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Abstract

We herein introduce a new method of interpretable clustering that uses unsu-
pervised binary trees. It is a three-stage procedure, the first stage of which entails
a series of recursive binary splits to reduce the heterogeneity of the data within
the new subsamples. During the second stage (pruning), consideration is given to
whether adjacent nodes can be aggregated. Finally, during the third stage (join-
ing), similar clusters are joined together, even if they do not share the same parent
originally. Consistency results are obtained, and the procedure is used on simulated
and real data sets.

Keywords: Unsupervised Classification, CART, Pattern Recognition. Running Title:
Clustering a la CART.

1 Introduction

Clustering is a means of unsupervised classification, is a common technique for the statis-
tical analysis of data, and has applications in many fields, including medicine, marketing
and economics, among other areas. The term “cluster analysis” (first used by Tryon,
[24]) includes the use of any of a number of different algorithms and methods for grouping
similar data into a number of different categories. The grouping is achieved in such a way
that “the degree of association between data is at a maximum if the data belong to the
same group and at a minimum otherwise”.

Cluster analysis or clustering involves the assignment of a set of observations from Rp

into subsets (called clusters), such that observations in the same cluster are similar in
“some sense”. The definitions are quite vague, in that there is no clear objective function
of the population that can be used to measure the performance of a clustering procedure.
Implicit in each clustering algorithm is an objective function that varies from one method
to another. It is important to note that although most clustering procedures require the
number of clusters to be known beforehand, generally in practice it is not.

In contrast, in supervised classification the number of groups is known and we addi-
tionally have both a learning sample and a universal objective function, i.e. to minimise
the number of misclassifications, or in terms of the population, to minimise the Bayes
error.

1Corresponding author: Marcela Svarc, Departamento de Matemáticas y Ciencias, Universidad de
San Andrés, Vito Dumas 284, Victoria (1644), Buenos Aires, Argentina. Email: msvarc@udesa.edu.ar
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Despite these differences, there are a number of similarities between supervised and
unsupervised classification. Specifically, there are many algorithms that share the same
spirit in both cases.

Algorithms that use supervised and unsupervised classification [13] can either be par-
titional or hierarchical. Partitional algorithms determine all the groups at once. The
most widely used and well-studied partitioning procedure for cluster analysis is that of
the k-means algorithm. Hierarchical algorithms successively identify groups that split
from or join groups that were established previously. These algorithms can either be
agglomerative (“bottom-up”) or divisive (“top-down”). Agglomerative algorithms begin
with each element as a separate group and merge them into successively larger groups. In
contrast, divisive algorithms begin with the whole set and proceed to split it into succes-
sively smaller groups. Hierarchical algorithms create a hierarchy of partitions that may
be represented in a tree structure. The best known hierarchical algorithm for supervised
classification is CART [4].

CART has a further property of interest. The partition tree is built using a few
binary conditions obtained from the original coordinates of the data. In most cases,
the interpretation of the results may be summarised in a tree that has a very simple
structure. The usefulness of such a scheme of classification is valuable not only for the
rapid classification of new observations, but it can also often yield a much simpler “model”
for explaining why the observations are classified in a particular group, a property that is
remarkably important in many applications. Moreover, it is important to stress that the
algorithm assumes no kind of parametric model for the underlying distribution.

Recently, several new methods have been proposed for clustering analysis, see for
instance Garcia Escudero et al. [10] for a review with focus on robust clustering procedure.
Other recent proposals have been made by Peña and Prieto ([18],[19]), Fraley and Raftery
[7], Oh and Raftery [16], Walther [25], among others. But just a few different methods
using decision trees to obtain clusters have previously been proposed. Liu et al. [14]
use decision trees to partition the data space into clusters and empty (sparse) regions at
different levels of detail. Their method uses the idea of adding an artificial sample of size
N that is uniformly distributed over the space. With these N points added to the original
data set, the problem then becomes one of obtaining a partition of the space into dense
and sparse regions. Liu et al. [14] treat this problem as a classification problem that
uses a new “purity” function that is adapted to the problem and is based on the relative
densities of the regions concerned.

Chavent et al. [5] obtained a binary clustering tree that applies to a particular variable
and its binary transformation. They presented two alternative procedures. In the first,
the splitting variables are recursively selected using correspondence analysis, and the
resulting factorial scores lead to the binary transformation. In the second, the candidate
variables and their variable transformations are simultaneously selected by a criterion of
optimisation in which the resulting partitions are evaluated. Basak et al. [2] proposed
four different measures for selecting the most appropriate characteristics for splitting the
data at every node, and two algorithms for partitioning the data at every decision node.
For the specific case of categorical data, Andreopoulus et al. [1] introduced HIERDENC,
which is an algorithm that searches the dense subspaces on the “cube” distribution of the
values presented in the data at hand.

2



Our aim herein is to propose a simple clustering procedure that has the same appealing
properties as CART. We introduce the hierarchical top-down method of CUBT (Clustering
using unsupervised binary trees), in which the clustering tree is based on binary rules on
the original variables, and this will help us to understand the structure of the clustering.

There are three stages in our procedure. In the first, we grow a maximal tree by
applying a recursive partitioning algorithm. In the second, we prune the tree using a
criterion of minimal dissimilarity. In the final stage, we aggregate the leaves of the tree
that do not necessarily share the same direct ascendant.

We do not claim that the new method we introduce is always more efficient nor bet-
ter than others. For each particular problem, depending on the cluster structure some
methods behave better than others, and quite often the difference in efficiency is just a
small (but important) improvement. This is also the case in supervised classification.
CART is far from being the best universally more efficient algorithm. However it has a
quite good behavior for a large class of classification problems. We will show along the
paper, that the main advantages of our clustering method (mostly shared with CART for
classification problems) are the following:

a) Flexibility. The method is able to perform good clustering for a large family of
cluster structure. As long as the true clusters can be separated by some partition
built as the intersection of a arbitrarily large finite number of half–spaces, whose
boundaries are orthogonal to the original coordinates system the method will work
properly.

b) Interpretability. The final partition is explained in terms of binary partitions on
the original variables. This property is fundamental for many applications.

c) Efficiency. We get a good performance in terms of correct clustering allocation for
a large family of clusters structures.

d) Population version. We provide a population version of the final partition, re-
garded as a random vector X ∈ Rp with unknown distribution P . We then show that
the algorithm (the empirical version) converges a.s. to the population final partition.
This kind of property is essential in statistics in order to understand well when and
why a method will be adequate, by looking at the population version. This is briefly
discussed on Section 2.3.

The remainder of the paper is organised as follows. In Section 2, we introduce some
notation and we describe the empirical and population versions of our method. The latter
describes the method in terms of the population, regarded as a random vector X ∈ Rp

with an unknown distribution P . The consistency of our method is described in Section
3. In Section 4, we present the results of a series of simulations, in which we used our
method to consider several different models and compare the results with those produced
by the k-means algorithm, MCLUST and DBSCAN. Using a synthetic data set, we also
compared the tree structures produced by CART (using the training sample, with the
labels) and CUBT, considering the same sample in each case without the labels. A set of
real data is analysed in Section 5, and our concluding remarks are made in Section 6. All
proofs are given in the Appendix.
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2 Clustering a la CART

We begin by establishing some notation. Let X ∈ Rp be a random p-dimensional real
vector with coordinates X(j), j = 1, . . . , p, such that E(‖X‖2) <∞. The data consist in
n random independent and identically distributed realisations of X, Ξ = {X1, . . . ,Xn}.
For the population version the space is Rp, while for the empirical version the space is Ξ.
We denote the nodes of the tree by t. Each node t determines a subset of Rp , t ⊂ Rp.
We assign the whole space to the root node.

Even though our procedure uses the same general approach as CART in many respects,
two main differences should be stressed. First, because we use unsupervised classification,
only information about the observations without labels is available. Thus the splitting
criterion cannot make use of the labels, as it can in CART. The second essential difference
is that instead of having one final pruning stage, in our algorithm we subdivide this stage
into two, in that we first prune the tree and then use a final joining process. In the first
of these two procedures, we evaluate the merging of adjacent nodes, and in the second
the aim is to aggregate similar clusters that do not share the same direct ascendant in
the tree.

2.1 Forward step: maximal tree construction

Because we are using a top-down procedure, we begin by assigning the whole space to
the root node. Let t be a node and t̂ = Ξ ∩ t, the set of observations obtained from
the sample concerned. At each stage, a terminal node is considered to be split into two
subnodes, namely the left and right child, tl, tr, if it fulfills a certain condition. At the
beginning there is only one node, i.e. the root, which contains the whole space. The
splitting rule has the form x(j) < a, where x(j) is a variable and a is a threshold level.
Thus, tl = {x ∈ Rp : x(j) ≤ a} and tr = {x ∈ Rp : x(j) > a}.

Let Xt be the restriction of X to the node t, i.e. Xt = X|{X ∈ t}, and αt the
probability of being in t, αt = P (X ∈ t). R(t) is then a heterogeneity measure of t and is
defined by,

R(t) = αt trace(Cov(Xt)), (1)

where, cov(Xt) is the covariance matrix of Xt. Thus, R(t) is an approximate measure
of the “mass concentration” of the random vector X at set t, weighted by the mass of
set t. In the empirical algorithm αt and Cov(Xt) are replaced by their empirical versions
(estimates), and R(t) is called the deviance. We then denote nt to be the cardinal of the
set t̂, nt =

∑n
i=1 I {Xi ∈ t}, (where IA stands for the indicator function of set A), and

hence the estimated probability is α̂t = nt

n
, the estimate of E

(
‖Xt − µt‖2) is∑

{Xi∈t}

∥∥Xi −X t

∥∥2

nt
,

where X t is the empirical mean of the observations on t and the estimate of the deviance
is,

R̂(t) =

∑
{Xi∈t}

∥∥Xi −X t

∥∥2

n
. (2)
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The best split for t is defined as the couple (j, a) ∈ {1, . . . , p} × R, (the first element
indicates the variable where the partition is defined and the second is the threshold level)
that maximises,

∆(t, j, a) = R(t)−R(tl)−R(tr). (3)

It is easy to verify that ∆(t, j, a) ≥ 0 for all t, j, a, and this property is also verified by all
the splitting criteria proposed in CART.

Remark 2.1. (Uniqueness) As in CART the maximum in (3) may not by unique.
Typically, the maximum is attained only for one variable, j, but there may be many
values a for which it is attained, for instance a union of intervals. In those cases we will
choose the smallest value a for which the maximum is attained. More precisely, for fixed
j, a is defined as

inf {argmaxa∈R∆(t, j, a)}.
If there are several variables that attain the maximum then we choose the variable j with
smallest index, and then if needed we choose the smallest value a where the maximum is
attained.

We fix two parameters τ,mindev ∈ (0, 1).
We begin with the whole space being assigned to the root node, and each node is

then split recursively until one of the following stopping rules is satisfied: (i) αt < τ ; (ii)
The reduction in deviance is less than mindev × R(S), where S is the whole space. For
the empirical version of the algorithm we replace αt by α̂t and ∆(t, j, a) by ∆̂(t, j, a) =
R̂(t)−R̂(tl)−R̂(tr), and denote by minsize = [τn] (the minimum size of a node). minsize
and mindev are tuning parameters that must be supplied by the user. The uniqueness
problem also appears on the empirical version, and it can be treated as in the population
algorithm.

When the algorithm stops, a label is assigned to each leaf (terminal node), and we then
call the actual tree the maximal tree. At this point, we have obtained a partition of the
space and in consequence a partition of the data set, in which each leaf is associated with
a cluster. Ideally, this tree has at least the same number of clusters as the population,
although in practice it may have too many clusters, and then an agglomerative stage must
be applied as in CART. It is important to note if the number of clusters k is known, the
number of leaves should be greater or equal to k. Small values of mindev ensure a tree
that has many leaves. Moreover, if the tree has the same number of leaves as the number
of clusters, it is not then necessary to run the subsequent stages of the algorithm.

2.2 Backward step: pruning and joining

In the next step, we successively use two algorithms to give the final conformation of
the grouping. The first prunes the tree and the second merges non-adjacent leaves (we
herein refer to this as “joining”). We now introduce a pruning criterion that we refer to
as “minimum dissimilarity pruning”.

2.2.1 Minimum dissimilarity pruning

In this stage, we define a measure of the dissimilarity between sibling nodes, and then
collapse these nodes if this measure is lower than a certain threshold. We first consider
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the maximal tree T0 obtained in the previous stage. Let tl and tr be a pair of terminal
nodes that share the same direct ascendant. We then define (in population terms) the
random variables Wl(r) = D(Xtl , sop(Xtr)), (where sop(Z) stands for the support of the
random variable Z) as the Euclidian distance between the random elements of Xtl and
the support of Xtr and respectively Wr(l) = D(sop(Xtl), Xtr). For each of them we define
a dissimilarity measure

∆l(r) =

∫ δ

0

qν(Wl(r))dν,

∆r(l) =

∫ δ

0

qν(Wr(l))dν,

(4)

where qν(Wlr) stands for the quantile function, (P(Wl(r) ≤ qν) = ν) and δ is a proportion,
δ ∈ (0, 1).
Finally we consider as a measure of dissimilarity between the sets tl and tr

∆lr = max{∆l(r),∆r(l)}.

If ∆lr < ε, we prune at the node t, i.e. we replace tl and tr by tl ∪ tr in the partition.
Observe that since ∆l(r) and ∆r(l) are averages of small quantiles of D(Xtl , sop(Xtr))

and of D(Xtr , sop(Xtl)) respectively, ∆lr can be thought as “a more resistant version” of
the distance between the supports of the random vectors Xtl and Xtr .

We consider the natural plug-in estimate for the dissimilarity measure ∆, that is
defined as follows. Let nl (resp. nr) be the size of t̂l (resp. t̂r). We may then consider for
every xi ∈ t̂l and yj ∈ t̂r, the sequences, d̃i = miny∈t̂ld(xi, y), d̃j = minx∈t̂rd(x, yj) and
their ordered versions, denoted as di and dj. For δ ∈ [0, 1], let

d̄δl =
1

δnl

δnl∑
i=1

di, d̄δr =
1

δnr

δnr∑
j=1

dj.

We compute the dissimilarity between tl and tr to be,

dδ(l, r) = dδ(tl, tr) = max(d̄δl , d̄
δ
r),

and at each stage of the algorithm the leaves, tl and tr, are merged into the ascendant node
t if dδ(l, r) ≤ ε where ε > 0. The dissimilarity pruning makes use of the two parameters
δ and ε, which we hereafter refer to as “mindist”.

2.2.2 Joining

The aim of the joining step is to aggregate those nodes that do not share the same direct
ascendent. The criterion used in the joining step is the same as the used on the pruning
one without the restriction of being sibling nodes. The need of this step is illustrated in
Figure 1.
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Second Cut

First Cut

Figure 1: The lower group is split on the first stage and it cannot be merged in the pruning
stage, but will be when using the joining step.

Here, all pairs of terminal nodes ti and tj are compared by computing, dδ(i, j). As
in standard hierarchical clustering, pairs of terminal nodes are successively aggregated
starting from the pair i, j with minimum dδ(i, j) value, thereby producing one less cluster
at each step. We consider two different stopping rules for the joining procedure, which
correspond to the two cases where the number of clusters k is either known or unknown.
We denote by m the number of leaves of the pruned tree. If k is known, the following
step is repeated until m ≤ k:

• For each pair of values (i, j) , 1 ≤ i < j ≤ m, let (̃i, j̃) = argmini,j{dδ(i, j)}.
Replace t̃i and tj̃ by its union t̃i ∪ tj̃, put m = m− 1 and proceed.

If k is unknown,

• if dδ
ĩj̃
< η replace t̃i and tj̃ by its union t̃i ∪ tj̃, where η > 0 is a given constant, and

continue until this condition does not apply.

In the first case, the stopping criterion is the number of clusters, while in the second case
a threshold value of η for dδ(i, j) must be specified.

2.3 CUBT and k-means

In the following section we discuss informally the circumstances in which both our pro-
cedure and the well-known k-means algorithm should produce a reasonably good set of
results. We shall consider those cases where there are “nice groups” that are strictly
separated. More precisely, let A1, . . . , Ak be disjoint connected compact sets on Rp such
that Ai = A0

i for i = 1, . . . , k, and {Pi : i = 1, . . . , k} their probability measures on Rp

with supports {Ai : i = 1, . . . , k} .
A typical case may be obtained by defining a random vector X∗ with a density f and

then considering the random vector X = X∗|{f > ζ} for a positive level set ζ, as in a
number of hierarchical clustering procedures.

An admissible family for CUBT is the family of sets A1, . . . , Ak such that there exist
another family of disjoint sets B1, . . . , Bk that are built up as the intersection of a finite
number of half-spaces delimited by hyperplanes that are orthogonal to the coordinate axis
that satisfying Ai ⊂ Bi.

7



In contrast, the k-means algorithm is defined through the vector of centres (c1 . . . , ck)
that minimise E (minj=1,...,k ‖X− cj‖). Associated with each centre cj is the convex poly-
hedron Sj of all points in Rp that are closer to cj than to any other center, called the
Voronoi cell of cj. The sets in the partition S1, . . . , Sk are the population clusters for
the k–means algorithm. The population clusters for the k-means algorithm are therefore
defined by exactly k hyperplanes in an arbitrary position.

Then, an admissible family for the k-means algorithm will be a family of setsA1, . . . , Ak
that can be separated by exactly k hyperplanes.

Although the hyperplanes can be in an arbitrary position, no more than k of them
can be used.

It is clear that in this sense CUBT is much more flexible than the k-means algo-
rithm, because the family of admissible sets is more general. For example, k-means will
necessarily fail to identify nested groups, while CUBT will not.

Another important difference between k–means and CUBT is that our proposal is less
sensitive to small changes in the parameters that define the partition. Effectively, small
changes in these will produce small changes in the partition. However, small changes in
the centres (c1 . . . , ck) that define the k-means partition can produce significant changes
in the associated partition as given by the Voronoi cells.

Figure 2 show an example where CUBT has a good performance and clearly k–means
does not work.

(a)
 

 

(b)
 

 

Figure 2: (a) CUBT cluster allocation. (b) k-means cluster allocation.

3 Consistency of CUBT

In the following section we present some theoretical results on the consistency of our
algorithm. We first prove an important property, that of the monotonicity of the deviance
with increasing tree size.
A simple equivalent characterisation of the function R(t) is given in the following Lemma.

Lemma 3.1. Let tl and tr be disjoint compact sets on Rp and µs = E(Xts), s = l, r. If
t = tl ∪ tr we have,

R(t) = R(tl) +R(tr) +
αtlαtr
αt
‖µl − µr‖2. (5)
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The proof is given in the Appendix.

Remark 3.1. Monotonicity of the function R(.) and geometric interpretation.
Observe that Lemma (3.1) entails that for all disjoint compact sets tl, tr and t = tl ∪ tr,
the function R(.) is monotonic in the sense that, R(t) ≥ R(tl) + R(tr). Moreover, R(t)
will be close to R(tl) +R(tr) when the last term on the right hand side of equation (5) is
small. This will occur either if one of the sets tl and tr has a very small fraction of the
mass of t and/or if the centers of the two subsets tl, tr are very close together. In either
cases we do not want to split the set t.

The following results show the consistency of the empirical algorithm in relation to its
population version. We begin with the splitting algorithm and then follow this by pruning
and joining.

Theorem 3.1. Assume that the random vector X has distribution P and a density f
that fulfils the condition that ‖x‖2f(x) is bounded. Let X1, . . . ,Xn be iid random vectors
with the same distribution as X and denote by Pn the empirical distribution of the sample
X1, . . . ,Xn.
Let {t1n, . . . , tmnn} be the empirical binary partition obtained from the forward empirical
algorithm, and {t1, . . . , tm} the population version. We then find that ultimately, i.e.
there exists n0 such that for n > n0, , mn = m and each pair (ijn, ajn) ∈ {1, . . . , p} ×
R in the determination of the empirical partition converges a.s. to the corresponding
one (ij, aj) ∈ {1, . . . , p} × R for the population values. In particular, it implies that,
limn→∞

∑m
i=1 P (tin∆ti) = 0, where ∆ stands for the symmetric difference.

The proof is given in the Appendix.

Theorem 3.2. Let {t∗1n, . . . , t∗knn} be the final empirical binary partition obtained after
the forward and backward empirical algorithm has been applied, and {t∗1, . . . , t∗k} be the
population version. Under the assumptions of Theorem 3.1 we ultimately have that kn = k
(kn = k for all n if k is known), and limn→∞

∑k
i=1 P (t∗in∆t∗i ) = 0.

The proof is given in the Appendix.

4 Some experiments.

In the following Section, we present the results of a simulation in which we tested our
method using four different models. We consider separately the cases where the number of
groups is known and where it is unknown. If the number of groups is known we compare
the results obtained with those found using the k-means algorithm. It is well known the
performance of the k-means algorithm depends strongly on the position of the centroids
initially used to start the algorithm, and a number of different methods have been proposed
to take account of this effect (see Steinley, [23]). We herein follow the recommendations
made in this last reference, and consider ten random initialisations, keeping the one
with the minimum within-cluster sum of squares given by,

∑n
i=1

∑k
j=1 ‖Xi− cj‖2I{Xi∈Gj},

where Gj is the j–th group and cj is the corresponding center. We refer to this version
as k-means(10).

9



We also compare our results with the well known model–based clustering procedure
proposed by Fraley and Raftery ([7], [8]). The MCLUST algorithm assumes that the
sample has been generated from a mixture of G normal distributions, with ellipsoidal
covariance matrices with variable shape, volume and orientation, and estimates the pa-
rameters of each population considering an EM algorithm and the most appropriate model
is selected by means of the Bayesian Information Criteria. This procedure is versatile and
it can be applied whether the number of groups is stated or not, hence we report the
results for both cases.

We consider the algorithm DBSCAN (Density Based Spatial Clustering of Applications
with Noise, [6]) which is suitable for discovering arbitrarily shaped clusters, since clusters
are defined as dense regions separated by low–density regions. This algorithm estimates
the number of clusters, as most of the density based algorithms do, hence we compare
the results with those where the number of groups is unknown. The algorithm depends
on two parameters, the number of objects in a neighborhood of an object, our input was
5, and the neighborhood radius, the authors, Ester et al [6], recommend to avoid putting
an input if this parameter is unknown.

4.1 Simulated data sets

We herein consider four different models (M1 - M4) having different number of groups
and dimensions. For each model clusters have equal number of observations.

M1. Four groups in dimension 2 with 100 observations per group. The data are generated
using : N(µi,Σ), i = 1, . . . 4, and distributed with centers (−1, 0), (1, 0), (0,−1), (0, 1)
and covariance matrix Σ = σ2Id with σ = 0.11, 0.13, 0.15, 0.17, 0.19. Figure 3 (a)
gives an example of the data generated using model M1 with σ = 0.19.

M2. Ten groups in dimension 5 with 30 observations per group. The data are generated
using N(µi,Σ), i = 1, . . . , 10. The means µi of the first five groups, are the vectors
of the canonical basis e1, . . . , e5 respectively, while the centers of the five remaining
groups are µ5+i = −ei, i = 1, . . . 5. In all cases, the covariance matrix is Σ = σ2Id,
σ = 0.11, 0.13, 0.15, 0.17. Figure 3 (b) gives an example of data generated using
model M4 with σ = 0.19 projected on the two first dimensions.

M3. Two groups in dimension 2 with 150 observations per group. The data are uniformly
generated on two concentric rings. The radius of the inner ring is between 50 and
80 and the radius of the outer ring is between 200 and 230. Figure 3 (c) gives an
example of data generated using model M3.

M4. Three groups in dimension 50 with 25 observations per group. The data are gen-
erated using N(µi,Σ), i = 1, 2, 3. The mean of the first group is (0.1, . . . , 0.1), the
second group is centered at the origin and the last group has mean (−0.1, . . . ,−0.1).
In all cases, the covariance matrix is Σ = σ2Id, σ = 0.03 or 0.05.
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Figure 3: (a) Scatter plot corresponding to M1 for σ = 0.19 (b) Two-dimensional pro-
jection scatter plot corresponding to M2 for σ = 0.19 (c) Scatter plots corresponding to
M3

4.2 Tuning the method

We performed M = 100 replicates for each model. When k is given, we compare the
results with those obtained using k-means, k-means(10) and MCLUST. Otherwise, if k
is unknown we compared the results with DBSCAN and MCLUST. In order to apply
CUBT we must fix the values for the parameters involved at each stage in the algorithm:
for the maximal tree we used minsize = 5, 10 or 15 and mindev = 0.7 or 0.9; for the
pruning stage mindist = 0.3 or 0.5 and δ = 0.2, 0.4 or 0.6 for the joining stage. For the
cases where the number of clusters is stated, it is important to note that even though in
almost every case the number of terminal nodes of the maximal tree is bigger than the
number of groups, there is no warranty that this will happen. Then, if we are in that case
we reduce mindev in decreasing order, 0.6, 0.5, . . . until the maximal tree has at least
k terminal nodes. For the cases where the number of clusters is not stated we consider
the same parameters as in the previous case. To determine the number of clusters we
must choose a threshold η. We consider the distances dδ

ĩ,̃j
defined in Section 2.2.2 that

correspond to the tree that is the output of the pruning step, and fix η as a low quantile of
dδ
ĩ,̃j

. Heuristically, low quantiles of dδ
ĩ,̃j

correspond to terminal nodes whose observations

belong to the same clusters. The quantiles of dδ
ĩ,̃j

that determine η chosen for M1 to M4

were 0.2, 0.08, 0.25 and 0.15 respectively.
Because we use synthetic data sets, we know the actual label of each observation, and

it is thus reasonable to measure the goodness of a partition by computing “the number of
misclassified observations”, which is analogous to the misclassification error for supervised
classification procedures. We denote the original clusters r = 1, . . . , R. Let y1, ...yn be
the group label of each observation, and ŷ1, ...ŷn the class label assigned by the clustering
algorithm. Let Σ be the set of permutations over {1, ..., R}. The misclassification error
may then be expressed as:

MCE = min
σ∈Σ

1

n

n∑
i=1

1{yi 6=σ(ŷi)}. (6)

If the number of clusters is large, the assignment problem may be computed in poly-
nomial time using Bipartite Matching and the Hungarian Method, [17]. We use this
algorithm only for M2 that has ten groups.
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4.3 Results

First, we analyze the results of the simulation when the number of clusters is known.
Table 1 shows the results obtained in our simulations. Except for Model 3, we varied
the values of σ to reflect the degree of overlapping between classes. In order to study
the robustness of the method with respects to the parameters selection we considered 36
different parameters configurations for our procedure. Since the results were practically
the same, we present for each model the results for the best and the worst clustering
allocation. We report the misclassification error obtained for each clustering procedure,
namely CUBT for the best performance (CUBT (B)) and for the worst performance
(CUBT (W)), k-Means, k-Means(10) and MCLUST (if k is given). As expected for the
first two models k-means(10) and MCLUST have a good performance, but both of them
fail for M3. For the last model MCLUST performs poorly in both cases, k-means has an
acceptable performance in both cases and k-means(10) always achieves a perfect cluster
allocation. The results obtained by CUBT using different values for the parameters are
practically the same, and in almost all cases the results for CUBT lie between those of
k-Means and k-Means(10), except for Model 3 where it has a better performance and
for M4 when σ = 0.05 (where the misclassification rate of CUBT(W) is larger than the
misclassification rate of k-means). If we compare the results with those of MCLUST we
may say that for M1 they have a similar performance and that for M2, M3 and M4 the
performance of CUBT is better.

Sigma (σ) CUBT (W) CUBT (B) k-Means k-Means(10) MCLUST
Model 1

0.11 0 0 0.12 0 0
0.13 7e− 03 0 0.12 0 0
0.15 1e− 03 1e− 04 0.11 0 0
0.17 1e− 03 2e− 04 0.07 5e− 05 3e− 05
0.19 2e− 03 3e− 04 0.06 3e− 04 2e− 04

Model 2
0.7 0 0 0.11 0.01 0.04
0.75 0 0 0.10 0.01 0.05
0.8 4e− 04 2e− 04 0.10 0.01 0.06
0.85 0.004 0.002 0.08 0.01 0.07
0.9 0.05 0.04 0.07 0.01 0.08

Model 3
0 3e− 04 0.47 0.47 0.25

Model 4
0.03 0 0 0.11 0 0.65
0.05 0.16 0.05 0.12 0 0.65

Table 1: Simulation results for models M1 to M4.

Now we proceed to analyze the results of the simulation when k is unknown. In Table
2 we report the number of times that the procedure chooses the correct number of groups.
The number of misclassified observations for CUBT and MCLUST, when the number of
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clusters is chosen properly, is the same as in the previous analysis. CUBT has a very good
performance for M1, M3 and the first case of M4, and for the others situations the best
performance is very good but it strongly depends on the choices of the other parameters.
However, is important to note that in those cases identifying correctly the clusters is a
very difficult problem and the other methods were not able to do it. For M2 if σ = 0.7
DBSCAN in nine opportunities identifies ten groups (in those cases all the observations
are classified correctly) and in the rest of the replicates it identifies fewer groups, if the
group overlapping is bigger it is not able to separate the groups, for σ = 0.75 it always
finds less than five groups and on the rest of the cases it always finds only one group.
For M1 DBSCAN has a very good performance identifying the number of groups and in
those cases there are not misclassified observations except for the case of σ = 0.19 that
the misclassification rate is 0.027. For M3 and M4 whenever it identifies correctly the
number of groups it also allocates the observations in the right group. MCLUST has an
outstanding performance for M1, but it fails in all the other models. For M2 it always
identifies one group and for M3 97 times finds nine groups and the rest of the times eight
clusters. Finally for M4 even though it always finds three groups it fails in the allocation
of the observations, which is consistent with the results found when the number of clusters
was previously stated.

Sigma (σ) CUBT (W) CUBT (B) DBSCAN MCLUST
Model 1

0.11 81 85 92 99
0.13 75 84 81 100
0.15 76 87 74 100
0.17 79 92 43 100
0.19 85 88 38 100

Model 2
0.7 24 90 9 0
0.75 34 90 0 0
0.8 42 90 0 0
0.85 58 83 0 0
0.9 51 78 0 0

Model 3
94 98 76 0

Model 4
0.03 100 100 100 100
0.05 2 98 26 100

Table 2: Number of times that the different procedures choose the correct number of
groups for M1 to M4.
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4.4 A comparison between CART and CUBT

In the following simple example, we compare the tree structure obtained by CART using
the complete training sample (observations plus the group labels) with that obtained
by CUBT considering only the training sample without the labels. We generated three
sub–populations in a two-dimensional variable space. The underlying distribution of the
vector X =(X1, X2) is a bivariate normal distribution in which the variables X1 and
X2 are independent, with their distributions for the three groups being given by X1 ∼
N (0, 0.03) , N (2, 0.03) , N (1, 0.25), X2 ∼ N (0, 0.25) , N (1, 0.25) , N (2.5, 0.03).

The data were then rotated through π/4. One of the difficulties was that the optimal
partitions are not parallel to the axis. Figure 4 shows the partitions obtained using CART
and CUBT, for a single sample of size 300. We performed 100 replicates, and in each case
generated a training sample of size 300, whereby every group was of the same size. We
then computed the “mean misclassification rate” with respect to the true labels. For
CUBT, the value was 0.09, while for CART there were no classification errors because we
used the same sample both for growing the tree and for classifying the observations.

Figure 4: Plot of the partitions of the space for a generated data set. The solid lines
indicate the partition for CUBT and the dashed lines the partition for CART

In order to compare our procedure with the traditional CART classification method,
we obtained the binary trees for CART and CUBT. Both trees are shown in Figure 5.
It is noteworthy that the two structures are exactly the same, and that the different
cutoff values in the different branches may be understood with the aid of Figure 4, which
corresponds to the same data set.

5 A real data example. European Jobs

In the following example, the data set describes the percentage of workers employed in
different sectors of economic activity for a number of European countries in the year 1979
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Figure 5: Left: Tree corresponding to CUBT . Right: Tree corresponding to CART. In
both cases the left-hand branches indicate the smaller value of the partitioning variable.

(this data set can be obtained on the website http://lib.stat.cmu.edu/DASL/Datafiles
/EuropeanJobs.html). The categories are: agriculture (A), mining (M), manufacturing

(MA), power supplies industries (P), construction (C), service industries (SI), finance
(F), social and personal services (S) and transportation and communication (T). It is
important to note that these data were collected during the cold war. The aim was to
allocate the observations to different clusters, but the number of clusters is unknown.
We must therefore study the data structure for a range of different numbers of clusters.
We first consider a four-group structure. In this case, a single variable (the percentage
employed in agriculture) determines the tree structure. The four groups are shown in
Table 3, and the corresponding tree is plotted on the top panel of Figure 6. In the
tree, the highest value of A corresponds to Turkey, which is an outlier and conforms to a
single cluster of observations, which may be explained in terms of its social and territorial
proximity to Africa. The countries that make up groups 2 and 3 are those that were
either under communist rule or those that were experiencing varying degrees of political
upheaval; Spain, for example was making adjustments after the end of Franco’s regime.
The countries of Group 2 were poorer than those of Group 3. Finally, Group 4 had the
lowest percentage of employment in agriculture, and the countries in this group were the
most developed and were not under communist rule, with the exception of East Germany.
Using k-means we get the following clusters. Turkey and Ireland are isolated in one group
each, Greece, Portugal, Poland, Romania and Yugoslavia form another group, and the
remaining countries form a fourth cluster.

If we use five clusters instead of four, the main difference is that Group 4 of the original
partition is divided into two subgroups (4 and 5), and the variables that explain these
partitions are the percentages employed in mining and agriculture. The other groups of
the original partition remain stable.

If a five-cluster structure is considered via the k-means algorithm, Turkey and Ireland
are then each isolated in single groups, and Greece, Portugal, Poland, Romania and
Yugoslavia form another group, as in the four-cluster structure. Switzerland and East
and West Germany make up a new cluster.
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Group 1 Group 2 Group 3 Group 4
Turkey Greece Ireland Belgium

Poland Portugal Denmark
Romania Spain France
Yugoslavia Bulgaria W. Germany

Czechoslovakia E. Germany
Hungary Italy
USSR Luxembourg

Netherlands
United Kingdom
Austria
Finland
Norway
Sweden
Switzerland

Table 3: CUBT clustering structure using four groups.

Figure 6: Tree structure using four groups top and five groups bottom, the left-hand
branch shows the smaller values of the variable that is making the partition.

6 Concluding Remarks

We have herein presented a new clustering method called CUBT which shares some ideas
with the well known classification and regression trees, defining clusters in terms of binary
rules over the original variables. Like CART, our method may be very attractive and useful
in a number of practical applications. Because the tree structure makes use of the original
variables, it helps to determine those variables that are important in the conformation
of the clusters. Moreover, the tree allows the classification of new observations. In our
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Group 1 Group 2 Group 3 Group 4 Group 5
Turkey Greece Ireland Belgium W. Germany

Poland Portugal Denmark E. Germany
Romania Spain France Switzerland
Yugoslavia Bulgaria Italy

Czechoslovakia Luxembourg
Hungary Netherlands
USSR United Kingdom

Austria
Finland
Norway
Sweden

Table 4: CUBT clustering with five groups.

approach, a binary tree is obtained in three stages. In the first stage, the sample is
split into two sub-samples, thereby reducing the heterogeneity of the data within the
new sub-samples according to the objective function R(·). The procedure is then applied
recursively to each sub-sample. In the second and third stages, the maximal tree obtained
at the first stage is pruned using a dissimilarity criterion, first applied to the adjacent nodes
and then to all the terminal nodes. The algorithm is simple and requires a reasonable
computation time. There are no restrictions on the dimension of the data used. Our
method is consistent under a set of quite general assumptions, and produces quite good
results with the simulated examples that we considered here, as well as for an example
that used real data.

The algorithm depends on several parameters, and an optimal way to choose them
is beyond the scope of this paper. We herein propose some advice in order choose them
in practice. The splitting stage depends on two parameters, mindev and minsize. The
later, mindev ∈ (0, 1) represents the percentage of the deviance of the whole data set
(R(S)) the algorithm requires to split a group (if the reduction of its deviance is less
than mindev× R(S) the group is split in two subgroups). Our experience indicates that
values between 0.7 and 0.9 give a sufficiently large partition. The former indicates the
minimum cluster size that the user admits, if he has some information beforehand it could
be provided and taken into account by the algorithm otherwise the default value should
be 1. The pruning step includes also two parameters δ and ε. In population terms, it
suffices that ε be smaller than the distance among the supports of two disjoint clusters.
If the user could not provide an input for this parameter the default could be zero, which
correspond to skip the pruning step and go directly to the joining step, in that case one
would probably obtain a larger tree, but the final clustering allocation would not change
and the results given in Theorem 3.2 still hold. The parameter δ is just a way to deal
with some possible presence of outliers and as a default δ = 0.2 can be used. Finally, if
the number of clusters is given the final stage does not require any parameter, otherwise
one parameter, η, should be provided. The way we suggest to choose this parameter is
given in Section 4.2.

A more robust version of our method could be developed by substituting the objective
function cov(XT ) in equation (1) for a more robust covariance functional robcov(XT ) (see
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e.g. Maronna et al.[15] Chapter 6 for a review), and then proceeding in the same manner
as described herein. However, a detailed investigation of this alternative approach lies
beyond the scope of the present study.

Even though we focussed our paper on the treatment of interval data, the procedure
can be extended to other settings as long as a covariance structure and a dissimilarity
measure can be defined. For example, one could use Gini’s definition of variance for
categorical data, ([11]) and the Mean Character difference as a measure of dissimilarity.
Other measures of dissimilarity for categorical data can be found in Gan et al.[9]. However,
a deeper study of these settings are beyond the scope of this paper.
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8 Appendix

8.1 Proof of Lemma 3.1

We first observe that because tl and tr are disjoint, E(Xtl∪tr) = γµl + (1 − γ)µr, where

γ = P (X ∈ tl|X ∈ tl∪tr). Given that j = 1, . . . , p, we use M
(j)
2i =

∫
ti
x(j)2dF (x), i = l, r,

where F stands for the distribution function of the vector X.
It then follows that E(Xtl∪tr(j)

2) = γM
(j)
2l + (1− γ)M

(j)
2r , and therefore that

var(Xtl∪tr(j)) = γvar(Xtr(j)) + (1− γ)var(Xtr(j)) + γ(1− γ)(µl(j)− µr(j))2.

By summing the terms in j we get the desired result.

8.2 Proof of Theorem 3.1

Let T be the family of polygons in Rp with faces orthogonal to the axes, and fix i ∈
{1, . . . , p} and t ∈ T. For a ∈ R denote by tl = {x ∈ t : x(i) ≤ a} and tr = t \ tl.
We define r(t, i, a) = R(t) − R(tl) − R(tr) and rn(t, i, a) = Rn(t) − Rn(tl) − Rn(tr), the
corresponding empirical version.

We start showing the uniform convergence

sup
a∈R

sup
t∈T
|rn(t, i, a)− r(t, i, a)| → 0 a.s. (7)

By Lemma 3.1,

αtr(t, i, a) = αtlαtr‖µl(a)− µr(a)‖2, (8)

where αA = P (X ∈ A) and µj(a) = E(Xtj), j = l, r. Then, the pairs (ijn, ajn) and (ij, aj)
are the arguments that maximise the right-hand side of equation (8) with respect to the

18



measures Pn and P respectively. We observe that the right-hand side of equation (8)
equals

αtr

∫
tl

‖x‖2dP (x) + αtl

∫
tr

‖x‖2dP (x)− 2〈
∫
tl

xdP (x),

∫
tr

xdP (x)〉. (9)

It order to prove equation (7) it is sufficient to show that:

1. supa∈R supt∈T |Pn(tj)− P (tj)| → 0 a.s. j = l, r

2. supa∈R supt∈T |
∫
tj
‖x‖2dPn(x)−

∫
tj
‖x‖2dP (x)| → 0 a.s. j = l, r

3. supa∈R supt∈T |
∫
tj
x(i)dPn(x)−

∫
tj
x(i)dP (x)| → 0 a.s. j = l, r, i = 1, . . . , p.

Since T is a Vapnik–Chervonenkis class, we have that (i) holds. Now observe that the
conditions for uniform convergence over families of sets still hold if we are dealing with
signed finite measures. Therefore if we consider the finite measure ‖x‖2dP (x) and the
finite signed measure given by x(i)dP (x) we also have that (ii) and (iii) both hold.

Since

lim
a→∞

αtlαtr‖µl(a)− µr(a)‖2 = lim
a→−∞

αtlαtr‖µl(a)− µr(a)‖2 = 0,

we have that inf {argmaxa∈Rrn(t, i, a)} → inf {argmaxa∈Rr(t, i, a)} a.s.
In the first step of the algorithm, t = Rp and we obtain in1 = i1 for n large enough

and an1 → a1 a.s. In the next step, we observe that the empirical procedure begins to
work with tnl and tnr, while the population algorithm will do so with tl and tr. However,
we have that

sup
a∈R
|rn(tnj, i, a)− r(tj, i, a)| ≤

sup
a∈R

sup
t∈T
|rn(tnj, i, a)− r(tnj, i, a)|+ sup

a∈R
|r(tnj, i, a)− r(tj, i, a)|, (10)

for j = l, r.
We already know that the first term on the right hand side of equation(10) converges

to zero almost surely. In order to show that the second term also converges to zero, it is
sufficient to show that

1. supa∈R |P (tnj)− P (tj)| → 0 a.s. j = l, r

2. supa∈R |
∫
tj
‖x‖2dP (x)−

∫
tnj
‖x‖2dP (x)| → 0 a.s. j = l, r

3. supa∈R|
∫
tj
x(i)dP (x)−

∫
tnj
x(i)dP (x)| → 0 a.s. j = l, r, i = 1, . . . , p,

which follows from the assumption that ‖x‖2f(x) is bounded. This concludes the proof
since minsize/n→ τ .
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8.3 Proof of Theorem 3.2

We need to show that we have consistency in both steps of the backward algorithm.
(i) Convergence of the pruning step. Let {t∗1n, . . . , t∗mn} be the output of the forward

algorithm. The pruning step partition of the algorithm converges to the corresponding
population version from

• the conclusions of Theorem 3.1.

• the fact that the random variables Wlr d̃l, d̃r are positive.

• the uniform convergence of the empirical quantile function to its population version.

• the Lebesgue dominated convergence Theorem.

The proof of (ii) is mainly the same as that for (i).
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