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A model and numerical method for compressible flows with

capillary effects

Kevin Schmidmayera,∗, Fabien Petitpasa, Eric Daniela, Nicolas Favriea, Sergey Gavrilyuka

aAix-Marseille Université, CNRS UMR 7343 IUSTI, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France

Abstract

A new model for interface problems and capillary effects in compressible fluids is presented
together with a specific numerical method to treat capillary flows and pressure waves propa-
gation. This new model is in agreement with physical principles of conservation, respects the
second law of thermodynamics and is shown hyperbolic in a 3D framework. A new numerical
method is also proposed where the global system of equations is split into several submodels.
Each submodel is hyperbolic and can be solved with an adequate numerical method. This
method is tested and validated thanks to comparisons with analytical solutions (Laplace
law) and with experimental results on the first stage of droplet breakup induced by a shock
wave.

Keywords: Diffuse interface, Godunov type methods, Hyperbolic systems, Multiphase
flows, Shock waves, Surface tension

1. Introduction

The breakup of liquid droplets induced by high speed flows has a wide range of engineer-
ing and scientific applications and has given rise to a large literature. In some cases, this
phenomenon causes damages as for example when droplets are impacting aircrafts in super-
sonic flight causing erosion of its surface (Engel [8], Joseph et al. [20], Igra and Takayama
[17, 18]). Studying of droplets behavior in a high speed flow may also be encountered when
security issues are considered as for example for shock wave attenuation (Chauvin et al.
[4, 5]). Other applications can be found in explosive science or in combustion systems where
a liquid jet is atomized (Welch and Boyle [41], Meng and Colonius [25], Devassy et al. [7]).
Detail reviews of droplet breakup study can be found in Pilch and Erdman [33], Wierzba
and Takayama [42], Hsiang and Faeth [16].

Regarding numerical simulations, the existing studies of breakup are focused on the first
stage of droplet deformation when Richtmyer-Meshkov instability appears (Yang et al. [44],
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Quirk and Karni [34], Layes and Le Metayer [22], Meng and Colonius [25]). Nevertheless,
there is no mathematical model capable to treat the effect of the flow on the droplet from
the short time scale when the shock wave interacts with the droplet to the long time scale
when capillary and/or viscous effects become significant.

In last decades, several studies have been performed taking into account capillary effects
in multiphase flow models. The seminal work of Brackbill et al. [3] succeeded in transforming
a surface force into a volume force, quite easy to treat as a source term in a multiphase flow
model. The surface tension volume force is expressed thanks to a color function c̃ (x). This
approach has been used in Chen and Doolen [6], Sussman et al. [39], Gueyffier et al. [15],
Osher and Fedkiw [28, 29], Tryggvason et al. [40], Perigaud and Saurel [30], Le Martelot et
al. [23] where capillary effects are added to the momentum and the energy equations.

The aim of this work is to develop a mathematical model and a numerical method for
compressible multiphase flows with capillary effects which are conservative, hyperbolic and
verifies the entropy inequality.

Section 2 presents Brackbill et al. [3] method to treat the surface tension and a review
of existing models with a conservative form of the capillary effects. In Section 3, the new
conservative model with capillary effects is presented. The model is in agreement with
conservation principles and with the second law of thermodynamics. A special attention is
paid to the study of hyperbolicity of the model. Section 4 is devoted to the building of a
numerical method able to solve capillary terms in a conservative manner. The method is
based on split models that are separately hyperbolic. These submodels are solved thanks
to adequate numerical schemes. Section 5 presents the validation of the method on 2D
test cases. It shows that the model and the numerical method are able to treat accurately
both capillary effects and shock wave propagation. Quantitative comparisons are done with
other methods based on source terms integration to show the importance of the conservative
formulation. The first stage of the aerodynamic breakup of a water column induced by a
shock wave is compared with experiments. In Appendix, the model derivation is given.

2. Compressible two-phase capillary flows: state of art

2.1. Surface tension force and color function

The main difficulty in modeling the capillary effects is about considering a surface force
in numerical models that solve volume average quantities. The seminal work of Brackbill et
al. [3], called CSF (Continuum Surface Force) method, succeeded to do it by using a color
function, c̃ (x). Thanks to this function, the surface tension volume force is then expressed:

Fv (x) = σκ (x)
∇c̃ (x)

[c̃]
,

where σ is the surface tension coefficient and κ (x) the local curvature of the interface defined
by:

κ (x) = −∇.n (x),
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with n (x) is the normal vector to the interface between the both phases:

n (x) =
∇c̃ (x)

‖∇c̃ (x)‖
.

The color function c̃ (x) allows us to locate the different fluids and the interface. c̃ (x) is
defined as:

c̃ (x) =


c1 in fluid 1,
c2 in fluid 2,
c1 6 c̃ (x) 6 c2 in the transition region.

(1)

In the transition region c̃ (x) is given by an interpolation, meaning that the interface has a
non zero thickness. [c̃] = c2 − c1 is the jump of the color function.

It is assumed that the color function obeys a transport equation [3]:

∂c̃ (x)

∂t
+ uI .∇c̃ (x) = 0,

where uI is the interface velocity.
Numerical results using this force can be found in [6, 23, 28, 29, 39, 40]. In these refer-

ences, the surface tension force is treated as source terms in the momentum and the energy
equations.

2.2. Review of existing compressible models with capillary effects

Because it is the only class of methods able to deal with dynamic appearance and dis-
appearance of interfaces, we focus here on diffuse interface modeling (Abgrall and Karni [1],
Saurel and Abgrall [35]). Moreover, this is also the only class of models where the thermody-
namics of mixture cells is well defined, thanks to a specific equation of state for each phase
(liquid or gas).

The study of capillary effects within the framework of the diffuse interface methods is
based on the generalization of the Allaire et al. [2] model. This model originally does not
include capillary effects. Second law of thermodynamics is verified only if the condition of
thermal equilibrium T = Tk, with k = {1, 2}, is retained. Perigaud and Saurel [30] extended
this model by including the capillary effects. As a result, the surface tension volume force
appears as a flux term in the momentum equation as well as the work of this force Fv (x) .u
in the total energy equation. In this reference, as Gueyffier et al. [15] did within the
incompressible flows framework, a conservative formulation was obtained:

∂α1

∂t
+ u.∇α1 = 0,

∂αkρk
∂t

+ ∇. (αkρku) = 0,
∂ρu
∂t

+ ∇.
(
ρu⊗ u + PI − σ

(
‖∇α1‖I − ∇α1⊗∇α1

‖∇α1‖

))
= 0,

∂ρE+εσ
∂t

+ ∇.
(
u (ρE + εσ + P )− σ

(
‖∇α1‖I − ∇α1⊗∇α1

‖∇α1‖

)
.u
)

= 0,

where αk and ρk are the volume fraction and the density of phase k. ρ, u, P , E = e+ 1
2
‖u‖2

and e are respectively the mixture variables for density, velocity, pressure, total energy and
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internal energy. The mixture internal energy is defined as e =
∑

k Ykek (ρk, P ) and each
fluid is governed by its own convex equation of state (EOS) ek = ek (ρk, P ). Introducing
the capillary effects in fluxes (conservative formulation) leads to a new term in the mixture
total energy equation, εσ = σ‖∇α1‖ which is defined as a capillary potential energy. Note
that α1 obeys a transport equation and plays the role of the color function (1) because
uI = u when the velocity equilibrium is considered. In [30], the authors used a pressure
equilibrium closure, allowing the resolution of interface problems dedicated to high speed
flows. Nevertheless, this closure does not allow to have conservation law for the mixture
entropy.

Le Martelot et al. [23] corrected this drawback by including the capillary effects in a
velocity, pressure and temperature equilibrium system of equations by considering the mass
fraction as the color function: the second law of thermodynamics is then respected because
of the thermal equilibrium closure. Such a closure is reasonable for the description of the
boiling phenomenon, but this thermal equilibrium is too drastic for breakup droplet study
under high speed flows what is the main subject of this paper.

It becomes then obvious that the establishment of a new model with the capillary effects in
conservative form that can still preserve the mixture entropy law without the temperature
equilibrium hypothesis is necessary. The model should also be well posed (in particular,
hyperbolic) to guarantee the numerical treatment of physical problems.

3. Mechanical equilibrium model with capillary effects

3.1. The model

The new model we will propose here is able to treat breakup of droplet study under high
speed flows and respects the second law of thermodynamics. It is based on the Kapila et
al. basic system of equations [21]. This last model has been shown to be suitable to treat
interface problems between compressible fluids. Multiple extensions of this model have been
developped to solve several concrete problems dealing with phase transition (Massoni et al.
[24], Saurel et al. [37], cavitation (Petitpas et al. [31]), detonation in high energetic materials
(Petitpas et al. [32]), solid-fluid interaction and compaction of granular media (Favrie and
Gavrilyuk [10, 9]) and low Mach number flows (Murrone and Guillard [26]). It considers
compressible two-phase flows in mechanical equilibrium (pressure and velocity equilibrium).
In this model, the volume fraction obeys the following equation:

∂α1

∂t
+ u.∇α1 = K∇.u, (2)

where the term K∇.u accounts for the differences in the acoustic behaviour of both phases.
It traduces pressure equilibrium between phases. K is given by:

K =
ρ2a

2
2 − ρ1a

2
1

ρ2a22
α2

+
ρ1a21
α1

,

ak being the sound of speed of phase k.
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The capillary effects are then added in conservative form. Because the color function
is purely a geometric variable, a supplementary equation for the color function is added.
Applying the Hamilton principle for the model derivation (see Appendix for details), the
model becomes: 

∂α1

∂t
+ u.∇α1 −K∇.u = 0,

∂αkρk
∂t

+ ∇. (αkρku) = 0,
∂ρu
∂t

+ ∇.
(
ρu⊗ u + PI + Ω

)
= 0,

∂ρE+εσ
∂t

+ ∇.
(

(ρE + εσ + P ) u + Ω.u
)

= 0,
∂c
∂t

+ u.∇c = 0,

(3)

with Ω being the capillary tensor given by:

Ω = −σ
(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
. (4)

The capillary energy is equal to εσ = σ‖∇c‖ and the color function is normalized by its
jump c = c̃/[c̃].

The surface tension terms do not affect the pressure and the entropy equations. The
pressure equation evolution then reads:

dP

dt
+ ρa2∇. (u) = 0.

where a is the Wood mixture speed of sound [43]:

a2 =

(
ρ
∑
k

αk
ρka2

k

)−1

.

As in Kapila et al. [21], the entropy equations remain unchanged in continuous motion:

dsk
dt

= 0,

with the material derivative operator d(·)/dt = ∂(·)/∂t + u.∇(·). The mixture entropy is
obviously assured:

ds

dt
=
∑
k

dYksk
dt

= 0.

3.2. Hyperbolicity

In this chapter, the study of the hyperbolicity of system (3) is done. Thanks to the
rotational invariance of the equations, the study can be reduced to the study of the only
x-direction in the 3D system of equations.
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3.2.1. Primitive form

First, the model needs to be transformed into a vector form:

∂W

∂t
+ A (W)

∂W

∂x
= 0. (5)

The color function is first rewritten by taking its gradient to obtain a conservative equa-
tion for w = ∇c:

∂w

∂t
+ ∇ (u.w) = 0.

Or, in an equivalent form:

∂w

∂t
+

(
∂w

∂x

)T
.u +

(
∂u

∂x

)T
.w = 0. (6)

Since w is a gradient, we have:
rot (w) = 0, (7)

i.e. (
∂w

∂x

)T
=

(
∂w

∂x

)
.

Thus, equation (6) with the constraint (7) becomes:

∂w

∂t
+

(
∂w

∂x

)
.u +

(
∂u

∂x

)T
.w = 0. (8)

Constraint (7) also appears in solid mechanics where the formulation of the extended system
under a “rot” constraint is important in the hyperbolicity study (see Ndanou et al. [27]).
Equation (8) may be developed in three dimensions, where we denote u = (u, v, w)T , w =
(w1, w2, w3)T and x = (x, y, z)T :

∂w1

∂t
+ ∂w1

∂x
u+ ∂w1

∂y
v + ∂w1

∂z
w + ∂u

∂x
w1 + ∂v

∂x
w2 + ∂w

∂x
w3 = 0,

∂w2

∂t
+ ∂w2

∂x
u+ ∂w2

∂y
v + ∂w2

∂z
w + ∂u

∂y
w1 + ∂v

∂y
w2 + ∂w

∂y
w3 = 0,

∂w3

∂t
+ ∂w3

∂x
u+ ∂w3

∂y
v + ∂w3

∂z
w + ∂u

∂z
w1 + ∂v

∂z
w2 + ∂w

∂z
w3 = 0.

(9)

In the case where all the variables depend only on (t, x), (9) reduces to:
∂w1

∂t
+ ∂w1

∂x
u+ ∂u

∂x
w1 + ∂v

∂x
w2 + ∂w

∂x
w3 = 0,

∂w2

∂t
+ ∂w2

∂x
u = 0,

∂w3

∂t
+ ∂w3

∂x
u = 0.

Introduction of the vector w allows us to rewrite components for the capillary tensor Ω
(4) in the x-direction:

Ω11 = σ

(
−w2

2 − w2
3√

w2
1 + w2

2 + w2
3

)
,
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Ω12 = σ

(
w1w2√

w2
1 + w2

2 + w2
3

)
,

Ω13 = σ

(
w1w3√

w2
1 + w2

2 + w2
3

)
.

Finally, the system rewritten in vector form reads for two phases:

∂α1

∂t
+ u∂α1

∂x
−K ∂u

∂x
= 0,

∂u
∂t

+ u∂u
∂x

+ 1
ρ

(
∂P
∂x

+ ∂Ω11

∂w1

∂w1

∂x
+ ∂Ω11

∂w2

∂w2

∂x
+ ∂Ω11

∂w3

∂w3

∂x

)
= 0,

∂v
∂t

+ u ∂v
∂x

+ 1
ρ

(
∂Ω12

∂w1

∂w1

∂x
+ ∂Ω12

∂w2

∂w2

∂x
+ ∂Ω12

∂w3

∂w3

∂x

)
= 0,

∂w
∂t

+ u∂w
∂x

+ 1
ρ

(
∂Ω13

∂w1

∂w1

∂x
+ ∂Ω13

∂w2

∂w2

∂x
+ ∂Ω13

∂w3

∂w3

∂x

)
= 0,

∂P
∂t

+ u∂P
∂x

+ ρa2 ∂u
∂x

= 0,
∂w1

∂t
+ u∂w1

∂x
+ w1

∂u
∂x

+ w2
∂v
∂x

+ w3
∂w
∂x

= 0,
∂w2

∂t
+ u∂w2

∂x
= 0,

∂w3

∂t
+ u∂w3

∂x
= 0,

∂s1
∂t

+ u∂s1
∂x

= 0,
∂s2
∂t

+ u∂s2
∂x

= 0,
∂Y1
∂t

+ u∂Y1
∂x

= 0.
∂c
∂t

+ u ∂c
∂x

= 0

3.2.2. Eigenvalues

The vector W and the matrix A in (5) are then defined by:

W = [α1, u, v, w, P, w1, w2, w3, s1, s2, Y1, c]
T

A (W) =



u −K 0 0 0 0 0 0 0 0 0 0
0 u 0 0 1

ρ
1
ρ
∂Ω11

∂w1

1
ρ
∂Ω11

∂w2

1
ρ
∂Ω11

∂w3
0 0 0 0

0 0 u 0 0 1
ρ
∂Ω12

∂w1

1
ρ
∂Ω12

∂w2

1
ρ
∂Ω12

∂w3
0 0 0 0

0 0 0 u 0 1
ρ
∂Ω13

∂w1

1
ρ
∂Ω13

∂w2

1
ρ
∂Ω13

∂w3
0 0 0 0

0 ρa2 0 0 u 0 0 0 0 0 0 0
0 w1 w2 w3 0 u 0 0 0 0 0 0
0 0 0 0 0 0 u 0 0 0 0 0
0 0 0 0 0 0 0 u 0 0 0 0
0 0 0 0 0 0 0 0 u 0 0 0
0 0 0 0 0 0 0 0 0 u 0 0
0 0 0 0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 0 0 0 u


The determinant of matrix A can be calculated:

det
(
A (W)− λI

)
= (u− λ)8 [(u− λ)4 + L(u− λ)2 +M

]
,
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where:

L = −a2 − 1

ρ

(
w1
∂Ω11

∂w1

+ w2
∂Ω12

∂w1

+ w3
∂Ω13

∂w1

)
,

M =
a2

ρ

(
w2
∂Ω12

∂w1

+ w3
∂Ω13

∂w1

)
.

8 real eigenvalues are straightforward found:

λ1,2,3,4,5,6,7,8 = u.

The 4 other eigenvalues are the roots of the quadratic equation:

X2 + LX +M = 0, (10)

with X = (u− λ)2. If the discriminant ∆ is positive, the roots of equation (10) are real and
complex numbers otherwise. That condition determines if the system is hyperbolic or not.
Defining the components of the normal vector nk = wk/ ‖w‖, after some calculations the
discriminant is:

∆ =

(
a2 +

σ‖w‖
ρ

(
n2

2 + n2
3

))2

− 4a2σ‖w‖
ρ

(
n2

2 + n2
3

)2
.

But: (
n2

2 + n2
3

)
6 1.

Hence:

∆ >

(
a2 +

σ‖w‖
ρ

(
n2

2 + n2
3

))2

− 4a2σ‖w‖
ρ

(
n2

2 + n2
3

)
=

(
a2 − σ‖w‖

ρ

(
n2

2 + n2
3

))2

> 0.

The roots of the quadratic equation (10) are then all real. Thus, the corresponding eigen-
values of model (3) are real, explicit and given by:

λ9,10 = u± as, (11)

λ11,12 = u± ac, (12)

where:

as =
a2 + b+

√
(a2 + b)2 − 4a2b (n2

2 + n2
3)

2
,

ac =
a2 + b−

√
(a2 + b)2 − 4a2b (n2

2 + n2
3)

2
,

and:

b =
σ‖w‖
ρ

(
n2

2 + n2
3

)
.
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Finally, there are 8 multiple eigenvalues λ = u and 4 eigenvalues corresponding to sound
waves (equation (11)) and capillary waves (equation (12)) ordered as:

u− as < u− ac 6 u 6 u+ ac < u+ as.

The system is hyperbolic if the multiple eigenvalues λ = u has exactly 8 linearly inde-
pendent eigenvectors. This is the case, so the system is hyperbolic. The whole system of
the eigenvectors will not be given because this equilibrium system will not be numerically
solved in this form (see Section 4 for discussion).

4. Numerical resolution of model (3)

4.1. Basic ideas

The numerical solution of model (3) represents a challenge regarding the two following
points :

• The first difficulty is due to the K∇.u term in the volume fraction evolution equation.
This is the precious ingredient leading to the respect of the mixture entropy equation
when a pressure equilibrium assumption is retained. Nevertheless, the presence of this
non-conservative term considerably complicates the numerical method which crucially
depends on the choice of appropriate Rankine-Hugoniot relations (see [13] and [38] for
details). This is a reason why a non-equilibrium pressure model is preferred with a
pressure relaxation term instead of the non-conservative term K∇.u in the volume
fraction equation. This model is presented in this section.

• The second difficulty is in the simultaneous treatment of 5 waves which are present in
the model. This difficulty is circumvented by the use of split models that are proven
to be hyperbolic separately.

4.1.1. A pressure relaxation model with capillary effects

Because the non-conservative volume fraction equation represents a major problem re-
garding numerical resolution, the following non-equilibrium pressure hyperbolic model is
proposed: 

∂α1

∂t
+ u.∇α1 = µ (P1 − P2) ,

∂α1ρ1
∂t

+ ∇. (α1ρ1u) = 0,
∂α2ρ2
∂t

+ ∇. (α2ρ2u) = 0,
∂ρu
∂t

+ ∇.
(
ρu⊗ u + PI + Ω

)
= 0,

∂α1ρ1e1
∂t

+ ∇. (α1ρ1e1u) + α1P1∇.u = −µPI (P1 − P2) ,
∂α2ρ2e2

∂t
+ ∇. (α2ρ2e2u) + α2P2∇.u = µPI (P1 − P2) ,

∂c
∂t

+ u.∇c = 0,

(13)

where µ is the pressure relaxation coefficient, PI = Z2P1+Z1P2

Z1+Z2
(see [36] for details) and

Zk = ρkck represents the acoustic impedance of the phase k. The mixture pressure is given
by:

P = α1P1 + α2P2.
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Due to the condition P1 6= P2 in this model, the total energy equation of the mixture is
replaced by the internal energy equation for each phase. Nevertheless, the mixture total
energy equation of the system can be written in usual form:

∂ρE + εσ
∂t

+ ∇.
(

(ρE + εσ + P ) u + Ω.u
)

= 0. (14)

The equation (14) is redundant when both internal energy equations are solved, but it will
appear to be an important ingredient for numerical method to ensure the energy conservation
and to preserve a correct treatment of shock waves.

The hyperbolicity study for model (13) can be done in the same way that for model (3).
The model is shown hyperbolic.

One can note that the surface tension effects are missing in the phasic energy equations
since it is only a mixture characteristic.

The entropy equations for system (13) can also be written:

α1ρ1T1
ds1

dt
= µ(P1 − P2)2 Z1

Z1 + Z2

,

α2ρ2T2
ds2

dt
= µ(P1 − P2)2 Z2

Z1 + Z2

,

that insures the mixture entropy (s = Y1s1 + Y2s2) increasing.
Model (3) can be recovered as asymptotic limit of model (13) when the pressure of

phases tends to be equal. Nevertheless, even if this model is also hyperbolic, it is not a
good candidate regarding numerical resolution as mentioned previously. A special splitting
procedure will be done for a numerical resolution of model (13).

4.1.2. Splitting procedure

Model (13) without the relaxation terms is split in two submodels. The first submodel
does not take into account the surface tension terms. The hyperbolicity is then easily verified.
The second submodel contains the only capillary terms and is also proven hyperbolic. Such
an approach was also used in Favrie et al. [11] where the splitting procedure was used to
separate the treatment of longitudinal and shear waves in hyperelasticity.
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Hyperbolic submodel 1

The first submodel is similar to that presented in [38] with an additional equation for the
color function: 

∂α1

∂t
+ u.∇α1 = 0,

∂α1ρ1

∂t
+ ∇. (α1ρ1u) = 0,

∂α2ρ2

∂t
+ ∇. (α2ρ2u) = 0,

∂ρu

∂t
+ ∇.

(
ρu⊗ u + PI

)
= 0,

∂α1ρ1e1

∂t
+ ∇. (α1ρ1e1u) + α1P1∇.u = 0,

∂α2ρ2e2

∂t
+ ∇. (α2ρ2e2u) + α2P2∇.u = 0,

∂c

∂t
+ u.∇c = 0.

(15)

Model (15) may be rewritten in a vector form (5) with:

W = [α1, s1, s2, u, v, w, P1, P2, c]
T

A (W) =



u 0 0 0 0 0 0 0 0
0 u 0 0 0 0 0 0 0
0 0 u 0 0 0 0 0 0

P1−P2

ρ
0 0 u 0 0 α1

ρ
α2

ρ
0

0 0 0 0 u 0 0 0 0
0 0 0 0 0 u 0 0 0
0 0 0 ρ1a

2
1 0 0 u 0 0

0 0 0 ρ2a
2
2 0 0 0 u 0

0 0 0 0 0 0 0 0 u


The eigenvalues of the system are:

λ1,2,3,4,5,6,7 = u,

λ8 = u− af ,

λ9 = u+ af ,

where af is the frozen mixture sound speed:

a2
f = Y1a

2
1 + Y2a

2
2.

The hyperbolicity of this first submodel is proven in [38].
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Hyperbolic submodel 2

The second submodel contains only capillary terms:

∂α1

∂t
= 0,

∂α1ρ1
∂t

= 0,
∂α2ρ2
∂t

= 0,
∂ρu
∂t

+ ∇.Ω = 0,
∂α1ρ1e1

∂t
= 0,

∂α2ρ2e2
∂t

= 0,
∂c
∂t

= 0.

(16)

The system is rewritten in a vector form (5) in the x-direction :

∂α1

∂t
= 0,

∂s1
∂t

= 0,
∂s2
∂t

= 0,
∂u
∂t

+ 1
ρ

(
∂Ω11

∂w1

∂w1

∂x
+ ∂Ω11

∂w2

∂w2

∂x
+ ∂Ω11

∂w3

∂w3

∂x

)
= 0,

∂v
∂t

+ 1
ρ

(
∂Ω12

∂w1

∂w1

∂x
+ ∂Ω12

∂w2

∂w2

∂x
+ ∂Ω12

∂w3

∂w3

∂x

)
= 0,

∂w
∂t

+ 1
ρ

(
∂Ω13

∂w1

∂w1

∂x
+ ∂Ω13

∂w2

∂w2

∂x
+ ∂Ω13

∂w3

∂w3

∂x

)
= 0,

∂P1

∂t
= 0,

∂P2

∂t
= 0,

∂w1

∂t
= 0,

∂w2

∂t
= 0,

∂w3

∂t
= 0.

The eigenvalues of the system are all real and there are as much linearly independent eigen-
vectors as eigenvalues. So, the second submodel is also hyperbolic.

Relaxation step

This step is exactly the same as in [38].

4.2. Numerical Method

Finally, the numerical method is presented as a 3-step method. Each step is successively
performed in order to circumvent specific numerical problems:

• First, the hyperbolic non-equilibrium pressure model (15) is solved using a Godunov-
type method.

• Secondly, model (16) is solved. A specific attention is paid to the choice for the flux
terms in order to ensure the momentum and energy conservation.

• Third, a relaxation procedure leads to the pressure equilibrium.
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The chain of these three steps is equivalent to solve model (3). Each step of the method is
presented in details hereafter. The full system of equations is first rewritten in the following
vector form:

∂U

∂t
+
∂ (Fx

h (U) + Fx
c (U))

∂x
+
∂ (Fy

h (U) + Fy
c (U))

∂y

+
∂ (Fz

h (U) + Fz
c (U))

∂z
+ Hnc∇.u = Hrelax.

The vector U contains the unknown quantities defined in the system:

U = [α1, α1ρ1, α2ρ2, ρu, ρv, ρw, α1ρ1e1, α2ρ2e2, c, ρE + εσ]T

The vectors Fβ
h (U), Fβ

c (U), Hnc and Hrelax, with β = {x, y, z}, contain respectively the
hydrodynamic fluxes, the capillary fluxes, the non-conservative terms and the relaxation
terms:

Fx
h (U) =



α1u
α1ρ1u
α2ρ2u
ρu2 + P
ρuv
ρuw

α1ρ1e1u
α2ρ2e2u
cu

(ρE + P )u


Fy
h (U) =



α1v
α1ρ1v
α2ρ2v
ρuv

ρv2 + P
ρvw

α1ρ1e1v
α2ρ2e2v
cv

(ρE + P ) v


Fz
h (U) =



α1w
α1ρ1w
α2ρ2w
ρuw
ρvw

ρw2 + P
α1ρ1e1w
α2ρ2e2w
cw

(ρE + P )w



Fx
c (U) =



0
0
0

Ω11

Ω12

Ω13

0
0
0

εσu+ Ω11u+ Ω12v + Ω13w


Fy
c (U) =



0
0
0

Ω21

Ω22

Ω23

0
0
0

εσu+ Ω21u+ Ω22v + Ω23w


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Fz
c (U) =



0
0
0

Ω31

Ω32

Ω33

0
0
0

εσu+ Ω31u+ Ω32v + Ω33w



Hnc =



−α1

0
0
0
0
0

α1P1

α2P2

−c
0


Hrelax =



µ (P1 − P2)
0
0
0
0
0

−µPI (P1 − P2)
µPI (P1 − P2)

0
0


It is important to note that the additional equation for the mixture total energy has been

added to the system for numerical solution purposes. This equation is obviously in agreement
with the complete system (13) and will be necessary to correct the energy conservation
equation during the final relaxation step.

The unknown vector Un+1 is obtained from the initial condition Un by application of
the three successive operators according to the sequence:

Un+1 = LrelaxLcapLhyper (Un) .

Each step of the numerical method corresponds to the application of one of the three oper-
ators detailed below in a cartesian 2D framework.

4.2.1. Hyperbolic operator

The application of the first operator Lhyper corresponds to the solution of the hyperbolic
submodel (15) using a Godunov-type method [14] extended to an high-order scheme with a
MUSCL-Hancock procedure. The solution for this step is given for the cell (i, j) by:

Uhyper
i,j = Un

i,j −G∆t,
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G =



1
∆x

(
F∗
h;i+ 1

2
,j

(
U
n+ 1

2
i,j,R,U

n+ 1
2

i+1,j,L

)
− F∗

h;i− 1
2
,j

(
U
n+ 1

2
i−1,j,R,U

n+ 1
2

i,j,L

))
+ 1

∆y

(
F∗
h;i,j+ 1

2

(
U
n+ 1

2
i,j,T ,U

n+ 1
2

i,j+1,B

)
− F∗

h;i,j− 1
2

(
U
n+ 1

2
i,j−1,T ,U

n+ 1
2

i,j,B

))
+

Hn
nc;i,j

∆x

(
u∗
i+ 1

2
,j

(
U
n+ 1

2
i,j,R,U

n+ 1
2

i+1,j,L

)
− u∗

i− 1
2
,j

(
U
n+ 1

2
i−1,j,R,U

n+ 1
2

i,j,L

))
+

Hn
nc;i,j

∆y

(
v∗
i,j+ 1

2

(
U
n+ 1

2
i,j,T ,U

n+ 1
2

i,j+1,B

)
− v∗

i,j− 1
2

(
U
n+ 1

2
i,j−1,T ,U

n+ 1
2

i,j,B

))


.

The superscript * represents the solution of the Riemann problem on the corresponding cell
boundary using the extrapolated values to the cell boundary Un+ 1

2 in the case of high order
method (the subscripts R, L, T , B represent respectively the right, left, top and bottom
neighbouring cells). These fluxes can be computed by any Riemann solver, here a Harten-
Lax-van Leer Contact (HLLC) approximate Riemann solver is used. Details of this method
can be found in Saurel et al. [38]. Since the time marching scheme is explicit, the time step
obeys a classical Courant-Friedrichs-Lewy (CFL) criterion.

4.2.2. Capillary operator

The second operator Lcap introduces capillary terms and corresponds to the solution of
submodel (16):

Ucap = Lcap
(
Uhyper

)
.

Application of the operator Lcap on vector Uhyper is done in the volume-finite framework:

Ucap
i,j = Uhyper

i,j −∆t


1

∆x

(
Fx
c;i+ 1

2
,j

(
Uhyper

i+ 1
2
,j

)
− Fx

c;i− 1
2
,j

(
Uhyper

i− 1
2
,j

))
+ 1

∆y

(
Fy

c;i,j+ 1
2

(
Uhyper

i,j+ 1
2

)
− Fy

c;i,j− 1
2

(
Uhyper

i,j− 1
2

))  .

Because the only equations affected by the capillary effects are the momentum and the total
energy equations, these equations are developed in two dimensions:

(ρu)capi,j = (ρu)hyperi,j − σ∆t

 −
‖w‖hyper

i+1
2 ,j
−‖w‖hyper

i− 1
2 ,j

∆x
+

(
w2
1

‖w‖

)hyper
i+1

2 ,j

−
(
w2
1

‖w‖

)hyper
i− 1

2 ,j

∆x

+
(w1w2
‖w‖ )

hyper

i,j+1
2

−(w1w2
‖w‖ )

hyper

i,j− 1
2

∆y

 ,

(ρv)capi,j = (ρv)hyperi,j − σ∆t


−
‖w‖hyper

i,j+1
2

−‖w‖hyper
i,j− 1

2

∆y
+

(w1w2
‖w‖ )

hyper

i+1
2 ,j
−(w1w2

‖w‖ )
hyper

i− 1
2 ,j

∆x

+

(
w2
2

‖w‖

)hyper
i,j+1

2

−
(
w2
2

‖w‖

)hyper
i,j− 1

2

∆y

 ,

and for total energy:
(ρE + εσ)capi,j = (ρE + εσ)hyperi,j

−σ∆t


(
w2
1u

‖w‖

)hyper
i+1

2 ,j

−
(
w2
1u

‖w‖

)hyper
i− 1

2 ,j

∆x
+

(w1w2v
‖w‖ )

hyper

i+1
2 ,j
−(w1w2v

‖w‖ )
hyper

i− 1
2 ,j

∆x

+
(w1w2u
‖w‖ )

hyper

i,j+1
2

−(w1w2u
‖w‖ )

hyper

i,j− 1
2

∆y
+

(
w2
2v

‖w‖

)hyper
i,j+1

2

−
(
w2
2v

‖w‖

)hyper
i,j− 1

2

∆y

 .
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The different capillary terms at the cell boundary are obtained by the means of an arithmetic
average of quantities of neighbouring cells. The vector w requires derivatives of the color
function which are computed by using second-order finite difference approximations.

4.2.3. Pressure relaxation operator

To go through the operators chain, the solution at time n+ 1 is obtained which corrects
the components of Ucap by a pressure relaxation algorithm:

Un+1 = Lrelax (Ucap) .

The pressure relaxation details can be found in Saurel et al. [38] as well as the correction
procedure used to guarantee total energy conservation.

5. Numerical results and validations

In this section, two dimensional test cases are proposed to prove that the model and
the numerical method are able to treat accurately both capillary effects and shock wave
propagation.

In each presented cases, the equations of state (EOS) for air and water are the same.
The air obeys the ideal gas law:

Pair = (γair − 1) ρaireair,

with γair = 1.4.
The water follows the stiffened gas EOS:

Pwater = (γwater − 1) ρwaterewater − γwaterP∞,water.

The stiffened gas EOS parameters are γwater = 2.1 and P∞,water = 6.106Pa.

5.1. Validation of capillary effects

2D tests are proposed to study the ability of the method to treat accurately capillary
effects. The proposed method described in the present paper is compared with previous
existing methods that use source terms integration. A particular attention is paid to the
convergence, the numerical stability, the conservative property, the accuracy with respect
with the Laplace pressure law and the dynamics of capillary flows. It is showed that the use
of the present method is fully justified to simulate capillary effects in presence of pressure
waves. We denote in the following “conservative method” as the numerical method of Section
4 to distinguish it from the source terms integration methods that do not conserve neither
the momentum nor the energy.

The first test case consists in solving a cylindrical column of water (2D water droplet)
placed in air. The initial density in air is equal to 1 kg.m−3 and 1000 kg.m−3 in the water.
The radius of the water column is set to 0.15m and the surface tension coefficient is equal
to 800N.m−1. These unrealistic values are chosen to magnify the model properties. The
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Figure 1: Sketch of initial conditions for simulations of a cylindrical water column (2D water droplet).

pressure is initially uniform in the whole domain and set to 1 bar (the initial conditions are
presented in Figure 1).

2D computations are performed on the cartesian mesh containing 120x120 computational
cells for a physical domain of 75cm x 75cm. Outgoing pressure wave boundary conditions
are used. It consists on imposing the Neumann boundary conditions for the pressure and
imposing in-outgoing conditions expressed in terms of the Riemann invariants.

5.1.1. Convergence

Because of capillary effects, the pressure of the water column converges to satisfy the
Laplace law. Pressure convergence is analyzed using the relative residual:

ε = Max

(
|P n
i,j − P n−1

i,j |
P n
i,j

)
.

The convergence is considered to be reached when the criterion ε 6 1.10−4 is verified. Evo-
lution of this relative residual is presented in Figure 2 for the proposed conservative method
and compared with the source terms integration method of capillary terms. We observe that
the pressure convergence is much faster using the conservative method than using the source
terms integration one. Moreover, the computational time needed to reach the same physical
time with the two different methods is almost the same (a maximum difference of 5% of the
computational time is observed). So, the conservative method is definitely faster.

5.1.2. Stability

Regarding the stability of the method, contours of the water column are presented in
Figure 3. On the left of this figure the initial contour is shown together with the mesh. Effect
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Figure 2: Relative residual ε function of physical time for 2D water column test case. Source terms integration
(red) and conservative (blue) methods. Convergence is reached after 2 seconds with the proposed conservative
method compared to more than 6 seconds with the source terms integration one.

of the mesh on the initial circle is noticeable. The two other figures show contours position
immediately after the convergence is reached for both conservative and non-conservative
methods. It clearly appears that the source terms integration method of the capillary effects
is less stable than the conservative method. One should notice that in the two methods, the
gravity center begins to move after a long time. Nevertheless it starts to move significantly
earlier for the case with the source terms integration method. In other words, the column
has moved from its initial coordinates when the pressure convergence is reached. This is
crippling for example when studying interaction between a droplet and a shock wave (as
seen in next subsection): the droplet must be at rest before the interaction with the shock
wave. With the conservative method of the present paper, it becomes possible to consider
the treatment of this kind of problem.

5.1.3. Energy conservation

Furthermore, the conservative property of the new form of the capillary effects is verified
by plotting the evolution of the relative error of total mixture energy of the whole domain
using wall boundary conditions (Figure 4). The energy of a closed system must be preserved.
This point is verified with the conservative method but not with the source terms integration
one. Moreover, for the source terms integration method, the error does not saturate and
then still increases when the convergence is reached. It is also noticeable that the difference
of the total mixture energy at the initialization E (t0) between source terms integration and
conservative methods appears and comes from the capillary energy εσ which does not appear
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Figure 3: Magnified view of droplet contours through color function (c = 0.5). Initial contour together with
cartesian mesh (left); Contours after convergence is reached: source terms integration method on the middle
(red contour) and conservative method on the right (blue contour). With source terms integration method,
the position of the droplet as already changed when convergence is reached.

in the source term form expression of the total mixture energy equation. Note that its value
is here: εσ = 2.107J.m−3.

5.1.4. Pressure validation: Laplace law

The precision of the method is now analyzed regarding the Laplace law. The pressure
profiles along a symmetry axis of the water column is presented in Figure 5. Converged
results are presented for conservative method (blue dots), source terms integration method
(red crosses) and exact solution (black lines). The new conservative method has a better
accuracy then the source terms integration one.

5.1.5. Dynamic validation: square converges to circle

A square section of water column is initialized in air. The initial side of the square
is Lsquare = 20cm. The convergence after numerous oscillations toward a circle form is
presented in Figure 6. The Laplace pressure jump is verified.

5.2. Compressible validation: Shock wave interaction with a water column

The previous test cases highlight the ability of the method to deal with quasi-static
capillary effects. When studying the fragmentation of droplets, the ability to deal with
compressibility and shock waves must be verified. In this section, the early stages of an
aerodynamic droplet breakup in a high-speed flow behind a normal shock wave are studied.

The numerical simulation takes place in two dimensions and then instead of a water
droplet, a water column is retained. The dynamics of the acoustic waves are compared with
experiments of Igra and Takayama [18, 19]. The cylindrical water column has a diameter
D = 6.4mm, exposed to a shock wave of Mach number 1.3 in air (see Figure 7 for initial-
ization sketch). The initial densities are ρair = 1.2kg.m−3 and ρwater = 1000kg.m−3. The
corresponding Weber number (We = ρairu

2D/σ) in these conditions is 3690. 2D computa-
tions are performed on cartesian meshes containing 800x800 computational cells in a physical
domain of 55mm x 55mm.
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Figure 4: Evolution of the relative error of total mixture energy of the whole domain function of the physical
time for the water column with wall boundary conditions. Expression for the evolution of the relative error
is: 100 (E (t)− E (t0)) /E (t0). Source terms integration (red) and conservative (blue) methods.

Figure 5: Pressure jump in a centered section of a steady 2D water column in air. σ = 800N.m−1, R = 0.15m
and so ∆P = 5333Pa. Theoretical (black lines) and simulations results with source terms integration (red
crosses) and conservative (blue dots) methods of the capillary effects.
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Figure 6: Schlieren images of the mixture density of 2D water under a square form in an air environment
converging to a circle form. Initially σ = 800N.m−1 and Lsquare = 0.2m. Simulation at different time
instants with a mesh of 150x150: (a) initialization, (b) 5ms, (c) 15ms, (d) 20ms, (e) 30ms, (f) 35ms, (g)
45ms, (h) 50ms, (i) 105ms and (j) 3000ms.
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Figure 7: Sketch of the initialization for simulations treating about the shock wave on a water column.

Results are given for different time instants after the first interaction between the shock
wave and the water column (Figure 8). The incident shock wave and its reflection on the
water column are clearly observed through the schlieren images of the mixture density.
Comparisons on the dynamics of the acoustic waves with experiments are in good agreement
(Figure 9 and 10). The first filaments are observed at time 55µs in the numerical results but
it is difficult to see them in experiments.

Conclusion

A new hyperbolic model treating interface problems and capillary effects has been derived
together with a splitting numerical method that guarantee conservation of the mass, the
momemtum and the energy. Comparison with “source terms integration method” and with
experiments have shown the advantages of this new model and numerical method. The
simulation of first stage of an aerodynamic breakup of a water column induced by a shock
wave showed that the method will be able to treat both pressure waves interaction and
capillary effects accurately in the same formulation. The next stage will be to model more
complex phenomena including, in particular, viscosity effects.

Appendix: Variational principle for compressible mixtures with capillary effects

Consider a continuum characterized by the Lagrangian:

L = ρ

(
‖u‖2

2
− e
)
− σ‖∇c‖.
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Figure 8: Early stage of the aerodynamic breakup of a water column in a high-speed airstream behind the
shock wave of Mach number 1.3 in air propagating from the left to the right. 2D simulation with a mesh of
800x800 and schlieren images of the mixture density are given at the following time instants: (a) 0µs, (b)
10µs, (c) 20µs, (d) 24µs, (e) 37µs and (f) 55µs.
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Figure 9: Early stage of the aerodynamic breakup of a water column in a high-speed airstream behind the
shock wave of Mach number 1.3 in atmospheric air propagating from the left to the right. 2D simulation on
the left with a mesh of 800x800 and a schlieren image of the mixture density. Experiment on the right from
Igra and Takayama [19] with an interferogram on the top and an unreconstructed hologram on the bottom.
Results at time instant 15µs.

Figure 10: Early stage of the aerodynamic breakup of a water column in a high-speed airstream behind the
shock wave of Mach number 1.3 in atmospheric air propagating from the left to the right. 2D simulation on
the left with a mesh of 800x800 and a schlieren image of the mixture density. Experiment on the right from
Igra and Takayama [19] with an interferogram on the top and an unreconstructed hologram on the bottom.
Results at time instant 55µs.

24



Here ρ = α1ρ1 + α2ρ2 is the mixture density, e = Y1e1 + Y2e2 is the mixture specific energy,
Yi = αiρi/ρ are the mass fractions, σ is the surface tension coefficient, c is the color function.

Consider the Hamilton action:

a =

∫ t2

t1

∫
D

LdtdD, (17)

where t1 and t2 are fixed time instants, and D is a material fluid volume.
The governing equations are extremal curves of the Hamilton action under the following

constraints:
∂ρ

∂t
+ ∇. (ρu) = 0,

∂Y1

∂t
+ u.∇ (Y1) = 0,

∂s1

∂t
+ u.∇ (s1) = 0,

∂s2

∂t
+ u.∇ (s2) = 0,

∂c

∂t
+ u.∇ (c) = 0. (18)

The Eulerian variations of the unknown variables in terms of virtual displacement δx are
given by (see Gavrilyuk [12] for details):

δρ = −∇. (ρδx) ,

δY1 = −∇Y1.δx,

δs1 = −∇s1.δx,

δs2 = −∇s2.δx,

δc = −∇c.δx,

δu =
∂δx

∂t
+
∂δx

∂x
u− ∂u

∂x
δx.

Taking the variation of the Hamilton action (17) under the boundary conditions:

δx|∂D = 0,

δx|t=t1 = 0,

δx|t=t2 = 0,

one can obtain the momentum equation:

ρ

(
∂u

∂t
+
∂u

∂x
u

)
+ ∇P = −σ (∇.n)∇c,
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with n = ∇c/‖∇c‖.
The equation is exactly the same as in Brackbill et al. [3] for the one component case.

It can be written in conservative form:

∂ρu

∂t
+ ∇.

(
ρu⊗ u + PI + Ω

)
= 0,

where the capillary tensor Ω is given by:

Ω = −σ‖∇c‖
(
I − n⊗ n

)
.

The variation of the Hamilton action with respect to the volume fraction gives as the
pressure equilibrium condition:

P1 = P2 = P = α1P1 + α2P2.

resulting to the non-conservative equation (2) for α1 (see Gavrilyuk [12] for details).
Using the constraints on the entropies and mass fractions of each phase, the mixture

entropy equation is given by:
∂s

∂t
+ u.∇ (s) = 0.

The mixture entropy, mass and momentum equations admit the following mixture total
energy equation:

∂ρE

∂t
+ ∇. ((ρE + P ) u) = −

(
∇.Ω

)
.u.

To transform the previous equation to a fully conservative form, the following relation is
used: (

∇.Ω
)
.u = ∇.

(
Ω.u

)
− Ω :

∂u

∂x
,

where the right term still needs to be transformed. It can be developed as:

σ

(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
:
∂u

∂x
= σ

(
‖∇c‖∇.u−

(
∇c.

∂u

∂x

)
.
∇c

‖∇c‖

)
. (19)

Using the material derivative equation of ‖∇c‖:

d‖∇c‖
dt

=
d∇c

dt
.
∇c

‖∇c‖
, (20)

with the material derivative operator d(·)/dt = ∂(·)/∂t + u.∇(·) and the Schwarz theorem,
we have:

d∇c

dt
= ∇

(
dc

dt

)
−∇c.

∂u

∂x
. (21)

Hence with equations (18) and (21), equation (20) is rewritten as:

d‖∇c‖
dt

= −
(
∇c.

∂u

∂x

)
.
∇c

‖∇c‖
.
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Thus relation (19) is now developed as:

σ

(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
:
∂u

∂x
= σ

(
‖∇c‖∇.u +

d‖∇c‖
dt

)

=
∂σ‖∇c‖

∂t
+ ∇. (σ‖∇c‖u) .

Finally, the energy conservation law is:

∂ρE + εσ
∂t

+ ∇.
(

(ρE + εσ + P ) u + Ω.u
)

= 0,

with the capillary energy term εσ = σ‖∇c‖.
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