Θ1...M ,Dn) =
n∑

i=1

Wni(x)Yi

where Wni(x) = Wni(x; Θ1...M , X1...n) =
1

M

M∑
j=1

Ci(Θj)1Xi∈An(x;Θj ;X1...n)

Nn(x; Θj ;X1...n)
,

(1)

Ci(Θj) is the number of times (Xi, Yi) appears in the j-th resample, An(x; Θj ;X1...n)
is the cell containing x in the j-th tree, and

Nn(x; Θj ;X1...n) =
n∑

i=1

Ci(Θj)1Xi∈An(x;Θj ;X1...n) .

Now, let us define

m?
M,n(x; Θ1...M , X1...n) = E

[
mM,n(x; Θ1...M ,Dn)

∣∣X1...n,Θ1...M

]
=

n∑
i=1

Wni(x; Θ1...M , X1...n)m(Xi)

and m?
M,n(x; Θ1...M ) = E

[
m?

M,n(x; Θ1...M , X1...n)
∣∣Θ1...M

]
.

By definition of the conditional expectation, we can decompose the risk of
mM,n at x into three terms

E
[(
mM,n(x)−m(x)

)2]
= E

[(
m?

M,n(x)−m(x)
)2]︸ ︷︷ ︸

A=approximation error

+ E
[(
m?

M,n(x)−m?
M,n(x)

)2]︸ ︷︷ ︸
∆

+E
[(
mM,n(x)−m?

M,n(x)
)2]︸ ︷︷ ︸

E=estimation error

.
(2)

In the fixed-design regression setting (where the Xi are deterministic), A
is called approximation error, ∆ = 0, and E is called estimation error.
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Things are a bit more complicated in the random-design setting—when
(Xi, Yi)1≤i≤n are independent and identically distributed—since ∆ 6= 0 in
general. Up to minor differences related to how mn is defined on empty
cells, A is still the approximation error, and the estimation error is ∆ + E.

Let us finally assume that (Xi, Yi)1≤i≤n are independent and define

σ2(Xi) = E
[(
m(Xi)− Yi

)2 ∣∣Xi

]
.

Then, since the weights Wni(x) only depend on Dn through X1...n, we have
the following formula for the estimation error

E = E

( n∑
i=1

Wni(x)
(
m(Xi)− Yi

))2
 = E

[
n∑

i=1

Wni(x)2σ2(Xi)

]
.

For instance, in the homoscedastic case, σ2(Xi) ≡ σ2 and

E = E

( n∑
i=1

Wni(x)
(
m(Xi)− Yi

))2
 = σ2E

[
n∑

i=1

Wni(x)2

]
. (3)

B Analysis of the toy forest: proofs

We prove the results stated in Section 1 for the one-dimensional toy forest.
Since the toy forest is purely random, all results of Appendix A apply,

with Θ = (T, I) and Ci(Θ) = 1i∈I . It remains to compute the three terms
of Eq. (2).

Since we assume m is of class C3, we can use the results of Arlot and
Genuer (2014, Section 4) for the approximation error A (up to minor differ-
ences in the definition of m?

M,n(x), due to event where An(x; Θ) is empty,
which has a small probability since a � k). We assume that m′(x) 6= 0
and m′′(x) 6= 0 for simplicity, so the quantities appearing in Table 1 indeed
provide the order of magnitude of A.

The middle term ∆ in decomposition (2) is negligible in front of E for
a single tree, which can be proved using results from Arlot (2008), as soon
as m′(x)/k � σ and a� k. We assume that it can also be neglected for an
infinite forest.

For the estimation error, we can use Eq. (3) and the following arguments.
First, for every i ∈ {1, . . . , n}, Xi belongs to An(x; Θ) with probability 1/k.
Combined with the subsampling process, we get that

Nn(x; Θ;X1...n) ∼ B
(
n,

a

nk

)
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is close to its expectation a/k with probability almost one if a/k � log(n).
Assuming that this holds simultaneously for a huge fraction of the subsam-
ples, we get the approximation

W toy
ni (x) =

1

M

M∑
j=1

1i∈Ij1Xi∈An(x;Θj)

Nn(x; Θj ;X1...n)

≈ k

a

1

M

M∑
j=1

1i∈Ij1Xi∈An(x;Θj) =: W̃ toy
ni (x) . (4)

Now, we note that conditionally toX1...n, the variables 1i∈Ij1Xi∈An(x;Θj),
j = 1, . . . ,M are independent and follow a Bernoulli distribution with the
same parameter

a

n
×
(
1− k|Xi − x|

)
+
.

Therefore,

E
[
W̃ toy

ni (x)2
∣∣X1...n

]
=
k2

na

[(
1− 1

M

)
a

n

((
1− k|Xi − x|

)
+

)2
+

1

M

(
1− k|Xi − x|

)
+

]
hence E

[
W̃ toy

ni (x)2
]

=
k

na

[(
1− 1

M

)
2a

3n
+

1

M

]
.

By Eq. (3), this ends the proof of the results in the bottom line of Table 1.

Similar arguments apply for justifying the top line of Table 1, where
Tj = 0 almost surely.

Note that we have not given a full rigorous proof of the results shown
in Table 1, because of the approximation (4) and of the term ∆ that we
have neglected. We are convinced that the parts of the proof that we have
skipped might only require to add some technical assumptions, which would
not help to reach our goal of understanding better random forests in general.

C Details about the experiments

This section describes the experiments whose results are shown in Section 2.

Data generation process. We take X = [0, 1]p, with p ∈ {5, 10}. Ta-
ble 2 only shows the results for p = 5. Results for p = 10 are shown in
supplementary material.
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The data (Xi, Yi)1≤i≤n1+n2 are independent with the same distribution:
Xi ∼ U([0, 1]p), Yi = m(Xi) + εi with εi ∼ N (0, σ2) independent from Xi,
σ2 = 1/16, and the regression function m is defined by

m : x ∈ [0, 1]p 7→ 1/10×
[
10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

]
.

The function m is proportional to the Friedman1 function which was in-
troduced by Friedman (1991). Note that when p > 5, m only depends on
the 5 first coordinates of x.

Then, the two subsamples are defined byD1
n1

= (Xi, Yi)1≤i≤n1 andD2
n2

=
(Xi, Yi)n1+1≤i≤n1+n2 .

We always take n1 = 1 280 and n2 = 25 600.

Trees and forests. For each k ∈ {25, 26, 27, 28}, each experimental con-
dition (bootstrap or not, mtry = p or bp/3c), we build some hold-out ran-
dom trees and forests as defined in Section 2. These are built with the
randomForest R package (Liaw and Wiener, 2002; R Core Team, 2015), with
appropriate parameters (k is controlled by maxnodes, while nodesize = 1).

Resampling within D1
n1

(when there is some resampling) is done with a
bootstrap sample of size n1 (that is, with replacement and an1 = n1).

“Large” forests are made of M = k trees, a number of trees suggested
by Arlot and Genuer (2014).

Estimates of approximation and estimation error. Estimating ap-
proximation and estimation errors (as defined by Eq. (2)) requires to esti-
mate some expectations over Θ (which includes the randomness of D1

n1
as

well as the randomness of the choice of bootstrap subsamples of D1
n1

and of
the repeated choices of a subset Mtry). This is done with a Monte-Carlo
approximation, with 500 replicates for trees and 10 replicates for forests.
This number might seem small, but we observe that large forests are quite
stable, hence expectations can be evaluated precisely from a small number
of replicates.

We estimate the approximation error (integrated over x) as follows. For
each partition that we build, we compute the corresponding “ideal” tree,
which maps each piece of the partition to the average of m over it (this
average can be computed almost exactly from the definition of m). Then,
to each forest we associate the “ideal” forest m?

M,n which is the average of

the ideal trees. We can thus compute (m?
M,n(x) −m(x))2 for any x ∈ X ,

and estimate its expectation with respect to Θ. Averaging these estimates
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over 1000 uniform random points x ∈ X provides our estimate of the ap-
proximation error.

We estimate the estimation error (integrated over x) from Eq. (3); since
σ2 is known, we focus on the remaining term. Given some hold-out random
forest, for any x ∈ X and i ∈ {1, . . . , n}, we can compute

Wni(x) =
1

M

M∑
j=1

∑
(Xi,Yi)∈D2

n2

1Xi∈An1 (x;Θj ,D1
n1

)

Nn2(x; Θj ,D1
n1
,D2

n2
)
.

Then, averaging
∑

iWni(x)2 over several replicate trees/forests and over
1 000 uniform random points x ∈ X , we get an estimate of the estimation
error (divided by σ2).

Summarizing the results in Table 2. Given the estimates of the (in-
tegrated) approximation and estimation errors that we obtain for every
k ∈ {25, 26, 27, 28}, we plot each kind of error as a function of k (in log2-log2

scale for the approximation error), and we fit a simple linear model (with an
intercept). The estimated parameters of the model directly give the results
shown in Table 2 (in which the value of the intercept for the estimation
error is omitted for simplicity). The corresponding graphs are shown in
supplementary material.
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Table 3: Numerical estimation of the quadratic risk (approximation error
+ estimation error) for the hold-out random forest; k is the number of cells
in the partition; X = [0, 1]p with p = 10. There is no randomization of the
labels.

Single tree Large forest

No bootstrap
mtry = p

0.11

k0.12
+

1.03σ2k

n2

0.11

k0.12
+

1.03σ2k

n2

Bootstrap
mtry = p

0.11

k0.11
+

1.05σ2k

n2

0.10

k0.19
+

0.04σ2k

n2

No bootstrap
mtry = bp/3c

0.21

k0.18
+

1.08σ2k

n2

0.08

k0.25
+

0.04σ2k

n2

Bootstrap
mtry = bp/3c

0.20

k0.16
+

1.05σ2k

n2

0.07

k0.26
+

0.03σ2k

n2
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15



●

●

●

●

5 6 7 8

−4.3

−4.2

−4.1

−4.0

−3.9

−3.8

B
ia

s 
(lo

g−
sc

al
e)

Cardinal of partitions (log−scale)

● tree = forest (r=−0.169, 2^C=0.13)

(a) no bootstrap, mtry = 5, p = 5

●

●

●

●

5 6 7 8

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

−3.8

B
ia

s 
(lo

g−
sc

al
e)

Cardinal of partitions (log−scale)

●

●

●

●

●

●

tree (r=−0.168, 2^C=0.14)
forest (r=−0.289, 2^C=0.153)

(b) bootstrap, mtry = 5, p = 5

●

●

●

●

5 6 7 8

−4.6

−4.4

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

B
ia

s 
(lo

g−
sc

al
e)

Cardinal of partitions (log−scale)

●

●

●

●

●

●

tree (r=−0.187, 2^C=0.231)
forest (r=−0.306, 2^C=0.063)

(c) no bootstrap, mtry = 1, p = 5

●

●

●

●

5 6 7 8

−4.5

−4.0

−3.5

−3.0

B
ia

s 
(lo

g−
sc

al
e)

Cardinal of partitions (log−scale)

●

●

●

●

●

●

tree (r=−0.199, 2^C=0.248)
forest (r=−0.341, 2^C=0.057)

(d) bootstrap, mtry = 1, p = 5

Figure 1: Estimated values of the approximation error of hold-out trees
and “large” forests (in log2-scale) as a function of the number of leaves (in
log2-scale), for the Friedman 1 regression function in dimension p = 5,
with various values of the parameters (bootstrap or not, mtry ∈ {p, bp/3c}).
The coefficients r and C respectively denote the slope and the intercept of
a linear model fitted to the scatter plot.
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Figure 2: Estimated values of the estimation error (multiplied by n2/σ
2) of

hold-out trees and “large” forests as a function of the number of leaves, for
the Friedman 1 regression function in dimension p = 5, with various values
of the parameters (bootstrap or not, mtry ∈ {p, bp/3c}). The coefficients
r and C respectively denote the slope and the intercept of a linear model
fitted to the scatter plot.
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Figure 3: Estimated values of the approximation error of hold-out trees
and “large” forests (in log2-scale) as a function of the number of leaves (in
log2-scale), for the Friedman 1 regression function in dimension p = 10,
with various values of the parameters (bootstrap or not, mtry ∈ {p, bp/3c}).
The coefficients r and C respectively denote the slope and the intercept of
a linear model fitted to the scatter plot.
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Figure 4: Estimated values of the estimation error (multiplied by n2/σ
2)

of hold-out trees and “large” forests as a function of the number of leaves,
for the Friedman 1 regression function in dimension p = 10, with various
values of the parameters (bootstrap or not, mtry ∈ {p, bp/3c}). The coef-
ficients r and C respectively denote the slope and the intercept of a linear
model fitted to the scatter plot.
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