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Revisiting Sparse ICA from a Synthesis Point of
View: Blind Source Separation for Over and

Underdetermined Mixture
Fangchen Feng, Matthieu Kowalski

Abstract—This paper studies the existing links between two
approaches of Independent Component Analysis (ICA), pro-
jection pursuit and Infomax/maximum likelihood estimation,
and the Sparse Component Analysis (SCA), mainly used in
the Generalized Morphological Component Analysis (GMCA),
to tackle the Blind Source Separation (BSS) of instantaneous
mixtures problem. If ICA methods suit well for overdetermined
and noiseless mixtures, SCA (via GMCA) has demonstrated
its robustness to noise. Using the ”synthesis” point of view
to reformulate ICA methods as an optimization problem, we
propose a new optimization framework, which encompasses both
approaches. We show that the algorithms developed to minimize
the proposed functional built on SCA, but imposing a numerical
decorrelation constraint on the sources, aims to improve the
Signal to Inference Ratio (SIR) of the estimated sources, without
degrading the Signal to Distortion Ratio (SDR).

I. INTRODUCTION

The blind source separation for instantaneous mixtures
appears in various applications such as speech processing [1],
biomedical processing [2] and digital communications [3]. The
BSS problem is also mingled with the independent compo-
nent analysis (ICA), as this family of methods introduced in
1984 [4] has been developed to tackle the following linear
problem [5]: Given M observations of size T X ∈ RM×T ,
estimate the mixing matrix A ∈ RM×N and the N sources
S ∈ RN×T , such that

X = AS + E (1)

with E ∈ RM×T some additive noise.
a) Independent component analysis: Based on the in-

dependence assumption, ICA was mainly developed in the
(over)determined noiseless case [6] (see references therein for
extensions of ICA):

X = AS (2)

with M ≥ N .
The general idea of ICA is to estimate an unmixing matrix

W = A−1 by minimizing a contrast function measuring
the dependencies of the sources. This unmixing matrix is
then used to estimate the source signals by S = WX. ICA
methods have been applied with success in a wide range
of applications, such as electroencephalography (EEG) [7],
functional magnetic resonance imaging (fMRI) [8]–[10], and
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audio source separation [11]. One can refer to [6] for a deep
presentation of ICA for blind source separation.

A fundamental hypothesis of ICA, is that at most one
sources can be Gaussian [6]. In order to apply ICA, it is usual
to consider the mixing model (1) in a transform domain, where
the ”non-Gaussianity” assumption can be respected. Denoting
by {ϕk , ϕK ∈ RT }Kk=1 a dictionary of waveform (such as
wavelets or time-frequency atoms)1 and Φ = [ϕ1, . . . , ϕK ] ∈
RT×K , the mixing model (2) becomes

XΦ = ASΦ

X̃ = AS̃ (3)

where X̃ = XΦ and S̃ = SΦ are the analysis coefficients
of X and S respectively in the transform domain. ICA in the
transform domain has been proposed for image processing [12]
with wavelets, audio source separation with the Short-Time
Fourier Transform (STFT) [11] and fMRI [9] where a dictio-
nary learning strategy is used to choose the transform domain.
In [12], the authors have remarked that contrast function
employed in ICA can be interpreted as a measure of sparsity.

b) Sparsity by analysis: Using the analysis form, sparse
methods are based on the mixing model in the transform
domain:

XΦ = ASΦ + EΦ

X̃ = AS̃ + Ẽ (4)

with Ẽ the analysis coefficients of E.
These methods are especially popular to deal with the

underdetermined mixtures where the mixing matrix is first es-
timated, before estimating the sources [13]–[15]. It is also the
starting point of time-frequency techniques for BSS applied to
audio signals [16], [17].

Nevertheless, when the family of waveforms is overcom-
plete, several problems appear: first, if the noise E is assumed
to be Gaussian white in the time domain, Ẽ = EΦ becomes
correlated in the transform domain (its density is even a
degenerated Gaussian). Moreover, the estimated coefficients
S̃ used to synthesize the sources do not belong to the image
of the operator Φ, thus should not be considered as analysis
coefficients.

1We stick to the real case for the sake of simplicity, but the dictionary can
be complex.
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c) Sparsity by synthesis: A simple way to deal with these
drawbacks of the analysis operator, is to use the synthesis
modeling of the sparse component analysis (SCA) [18]:

X = AS + E = AαΦ∗ + E (5)

where α ∈ RN×K are the synthesis coefficients of S in the
dictionary Φ, assumed to be sparse. The problem is then to
estimate the mixing matrix A and the synthesis coefficients α,
the sources being synthesized by S = αΦ∗. Using (5), [19]
proposed to estimate A and α jointly using an alternating
optimization strategy based on the maximum a posteriori
(MAP):

max
A,α

p(A,α|X) = min
A,α
− log(p(A,α|X)) (6)

= min
A,α
− log(p(X|A,α))− log(p(A))− log(p(α))

(7)

The chosen priors are the following:
• the noise is white Gaussian:

− log(p(A,α|X)) =
1

2
‖X−AS‖2F

• A Gaussian prior on A:

− log(p(A)) =
µ

2
‖A‖2F , µ > 0

• A generalized Gaussian prior on the synthesis coeffi-
cients:

− log(p(α)) =
λ

γ

∑
n,k

|αn(k)|γ , 0 < γ ≤ 1, λ > 0

where ‖·‖F denotes the Frobenius norm. Generalized Gaussian
prior with 0 < γ ≤ 1 allows one to favor sparse coeffi-
cients [19] and this MAP approach using sparsity is also the
starting point of the generalized morphological component
analysis (GMCA) [20] developed for images using wavelet
basis. One of the main advantages of such an approach, is its
ability to deal with the additive noise compared to ICA (see
the discussion in [20]).

d) Contributions and outline: As an extension of our
previous work [21], we consider in this paper the BSS prob-
lem (1) in general: (over)determined and underdetermined,
possibly with an additive white Gaussian noise. A fundamental
hypothesis of this work is that the sources admit a sparse
representation leading to (5).

The contributions of this article are fourfold:
1) we studied the existing algorithms based on the

MAP approach (5) exploiting sparsity, in particular the
GMCA. We proposed a convergent algorithm based on
PALM [22], which is more robust in practice, in the
sense that it obtains acceptable results in the underde-
termined case (Sec. II).

2) we provide a discussion on the formal links between
some ICA approaches and sparsity-based approaches
(Sec. III)

3) we proposed a new framework exploiting sparsity and
numerical time decorrelation of the sources, which gen-
eralizes ICA and SCA for BSS (Sec. IV).

4) we compared all these algorithms on synthetic instan-
taneous audio mixtures (Sec. V). Even if instantaneous
mixture is not the right model for audio signals [23], this
framework allows us to evaluate the separation results
with objective measures, and subjectively by listening.
The experiments show that the proposed framework
outperforms existing algorithms in the underdetermined
case, and is more robust to noise in the (over)determined
case. Moreover, the proposed framework is robust to the
chosen number of sources to estimate.

II. BSS WITH SYNTHESIS SPARSE MODEL

We recall the mixing model with the synthesis coefficient
as defined in (5).

X = AS + E

= AαΦ∗ + E (8)

where

• X ∈ RM×T contains the M mixtures of T samples,
• S ∈ RN×T are the N sources of T samples.
• E ∈ RM×T is the additive noise, assumed to be white

and Gaussian.
• A ∈ RM×N is the mixing matrix.
• Φ ∈ RK×T is the matrix dictionary of waveforms.
• α ∈ RN×K are the synthesis coefficients of S.

In this article, we stick to the simple model of the white
Gaussian noise. If the problem of spatially correlated noise
has been widely studied and can be tackled by a whitening
step (see, for example, [24]), taking into account spatially
and temporally correlated noise is more complex [25]. We
let the study of non white noise in inverse problems to further
works, as it is out of the scope of this article, dedicated to the
instantaneous BSS.

In this section, we provide a brief state of the art of the ex-
isting SCA approaches for BSS. We then present a convergent
algorithm thanks to the proximal alternating linearized method
(PALM) [22].

A. The optimization framework

In order to jointly estimate the mixing matrix A and the
synthesis coefficients α in (5), the authors of [19] proposed
to solve the optimization problem of the following functional,
which is equivalent to the MAP of (7)

min
α,A

1

2
‖X−AαΦ∗‖2F + λh(α) + g(A) (9)

where

• f(A,α) = 1
2‖X − AαΦ∗‖2F is the data fit term,

corresponding to the white Gaussian noise prior.
• h is the regularization term employed to favor sparse

solution. A popular choice is the `1 norm [26].
• λ > 0 is a hyperparameter balancing between the data

term and the regularization term.
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• g contains constraints on A to avoid trivial solutions and
limit the ambiguity scaling problem. A common choice
for g is the indicator function of the unit circle:

g(A) = ıC(A) =

{
0 if ‖an‖ = 1, n = 1, 2, . . . , N
+∞ otherwise

(10)
where an is the n-th column of A.

B. State of the art algorithms

The optimization problem (9) is non-differentiable and
non-convex. In [19], the authors proposed to use a smooth
relaxation of the `1 norm to solve the problem. However,
[27] shows that the smooth technique has several drawbacks,
mainly because of the choice of the smooth parameter which
balances between the convergence rate and the approximation
level. It is also pointed out in [19] that the separation results
are sensitive to initialization. In [28], the GMCA method was
developed based on the alternating optimization strategy to
solve the problem for image separation in (over)determined
setting. They first perform the optimization with respect to the
signal and then with respect to the mixing matrix followed by
a normalization step. One limitation of GMCA is that this
block-coordinate descend-like algorithm does not have any
convergence proof mainly because of the extra normalization
step. It is also mentioned in [28] that GMCA does not work
in underdetermined case.

C. A convergent algorithm: BSS-PALM

We propose to use the proximal alternating linearized
method (PALM) [22] to solve the optimization problem (9).
We show that the sequence generated by this algorithm con-
verges to a critical point of problem (9). The experiment
Section V will show some advantages of using PALM instead
of GMCA, such as its relative robustness to deal with underde-
termined mixtures, and its robustness to random initialization.

PALM relies on the proximal operator defined as fol-
low [29]:

proxΨ := argmin
X

Ψ(X) +
1

2
‖X−Y‖2F (11)

The proposed algorithm is based on two special cases of
the proximal operator. When Ψ(X) = λ‖X‖1, the proximal
operator is an element-wise soft-thresholding:

Sλ(X) = proxΨ(X) = sign(x) (|x| − λ)
+ (12)

where sign(x) is the sign function and (x)+ = max(x, 0).
When Ψ(X) = ıC(X) as defined in (10), the proximal

operator reduces to a column-wise normalization projection:

PB(X) = proxΨ(X) =

{ xn

‖xn‖ if ‖xn‖ 6= 1,
xn otherwise

(13)

where xn is the n-th column of x.
With the above proximal operators, we present the proposed

algorithm in Alg. 1. In the following, we refer to this algorithm
as BSS-PALM.

Using a direct application of PALM to solve (9), one can
prove the next proposition

Algorithm 1: BSS-PALM

Initialization : α1 ∈ RN×K , A1 ∈ RM×N ,
L1,1 = ‖A1‖2F , L1,2 = ‖α1Φ

∗‖2F , j = 1;
repeat

1) ∇αj
f (Aj ,αj) = −AT

j (X−AjαjΦ
∗) Φ;

2) αj+1 = Sλ/Lj,1

(
αj − 1

Lj,1
∇αQ(Aj ,αj)

)
;

3) ∇Ajf(Aj ,αj+1) = −(X−Ajαj+1Φ
∗)Φα∗j+1;

4) Aj+1 = PC
(
Aj − 1

Lj,2
∇Af(Aj ,αj+1)

)
;

5) Lj+1,1 = ‖Aj+1‖2F ;
6) Lj+1,2 = ‖αj+1Φ

∗‖2F ;
7) j = j + 1;

until convergence;

Proposition 1. The sequence (Aj ,αj) generated by Alg. 1
converges to a critical point of problem (9).

Details of the proof are postponed in Appendix A.

III. REVISITING SPARSE ICA

Recently, it was claimed in [30] that two of the most
used ICA methods for fMRI (Infomax and FastICA) separate
sparse sources rather than independent sources, leading to the
conclusion that the mathematical design of better analysis tool
for brain fMRI should emphasize on other characteristics, such
as sparsity, rather than independence. One given explanation is
that the sparsity-based `1 minimization can be connected with
InfoMax and FastICA, because both of these ICA methods
implicitly assume that the independent components have the
generalized Gaussian distribution, which includes the sparse
sources modeled by `1 minimization. This conclusion is bal-
anced in [31] where the authors show that these two algorithms
are indeed relevant to the recovery of independent fMRI
sources. However, connections between ICA and SCA appear
several times. In [32], it is shown that ICA methods work
better in transform domain such as Curvelets or Ridgelets, and
justify the use of kurtosis in ICA by a sparse coding point of
view. This remark was already made in [12] at the end of 90’s.
In [13], [14], the estimation of the mixing matrix for under-
determined mixture is performed by exploiting the sparsity of
the sources in the transform domain, and the independence
can be viewed as a consequence of sparsity.

Back to the ICA direct model (2), we suppose in this
section that M = N . As the sources S are assumed to be
independent, ICA methods take the uncorrelation constraint
E(SST ) = D, D being a diagonal matrix, into account. In
practice, as the number of samples is large, only the numerical
decorrelation is considered, that is SST = D. Furthermore,
ICA even assumes D = I, thanks to a whitening step.
Another common point of ICA algorithms, is to look for
an estimate W of the inverse of A such that S = WX.
After presenting maximum likelihood/Infomax and projection
pursuit as optimization problem, we propose a new functional
to encompass these ICA approaches and SCA, allowing us to
deal with noisy mixtures as well as underdetermined mixtures.



4

A. ICA based on Infomax/Maximum likelihood estimation

These methods aim to estimate W by maximizing the
amount of mutual information or the likelihood of the model.
Both lead to:

max
W

E

(
N∑
n=1

log
(
pn(wT

nX)
))

+ log(det W) (14)

with pn the density of the independent components, under the
orthogonality constraint on W: WWT = WTW = I

An important point of [19] is the equivalence of their
proposed approach (9) and the problem (14) in the determined
noiseless scenario (3), Φ being an orthogonal basis. Indeed,
when Φ is an orthogonal basis, there is an equivalence between
the synthesis coefficients α such that S = αΦ∗ and the
analysis coefficients S̃. Then, one has

X̃ = AS̃ = Aα (15)

with X̃ = XΦ being the analysis coefficients of X. Denoting
by W = A−1, (15) becomes

W−1X̃ = S̃ = α (16)

Then, by re-injecting (16) into (9), the optimization becomes

min
S̃,W

1

2
‖WX̃− S̃‖2F + λh(S̃) + g(W) . (17)

Then, with the choices g(W) = −N log(|det W|) and
h(S̃) = h(WT X̃) = E

(∑N
n=1 log

(
pn(wT

nX)
))

, one recov-

ers the objective (14) in the noiseless scenario WX̃ = S̃.
However, as already stressed in the introduction, there is

no warranty to recover real analysis coefficients S̃ such that
there exist S verifying S̃ = SΦ, unless Φ is an orthogonal
basis. That is, this equivalence shows that the synthesis sparse
approach (9) can be viewed as a generalization of the Info-
max/maximum likelihood techniques able to deal with noisy
and underdetermined mixtures, by working on the synthesis
coefficients α, such that S = αΦ∗.

B. ICA based on projection pursuit

Projection pursuit methods aim to identify the N compo-
nents of the mixture, by estimating the weight vectors W
which maximize a measure of non gaussianity and assuring
the decorrelation constraint E(SST ) = I. That is, one can
re-formulate ICA by projection pursuit as:

max
W

J(WX) s.t WWT = WTW = I (18)

where J is a measure of non-gaussianity. Then, by a simple
change of variable, one can reformulate (18) on the analysis
coefficients as

max
A,S̃

J(S) s.t. S̃S̃T = I and X̃ = AS̃ (19)

A possible choice for J is the kurtosis of the coefficients. That
is

J(S̃) =

N∑
n=1

Kurt(s̃n) =

N∑
n=1

∑
n |s̃n|4

(
∑
n |s̃n|2)

2 .

Other choices are possible, such as smooth approximation of
the `0 norm as proposed in [10] or proposed neg-entropy
approximations used in FastICA (see [6]).

Once again, if Φ is an orthogonal basis in (9), one has an
equivalence between (19) and (9) in the noiseless case, with
the choice h(S̃) = J(S̃), s.t. S̃S̃T = I.

C. Toward a general formulation of sparse ICA

We have seen that, when Φ is an orthogonal basis, some
approaches of ICA can be formulated as the optimization
problem (9) in the noiseless case. Moreover, using the max-
imum a posteriori (MAP) interpretation of the optimization
problem (9), the regularization term h can reflect the sta-
tistical independence of the synthesis coefficients between
the sources. Indeed, using the MAP approach in a Bayesian
setting, the independence assumption reflected in the prior on
α leads to

h(α) =
N∑
n=1

hn(αn) .

Then, in order to deal with noise, we propose the following
generalization of ”sparse ICA” min

A,α

1

2
‖X−AαΦ∗‖2F + h(α) + g(A)

s.t. S = αΦ∗ and SST = D

(20)

where D ∈ RN×N is any diagonal matrix.
Using the `1 sparse regularization term for h implies that

one considers that the synthesis coefficients of the sources are
independent. However, it is interesting to note that maximizing
the kurtosis is equivalent to minimizing the `p

`q
sparse criterion

as defined in [33] with p = 2 and q = 4, used for blind
deconvolution.

In this paper, for the sake of simplicity, we stick to `1
norm for the synthesis coefficients. Therefore we consider the
formulation as follows: min

A,α

1

2
‖X−AαΦ∗‖2F + λ‖α‖1 + ıC(A)

s.t. αΦ∗Φα∗ = D
(21)

IV. ALGORITHMS FOR SPARSE ICA

In this section, we propose three algorithms to solve the
sparse ICA problem (21). First, we show that a slight modifi-
cation of the BSS-PALM algorithm ensures that the estimated
sources are decorrelated in the determined noiseless scenario.
Then we propose an ADMM type algorithm and a simplified
version to tackle the problem.

A. A simple modification of BSS-PALM

The optimization problem (21) is challenging because of
the non-convex term and the quadratic constraint. However,
we demonstrate that by modifying the update stage for the
mixing matrix A in BSS-PALM, simply by a pseudo inverse
supposing that the sources are decorrelated, the decorrelation
constraint is respected for determined noiseless mixtures. This
algorithm was build on the block-coordinate variable metric
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forward backward (BC-VMFB) method [34] to solve the
following version of (9):

min
α,A

1

2
‖X−AαΦ∗‖22 +

µ

2
‖A‖22 + λ‖α‖1 + ıC(A) (22)

where µ is assumed to be very large. Adding the term µ
2 ‖A‖

2
2

has of course no influence on the solution, because of the
constraint ıC(A). However, it has numerical consequences,
letting one to replace the estimation of A by a pseudo inverse
supposing that the sources are decorrelated. This algorithm,
referred as BSS-Regu in the following, is summarized in
Alg. 2.

Algorithm 2: BSS-Regu

Initialization : α1 ∈ RN×K , A1 ∈ RM×N , L1 = ‖A1‖2F ,
j = 1;
repeat

1) ∇αf (Aj ,αj) = −AT
j (X−AjαjΦ

∗) Φ;
2) αj+1 = Sλ/Lj

(αj − ∇αf(Aj ,αj)
Lj

);
3) Aj+1 = PC(XαjΦ

∗);
4) Lj+1 = ‖Aj+1‖2F ;
5) j = j + 1;

until convergence;

Next propositions show that this algorithm still con-
verges, and that the estimated sources are decorrelated for
(over)determined mixtures in the noiseless case.

Proposition 2. The sequence (αj ,Aj) generated by Algo-
rithm 2 converges to a critical point of (22)

Proof. The proof is postponed in Appendix B

Proposition 3. Let α be a minimizer of (22) obtained by
Alg. 2, and let S = αΦ∗. Then, if M ≥ N , SST = D as
λ→ 0, where D is a diagonal matrix.

Proof. The proof is postponed in Appendix C.

B. An ADMM-type approach for Sparse ICA

In this subsection, we present two algorithms to directly
solve the problem (20). We use an ADMM approach before
providing a simplified version, which appears to be faster and
more robust in practice.

1) ADMM approach: We first reformulate problem (20)
with a linear constraint by introducing an extra variable as
follows: arg min

A,α,S

1

2
||X−AαΦ∗||2F + λ||α||1 + ıB(A) + ıdeco(S)

s.t. S = αΦ∗

(23)
where ıdeco is an indicator function of the decorrelation con-
straint of S, reading:

ıdeco(S) =

{
0 if SST = D, with D being diagonal
+∞ otherwise

(24)

We then apply the linearized preconditioned alternating di-
rection method of multipliers (LPADMM) [35] to solve the
problem (23).

The general idea of ADMM is based on the alternating opti-
mization of the corresponding augmented Lagrangian function.
The linearized and preconditioned version (LPADMM) is
intended to simplify the algorithm, that is, in each iteration,
instead of minimizing the original function, to minimize its
first order approximation. While used in practice for some
non-convex problem (for example [36]), the convergence of
ADMM algorithms in a non-convex setting is currently under
study [37], [38]. The derivation of this algorithm is postponed
in Appendix D. We refer to it as BSS-LPADMM in the
following and is summarized in Alg. 3.

Algorithm 3: BSS-LPADMM

Initialization : α1 ∈ RN×K , S1 ∈ RN×T , A1 ∈ RM×N ,
L1,1 = ‖A1‖2F + γ, L1,2 = ‖α1Φ

∗‖2F , j = 1;
repeat

1) ∇αjf(Aj ,αj) =
−AT

j (X−AjαjΦ
∗)Φ− ηjΦ− γ(Sj −αjΦ

∗)Φ

2) αj+1 = Sλ/Lj,1
(αj − ∇αf(Aj ,αj)

Lj,1
);

3) Sj+1/2 = αj+1Φ
∗ − ηj+1/γ;

4) ΣSj+1/2
= Sj+1/2S

T
j+1/2;

5) WSj+1/2
= diag(Σ

1/2
Sj+1/2

)Σ
−1/2
Sj+1/2

;
6) Sj+1 = WSj+1/2

Sj+1/2;
7) ∇Aj

f(Aj ,αj+1) = −(X−Ajαj+1Φ
∗)Φα∗j+1;

8) Aj+1 = PC
(
Aj − 1

L2,j
∇Ajf(Aj ,αj+1)

)
;

9) ηj+1 = ηj + γ(Sj+1 −αj+1Φ
∗)

10) Lj+1,1 = ‖Aj+1‖2F + γ;
11) Lj+1,2 = ‖αj+1Φ

∗‖2F ;
12) j = j + 1;

until convergence;

2) A simplified version: The BSS-LPADMM algorithm
solves directly the problem (20) but is subject to big computa-
tional burden. Therefore, we design here a simplified version
in Alg. 4 and refer to this algorithm as BSS-Deco.

Algorithm 4: BSS-Deco

Initialization : α1 ∈ RN×K , A1 ∈ RM×N , L1 = ‖A1‖2F ,
j = 1;
repeat

1) αj+1 = Sλ/Lj
(αj −

∇αj
f(Aj ,αj)

Lj
);

2) Sj+1/2 = αj+1Φ
∗;

3) Sj+1 = diag(Σ
1/2
Sj+1/2

)Σ
−1/2
Sj+1/2

Sj+1/2;
4) Aj+1 = PC(XSTj+1);
5) Lj+1 = ‖Aj+1‖2F ;
6) j = j + 1;

until convergence;

Compared to BSS-LPADMM, we set the dual variable η
and the penalty parameter γ to zero. For the update stage of
the mixing matrix, we use the same strategy of BSS-Regu
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however with the decorrelated version of the estimated source
Y. Despite the lack of convergence proof, experiments support
its good performances.

V. EXPERIMENTS

After presenting the experimental setup, we discuss the
choice of the hyper-parameter λ and the robustness to the
choice of the number of unknown sources. We then compare
all the proposed algorithms and state-of-the-art ICA and
SCA algorithms on over/underdetermined mixtures with and
without additive white Gaussian noise.

A. Experimental setup

The algorithms are evaluated on mixtures created with 10
sets of signals used in [39], issued from the SiSEC2011
database [40], with a sample rate at 11 kHz and a duration of
6 s. The mixing matrix was generated randomly following a
normal distribution with normalized columns. The STFT was
computed with half-overlapping tight Hann window of 512
samples length (about 46.5 ms) using the LTFAT toolbox [41].
All the algorithms are initialized randomly following a normal
distribution.

The separation performances were assessed using the Signal
to Distortion Ratio (SDR) and Signal to Interference Ratio
(SIR) [42]. The SDR indicates the overall quality of each
estimated source compared to the target, while the SIR reveals
the amount of residual crosstalk from the other sources. A
larger value of SDR/SIR means a better quality of separation.

To show the improvement brought by the perfect knowledge
of the mixing matrix, we design two ”non blind” oracle
settings for the proposed algorithms for comparison. These
two oracles are denoted by BSS-Oracle (corresponding to the
non blind version of BSS-PALM, BSS-Regu and BSS-Deco)
and BSS-LPADMM-Oracle (corresponding to the non blind
version of BSS-LPADMM-Oracle).

Finally, the parameter γ for BSS-ADMM was set empiri-
cally to γ = 0.05.

B. Choice of the hyper-parameter λ

Several methods have been studied for automatic choice of
λ in inverse problem, such as projected GSURE (see [43]
and references therein) or SUGAR [44]. However, most of
the proposed methods implies to compute several solutions
for several λ, and then choose the ”best” solution according
to some criteria. If such a blind method is needed for some
applications, it can also be required to let the user decide what
is the ”best” solution. Particularly for signal (audio, image,
video...) restoration, the best acceptable result will not always
fit any ”objective” criteria. Such a discussion can be found for
example in [45] for audio signal.

We stick in this article to simple choices for the hyper-
parameter:
• If the mixture is assumed to be free of noise, we choose
λ→ 0 in order to do not perform any ”denoising” on the
estimation. In practice, for small value of λ, we used the
continuation trick also known as warm-start or fixed-point

continuation [46]: we first run the algorithm with a large
value of λ, and then iteratively decreased the parameter
till the wanted value, while the algorithm is initialized
with the result of the previous run.

• If some noise is added, then we choose the λ giving
the best results in term of SDR for each algorithm. This
choice is rarely the best choice from a subjective point
of view, and cannot be automatically done in practice.
However, it appears to be the most fair, by giving the
best achievable result from a SDR point of view (the
SDR giving the overall quality of each estimated source
compared to the target).

In addition to this two ”default” choices, we also provide a
short discussion about the influence of λ on the results.

C. Robustness to the number of sources

Authors of [47] show that if one has only an upper bound of
the number of sources, acceptable estimation of the source sig-
nals can still be obtained by the analysis sparsity minimization
with `1 norm. They showed that the extra source channels will
contain little energy thus do not have obvious negative effect
on the source estimation. The following experiments show that
the proposed algorithms have similar behaviors regarding the
robustness to the number of sources.

For the sake of simplicity, we only show the results obtained
in the noiseless setting for the proposed BSS-Deco in Alg. 4.
Other algorithms lead to similar results, or when the mixture is
corrupted by some white Gaussian. In these experiments, the
number of microphones was set to M = 3, the real number
of sources Nr and its upper bound N varied from 2 to 5.

We employed the simple strategy presented in Alg. 5 to
eliminate extra source channels during the iterations.

Algorithm 5: BSS-Deco with the number of sources
determination
repeat

1) Update α, S and A according to one iteration of
Algo. 4;

2) if EIM /EIm > ε then
Eliminate SIm , αIm and AIm

3) j = j + 1;
until convergence;

In Algo. 5, IM and Im are the source index which cor-
respond to the source of maximum and minimum energy
respectively. EIM and EIm are the corresponding energy.
ε is a threshold which is empirically fixed to 3.5 in our
experiments. Fig. 1 displays the separation results and support
the robustness of the proposed algorithm to the choice of the
number of sources.

D. Over-determined BSS

In this setting, the number of sources is fixed to N = 3 and
the number of microphones runs from 3 to 10 (3, 5, 7 and
10).
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TABLE I
PERFORMANCES OF DIFFERENT ALGORITHMS IN NOISELESS (OVER)DETERMINED SETTING FOR N = 3 (SDR / SIR). ON A LINE, THE BEST

PERFORMANCE IS IN BLACK BOLD. IF THE DIFFERENCE BETWEEN A PERFORMANCE AND THE BEST IS LESS THAN 1 DB, IT IS DISPLAYED IN GRAY BOLD.

BSS-PALM BSS-Regu BSS-ADMM BSS-Deco GMCA EFICA SOBI
M = 3 17.0 / 17.0 45.0 / 45.0 41.6 / 41.6 45.8 / 45.8 17.8 / 17.8 - -
M = 5 19.4 / 19.4 45.8 / 45.8 44.3 / 44.3 46.0 / 46.0 18.0 / 18.0 - -
M = 6 25.6 / 25.6 46.0 / 46.0 45.7 / 45.7 46.1 / 46.1 22.8 / 22.8 - -
M = 7 29.9 / 29.9 46.7 / 46.7 45.6 / 45.6 46.9 / 46.9 27.5 / 27.5 - -
M = 10 39.3 / 39.2 47.5 / 47.7 48.2 / 48.2 47.6 / 47.9 38.3 / 38.3 - -

With whitening 66.0 / 66.0 48.4 / 48.4 48.4 / 48.4 48.3 / 48.3 66.6 / 68.4 49.5 / 49.5 37.3 / 37.3
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Fig. 1. Performances as a function of the upper bound of number of sources
for different cases

1) Noiseless case: As reference for ICA approaches, we
provide the results obtained by EFICA [48] and second order
blind identification (SOBI) [49] using the toolbox [50].

In the noiseless case, the whitening and dimension reduction
used in ICA is justified. We therefore present the results
obtained by all the algorithms – except for classical ICA
approach – with and without this pre-processing step. The
results are summarized in Table I.

It is clear that the pre-processing step greatly improves the
results for BSS-PALM and GMCA, which outperform other
approaches, while their performances were the worst without
this pre-processing step. However, it is also interesting to note
that the performances improve with the number of observation
when such a pre-processing step is not used.

2) Noisy case:
a) Performance as a function of input SNR: In this

experiment, we stick to the determined case, i.e. M = 3.
Results are summarized on Fig. 2.
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Fig. 2. Performances as a function of the input SNR in determined scenario
(M = 3, N = 3)

Again, BSS-Regu, BSS-LPADMM and BSS-Deco perform
similarly in terms of SDR and outperform BSS-PALM espe-
cially with high input SNR. In terms of SIR, as expected,
BSS-LPADMM and BSS-Deco lead to the best performances,
comparable with BSS-LPADMM-Oracle.

One of the most remarkable results, is that the two oracle
settings perform similarly as their corresponding ”blind” al-
gorithms in terms of SDR, while BSS-PALM and BSS-oracle
obtain the two worst SIR. This last point supports the intuition
that the decorrelation constraint is particularly important to
improve the SIR.

b) Performance as a function of the number of observa-
tion: In this experiment, a white Gaussian noise is added to
reach an input SNR of 7.58 dB. The results are summarized
on Fig. 3.

Similar remarks as previous paragraph can be made: BSS-
LPADMM and BSS-Deco reach the best performances, com-
parable to BSS-LPADMM Oracle, for both SDR and SIR,
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Fig. 3. Performances as a function of the number of microphones in
(over)determined noisy scenario with N = 3 and input SNR equaling 7.6
dB

while BSS-Oracle show bad performances in term of SIR. As
expected, SDR and SIR grows with M for all algorithms.

c) Performance as a function of sparsity level: The
hyperparameter λ in the proposed algorithms is linked to the
variance of the input noise and controls the sparsity level of
the estimated sources. Therefore, we present the performances
of the proposed algorithms as a function of the sparsity level2

of the estimation on Fig. 4.
In this case, the behavior of the SDR and SIR are com-

parable. We can notice that, for BSS-Regu, BSS-LPADMM
and BSS-Deco, the best performance is obtained when the
sparsity level is around 85%. Empirically, this sparsity level
corresponds to λ ' σ where σ is the standard deviation of the
input noise.

E. Underdetermined BSS

The number of microphones varies from 2 to 5 and the
number of sources runs from 3 to 6. We compare the proposed
algorithms to the state-of-the art approaches where the mixing
matrix is first estimated using Demix [15], then the sources
are estimated by the time-frequency masking (DUET) [16]
or the `1 minimization of the analysis coefficients [17]. We
denote these two methods by Demix-DUET and Demix-`1
respectively. We must stress that Demix cannot work when

2Sparsity level here means the percentage of zero value in the vector or
matrix
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Fig. 4. Performances as a function of the sparsity level of the estimated
sources for SNR=7.58 dB in determined scenario (M = 3, N = 3)

the number of sources is larger than 5 with the number of
microphone M = 2.

1) Noiseless case:
a) Performance as a function of the number of micro-

phone: We first fix the number of sources to N = 6. Table II
shows the evolution of SDR and SIR with respect to the
number of microphones. As DUET method is mainly for two-
microphones setting, its performance is not shown.

Except for M = 2, the Demix-`1 reaches the best SDR,
but the difference with BSS-Deco and BSS-Regu is less
than 1 dB, while BSS-Deco outperforms other approaches in
term of SIR. One can remark that BSS-LPADDM-Oracle is
also outperformed by BSS-Deco. This result shows that the
proposed ADMM algorithm can be sensitive to local minima.

b) Performance as a function of the number of sources:
For this experiment, the number of microphone is fixed to
M = 2. We provide on Fig. 5 the evolution of SDR and SIR
with respect to the number of sources.

As expected, performances collapse when N grows. For
N ≤ 4, all approaches except BSS-PALM and Demix-DUET
provide comparable results in term of SDR. BSS-Deco reaches
the best SIR (greater than BSS-Oracle and close to BSS-
LPADMM-Oracle). For N ≥ 5, performances of BSS-Deco
collapse in term of SDR, but still outperforms other non-
oracle algorithms in term of SIR. BSS-Regu has the opposite
behavior.

2) Noisy case:
a) Performance as a function of the input SNR: Fig. 6

displays the separation results of the proposed algorithms as
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TABLE II
PERFORMANCES OF DIFFERENT ALGORITHMS IN NOISELESS UNDERDETERMINED SETTING WITH NUMBER OF SOURCES N = 6 (SDR / SIR). ON A LINE,

THE BEST PERFORMANCE IS IN BLACK BOLD. IF THE DIFFERENCE BETWEEN A PERFORMANCE AND THE BEST IS LESS THAN 1 DB, IT IS DISPLAYED IN
GRAY BOLD.

BSS-PALM BSS-Regu BSS-ADMM BSS-Deco BSS-Oracle BSS-LPADMM-Oracle Demix-`1
M = 2 01.4 / 05.9 02.5 / 06.9 01.9 / 06.2 01.3 / 07.8 03.0 / 07.9 02.5 / 09.2 -
M = 3 07.5 / 11.5 07.7 / 12.0 06.4 / 12.6 07.5 / 14.3 07.9 / 12.5 06.7 / 13.0 08.0 / 12.1
M = 4 12.9 / 17.0 12.7 / 16.9 11.8 / 18.1 12.9 / 19.7 13.3 / 18.0 12.1 / 18.6 13.2 / 17.1
M = 5 15.3 / 17.1 19.5 / 23.6 17.7 / 24.1 20.1 / 26.3 20.2 / 24.7 18.7 / 24.6 20.1 / 24.1

The number of source
3 4 5 6

SD
R

 (d
B)

0

2

4

6

8

10

12

14

The number of source
3 4 5 6

SI
R

 (d
B)

5

10

15

20
BSS-PALM
BSS-Regu
BSS-LPADMM
BSS-Deco
BSS-Oracle
BSS-LPADMM-Oracle
Demix-ℓ1
Demix-DUET

Fig. 5. Performances as a function of the number of sources in underdeter-
mined scenario (M = 2)

a function of the input SNR, with a number of sources fixed
to N = 3 and a number of microphones to M = 2.

Again, the two Oracle algorithms outperform the others in
term of SDR, while only BSS-LPADMM-Oracle outperforms
other approaches in term of SIR, still supporting the fact that
taking decorrelation into account improves the SIR of the
estimation.

From a SDR point view, all algorithms are comparable,
except Demix-DUET. BSS-PALM and Demix-`1 perform a
little worse, but the difference is less than 1 dB. The major
difference between the algorithms is from a SIR point of
view: BSS-LPADMM and BSS-Deco clearly outperform other
approaches, including BSS-Oracle.

b) Performance as a function of the sparsity level:
As in the (over)determined case, we present on Fig. 7 the
separation performances as a function of the sparsity level of
the estimation for SNR=23.43 dB.

Contrary to the determined case, a compromise must be
performed between the SDR and the SIR: a small improvement
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Fig. 6. Performances as a function of the input SNR in underdetermined
scenario (M = 2, N = 3)

on the SDR can lead to a big decrease of the SIR.

F. Computational comparison

We end the experiment section by giving some indications
about the computational time of different algorithms. Table III
shows the computational time for the previously mentioned
sparsity-based algorithms with 20000 iterations, which are the
number of iterations used in practice for the experiments.

TABLE III
COMPUTATIONAL TIME FOR DIFFERENT ALGORITHMS

BSS-Regu BSS-PALM BSS-LPADMM BSS-Deco GMCA Demix-`1
2790 s 1430 s 4780 s 2840 s 1600 s 1280 s

The computational times for EFICA and SOBI using
ICALAB toolbox and Demix-DUET method are less than 1
second.
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Fig. 7. Performances as a function of the sparsity level in underdetermined
noiseless case (M = 2, N = 3) with SNR=23.4 dB

VI. DISCUSSION AND CONCLUSION

In this paper, we studied the link between some ICA
methods and SCA for instantaneous BSS. By combining the
decorrelation constraint in time domain and the synthesis
sparsity optimization, we proposed a new framework of Sparse
ICA to generalize ICA into noisy and underdetermined sce-
nario. We designed several iterative algorithms to solve the
problem.

Numerical experiment clearly support that taking the decor-
relation into account greatly improve the results in term of
SIR, without degrading the SDR. This claim is particularly
supported by the fact that proposed algorithms BSS-LPADMM
and BSS-Deco outperform the non-blind source separation
Oracle algorithm without any decorrelation constraint. More-
over, except when the number of unknown sources is large,
the proposed BSS-LPADMM and BSS-Deco reach compara-
ble results of their non blind source separation Oracle with
decorrelation constraint BSS-LPADMM-Oracle.

Regarding the computational time of the various approaches
used in the experimental section, it appears that ICA ap-
proaches remain the most competitive for noiseless and over-
determined mixture. However, for noisy overdetermined mix-
tures, BSS-Deco appears to be much more robust than GMCA
with respect to the input SNR and the number of unknown
sources, GMCA being already known to be more robust to
noise than ICA methods [20]. Finally, for underdetermined
mixtures (with or without noise) BSS-Deco appears to be
very competitive: while its computational cost is twice that

of Demix-`1, the SIR improvement is around 1 dB for an
input SNR of 10 dB, and 2 dB for an input SNR of 20 dB,
while the SDR is slightly higher (less than 1 dB).

Future works will focus on extending the Sparse ICA
framework to convolutive mixtures. Straightforward extension
of this work could also be considered: studying other sparse
regularization then the simple `1 norm, such as social spar-
sity [51], `p

`q
criterion [33], but also considering the sparsity

constraint directly on the analysis coefficient of the sources as
in [52].

APPENDIX

A. Proof of Proposition 1

Proof. PALM method is designed to deal with non-convex
problems reading:

min
x,y

F (x) +Q(x,y) +G(y) (25)

where F (x) and G(y) are proper lower semi-continuous func-
tions, Q(x,y) is a smooth function with Lipschitz gradient
on any bounded set. The proximal method proposed in [22]
updates the estimate of (x,y) via

xk+1 ∈ F (x)+ 〈x−xk,∇xQ(xk,yk)〉+ t1k
2
‖x−xk‖2F (26)

yk+1 ∈ G(x) + 〈y − yk,∇yQ(xk+1,yk)〉+
t2k
2
‖y − yk‖2F

(27)
where t1k and t2k are two appropriate chosen step sizes.

With the proximal operator defined in (11), the minimization
steps (26) and (27) can be written as follows:

xk+1 ∈ proxF/t1k(xk −
1

t1k
∇xQ(xk,yk)) (28)

yk+1 ∈ proxG/t2k(yk −
1

t2k
∇yQ(xk+1,yk)) (29)

It is shown in [22] that the sequence generated by (28) (29)
convergences to a critical point of (25). For problem (9), we
have:

F (S̃) = λ‖S̃‖1 , G(A) = ıC(A)

Q(A, S̃) =
1

2
‖X−AαΦ∗‖2F

(30)

and the particular choices:

tk,1 = Lk,1 tk,2 = Lk,2 (31)

where Lk,1 and Lk,2 are the Lipschitz constants of
∇S̃Q(Ak,α) and ∇AQ(A,αk+1) respectively.

B. Proof of Proposition 2

Proof. The convergence proof is obtained by applying the
block-coordinate variable metric forward backward (BC-
VMFB) method [34]. BC-VMFB deals with the problem (25),
using the following update rules:

xk+1 ∈ F (x) + 〈x− xk,∇xQ(xk,yk)〉+
t1k
2
‖x− xk‖2Uk,1

(32)
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yk+1 ∈ G(x) + 〈y− yk,∇yQ(xk+1,yk)〉+ t2k
2
‖y− yk‖2Uk,2

(33)
where Uk,1 and Uk,2 are positive definite matrices. Thanks
to the generalized proximal operator [34]:

proxU,ψ := argmin
y

ψ(y) +
1

2
‖y − x‖2U (34)

the update rules (32) (33) read:

xk+1 ∈ proxUk,1,F/t1k
(xk −

1

t1k
∇xQ(xk,yk)) (35)

yk+1 ∈ proxUk,2,G/t2k
(yk −

1

t2k
∇yQ(xk+1,yk)) (36)

which are shown in [34] to converge to a critical point of (25).
In order to apply BC-VMFB to (22), we choose

F (S̃) = λ‖S̃‖1 , G(A) = ıC(A)

Q(A, S̃) =
1

2
‖X−AS̃Φ∗‖2F +

µ

2
‖A‖2F

(37)

and

tk,1 = tk,2 = 1 , Uk,1 = Lk,1I

Uk,2 =
∂Q(A, S̃k+1)2

∂2A
= S̃k+1Φ

∗ΦS̃∗k+1 + µI
(38)

where I is the identity matrix. The update step for A (36) can
now be written as:

Ak+1/2 = xΦS̃∗k+1(S̃k+1Φ
∗ΦS̃∗k+1 + µI)−1

Ak+1 ∈ proxUk,2,ıC
(Ak+1/2)

(39)

As the choice of the parameter µ does not change the
minimizer of (22), by choosing µ large enough, the update
of A simply reads:

Ak+1/2 = XΦS̃∗k+1

ak+1,n = ak+1/2,n/‖ak+1/2,n‖, n = 1, 2, . . . , N
(40)

C. Proof of Proposition. 3

Proof. The minimization of (22) is equivalent to the following
problem as λ→ 0 :

min
α,A
‖α‖1 + ıC(A) s.t. X = AαΦ∗ (41)

On one hand if α and A is a minimiser of (41), one must
have that X = AS with S = αΦ∗. On the other hand,
at convergence, the update for A in BSS-Regu (step 3 in
Algorithm 2) ensures that one has A = XSTD where D is a
diagonal matrix corresponding to the normalization step. Then
one has A = ASSTD, leading to SST = D−1 if M ≥ N .

D. Derivation of BSS-LPADMM

The augmented Lagrangian reads:

L(A,α, s, η) =
1

2
||X−AαΦ∗||2F + λ||α||1 + ıC(A)

+ ıdeco(S) + 〈η,S−αΦ∗〉+
γ

2
‖S−αΦ∗‖2F

(42)

where η is the dual variable and γ is the penalty parameter.
Let

Fj(α) =
1

2
||X−AjαΦ∗||2F+〈ηj ,Sj−αΦ∗〉+γ

2
‖Sj−αΦ∗‖2F

(43)
LPADMM minimizes the augmented Lagrangian by iteratively
updating the primal and dual variables via the following update
rules:

αk+1 = argmin
α
〈∇αFk(αk),α〉+λ‖α‖1 +

LF,k
2
‖αk−α‖2F

(44)

Sk+1 ∈ argmin
S
〈ηk,S−αk+1Φ

∗〉+γ

2
‖S−αk+1Φ

∗‖2F+ıdeco(S)

(45)

Ak+1 = argmin
A

1

2
‖X−Aαk+1Φ

∗‖2F + ıC(A) (46)

ηk+1 = ηk + γ(sk+1 −αk+1Φ
∗) (47)

In sub-problem (44), LF,k is the Lipschitz constant of
∇αFk(α), with

∇αFk(α) = −AT
k (X−AkαΦ∗)Φ−ηkΦ−γ(Sk−αΦ∗)Φ .

Using the soft-thresholding operator (12), (44) can be rewritten
as:

αk+1 = Sλ/LF,k

(
αk −

∇αFk(αk)

LF,k

)
(48)

Sub-problem (45) can be formulated as a the decorrelation
projectionSk+1 = argmin

S

γ

2

∥∥∥∥S−αk+1Φ
∗ +

ηk
γ

∥∥∥∥2

F

s.t. ssT = D

(49)

and can be solved thanks to the following proposition

Proposition 4. Let S ∈ RN×T be a 0-mean signal matrix
with a positive definite covariance matrix ΣS = SST . Let
W be the optimal decorrelation transformation that minimizes
the Mean-Squared Error (MSE) between the input S and the
output Y = WS, such that its covariance matrix ΣY is
diagonal:

min
W
‖S−WS‖2F s.t. ΣY=WS is diagonal

then W = diag
(

Σ
1/2
S

)
Σ
−1/2
S where diag (.) is the diagonal

matrix formed with its diagonal elements.
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Proof. Using the change of variables S̄ = Σ
−1/2
S S and W̄ =

WΣ
1/2
S , one can rewrite the minimization problem as

min
W̄
‖S− W̄S̄‖2F s.t. W̄W̄T = D

where D is any diagonal matrix. The MSE e = ‖S− W̄S̄‖2F
can then be rewritten as :

e = ‖S‖2F + ‖W̄S̄‖2F − 2〈S,W̄S̄〉

According to the Cauchy-Schwarz inequality, one has
〈S,W̄S̄〉 ≤ ‖S‖F ‖W̄S̄‖F with equality if and only if W̄
is a diagonal matrix. denoting by d̄i the i-th diagonal element
of W̄, e reads :

e =

N∑
i=1

(si − d̄is̄i)(si − d̄is̄i)T

where si and s̄i is the i-th row of S and S̄ respectively.
Minimizing e with respect to d̄i is a simple problem leading
to d̄i = sis̄

T
i , i.e. W̄ = diag

(
SS̄T

)
.

Finally, Sub-problem (46) is tackled by a classical projected
gradient descend.
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Décodage de messages sensoriels composites par apprentissage non
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dient estimator of the Risk (SUGAR) for multiple parameter selection,”
SIAM Journal on Imaging Sciences, vol. 7, no. 4, pp. 2448–2487, 2014.

[45] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “Subjective
and objective quality assessment of audio source separation,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 19, no. 7,
pp. 2046–2057, 2011.

[46] E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for `1-
minimization: Methodology and convergence,” SIAM Journal on Opti-
mization, vol. 19, no. 3, pp. 1107–1130, 2008.

[47] Y. Li, A. Cichocki, and S.-i. Amari, “Analysis of sparse representation
and blind source separation,” Neural computation, vol. 16, no. 6, pp.
1193–1234, 2004.
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