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A Unified Approach for Over and
Under-Determined Blind Source Separation Based
on Both Sparsity and Decorrelation

Fangchen Feng, Matthieu Kowalski

Abstract—Over the last decades, independent component anal-
ysis (ICA) has been a major tool for blind source separation
(BSS). Both theoretical and practical evaluations showed that
the hypothesis of independence suits well for audio and musical
signals. In the last few years, sparsity-based optimization has
emerged as another efficient implement for BSS. This paper starts
from introducing some new BSS methods that take advantage of
both decorrelation, which is a direct consequence of indepen-
dence, and sparsity using overcomplete Gabor representation.
Theoretical proof and discussion supporting the convergence of
the proposed algorithms are then presented. Numerical results
are given illustrating the good performances of these approaches
and their robustness to noise.

I. INTRODUCTION

In many situations, such as a concert for music or the so
called cocktail party problem for speech, the recorded sound
signals are issued from mixtures of several sound sources.
The linear mixture model assumes that the problem can be
formulated as follow :

N
T (t) = Amnsn(t) + em(t) | (1)

with N source signals s,, of duration 7" and M microphones,
yielding M mixture channels x,,. The recording is supposed to
be instantaneous and modeled by a set of mixing coefficients
Ay Denoting by x € RMXT and s € RV*T the matrices of
mixture channels and source signals respectively and by A €
RM*N the mixing matrix, the process (1) can be rewritten
more concisely in matrix form as :

x=As+e, 2

where e € RM*T models the background noise. The goal of

BSS is to reconstruct the sources s and the mixing matrix A
only from the observations x.

Most of the Blind Source Separation techniques can be di-
vided into over-determined, determined and under-determined
case according to the number of microphones and the number
of sources. When the number of microphones is larger or equal
to the number of sources (over-determined or determined sce-
nario, respectively), the well-known Independent Component
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Analysis (ICA) methods [25] are often applied with success.
These methods assume that the sources are statistically in-
dependent and intend to achieve separation by minimizing
an independence criterion between the components of the
estimated sources. These methods have already provided suc-
cessful results in a wide range of applications such as Electro-
EncephaloGraphy (EEG) [27], functional Magnetic Resonance
Imaging (fMRI) [29] and audio source separation [31].

Apart from the ICA, sparsity-based optimization methods
have also been employed (see [17] and references therein).
These methods first reformulate the problem in an optimization
framework by using some sparsity properties of signals inside
an appropriate dictionary of waveforms. Then some optimiza-
tion algorithms such as iterative thresholding [14] can be used
to solve the problem. These sparse approaches are mainly (but
not only) used in the under-determined setting, i.e. when the
number of microphones is less than the number of sources, in
two steps: the mixing system is first estimated using clustering
methods and the source signals are then estimated thanks to
optimization approaches.

Recently, it has been claimed in [18] that some ICA methods
(more specifically Infomax [10] and FastICA [26]) separate
sparse sources rather than independent sources for fMRI in
certain cases. It has been concluded that rather than decompo-
sition methods that search for independent components, one
should develop alternate methods targeting decompositions
into components that are sparse. Starting from this remark,
we construct in this article algorithms that benefit from both
decorrelation, which is a direct consequence of independence,
and sparsity. We show that these algorithms can be employed
in both under-determined and over-determined cases and il-
lustrate that by making such a combination, better separation
performances can be achieved.

Extending [21], contributions of this article are threefold:
first, we offer a combination of the decorrelation assumption
and the sparse model. This is the first time, to our knowledge,
that such a combination is used for BSS. Second, we propose
several efficient optimization algorithms mostly with proven
convergence which work in both under-determined and over-
determined case. Finally, extensive experiments show the
benefits of the proposed approach, as well as the advantages
and limitations of popular BSS algorithms.

The rest of this paper is organized as follow. Section II
provides an overview of the state of the art for BSS methods
based on ICA and sparsity. In Section III, we present two
separation methods based on alternating optimization and



Section IV shows three proposed algorithms that combine
decorrelation and sparsity. Finally, the numerical results are
illustrated in Section V.

II. STATE OF THE ART

In this section, we give a brief introduction of the state of
the art methods, mainly ICA and methods based on sparsity.

A. Independent Component Analysis

Techniques of ICA have been introduced at the beginning
of 1980’s by J.Herault, C.Jutten, and B.Ans [1], [23], [24],
and are based on the statistical independence of the source
signals modeled as random process [16]. Fundamentally, for
the instantaneous linear mixing problem, ICA methods are
designed to estimate a demix matrix W = A~! in order to
obtain the estimated sources y = Wx, which are statistically
independent. In [16], it has been demonstrated that the inde-
pendence of the outputs leads to a matrix W that satisfies
WA = PD, where P is a permutation matrix and D is a
diagonal matrix, which means that the estimated outputs and
the sources signals are equal up to a permutation and a scale
factor.

However, the penalty of independence demands not only the
equality of two multivariate functions (the probability density
function) but also the perfect knowledge of them. Therefore,
several independence measurements have been proposed. Fun-
damentally, central limit theorem tells us that mixing indepen-
dent signals should lead to a kind of Gaussianization [6]. Then,
it seems natural that demixing leads to process that deviate
from Gaussian process. Actually, most of the ICA methods
maximize the non-gaussianity of the estimated signals to
perform separation. However, at the same time, ICA methods
based on Information Maximization, Maximum Likelihood
and Higher Order Statistics have been developed over the years
(see [6] and references therein). Interestingly, as pointed out
in [28], most ICA-based algorithms have similar properties
and results.

Despite its theoretical strength and excellent experimental
results, the hypothesis of ICA brings some limits to the model
as well. First, "independence is nongaussianity” assumption
brings the constraint that the independent components should
have the non-gaussian distribution. Second, as mentioned
in [6], ICA algorithms require information on the sources
distribution since the way the demix matrix (and thus the
sources) is estimated closely depends on the model chosen
on the sources. Third, because of the linear recovery, ICA
methods work only in determined case. At last, as mentioned
in [19], noise clearly degenerates the ICA model and makes
the sources not fully identifiable.

Recently, it was claimed in [18] that two of the most
used ICA methods for fMRI (Infomax and FastICA) separate
sparse sources rather than independent sources, leading to the
conclusion that the mathematical design of better analysis tool
for brain fMRI should emphasize on other characteristics, such
as sparsity, rather than independence. One given explanation
is that the classic sparsity-based ¢; minimization can be con-
nected with InfoMax and FastICA, because both of these ICA

methods implicitly assume that the independent components
have the generalized Gaussian distribution, which includes the
sparse sources modeled by ¢; minimization method. Although
the experiments made in [18] are only concentrated on In-
foMax and FastICA (not the ICA methods in general) and
the conclusion is only drawn for the brain fMRI sources, this
work still motivates us to pay more attention to sparsity-based
methods and to bring some independence assumptions into the
designed algorithms.

B. Sparsity and GMCA method

The seminal paper [37] has introduced a BSS method that
focuses on sparsity to distinguish the sources. The sources are
assumed to be sparse in a particular basis D. Then, the sources
s and the mixing matrix A are estimated from a maximum
a posteriori estimator of the sources in the basis D. They
showed that sparsity clearly enhances the diversity between
the sources.

1) Sparsity in the over-determined case: More precisely,
as claimed in [5], sparsity based methods have several advan-
tages. In one hand, the sparser the sources in the dictionary,
the more “separable” they are. On the other hand, sparse
sources being concentrated on few significant coefficients in
the sparse domain, the noise appears as a slight perturbation.
Thus, sparsity based methods should be less sensitive to
noise. Based on these remarks, they proposed the Gener-
alized Morphological Component Analysis (GMCA) . First,
they define D as the concatenation of D orthonormal bases
{®;}ic1...p : D= [®T,--- ,®L], then they assume a priori
that the sources s, are sparse in the dictionary D. In this
GMCA setting, each source is modeled as a linear combination
of D morphological components:

D D
k=1 k=1

Then, an optimization formulation for the estimation of A and
s is proposed:

N D
{A,8) =argmin ) > [lou®@i |l +sllx - Asll5 4
As D1 k=1

In order to minimize (4), the authors use a classical alternating
optimization techniques: the sources are estimated for a fixed
mixing system, and then mixing system is estimated to fixed
sources. This GMCA method has shown good performances,
especially when the signals are corrupted by Gaussian white
noise.

2) The under-determined case: Most of the methods in
the (over-)determined case do not work directly in the under-
determined scenario. In this case, two-steps methods are often
used. Based on the sparsity assumption, the mixing matrix is
first estimated and the estimation of the sources is performed
supposing that the mixing matrix is known.

Thanks to the sparsity of the sources, the mixtures tend
to cluster along the mixing matrix columns. Thus, estimating
the mixing matrix amounts to identify linear clusters passing
through the origin (we suppose here that the sources have zero-
mean) and then merely defined by their angle to the origin.



Once the mixture is determined, estimating the sources can
be done by typical ¢, optimization approaches. In practice,
when the mixing system A is known, estimation of the sources
reduces to the minimization of (4) for a fixed A.

As a matter of fact, there exists various methods based
on time-frequency (T-F) masking or maximun a posteriori
(MAP) (see [32] and references therein). Here we take the
DUET method [35] as reference. This method is based on
the assumption that the supports of STFT of the sources are
disjoint. First, they define a power weighted two-dimensional
histogram constructed from the ratio of the time-frequency
representations of the mixtures that is shown to have one
peak for each source with peak location corresponding to the
relative attenuation and delay mixing parameters. Then, this
histogram is used to create time-frequency masks that partition
one of the mixtures into the original sources.

This method is very fast and easy to compute. However,
the assumption that the time-frequency representations of
the source signals do not overlap is often too strong for
audio signals especially when the number of sources is large.
Besides, it has the common disadvantage of two-step methods:
the estimation error of the mixing matrix will sometimes bring
negative influence in the procedure of source estimation.

In the following, we will focus on sparsity-based opti-
mization and try to bring the decorrelation assumption into
the procedure to design algorithms that work in both under-
determined and over-determined case. In the next Section, we
give a convergence study of an intuitive algorithm based on
GMCA which applies the decorrelation implicitly and we also
propose a new method based on alternating optimization.

III. GMCA-LIKE METHOD AND PROXIMAL ALTERNATING
LINEARIZED MINIMIZATION

In this section, we give a quick review of a classic separation
method based only on sparsity which is a direct derivative
from the GMCA method. We also give a convergence study
of this method and show that the convergence counts on the
decorrelation assumption.

A. GMCA-like method

In the setting of GMCA, the authors assume that the signals
are sparse in some orthonormal bases. However, for audio
signals, the overcomplete Gabor frame is often used as the
dictionary. Then, we take here the so-called synthesis setting
instead of the analysis point of view as in (4).

Let us denote by @ € CT*P the matrix representing an
energy-preserving STFT operator (or Parseval Gabor frame),
the sources s can be resynthesized from their estimated STFT
coefficients a € CV*E by

s = ad” (5)

where ®* € CPXT is the adjoint operator of ®, that is its
Hermitian transpose.

We use the following classic optimization framework to
model the separation problem:

mip f(x, A, @) + ¥(@) + g(A) ©)

where the data term f measures the fit between the observed
mixture x and the sources synthesis Gabor coefficients « via
the mixing matrix A. We stick here to a classical /5 data term
corresponding to a Gaussian prior on the noise in a Bayesian
point of view

1 .
fix, A 0) = 5[x— Aa® |}

where || - || denotes the Frobenius norm. The classical ¢;
regularization term is employed in order to favor sparse
solution

U(a) = ey -

It should be mentioned that various other choices for the
penalty term can be made (see for example [3] and references
therein), but we stick here to the ¢; norm for the sake of
simplicity. Finally, g(A) is mainly used to avoid the separation
ambiguity [8] such as the scaling and permutation problem
between s and A. In order to obtain a convex functional with
respect to A, o being fixed, we can set g(A) = 15, i.e. the
indicator function of the unit ball

i < = ...
ZB(A):{O if a | <1,n=1,2,...,N

+o00 otherwise
where a,, is the n-th column of A. We then obtain the classical
£o—f; problem [36].

(7

1 "
min —||x — Aa® ||§+)\||a\|1 +115(A) (8)
a,A 2

Now, one apply the idea of GMCA to solve the problem (8).
First, the source signals are estimated considering that the
mixing system is fixed:

1
d:argmoi‘n§||foa*I>*||%+>\Ha\|1 . )

Then, the actualization of the mixing system using the esti-
mated sources is a least squares problem:

~ 1

A = min - ||x — Aa®*||%
A 2 (10)

=xPa* (a®*Pa*) !

At last, the normalization on each columns of the matrix A
is performed to avoid the separation ambiguity.

@ being an overcomplete dictionary, the sub-problem (9)
can be solved efficiently with iterative algorithms, such as
proximal algorithms [4], [14]. However, despite an excellent
behavior in practice, such an alternating algorithm does not
benefit of any convergence guaranty.

B. Two convergent algorithms

Thanks to the recent works [7], [12], we propose two
convergent procedures. The notion of proximity operator is
reminded, as the two algorithms rely on it.

Definition 1. Let ¢ : CM*N — (—o0,+00] be a proper;
lower semicontinuous function, let U € RN*N by g symmetric
positive definite matrix, and let x € CM*N_ We denote by The



proximity operator of Y at X relative to the matrix induced by
U is defined as :

. 1
proxy, = argmin ¢(y) + olly ~ X}
ye(CZ\/IXN

where ||x][u = v/ (xU, x).

We note proxy ,, = prox,.

The first procedure is the well known Proximal Alternating
Linearized Minimization (PALM) algorithm carefully studied
in [7] in the non convex setting. This procedure has the great
advantage to be very simple to implement and is given in
Algorithm 1. Here, prox, is simply the projection on the unit
ball, i.e. consists of the normalization of the columns of the
matrix.

Algorithm 1: PALM

Initialization : oy € CN*B, A, € RM*N,

Ly = |Allf, Lig = [[aa @77, k=1,

repeat
Vaf (Ag, ar) = A (x — Apa®”) B
Qo1 = ProXy p, (ak - ﬁylvaf(Ak, ak));
VAf(Ak, ak+1) = —(X — AakJrl(I)*)(I)a;g_H;
Aji1 =proxg,p, , (Ak - ﬁﬂvAf(Almak+l> ;
Lit11 = || Ak
Lig12 = loe1®" 1%

k=k+1;
until convergence;

The second approach is the The Block Coordinate Variable
Metric Forward-Backward algorithm (BC-VMFB) [12]. This
last approach, given in Algorithm 2, is more difficult to imple-
ment, but will illustrate the fact that enforcing the decorrelation
can be helpful.

Algorithm 2: BC-VMFB

Initialization : a; € CN*B A, € RMXN,

Lii =A% k=1;

repeat

Vaf (Ag, ar) = —A{ (x — Ara®”) @;

Qp+1 = ProXy/r, , {0k — ﬁvaf(Ak,ak)>§

VAf(Ak, Oék+1) = —(X - Aak+1<I>*)<I’a,’g+1;

Hk = ak+1<I>*<I>a}:+1;

Ajy1 = proxg, o (Ak — Vaf(Ak, ar)H Y
_ 2.

Liy11 = [[AgsllEs

k=k+1;

until convergence;

The first proximal descent with respect to c is the same
as in PALM. The main difference is during the estimation
of the mixing matrix A, where the proximal descent is
preconditioned by the second order derivative of f with respect
to A:

Of (A, apy1)?

H =
k OZA

* *
= a1 P Pagy, .

Then, this proximal step becomes

Apirje = x®aj (1@ ®aj, ) (an

Api1r = Puyap(Agia)2)
Interestingly enough, one can notice that the least square
estimate of A is projected on the unit ball relatively to the
matrix Hy. If this projection is hard in general, it becomes
very simple if in every iteration the estimated sources are
decorrelated. Indeed, in that case the proximal step simply
becomes Ay1 = xPaj , followed by the projection on the
unit ball.

For now, we do not use any strategy to force decorrelation,
so in the next section, we will present several methods that
combine sparsity and decorrelation.

IV. BSS WITH SPARSITY AND DECORRELATION

In this section, we present three methods to consider the
decorrelation constraint. We first show that the decorrelation
can be obtained by simply adding a regularization term based
on PALM method. We then propose a functional taking this
constraint into account, minimized thanks to a method based
on ADMM. At last we present one empirical method based on
the study of GMCA-like method which is easier to implement.

Supposing that s has zero mean, decorrelation assumes that

E(ss’) =D, (12)

where D is a diagonal matrix and E is the expectation operator.
Numerically, as the number of samples is large, we simply
assume that

ssT =D . (13)

This decorrelation assumption differs from the whitening
procedure by the fact that elements on the diagonal matrix
D are unknown.

We start by showing that this numerical decorrelation can be
enforced by adding a regularization term based on the GMCA-
like method.

A. Regularized GMCA

Rather than (8), we propose to minimize the following
functional:

1 .
min =[x — Aa®* |2 + L IAI2 + M|l +c(A)  (14)
a,A 2 2

where ¢c(A) is the indicator function of the unit circle

zc(A):{O if |a,|=1,n=1,2,...,N

400 otherwise
Compared to GMCA-like methods, a /5 regularizer is added
on the mixing matrix A, and the constraint on the ¢y ball is
replaced by the /5 circle.
The BC-VMFB algorithm is applied and we choose
flA ) = %Hx — Aa®*|3 + 4]|Alj3 in Alg. 2. With the
particular choice

5)

If (A, agq1)?
0’A
the proximal step for A becomes:

G, =L, and H;, = = o1 P Pyl



Apiro = xPag (1 @ Pag g + D)™ 16)
Ak+1 S PTOXyy, 4 (Ak+1/2)

Because of the constraint on the unit circle, the choice of
the parameter 1 does not change the minimizer of (14). Then,
by choosing p large enough in order to have

1
(19" @agy +pl) " = EI te
where ¢ is of order of the machine precision, the projection
simply reads:
Apyij2 =xPog /1
Ak+1,n = ak+1/2,’n/Hak+1/2,’rb » N = 17 27 e 7N

We give in Alg. 3 this particular version of the BC-VMFB
algorithm which is called Regularized-GMCA

a7

Algorithm 3: Regularized-GMCA

Initialization : a; € CN*B, A} e RMXN [} = || A,
k=1,

repeat

Vaf (Ak, Oék) = —Ag (X — Aka<I>*) (I);

Qi1 = prox%(ak - %f’%));
Apr12 =xPaj s

Ap4in = ak+1/2,n/Hak+1/2,n”’ n= 17 27 s
Liy1 = |Apsll%s

k=k+1;

until convergence;

2

[l

N

Next Proposition shows that this algorithm will enforce
numerical decorrelation in over-determined noiseless setting

Proposition 1. Suppose that s = a®* where « is the
minimizer of (14) by using the Algorithm 3 depending on \
and M > N, then ssT =D as A — 0, where D is a diagonal
matrix

The proof is postponed in Appendix VII.

The setting A — 0 corresponds to the noiseless scenario
and the fact that this algorithm enforces decorrelation in the
over-determined noiseless case will also be supported by the
experiments in Section V.

Next, we present a more rigorous algorithm to combine
sparsity and decorrelation.

B. A new functional involving sparsity and decorrelation

We reformulate the separation problem as a constrained
optimization derived from (8) by turning the assumption into
the constraint

1
arg min = ||x — Aa®*||Z + M|ally + (A
gin | o llalh +rea)

st. aP*Pa* =D

We apply in this paper the Linearized Preconditioned Al-
ternating Direction Method of Multipliers (LPADMM) [30]
to solve problem (18). ADMM is a classic method to solve
convex optimization problems. The method is based on the

alternating optimization of the corresponding augmented La-
grangian function. The linearized and preconditioned version
(LPADMM) is intended to simplify the algorithm, that is, in
each iteration, instead of minimizing the original function,
to minimize its first order approximation. In fact, the non-
convex ADMM has already been used (for example [11]),
however the convergence study of ADMM is limited in convex
setting. In this article, despite the lack of convergence proof,
the numerical experiments will illustrate its efficiency and
correcteness.

We first present the following proposition for Minimized
Mean-Squared Error (MMSE) decorrelation transformation,
which is a consequence of the result presented in [20] [16].
One can refer to Appendix VII for the proof.

Proposition 2. Let s € RNXT be a 0-mean signal matrix
with a positive definite covariance matrix Y5 = ss”. Let W
be the optimal decorrelation transformation that minimizes the
Mean-Squared Error (MSE) between the input s and the output
y = Ws with covariance ¥y being a diagonal matrix:

: 2

— 1
Join s — ik (19)
then W = diag Z;/Q 25_1/2 where diag (.) is the diagonal
matrix formed with its diagonal elements.

We rewrite problem (18) as follow
o1
arg min =||x — Aa®*||% 4+ N |a||1 + 1c(A) + 2geco (s)
Aas 2
s.t. s = ad”
(20)
where the function 24., 1S an indicator function that forces the
decorrelation of s that is:

0 if ss” = D, with D diagonal
'Ldeco(s) =

+00 otherwise @D
We formulate the augmented Lagrangian as follow :

1 )
Li(A, e,8,m) =5|[x = Apa®”||F + Al [1 + taceo(s)
+ (n.s = a®”) + Zls - a® [}
(22)

where 7 is the dual variable. The LPADMM algorithm min-
imizes the augmented Lagrangian by iteratively updating the
primal and dual variables:

Lgy

Iak_a”%
(23)

Qi1 = argmin{V Fi (o), @) + a1 +
«@

. * Py *
Sk+1 € argmin(n, s—og 1P >—|—§||S—ak+1<1> ||%+zdeco(s)
S

(24)

1 |2
Api = arg;mn in —Aaj11®"||F + w1 (A) (25)
M1 = Mk + Y(Sk1 — Q1 P) (26)



In (23),

O [ R R e
L being the Lipshitz constant of Fy,(c), and

VaFi(a) = —AT (x — Ara®*)® — 1, ® — y(sp — ad™)P .

This sub-problem can be solved efficiently by Forward-
backward splitting algorithm [15] and can be rewritten as

follow:
Va F k (a k ) >
2
where prox is the proximal operator corresponding to ¢; norm
which is the Soft-thresholding operator.

The sub-problem (24) can be formulated as a decorrelation
projection.

Q41 = Proxa (ak. — (27)
v

2

P (28)

s — ap 1P+ Uil

Skp+1 = argmin X
s 2

st.ssT =D

and can be solved thanks to Proposition 2.

It is well known that ADMM type methods converge very
slowly with fixed penalty parameter v and several strategies of
adaptive parameter have been proposed for different ADMM
type methods. We follow [9] which balances, in each itera-
tion, the primal residual and the dual residual. The complete
algorithm is given in Algorithm 4.

Algorithm 4: LPADMM
Initialization : a; € CN*B, 51 ¢ RV*T, A} € RM*N,
L= Az +v k=1
repeat

Vaf (Ag,ap) = —AT (x — Aya®™) ®;

_ VaF(Ag, o)

Qg1 = prox#(ak — Tel o))

Ly
Skt1/2 = 1B — 1 /7
Y = Sk+1/2s£+1/2;
W, = diag(2e/%)25 %
Sk+1 = WsSiy1/2;
Ak+1/2 = X‘I’GZH;
Ak+1,n = ak+1/2,n/Hak+1/2,n”’ n=12,...
Ne+1 = Nk + Y(Sk+1 — ap11P”)
Liy1 = |Apnall® + 7
k=k+1,;
until convergence;

bl

N

Although the linearized method and the adaptive parameter
strategies can accelerate the convergence rate, the ADMM
type methods still suffer from the slow convergence. Next, we
propose a method that enforce decorrelation based on GMCA-
like method by introducing a projection step which ensures the
decorrelation of the sources during the procedure.

C. A decorrelated GMCA

Based on Regularized GMCA Alg 3, we present here an
algorithm which enforces decorrelation in all scenarios by
implementing the decorrelation projection at each iteration for

estimating the mixing matrix. The idea is that, in the step of
minimizing with respect to the mixing matrix A, before fixing
the estimated sources s, we perform a decorrelation projection
to the estimated s. By incorporating such a projection in the
Reguarized GMCA, we obtain the decorrelated-GMCA Alg. 5.

Algorithm 5: Decorrelated-GMCA
Initialization : o € (CNXB, A1 S R]V[XN, L1 = ||A1H%v,
k=1,
repeat

Vof (Ak,ay) = —Af (x — A a®”) ®;

v A, A
Q1 = Prox u (v, — czf(ka k))’
%

s = ap 19"

W, = diag(x4/%) 5 /2

y = Wss;

Appr2 =xy";

Ap41,n = ak‘+1/2,n/Hak+1/2,n
Lit1 = [[Agsall7
k=k+1;

until convergence;

output: Ax s = Wgs

1,2,...,N;

, N =

It is worthy mentioning that these extra steps will not
bring too much computational cost because of the small size
of Xg. Although, the convergence proof of this algorithm
remains an open problem especially because of the decorre-
lation projection, the experiments in section V will illustrate
its good performance. We must stress that de decorrelation
step is useful only for the estimation of the mixing matrix.
Indeed, applying such a projection also for the time-frequency
coefficient leads to lower performances in practice.

D. Tuning the parameters

We have proposed three algorithms that combine decor-
relation and sparsity in different ways. However, the practi-
cal implement of these algorithms encounters the parameter
choosing problem. As the hyper-parameter A controls the
tradeoff between the fidelity term and the pernalty term, the
choice of this hyper-parameter plays a crucial role in the
separation process. As mentioned before, in the noiseless case,
setting A — 0 is a sounded choice. However, for small A,
the algorithms require a large number of iterations to reach
convergence. Therefore, in practice, the continuation trick also
known as warm-start or fixed point continuation [22] is used:
we first run the algorithm with a large value of A which is then
iteratively decreased while the algorithm is initialized with the
result of the previous run.

V. EXPERIMENTS

After the presentation of the experimental setup, we describe
in this section the performances of proposed methods in
different scenarios.

A. Experimental setup

For all the experiments, we have taken ten signals from the
SiSEC 2011 [2] data base. The STFT was computed with half-
overlapping tight Hann window using the Itfat toolbox [33].



The separation performances were assessed using the Signal
to Distorsion Ratio (SDR) and Signal to Interference Ratio
(SIR) [34]. The SDR indicates the overall quality of each
estimated source compared to the target, while the SIR reveals
the amount of residual crosstalk from the other sources. A
larger value of SDR/SIR means a better quality of separation.
All the experiments are initialized by random signals. In each
experiments, we apply the warm-start technique and choose
the hyperparameter A which corresponds to the best SDR.

To better evaluate the performance of the proposed algo-
rithms, we present also the performance of the oracle setting
which means that the mixing matrix is supposed to be known.
We denote the oracle setting of the algorithm based only
on sparsity as Oracle, and the one based on both sparisty
and decorrelation by using LPADMM method, as LPADMM
Oracle. In order to stress that the decorrelation should be taken
into account during the procedure, a whiten post-processing is
implemented in every experiment for PALM, Regu-GMCA and
Oracle algorithms.

B. Over-determined BSS

We present here the performances in the determined (M =
3, N = 3) and over-determined (M = 5, N = 3) cases
with different input Signal to Noise Ratio (SNR). The mixing
matrices are created artificially with condition numbers equal
to 14.8 and 6.1 respectively. EFICA [13] and CoM2 [16] are
used as a baseline for ICA. The performances are shown in
Fig. 1 and Fig. 2.

In both cases, although the ICA methods (EFICA, CoM2)
outperform other algorithms when the input noise is negligible,
their performances collapse rapidly as the noise increases, and
become outperformed by other approaches. We also notice
that the SDR of ICA methods decreases more rapidely than
SIR, which indicates that ICA methods have good separation
performance but behave poorly when dealing with noise.

Moreover, one can remark that LPADMM, Deco-GMCA
and Regu-GMCA perform similar in both SDR and SIR and
outperform GMCA-like method and the PALM minimization
of Alg. 1, especially when the input SNR is large. This
observation confirms that the combination of decorrelation and
sparsity can improve the separation performance. It is also
important to mention that PALM algorithm performs better
than GMCA in terms of SDR in the determined case, while it
performs better in both SDR and SIR in the over-determined
case. At last, if we do the comparison between the determined
and the over-determined case, we can see the improvement
from determined to over-determined, which is a natural effect
due to the extra information given in the over-determined case.

Compared with the “oracle” setting, we can see that al-
though Oracle and LPADMM oracle have better performances,
differences are very small. It is worthy mentioning that these
differences reduce to almost zero when the noise is of large
energy. This observation shows that the redundancy given in
the (over-)determined case decreases the importance of the
information given by the mixing matrix.

C. Under-determined BSS

1) Performance analysis as a function of input SNR: The
proposed algorithms are evaluated in the under-determined
case (M = 2, N = 3) with different input SNR using the
mixing matrix from [2] whose condition number is 4.2. In
this case, DUET algorithm is used as a baseline. The SDR/SIR
performances are displayed on Fig. 3. The “oracle” setting is
displayed on the same figure. As GMCA fails the separation
in this case, we do not show its performance.

From Fig. 3 we see that, LPADMM, Regu-GMCA and Deco-
GMCA have similar performances and outperform PALM in
terms of SDR. Moreover, as expected, LPADMM outperforms
other approaches in SIR when the noise is of small energy.
It is interesting to notice that Regu-GMCA has relatively poor
performances in SIR compared to LPADMM and Deco-GMCA
while it is outperformed by PALM when the input SNR is
large. At last, it is important to notice that there is a relatively
large gap betweeen the performances of the proposed methods
and the State-of-art method DUET.

By considering the “oracle ” setting, one can see that
LPADMM Oracle outperforms Oracle and the difference is
relatively large in terms of SIR when the input noise is
small. This observation shows that the extra decorrelation
indeed improves separation performances. Moreover, there
is an obvious gap between the proposed methods and the
“oracle” settings. This remark illustrates that the information
given by the mixing matrix becomes more important in the
under-determined case.

Furthermore, one can notice that for Oracle, Regu-GMCA
and Deco-GMCA, the SIR decreases as the input SNR in-
creases. A possible explanation is the choice of the hyper-
parameter \: for the separation with relatively small input
SNR, we often choose a relatively larger A which will lead
to “sparser” solution and will naturally have relatively higher
SIR.

2) Performance analysis as a function of the condition num-
ber of the mixing matrix: Now we show the performances of
the proposed algorithms as a function of the condition number
of the mixing matrix on Fig. 4. A large condition number
indicates a poor mixing situation (either the microphones or
the sources are placed close to one another). For the sake of
clarity, we did not add any noise.

One can see on Fig. 4 that, except DUET, the performances
of all the other algorithms decrease in terms of SDR as the
condition number of the mixing matrix augments. Secondly,
LPADMM, Regu-GMCA and Deco-GMCA outperform PALM
algorithm in both SDR and SIR for all mixing condition. It is
also interesting to notice that LPADMM is relatively robust to
the condition number of the mixing matrix in SIR. At last, it
can be seen from the figure that the Time-frequency masking
method DUET is not sensible to the condition number of the
mixing matrix.

3) Performance analysis as a function of the number of
sources: We show in Fig. 5 the performances of the proposed
algorithms as a function of the number of sources. In all cases,
the number of observations is set to M = 2. We did not add
any noise in these experiments.
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Fig. 1. Top: Performances evaluation of all algorithms in the determined case with M = 3 and N = 3. Bottom: Proposed algorithms vs oracle setting

From the figure, first, one can notice that the performances
of all methods decrease rapidly as the number of sources
increases. It is natural because as the number of sources grows,
the separation problem becomes more and more ill-posed.
Secondly, one can remark that when the number of sources
is large, LPADMM outperforms Regu-GMCA and they both
perform better than Deco-GMCA which decreases relatively
rapidly in terms of SIR. At last, it can be seen that the
gap between the DUET method and the proposed methods
increases as the number of sources grows. We can see that the
two “oracle algorithms” perform very similarly.

D. Computational comparison

We end this experimental section by giving some indications
about the computational time of different methods. Fig. 6
shows the separation performance in terms of the average
computational time in the under-determined noiseless case. It
can be noticed that the performance of Deco-GMCA increases
rapidly in term of SDR, but the SIR start decreasing while the
SDR reach its maximum. This suggests that a better choice
of the hyperparameter A could be done instead of A — 0. It
is also obvious that LPADMM converge very slowly and is
relatively not stable.

VI. DISCUSSION AND CONCLUSION

We studied and proposed several iterative methods to sep-
arate instantaneous mixture in under-determined and over-
determined BSS. In particular, we developped three ap-
proaches to combine both the decorrelation in the time domain
and the sparsity in the time-frequency domain of the sources. It
has been shown that these approaches lead to better separation

performances in both SDR and SIR, and is relative robust to
noise.

In all the three methods, we chose to maintain the energy of
the sources, and forced each columns of the mixing matrix to
have a unit norm, in order to deal with the scaling ambiguity.
In theory, it is totally possible to force the sources to have a
unit norm, and then to have ss” = I to release the constraint
on the norm of the column of the mixing matrix. Surprisingly
enough, this approach does not work as well as the proposed
approach.

Future works will focus on extending the decorrelation
and sparsity combination to convolutive mixture. Structured
sparsity will also be considered to take signal structures into
account. From an applicative point of view, such an approach
may also be applied to M/EEG and fMRI signals.

VII. APPENDIX

We first give the proof for Proposition 1

Proof. First we reformulate (14) as a constrained optimization
problem as A — 0 :

min ||a|; +2c(A)
oA (29)
st. x = Aad”

Then if o and A is a minimiser of (29), one must have that
x = Aa®”. On the other hand, at convergence, step 2 and 3
of Algo. 3 ensures that A = x®a*D where D is a diagonal
matrix. Then one can get ss” = a®*®a* = D! which is
a diagonal matrix if M > N by simple linear algebra.

O

Now we give the proof for Proposition 2
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Proof. We consider the problem (19) in the following way:
min [|s - Wy|%
W (30)
st. WWT =D

where y is the whitened signal, i.e. y = 25_1/25 and D is any

diagonal matrix. Then the MSE can be rewritten as :

e=|s|% + [[Wyl7 — 2(s, Wy) 31)

According to Cauchy-Schwarz inequality, one has (s, W) <
IIsll7|W¥||» with equality if and only if W is a diagonal
matrix. We note d; the i-th element on the diagonal of W,
then we can reformulate e as :

e= (si—diyi)(si — digs)”

=1

(32)

where s; and y; is the i-th row of s and y respectively. Now
minimizing e with respect to d; is a simple problem with the
solution d; = s,y which means W = diag (syT). O

One can notice that one of the conditions of this proposition
is that ¥y is a positive definite matrix. However, it is not
always the case in practice. The strategie we use is that
we simply do not do any decorrelation projection if Yg is
not positive definite. One explanation is that we assume that
Ys will always be positive definite after a finite number of
iterations.
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