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A model and numerical method for compressible flows with

capillary effects

Kevin Schmidmayera,∗, Fabien Petitpasa, Eric Daniela, Nicolas Favriea, Sergey Gavrilyuka

aAix Marseille Univ, CNRS, IUSTI, Marseille, France

Abstract

A new model for interface problems with capillary effects in compressible fluids is presented
together with a specific numerical method to treat capillary flows and pressure waves propa-
gation. This new multiphase model is in agreement with physical principles of conservation
and respects the second law of thermodynamics. A new numerical method is also proposed
where the global system of equations is split into several submodels. Each submodel is hy-
perbolic or weakly hyperbolic and can be solved with an adequate numerical method. This
method is tested and validated thanks to comparisons with analytical solutions (Laplace
law) and with experimental results on droplet breakup induced by a shock wave.

Keywords: diffuse interface, Godunov type methods, hyperbolic systems, multiphase
flows, shock waves, surface tension

1. Introduction

The breakup of liquid droplets induced by high speed flows has a wide range of engi-
neering and scientific applications and has given rise to a large number of publications. In
some cases, this phenomenon causes damages as for example when droplets are impacting
aircrafts in supersonic flight causing erosion of its surface (Engel [8], Joseph et al. [23], Igra
and Takayama [20, 21]). Studying of droplets behavior in a high speed flow may also be
encountered when security issues are considered as, for example, for shock wave attenuation
(Chauvin et al. [4, 5]). Other applications can be found in explosive science or in combus-
tion systems where a liquid jet is atomized (Welch and Boyle [52], Meng and Colonius [33],
Devassy et al. [7]). Detailed reviews on droplet breakup can be found in Pilch and Erdman
[43], Wierzba and Takayama [53], Hsiang and Faeth [18].

Concerning numerical simulations, the breakup study is usually focused on the first stages
of droplet deformation when Richtmyer-Meshkov and/or Rayleigh-Taylor instabilities appear
(Yang et al. [55], Quirk and Karni [44], Layes and Le Metayer [28], Meng and Colonius [33]),
but not on the further stages when capillary and/or viscous effects become significant.
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In the last decades, several theoretical studies have been performed to treat capillary
effects in multiphase flows. The seminal work of Brackbill et al. [3] succeeded in transforming
a surface force into a volume force, quite easy to treat as a source term in a multiphase flow
model. The surface tension volume force is expressed thanks to a color function c̃ (x). This
approach has been used in Chen and Doolen [6], Sussman et al. [50], Gueyffier et al. [16],
Osher and Fedkiw [36, 37], Tryggvason et al. [51], Périgaud and Saurel [39], Le Martelot et
al. [29] where capillary effects are added into the momentum and the energy equations.

The aim of this work is to develop a mathematical model for fluid flows with capillary
effects that is hyperbolic, verifies conservation principles and entropy inequality together
with a suitable numerical method capable to treat the effect of the flow on the droplet from
the short time scale when the shock wave interacts with the droplet to the long time scale
when capillary effects become significant. We focus in this study on multiphase compressible
fluid flows only. Viscous and heat conduction are not taken into account and will be a part
of future works. Some ideas on the treatment of heat conduction in multiphase compressible
flows can already be found in [40].

Section 2 presents the Brackbill et al. [3] method to treat the surface tension and a review
of existing models with a conservative form of the capillary terms. In Section 3, the new
model with capillary effects is presented. The model is in agreement with the conservation
principles and with the second law of thermodynamics. It is shown that the model is weakly
hyperbolic. It has two sound characteristics associated with the classical compression waves
and two new sound characteristics associated with the capillary effects. However, for multiple
contact characteristics one eigenvector is always missing. Section 4 is devoted to the building
of a numerical method able to solve capillary terms in a conservative manner. The method is
based on split models that are separately hyperbolic or weakly hyperbolic. These submodels
are solved thanks to adequate numerical schemes. Section 5 presents the validation of the
method on 2D test cases. It shows that the model and the numerical method are able to treat
accurately both capillary effects and shock wave propagation. Quantitative comparisons are
done with other methods based on source terms integration to show the importance of
the conservative formulation. To illustrate the capabilities of the model, the aerodynamic
breakup of a water column induced by a shock wave is numerically solved and is compared
with experiments. In Appendix, the model derivation is given.

2. Compressible two-phase capillary flows: state of the art

2.1. Surface tension force and color function

The main difficulty in modeling the capillary effects is about considering a surface force
in numerical models that solve volume average quantities. The seminal work of Brackbill et
al. [3], called CSF (Continuum Surface Force) method, succeeded to do it by using a color
function, c̃ (x). Thanks to this function, the surface tension volume force is then expressed:

Fv (x) = σκ (x)
∇c̃ (x)

[c̃]
,
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where σ is the surface tension coefficient and κ (x) the local curvature of the interface defined
by:

κ (x) = −∇ · n (x),

where n (x) is the normal vector to the interface between the both phases:

n (x) =
∇c̃ (x)

‖∇c̃ (x)‖
.

The color function c̃ (x) allows locations of the different fluids and the interface. c̃ (x) is
defined as:

c̃ (x) =


c1 in fluid 1,
c2 in fluid 2,
c1 6 c̃ (x) 6 c2 in the transition region.

(1)

In the transition region c̃ (x) is given by interpolation, meaning that the interface has a non
zero thickness. [c̃] = c2 − c1 is the jump of the color function.

It is assumed that the color function obeys a transport equation [3]:

∂c̃ (x)

∂t
+ uI ·∇c̃ (x) = 0,

where uI is the interface velocity.
Numerical results using this force can be found in [6, 29, 36, 37, 50, 51]. In these refer-

ences, the surface tension force is treated as source terms in the momentum and the energy
equations. Nevertheless, this treatment of capillary effects violates conservation principles.

2.2. Review of existing compressible models with capillary effects

Two family of methods are available to treat interface problems.

• The first family of methods considers interfaces as sharp. Sharp interfaces can be ob-
tained using interface-tracking methods, where usually a level set function tracks the
interface (Osher and Sethian [38]). However, such formulations often involve slight
modifications of the governing equations. For example a pressure evolution equation
can replace the energy equation around interfaces (Karni [25, 26]). In the Ghost Fluid
Method (Fedkiw et al. [12]) and its simplified version (Koren et al. [27]), thermo-
dynamically similar variables are added across interfaces to complete stencils. These
methods do not generate spurious oscillations at interfaces, however, they are basically
not conservative (Liu et al. [30]). Even if progress has been recently done concerning
this aspect (Hu et al. [19], Luo et al. [31], Han et al. [17], Schranner et al. [49]), that
makes them less desirable for problems where shock waves are involved.

• The second family of methods is described below and is called diffuse interface methods.
In this class of methods, interfaces are not explicitly tracked but allowed to diffuse
numerically (Abgrall and Karni [1], Saurel and Abgrall [45]). These methods are
particularly interesting because they are able to deal with dynamic appearance and
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disappearance of interfaces. Moreover, this is also the only class of models where the
thermodynamics of mixture cells is well defined, thanks to a specific equation of state
for each phase (liquid or gas).

The study of capillary effects within the framework of the diffuse interface methods is
based on the generalization of the Allaire et al. [2] model. This model originally does not
include capillary effects. The second law of thermodynamics is verified only if the condition
of thermal equilibrium T = Tk, with k = {1, 2}, is retained. Périgaud and Saurel [39]
extended this model by including the capillary effects. As a result, the surface tension
volume force appears as a flux term in the momentum equation as well as the work of this
force Fv (x) · u in the total energy equation. In this reference, as Gueyffier et al. [16] did
within the incompressible flows framework, a conservative formulation was obtained:

∂α1

∂t
+ u ·∇α1 = 0,

∂αkρk
∂t

+ ∇ · (αkρku) = 0,
∂ρu
∂t

+ ∇ ·
(
ρu⊗ u + PI − σ

(
‖∇α1‖I − ∇α1⊗∇α1

‖∇α1‖

))
= 0,

∂ρE+εσ
∂t

+ ∇ ·
(
u (ρE + εσ + P )− σ

(
‖∇α1‖I − ∇α1⊗∇α1

‖∇α1‖

)
· u
)

= 0,

where αk and ρk are the volume fraction and the density of phase k. ρ, u, P , E = e+ 1
2
‖u‖2

and e are respectively the mixture variables for density, velocity, pressure, total energy and
internal energy. The specific mixture internal energy is defined as e =

∑
k Ykek (ρk, P ) and

each fluid is governed by its own equation of state (EOS) ek = ek (ρk, P ). Introducing the
capillary effects in fluxes (conservative formulation) leads to a new term in the mixture
total energy equation, εσ = σ‖∇α1‖ which is defined as a capillary potential energy. Note
that α1 obeys a transport equation and plays the role of the color function (1) because
uI = u when the velocity equilibrium is considered. In [39], the authors used a pressure
equilibrium closure, allowing the resolution of interface problems dedicated to high speed
flows. Nevertheless, this closure does not allow to respect the second law of thermodynamics
for the mixture.

Le Martelot et al. [29] corrected this drawback by including the capillary effects in a
velocity, pressure and temperature equilibrium system of equations by considering the mass
fraction as the color function: the second law of thermodynamics is then respected. However,
the characteristic velocities were estimated under assumption that the local curvature is
fixed. Even if such an approach is physically reasonable, it does not allow us to rigorously
estimate the propagation speeds. Also, the thermal equilibrium closure is reasonable for the
description of the boiling phenomenon, but it is too drastic for droplet breakup study under
high speed flows.

It becomes then obvious that the introduction of a new model having clearly defined
sound speeds with the capillary effects in conservative form that can still be compatible with
the mixture entropy increase without the temperature equilibrium assumption is necessary.
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3. Mechanical equilibrium model with capillary effects

3.1. The model

The new model we propose is reminiscent that of the Kapila et al. model [24]. This last
model has been shown to be suitable to treat interface problems between compressible fluids.
Multiple extensions of this model have been developped to solve several concrete problems
dealing with phase transition (Massoni et al. [32], Saurel et al. [47], cavitation (Petitpas et
al. [41]), detonation in high energetic materials (Petitpas et al. [42]), solid-fluid interaction
and compaction of granular media (Favrie and Gavrilyuk [10, 9]) and low Mach number
flows (Murrone and Guillard [34]). It considers compressible two-phase flows in mechanical
equilibrium (pressure and velocity equilibrium). In this model, the volume fraction obeys
the following equation coming from the pressure equilibrium condition:

∂α1

∂t
+ u ·∇α1 = K∇ · u, (2)

where the term K∇ ·u accounts for the differences in the acoustic behaviour of both phases.
K is given by:

K =
ρ2a

2
2 − ρ1a

2
1

ρ2a22
α2

+
ρ1a21
α1

,

ak being the speed of sound of phase k.
The capillary effects are then added in conservative form. Because the color function is

a purely geometric variable, a supplementary equation for the color function is added. It
will be shown in the following that the introduction of this supplementary equation is an
important ingredient to perform the hyperbolicity study. Applying the Hamilton principle
for the model derivation (see Appendix for details), the model becomes:

∂α1

∂t
+ u ·∇α1 −K∇ · u = 0,

∂αkρk
∂t

+ ∇ · (αkρku) = 0,
∂ρu
∂t

+ ∇ ·
(
ρu⊗ u + PI + Ω

)
= 0,

∂ρE+εσ
∂t

+ ∇ ·
(

(ρE + εσ + P ) u + Ω · u
)

= 0,
∂c
∂t

+ u ·∇c = 0,

(3)

with Ω being the capillary tensor given by:

Ω = −σ
(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
. (4)

The capillary energy is equal to εσ = σ‖∇c‖ and the color function is normalized by its
jump: c = c̃/[c̃].

The surface tension terms do not affect the pressure and the entropy equations. The
pressure equation evolution then reads:

dP

dt
+ ρa2∇ · (u) = 0.
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where a is the Wood mixture speed of sound [54]:

a2 =

(
ρ
∑
k

αk
ρka2

k

)−1

. (5)

As in Kapila et al. [24], the entropy equations remain unchanged in continuous motion:

dsk
dt

= 0,

with the material derivative operator d(·)/dt = ∂(·)/∂t + u ·∇(·). The mixture entropy is
equation obviously assured:

ds

dt
=
∑
k

dYksk
dt

= 0.

3.2. Hyperbolicity

In this section, the study of the hyperbolicity of system (3) is done. Thanks to the
rotational invariance of the equations, the study can be reduced to the study of only 1D
equation.

3.2.1. Primitive form

The model needs to be transformed into a vector form:

∂W

∂t
+ A (W)

∂W

∂x
= 0. (6)

The color function is first rewritten by taking its gradient to obtain a conservative equa-
tion for w = ∇c:

∂w

∂t
+ ∇ (u ·w) = 0.

Or, in an equivalent form:

∂w

∂t
+

(
∂w

∂x

)T
· u +

(
∂u

∂x

)T
·w = 0. (7)

Since w is a gradient, we have:
curl (w) = 0, (8)

i.e. (
∂w

∂x

)T
=

(
∂w

∂x

)
.

Thus, equation (7) with the constraint (8) becomes:

∂w

∂t
+

(
∂w

∂x

)
· u +

(
∂u

∂x

)T
·w = 0. (9)
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Constraint (8) also appears in solid mechanics where the formulation of the extended system
under a “curl” constraint is important in the hyperbolicity study (see Ndanou et al. [35]).
Equation (9) may be developed in three dimensions, where we denote u = (u, v, w)T , w =
(w1, w2, w3)T and x = (x, y, z)T :

∂w1

∂t
+ ∂w1

∂x
u+ ∂w1

∂y
v + ∂w1

∂z
w + ∂u

∂x
w1 + ∂v

∂x
w2 + ∂w

∂x
w3 = 0,

∂w2

∂t
+ ∂w2

∂x
u+ ∂w2

∂y
v + ∂w2

∂z
w + ∂u

∂y
w1 + ∂v

∂y
w2 + ∂w

∂y
w3 = 0,

∂w3

∂t
+ ∂w3

∂x
u+ ∂w3

∂y
v + ∂w3

∂z
w + ∂u

∂z
w1 + ∂v

∂z
w2 + ∂w

∂z
w3 = 0.

(10)

In the case where all the variables depend only on (t, x), (10) reduces to:
∂w1

∂t
+ ∂w1

∂x
u+ ∂u

∂x
w1 + ∂v

∂x
w2 + ∂w

∂x
w3 = 0,

∂w2

∂t
+ ∂w2

∂x
u = 0,

∂w3

∂t
+ ∂w3

∂x
u = 0.

The vector w is introduced to rewrite components for the capillary tensor Ω (4) in the
x-direction:

Ω11 = σ

(
−w2

2 − w2
3√

w2
1 + w2

2 + w2
3

)
,

Ω12 = σ

(
w1w2√

w2
1 + w2

2 + w2
3

)
,

Ω13 = σ

(
w1w3√

w2
1 + w2

2 + w2
3

)
.

Finally, the system rewritten in vector form reads for two phases:

∂α1

∂t
+ u∂α1

∂x
−K ∂u

∂x
= 0,

∂u
∂t

+ u∂u
∂x

+ 1
ρ

(
∂P
∂x

+ ∂Ω11

∂w1

∂w1

∂x
+ ∂Ω11

∂w2

∂w2

∂x
+ ∂Ω11

∂w3

∂w3

∂x

)
= 0,

∂v
∂t

+ u ∂v
∂x

+ 1
ρ

(
∂Ω12

∂w1

∂w1

∂x
+ ∂Ω12

∂w2

∂w2

∂x
+ ∂Ω12

∂w3

∂w3

∂x

)
= 0,

∂w
∂t

+ u∂w
∂x

+ 1
ρ

(
∂Ω13

∂w1

∂w1

∂x
+ ∂Ω13

∂w2

∂w2

∂x
+ ∂Ω13

∂w3

∂w3

∂x

)
= 0,

∂P
∂t

+ u∂P
∂x

+ ρa2 ∂u
∂x

= 0,
∂w1

∂t
+ u∂w1

∂x
+ w1

∂u
∂x

+ w2
∂v
∂x

+ w3
∂w
∂x

= 0,
∂w2

∂t
+ u∂w2

∂x
= 0,

∂w3

∂t
+ u∂w3

∂x
= 0,

∂s1
∂t

+ u∂s1
∂x

= 0,
∂s2
∂t

+ u∂s2
∂x

= 0,
∂Y1
∂t

+ u∂Y1
∂x

= 0,
∂c
∂t

+ u ∂c
∂x

= 0.
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3.2.2. Eigenvalues

The vector W and the matrix A in (6) are then defined by:

W = [α1, u, v, w, P, w1, w2, w3, s1, s2, Y1, c]
T ,

A (W) =



u −K 0 0 0 0 0 0 0 0 0 0
0 u 0 0 1

ρ
1
ρ
∂Ω11

∂w1

1
ρ
∂Ω11

∂w2

1
ρ
∂Ω11

∂w3
0 0 0 0

0 0 u 0 0 1
ρ
∂Ω12

∂w1

1
ρ
∂Ω12

∂w2

1
ρ
∂Ω12

∂w3
0 0 0 0

0 0 0 u 0 1
ρ
∂Ω13

∂w1

1
ρ
∂Ω13

∂w2

1
ρ
∂Ω13

∂w3
0 0 0 0

0 ρa2 0 0 u 0 0 0 0 0 0 0
0 w1 w2 w3 0 u 0 0 0 0 0 0
0 0 0 0 0 0 u 0 0 0 0 0
0 0 0 0 0 0 0 u 0 0 0 0
0 0 0 0 0 0 0 0 u 0 0 0
0 0 0 0 0 0 0 0 0 u 0 0
0 0 0 0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 0 0 0 u


The determinant of matrix A can be calculated:

det
(
A (W)− λI

)
= (u− λ)8 [(u− λ)4 + L(u− λ)2 +M

]
,

where:

L = −a2 − 1

ρ

(
w1
∂Ω11

∂w1

+ w2
∂Ω12

∂w1

+ w3
∂Ω13

∂w1

)
,

M =
a2

ρ

(
w2
∂Ω12

∂w1

+ w3
∂Ω13

∂w1

)
.

8 real eigenvalues are straightforward found:

λ1,2,3,4,5,6,7,8 = u.

The 4 other eigenvalues are the roots of the quadratic equation:

X2 + LX +M = 0, (11)

with X = (u− λ)2. If the discriminant ∆ is positive, the roots of equation (11) are real and
complex numbers otherwise. Defining the components of the normal vector nk = wk/ ‖w‖,
after some calculations the discriminant is:

∆ =

(
a2 +

σ‖w‖
ρ

(
n2

2 + n2
3

))2

− 4a2σ‖w‖
ρ

(
n2

2 + n2
3

)2
.

But: (
n2

2 + n2
3

)
6 1.
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Figure 1: Model (3) admits two types of acoustic waves.

Hence:

∆ >

(
a2 +

σ‖w‖
ρ

(
n2

2 + n2
3

))2

− 4a2σ‖w‖
ρ

(
n2

2 + n2
3

)
=

(
a2 − σ‖w‖

ρ

(
n2

2 + n2
3

))2

> 0.

The roots of the quadratic equation (11) are then all real. Thus, the corresponding eigen-
values of model (3) are real, explicit and given by:

λ9,10 = u± as, (12)

λ11,12 = u± ac, (13)

where:

a2
s =

a2 + b+
√

(a2 + b)2 − 4a2b (n2
2 + n2

3)

2
,

a2
c =

a2 + b−
√

(a2 + b)2 − 4a2b (n2
2 + n2

3)

2
,

a is the Wood mixture speed of sound previously defined (5) and:

b =
σ‖w‖
ρ

(
n2

2 + n2
3

)
.

Finally, there are 8 multiple eigenvalues λ = u and 4 eigenvalues corresponding to sound
waves (12) and capillary waves (13) (see Figure 1).

The system is hyperbolic if the multiple eigenvalues λ = u have exactly 8 linearly inde-
pendent eigenvectors. One can prove that it is not the case, one eigenvector is missing (see
Appendix), so the system is only weakly hyperbolic. The whole system of the eigenvectors
will not be given because this equilibrium system will not be numerically solved in this form
(see Section 4 for discussion of the numerical method).
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4. Numerical resolution of model (3)

4.1. Basic ideas

The numerical resolution of model (3) represents a challenge regarding the two following
points :

• The first difficulty is due to the K∇ ·u term in the volume fraction evolution equation.
This is the precious ingredient leading to the respect of the mixture entropy equation
when a pressure equilibrium assumption is retained. Nevertheless, the presence of this
non-conservative term considerably complicates the numerical method which crucially
depends on the choice of appropriate Rankine-Hugoniot relations (see [14] and [48] for
details). This is a reason why a non-equilibrium pressure model is preferred with a
pressure relaxation term instead of the non-conservative term K∇ · u in the volume
fraction equation. This model is presented below.

• The second difficulty is in the simultaneous treatment of 5 waves which are present in
the model. This difficulty is circumvented by the use of split models that are proven
to be hyperbolic and weakly hyperbolic respectively.

4.1.1. Pressure relaxation model with capillary effects

Because the non-conservative volume fraction equation presents a major problem regard-
ing numerical resolution, the following weakly hyperbolic non-equilibrium pressure model is
proposed: 

∂α1

∂t
+ u · ∇α1 = µ (P1 − P2) ,

∂α1ρ1
∂t

+ ∇ · (α1ρ1u) = 0,
∂α2ρ2
∂t

+ ∇ · (α2ρ2u) = 0,
∂ρu
∂t

+ ∇ ·
(
ρu⊗ u + PI + Ω

)
= 0,

∂α1ρ1e1
∂t

+ ∇ · (α1ρ1e1u) + α1P1∇ · u = −µPI (P1 − P2) ,
∂α2ρ2e2

∂t
+ ∇ · (α2ρ2e2u) + α2P2∇ · u = µPI (P1 − P2) ,

∂c
∂t

+ u ·∇c = 0,

(14)

where µ is the pressure relaxation coefficient, PI = Z2P1+Z1P2

Z1+Z2
(see [46] for details) and

Zk = ρkak is the acoustic impedance of the phase k. The mixture pressure is given by:

P = α1P1 + α2P2.

Due to the condition P1 6= P2 in this model, the total energy equation of the mixture is
replaced by the internal energy equation for each phase. Nevertheless, the mixture total
energy equation of the system can be written in usual form:

∂ρE + εσ
∂t

+ ∇ ·
(

(ρE + εσ + P ) u + Ω · u
)

= 0. (15)

The equation (15) is redundant when both phasic internal energy equations are solved, but
it will appear to be an important ingredient for numerical method to ensure the energy
conservation and to preserve a correct treatment of shock waves.
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Following Section 3.2, one can prove that model (14) is also weakly hyperbolic.
One can note that the surface tension effects are missing in the phasic energy equations

since it is only a mixture characteristic.
The entropy equations for system (14) can also be written:

α1ρ1T1
ds1

dt
= µ(P1 − P2)2 Z1

Z1 + Z2

,

α2ρ2T2
ds2

dt
= µ(P1 − P2)2 Z2

Z1 + Z2

,

that insures the mixture entropy (s = Y1s1 + Y2s2) increases.
Model (3) can be recovered as the asymptotic limit of Model (14) when the pressure of

each phase tends to be equal. A special splitting procedure will be done for the numerical
resolution of model (14).

4.1.2. Splitting procedure

Model (14) without the relaxation terms is split in two submodels. The first submodel
does not take into account the surface tension terms. The hyperbolicity is then easily verified.
The second submodel contains the only capillary terms and is proven weakly hyperbolic. Such
an approach was first proposed in Favrie et al. [11] where the splitting procedure was used
to separate the treatment of longitudinal and shear waves in hyperelasticity. The submodels
are presented below only in the x-direction.
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Hyperbolic submodel 1

The first submodel is similar to that presented in [48] with additional decoupled equations
for the gradient of the color function:

∂α1

∂t
+ u

∂α1

∂x
= 0,

∂α1ρ1

∂t
+
∂α1ρ1u

∂x
= 0,

∂α2ρ2

∂t
+
∂α2ρ2u

∂x
= 0,

∂ρu

∂t
+
∂ρu2 + α1P1 + α2P2

∂x
= 0,

∂ρv

∂t
+
∂ρuv

∂x
= 0,

∂ρw

∂t
+
∂ρuw

∂x
= 0,

∂α1ρ1e1

∂t
+
∂α1ρ1e1u

∂x
+ α1P1

∂u

∂x
= 0,

∂α2ρ2e2

∂t
+
∂α2ρ2e2u

∂x
+ α2P2

∂u

∂x
= 0,

∂w1

∂t
+
∂w1u

∂x
= 0,

∂w2

∂t
+ u

∂w2

∂x
= 0,

∂w3

∂t
+ u

∂w3

∂x
= 0.

(16)

This system describes only the transport and the compression waves. The equation for
w1 is taken in conservative form to let the possibility to consider weak solutions. The other
terms in this equation will be treated in the second submodel.

Model (16) may be rewritten in a vector form (6) with:

W = [α1, s1, s2, u, v, w, P1, P2, w1, w2, w3]T

A (W) =



u 0 0 0 0 0 0 0 0 0 0
0 u 0 0 0 0 0 0 0 0 0
0 0 u 0 0 0 0 0 0 0 0

P1−P2

ρ
0 0 u 0 0 α1

ρ
α2

ρ
0 0 0

0 0 0 0 u 0 0 0 0 0 0
0 0 0 0 0 u 0 0 0 0 0
0 0 0 ρ1a

2
1 0 0 u 0 0 0 0

0 0 0 ρ2a
2
2 0 0 0 u 0 0 0

0 0 0 w1 0 0 0 0 u 0 0
0 0 0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 0 0 u


The eigenvalues of the system are:

λ1,2,3,4,5,6,7,8,9 = u,
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λ10 = u− af ,
λ11 = u+ af ,

where af is the frozen mixture sound speed:

a2
f = Y1a

2
1 + Y2a

2
2.

The hyperbolicity of this first submodel is proven in [48].

Weakly hyperbolic submodel 2

The second submodel is:

∂α1

∂t
= 0,

∂α1ρ1
∂t

= 0,
∂α2ρ2
∂t

= 0,
∂ρu
∂t

+
(
∂Ω11

∂w1

∂w1

∂x
+ ∂Ω11

∂w2

∂w2

∂x
+ ∂Ω11

∂w3

∂w3

∂x

)
= 0,

∂ρv
∂t

+
(
∂Ω12

∂w1

∂w1

∂x
+ ∂Ω12

∂w2

∂w2

∂x
+ ∂Ω12

∂w3

∂w3

∂x

)
= 0,

∂ρw
∂t

+
(
∂Ω13

∂w1

∂w1

∂x
+ ∂Ω13

∂w2

∂w2

∂x
+ ∂Ω13

∂w3

∂w3

∂x

)
= 0,

∂α1ρ1e1
∂t

= 0,
∂α2ρ2e2

∂t
= 0,

∂w1

∂t
+ w2

∂v
∂x

+ w3
∂w
∂x

= 0,
∂w2

∂t
= 0,

∂w3

∂t
= 0.

(17)

This second system describes the capillary effects. Also, the non-conservative product in the
equation for w1 is well defined because w2 and w3 are continuous through the shock.

Model (17) may be rewritten in a vector form (6) with:

W = [α1, s1, s2, u, v, w, P1, P2, w1, w2, w3]T

A (W) =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

ρ
∂Ω11

∂w1

1
ρ
∂Ω11

∂w2

1
ρ
∂Ω11

∂w3

0 0 0 0 0 0 0 0 1
ρ
∂Ω12

∂w1

1
ρ
∂Ω12

∂w2

1
ρ
∂Ω12

∂w3

0 0 0 0 0 0 0 0 1
ρ
∂Ω13

∂w1

1
ρ
∂Ω13

∂w2

1
ρ
∂Ω13

∂w3

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 w2 w3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


The eigenvalues of the system are:

λ1,2,3,4,5,6,7,8,9 = 0,
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λ10 = −
(
n2

2 + n2
3

)√σ‖w‖
ρ

,

λ11 =
(
n2

2 + n2
3

)√σ‖w‖
ρ

.

The eigenvalues of the system are all real but, as in the case of model (3), there are not as
much linearly independent eigenvectors as eigenvalues: one eigenvector is always missing.
So, the second submodel is weakly hyperbolic.

4.2. Numerical Method

Finally, the numerical method is presented as a 3-step method. Each step is successively
performed in order to circumvent specific numerical problems:

• First, the hyperbolic non-equilibrium pressure model (16) is solved using a Godunov-
type method.

• Second, model (17) is solved. A specific attention is paid to the choice for the flux
terms in order to ensure the momentum and energy conservation.

• Third, a relaxation procedure leads to the pressure equilibrium.

The chain of these three steps is equivalent to solve model (3). Each step of the method is
presented in details hereafter.

The full system of equations is first rewritten in the following vector form:

∂U

∂t
+
∂ (Fx

h (U) + Fx
c (U))

∂x
+
∂ (Fy

h (U) + Fy
c (U))

∂y

+
∂ (Fz

h (U) + Fz
c (U))

∂z
+ Hnc∇ · u = Hrelax.

The vector U contains the unknown quantities defined in the system:

U = [α1, α1ρ1, α2ρ2, ρu, ρv, ρw, α1ρ1e1, α2ρ2e2, c, ρE + εσ]T

The vectors Fβ
h (U), Fβ

c (U), Hnc and Hrelax, with β = {x, y, z}, contain respectively the
hydrodynamic fluxes, the capillary fluxes, the non-conservative terms and the relaxation
terms:
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Fx
h (U) =



α1u
α1ρ1u
α2ρ2u
ρu2 + P
ρuv
ρuw

α1ρ1e1u
α2ρ2e2u
cu

(ρE + P )u


Fy
h (U) =



α1v
α1ρ1v
α2ρ2v
ρuv

ρv2 + P
ρvw

α1ρ1e1v
α2ρ2e2v
cv

(ρE + P ) v


Fz
h (U) =



α1w
α1ρ1w
α2ρ2w
ρuw
ρvw

ρw2 + P
α1ρ1e1w
α2ρ2e2w
cw

(ρE + P )w



Fx
c (U) =



0
0
0

Ω11

Ω12

Ω13

0
0
0

εσu+ Ω11u+ Ω12v + Ω13w


Fy
c (U) =



0
0
0

Ω21

Ω22

Ω23

0
0
0

εσu+ Ω21u+ Ω22v + Ω23w



Fz
c (U) =



0
0
0

Ω31

Ω32

Ω33

0
0
0

εσu+ Ω31u+ Ω32v + Ω33w
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Hnc =



−α1

0
0
0
0
0

α1P1

α2P2

−c
0


Hrelax =



µ (P1 − P2)
0
0
0
0
0

−µPI (P1 − P2)
µPI (P1 − P2)

0
0


It is important to note that the additional equation for the mixture total energy has been

added to the system for numerical solution purposes. This equation is obviously in agreement
with the complete system (14) and will be necessary to correct the energy conservation
equation during the final relaxation step.

The unknown vector Un+1 is obtained from the initial condition Un by application of
the three successive operators according to the sequence:

Un+1 = LrelaxLcapLhyper (Un) .

Each step of the numerical method corresponds to the application of one of the three oper-
ators detailed below in a cartesian 2D framework.

4.2.1. Hyperbolic operator

The application of the first operator Lhyper corresponds to the resolution of the hyperbolic
submodel (16) using a Godunov-type method [15] extended to an high-order scheme with a
MUSCL-Hancock procedure. The solution for this step is given for the cell (i, j) by:

Uhyper
i,j = Un

i,j −G∆t,

G =



1
∆x

(
F∗
h;i+ 1

2
,j

(
U
n+ 1

2
i,j,R,U

n+ 1
2

i+1,j,L

)
− F∗

h;i− 1
2
,j

(
U
n+ 1

2
i−1,j,R,U

n+ 1
2

i,j,L

))
+ 1

∆y

(
F∗
h;i,j+ 1

2

(
U
n+ 1

2
i,j,T ,U

n+ 1
2

i,j+1,B

)
− F∗

h;i,j− 1
2

(
U
n+ 1

2
i,j−1,T ,U

n+ 1
2

i,j,B

))
+

Hn
nc;i,j

∆x

(
u∗
i+ 1

2
,j

(
U
n+ 1

2
i,j,R,U

n+ 1
2

i+1,j,L

)
− u∗

i− 1
2
,j

(
U
n+ 1

2
i−1,j,R,U

n+ 1
2

i,j,L

))
+

Hn
nc;i,j

∆y

(
v∗
i,j+ 1

2

(
U
n+ 1

2
i,j,T ,U

n+ 1
2

i,j+1,B

)
− v∗

i,j− 1
2

(
U
n+ 1

2
i,j−1,T ,U

n+ 1
2

i,j,B

))


.

The superscript * represents the solution of the Riemann problem on the corresponding cell
boundary using the extrapolated values to the cell boundary Un+ 1

2 in the case of high order
method (the subscripts R, L, T , B represent respectively the right, left, top and bottom
neighbouring cells). These fluxes can be computed by any Riemann solver. Here a Harten-
Lax-van Leer Contact (HLLC) approximate Riemann solver is used. Details of this method
can be found in Saurel et al. [48]. Since the time marching scheme is explicit, the time step
obeys a classical Courant-Friedrichs-Lewy (CFL) criterion.
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4.2.2. Capillary operator

The second operator Lcap introduces capillary terms and corresponds to the resolution of
submodel (17):

Ucap = Lcap
(
Uhyper

)
.

Application of the operator Lcap to vector Uhyper is done in the finite volume framework:

Ucap
i,j = Uhyper

i,j −∆t


1

∆x

(
Fx
c;i+ 1

2
,j

(
Uhyper

i+ 1
2
,j

)
− Fx

c;i− 1
2
,j

(
Uhyper

i− 1
2
,j

))
+ 1

∆y

(
Fy

c;i,j+ 1
2

(
Uhyper

i,j+ 1
2

)
− Fy

c;i,j− 1
2

(
Uhyper

i,j− 1
2

))  .

The only equations affected by the capillary effects are the momentum and the total energy
equations. These equations are developed in two dimensions:

(ρu)capi,j = (ρu)hyperi,j − σ∆t

 −
‖w‖hyper

i+1
2 ,j
−‖w‖hyper

i− 1
2 ,j

∆x
+

(
w2
1

‖w‖

)hyper
i+1

2 ,j

−
(
w2
1

‖w‖

)hyper
i− 1

2 ,j

∆x

+
(w1w2
‖w‖ )

hyper

i,j+1
2

−(w1w2
‖w‖ )

hyper

i,j− 1
2

∆y

 ,

(ρv)capi,j = (ρv)hyperi,j − σ∆t


−
‖w‖hyper

i,j+1
2

−‖w‖hyper
i,j− 1

2

∆y
+

(w1w2
‖w‖ )

hyper

i+1
2 ,j
−(w1w2

‖w‖ )
hyper

i− 1
2 ,j

∆x

+

(
w2
2

‖w‖

)hyper
i,j+1

2

−
(
w2
2

‖w‖

)hyper
i,j− 1

2

∆y

 ,

(ρE + εσ)capi,j = (ρE + εσ)hyperi,j

−σ∆t


(
w2
1u

‖w‖

)hyper
i+1

2 ,j

−
(
w2
1u

‖w‖

)hyper
i− 1

2 ,j

∆x
+

(w1w2v
‖w‖ )

hyper

i+1
2 ,j
−(w1w2v

‖w‖ )
hyper

i− 1
2 ,j

∆x

+
(w1w2u
‖w‖ )

hyper

i,j+1
2

−(w1w2u
‖w‖ )

hyper

i,j− 1
2

∆y
+

(
w2
2v

‖w‖

)hyper
i,j+1

2

−
(
w2
2v

‖w‖

)hyper
i,j− 1

2

∆y

 .

The different capillary terms at the cell boundary are obtained by the means of an arithmetic
average of quantities of neighbouring cells. The vector w requires derivatives of the color
function which are computed by using second-order finite difference approximations.

4.2.3. Pressure relaxation operator

To go through the operators chain, the solution at time n + 1 is obtained by a pressure
relaxation algorithm and corrects the components of Ucap:

Un+1 = Lrelax (Ucap) .

The details about the pressure relaxation algorithm as well as the correction procedure used
to guarantee total energy conservation can be found in Saurel et al. [48].
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5. Numerical results and validations

In this section, 2D test cases are proposed to prove that the model and the numerical
method are able to treat accurately both capillary effects and shock wave propagation.

In each presented cases, the equation of state (EOS) for the air obeys to the ideal gas
law:

Pair = (γair − 1) ρaireair,

with γair = 1.4.
The liquid obeys the stiffened gas EOS:

Pliquid = (γliquid − 1) ρliquideliquid − γliquidP∞,liquid,

where the stiffened gas EOS parameters are :

• γliquid = 2.1 and P∞,liquid = 1.106Pa for the capillary verification test cases of Section
5.1 and 5.2.

• γliquid = 4.4 and P∞,liquid = 6.108Pa for water in the compressible validation test case
of Section 5.3.

5.1. Static capillary effects validation

2D tests are proposed to study the ability of the method to treat accurately capillary
effects. The proposed method described in the present paper is compared with previous
existing methods that use source terms integration. A particular attention is paid to the
convergence, the numerical stability, the conservative property, the accuracy with respect to
the Laplace pressure law and the dynamics of capillary flows. It is shown that the present
method is able to simulate capillary effects in presence of pressure waves. In the following,
“conservative method” will always mean the numerical method of Section 4 to distinguish it
from the source terms integration method that do not conserve neither the momentum nor
the energy.

The first test cases are static tests and they consist in finding the equilibrium state of
a cylindrical column of liquid (2D liquid droplet) placed in air. The initial density in air is
equal to 1 kg.m−3 and 1000 kg.m−3 in the liquid. The radius of the liquid column R is set
to 0.15m and the surface tension coefficient is equal to 800N.m−1. These unrealistic values
are chosen to magnify the model properties. The pressure is initially uniform in the whole
domain (75cm x 75cm) and is set to 1 bar (the initial conditions are presented in Figure 2).

5.1.1. Accuracy regarding Laplace law and mesh convergence

The following test cases treating mesh convergence and accuracy regarding the Laplace
law are performed using outgoing pressure wave boundary conditions. It consists in imposing
the Neumann boundary conditions for the pressure and imposing in-outgoing conditions
expressed in terms of the Riemann invariants.
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Figure 2: Sketch of the initial conditions for the simulations of a cylindrical liquid column (2D liquid droplet)
placed in air.

Because of the capillary effects, the pressure of the liquid column converges to satisfy the
Laplace law. The expression of the theoretical pressure jump of Laplace in 2 dimensions is:

[P ] =
σ

R
,

where [P ] expresses the pressure jump between inside and outside the droplet, here Pliquid−
Pair.

The pressure convergence is analyzed using the relative residual:

ε = Max

(
|P n
i,j − P n−1

i,j |
P n
i,j

)
.

The convergence is considered to be reached when the criterion ε 6 1.10−4 is verified. An
example of evolution of this relative residual with a mesh of 120x120 cells is presented in
Figure 3 for both conservative method and source terms integration method. It is clear that
the pressure convergence is obtained faster using the conservative method than using the
source terms integration one.

The pressure profiles through the liquid column is presented in Figure 4 for the mesh
with 120x120 computational cells. Pressure profiles are presented for both methods after the
pressure convergence time mentioned previously. The new conservative method has a better
accuracy than the source terms integration one.

The mesh convergence study is performed on 4 different meshes containing 60x60 up to
120x120 computational cells. For each chosen mesh, the relative residual ε is used to match
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Figure 3: Relative residual ε function of the physical time for the 2D liquid column test case with a mesh of
120x120 cells. Source terms integration (red) and conservative (blue) methods. Convergence is reached after
2 seconds with the conservative method compared to more than 6 seconds with the source terms integration
method.

Figure 4: Pressure jump in a centered section of a steady 2D liquid column in air. σ = 800N.m−1, R =
0.1496m and so [P ] = 5347Pa. Theoretical (black lines) and converged simulations results with source
terms integration (red crosses) and conservative (blue dots) methods are shown at times 6.68s and 2.07s,
respectively.
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Figure 5: Relative pressure error ξ averaged in time when the convergence is reached versus the number of
cells in one direction N for the 2D liquid column test case. Grid convergence toward the theoretical pressure
jump of Laplace is shown for the conservative method proposed in the paper. The bars show the domain
of variation of ξ in time after the convergence criteria is reached, associated to each mesh. The interval of
variation always decreases with the cells refinement.

pressure convergence. Then the relative pressure error ξ is computed by:

ξ =
|[Pnum]− [Pth]|

[Pth]
,

where [Pnum] is the pressure jump between the averaged pressure inside the column (Pnum =∑
αliquidPliquid/

∑
αliquid when αliquid > 0.99) and the pressure of the air Pair. The theoretical

pressure jump [Pth] is calculated using the following relation:

[Pth] = σ

√
π

S
,

where S represents the 2D volume of the droplet. It is determined doing the sum of the vol-
ume fraction of liquid over the whole domain multiplied by the cell volume: S =

∑
αliquidScell.

The relative pressure error ξ is averaged in time and plotted versus grid resolution in Figure
5 for the conservative method proposed in the paper. Grid convergence is validated and the
variation of ξ over time, when convergence is reached, decreases with the cells refinement.

5.1.2. Stability

Regarding the stability of the method, contours of the liquid column are presented in
Figure 6. Wall boundary conditions are used in this example on a mesh containing 120x120

21



Figure 6: Magnified view of column contours through color function (c = 0.5). Initial contour (black contour)
together with cartesian mesh is on the left hand side; Contours after convergence is reached: source terms
integration method is in the middle (red contour) and conservative method is on the right hand side (blue
contour) for physical times about 3.68s and 2.32s, respectively. With source terms integration method, the
position of the column as already changed when convergence is reached.

cells. The left hand side of the figure shows the initial contour together with the mesh.
Effect of the mesh on the initial circle is noticeable. The two other pictures show contour
positions immediately after the convergence is reached, corresponding to a physical time of
about 3.68s for the source term integration method and 2.32s for the conservative method.
In this test case, if the source term integration method is used, one can observe a slight
move of the gravity center of the column before a converged solution is reached. In fact the
gravity center starts to move at a physical time about 2.57s. At the converged time (3.68s),
the position of the gravity center is still incorrect (picture in the middle of Figure 6). This
drift may be considered as a visible result of the non-conservation of the momentum. This
is crippling, for example, when studying interaction between a droplet and a shock wave
(see the last subsection): the droplet must be at rest before the interaction with the shock
wave. With the conservative method of the present paper, it becomes possible to consider
the treatment of this kind of problem.

Nevertheless, the gravity center starts to move after a long time in the two methods. In
this example, with the conservative method, it is about 4.52s so well after the convergence
is reached (2.32s). But these displacements cannot be compared with the drift observed
for the source terms integration method. In other words, one can consider that the new
method maintains the position of the gravity center at the converged solution. For longer
time, with the accumulation of rounding errors, some spurious motions can be seen as traces
of numerical instabilities. They do not have the same origin as the drift observed with the
source terms integration method as soon as the calculation begins.

5.1.3. Energy conservation

The conservative property of the new model is verified by plotting the evolution of the
relative error for the total mixture energy over the whole domain for the liquid column using
wall boundary conditions with a mesh containing 120x120 cells (Figure 7). The energy is
obviously conserved with the conservative method but not with the source terms integration
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Figure 7: Evolution of the relative error for the total mixture energy over the whole domain for the
liquid column with wall boundary conditions. Expression for the evolution of the relative error is:
100 (E (t)− E (t0)) /E (t0). Source terms integration (red) and conservative (blue) methods.

one. Moreover, for the source terms integration method, the error does not saturate and
then still increases when the convergence is reached. It is also noticeable that the difference
in energies appears even initially and comes from the capillary energy εσ which does not
appear in the source term form expression of the total mixture energy equation. Note that
its value is here: εσ = 2.107J.m−3.

5.2. Dynamic capillary effects validation

The next two test cases for the dynamic verification of surface tension are slightly different
from the previous ones.

5.2.1. Recovering a circle shape

In this test case we are looking for the shape recovering and the volume evolution of an
initially square liquid column, with Lsquare = 0.2m, placed in an atmospheric air with the
same pressure Pair. Because of the capillary terms the solution should evolve to a circle shape
of the liquid interface and the pressure should verify the Laplace jump: Pfinal = Pair +σ/R.
The successive dynamic stages leading to the converged circle shape are presented in Figure
8.

Moreover, the mass conservation implies a variation of the liquid column volume. This
variation is following an isentropic transformation leading to the final volume:

Vfinal = Vinitial

(
Pinitial + P∞
Pfinal + P∞

) 1
γ

.
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Figure 8: Magnified schlieren images of the mixture density of the 2D liquid column under a square shape
in an air environment converging to a circle shape. Initially σ = 800N.m−1 and Lsquare = 0.2m. Simulation
at different times with a mesh of 150x150 cells: (a) initialization, (b) 5ms, (c) 15ms, (d) 20ms, (e) 30ms, (f)
35ms, (g) 45ms, (h) 50ms, (i) 105ms and (j) 3000ms.
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Figure 9: Evolution of the relative variation of the 2D volume of the liquid column ((V − Vfinal) /Vfinal) for
3 different meshes. The final isentropic 2D volume (S = 0.039878m2) is numerically recovered with an error
of 0.011% for the mesh with 200x200 cells.

Initially the area of the square column is Vinitial = 0.04m2 and it converges to the theoretical
value of Vfinal = 0.039878m2 with a precision equal to 0.011% at time t = 3s with a
mesh made of 200x200 cells. In Figure 9, the relative variation of the liquid 2D volume
((V − Vfinal) /Vfinal) is plotted versus time for 3 different meshes. Grid convergence toward
the theoretical value is observed.

5.2.2. Uniform velocity flow

In this section, we focus on the ability of the method to maintain a cylindrical column
with a correct pressure jump in a uniform velocity flow. A sketch of the initial condition is
presented in Figure 10. It consists in a liquid column with an initial radius of R = 0.15m
moving in a uniform velocity field (u = 50m.s−1). At the initialization, the liquid column is in
equilibrium with the ambient air. Simulations are performed on 4 different meshes containing
180x60 up to 360x120 computational cells for a physical domain of 2.25m x 0.75m.

In Figure 11, the relative pressure error ξ defined previously is averaged in time and
plotted versus grid resolution. Mesh convergence is observed and results show that the
Laplace pressure jump is well verified.

During the simulations, the position of the liquid column is in perfect agreement with
the theoretical one (Figure 12). It is then important to note that surface tension effects
have influence only on the shape of the column, since initially there is a grid impact (see
Figure 6 for an example), but not on the position. This validates the method for this simple
advection test case.
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Figure 10: Sketch of the initial conditions for the simulation of a cylindrical liquid column (2D liquid droplet)
in air, coupled with advection of the whole domain.

Figure 11: Relative pressure error ξ averaged in time versus the number of cells in the y-direction Ny for
the 2D liquid column test case with surface tension and advection of the whole domain. Mesh convergence
is observed. The results show that the Laplace pressure jump is well verified using the new method.
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Figure 12: Evolution of the position of the liquid column along the x axis minus its initial position for the
2D liquid column test case with surface tension and advection of the whole domain. Numerical results using
the new method are in perfect agreements with the theoretical one.

5.3. Shock wave interaction with a water column

We focus here on the early stages of droplet breakup in the high speed flow behind a
shock wave.

The numerical simulations are performed in two dimensions to simulate the interaction
of an air flow and a water column. Comparisons with Igra and Takayma experiments [21, 22]
are carried out.

A cylindrical water column with initial diameter ofD = 6.4mm is exposed to a shock wave
at Mach number 1.3 in atmospheric air (see Figure 13 for initialization sketch). The initial
densities are ρair = 1.2kgm−3 and ρwater = 1000kg.m−3. The corresponding initial Weber
number (We = ρairu

2D/σ) in these conditions is 3690. 2D computations are performed
on a cartesian mesh containing 3200x1200 cells representing a physical domain of 220mm x
82.5mm. Shocked air is entering at the left. Outgoing pressure wave boundary condition is
used at the right and the Newmann boundary conditions is used at the top and the bottom.

The results are presented at three different stages. Each stage is representative of a
typical physical effect:

• The first stage is presented in Figure 14 where the flow dynamics is governed by the
wave pattern. This is a totally compressible stage corresponding to the shock-column
interaction for a large Weber number. Comparisons with experiments are presented in
Figure 15.

• After the shock wave propagation, the column shape is changing due to inertial effects.
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Figure 13: Sketch of the initialization for interaction of a shock wave with a water column.

Liquid-gas interface is stretched and the first liquid filaments are appearing. The
interface location is compared with experiments in Figure 16.

• At the third stage, the breakup begins because of high inertia of the water column.
This effect has already been observed in bubble breakup (Yang et al. [55], Quirk and
Karni [44], Layes and Le Metayer [28]). The Weber number is lower (due to diameter
change and also because the velocity gap is reducing) and the capillary effects tend to
tear the filaments out the main column (last pictures of Figure 17).

In Figure 18, results obtained for a flow without capillary effects (left picture) and a flow
with capillary effects (right picture) are compared at time t = 1.2ms. One can see that the
capillary effects begin to have influence on the flow topology, particularly on the filaments
shape where the surface tension effects tend to break the filaments to form little droplets.

Conclusion

A new multiphase model treating interface problems and capillary effects has been de-
rived. Hyperbolicity study has been completely done and a splitting numerical method
that guarantees conservation of the mass, the momemtum and the energy has been built.
Comparison with “source terms integration method” and with experiments have shown the
advantages of the new model and numerical method. The simulation of an aerodynamic
breakup of a water column induced by a shock wave showed that the method is able to treat
accurately both pressure waves interaction and capillary effects in the same formulation.
Future works will include viscous effects, heat conduction effects and massive simulations
including a large number of droplets in 3D.
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Figure 14: Magnified view of the early stages of the aerodynamic breakup of the water column in the high-
speed airstream behind the shock wave of Mach number 1.3 in atmospheric air propagating from the left
to the right. 2D simulation with a mesh of 3200x1200 cells and schlieren images of the mixture density are
given at the following times: (a) 0µs, (b) 10µs, (c) 20µs, (d) 24µs, (e) 37µs and (f) 55µs.
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Figure 15: Magnified view of the early stages of the aerodynamic breakup of the water column in the high-
speed airstream behind the shock wave of Mach number 1.3 in atmospheric air propagating from the left to
the right. 2D simulation on the left with a mesh of 3200x1200 cells and a schlieren image of the mixture
density. Experiment on the right from Igra and Takayama [22] with an interferogram on the upper half and
an unreconstructed hologram on the lower half. Results are shown at times 15µs (top) and 55µs (bottom).
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Figure 16: Magnified view of the aerodynamic breakup of the water column in the high-speed airstream
behind the shock wave of Mach number 1.3 in atmospheric air propagating from the left to the right. 2D
simulation on the left with a mesh of 3200x1200 cells and a schlieren image of the mixture density. Experiment
on the right from Igra and Takayama [22]. Results are shown at times 200µs (top) and 300µs (bottom).

31



Figure 17: Magnified view of the aerodynamic breakup of the water column in the high-speed airstream
behind the shock wave of Mach number 1.3 in atmospheric air propagating from the left to the right. 2D
simulation with a mesh of 3200x1200 cells and schlieren images of the mixture density (upper half) coupling
with volume fraction of water visualization (lower half, in white the air and in blue the water) are given at
the following times: (a) 160µs, (b) 320µs, (c) 420µs, (d) 500µs, (e) 660µs, (f) 820µs, (g) 1000µs and (h)
1200µs.
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Figure 18: Magnified view of the aerodynamic breakup of the water column in the high-speed airstream
behind the shock wave of Mach number 1.3 in atmospheric air propagating from the left to the right. 2D
simulations respectively without (left) and with (right) capillary effects taken into account, with a mesh of
3200x1200 cells and a schlieren image of the mixture density. Results are shown at time 1.2ms.

Appendix I: Variational principle for compressible mixtures with capillary effects

Consider a continuum characterized by the Lagrangian:

L = ρ

(
‖u‖2

2
− e
)
− σ‖∇c‖.

Here ρ = α1ρ1 + α2ρ2 is the mixture density, e = Y1e1 + Y2e2 is the mixture specific energy,
Yi = αiρi/ρ are the mass fractions, σ is the surface tension coefficient, c is the color function.

Consider the Hamilton action:

a =

∫ t2

t1

∫
D

LdtdD, (18)

where t1 and t2 are fixed time instants, and D is a material fluid volume.
The governing equations are extremal curves of the Hamilton action under the following

constraints:
∂ρ

∂t
+ ∇ · (ρu) = 0,

∂Y1

∂t
+ u ·∇ (Y1) = 0,

∂s1

∂t
+ u ·∇ (s1) = 0,
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∂s2

∂t
+ u ·∇ (s2) = 0,

∂c

∂t
+ u ·∇ (c) = 0. (19)

The Eulerian variations of the unknown variables in terms of virtual displacement δx are
given by (see Gavrilyuk [13] for details):

δρ = −∇ · (ρδx) ,

δY1 = −∇Y1 · δx,

δs1 = −∇s1 · δx,

δs2 = −∇s2 · δx,

δc = −∇c · δx,

δu =
∂δx

∂t
+
∂δx

∂x
· u− ∂u

∂x
· δx.

Taking the variation of the Hamilton action (18) under the boundary conditions:

δx|∂D = 0,

δx|t=t1 = 0,

δx|t=t2 = 0,

one can obtain the momentum equation:

ρ

(
∂u

∂t
+
∂u

∂x
· u
)

+ ∇P = −σ (∇ · n)∇c,

with n = ∇c/‖∇c‖.
The equation is exactly the same as in Brackbill et al. [3] for the one component case.

It can be written in conservative form:

∂ρu

∂t
+ ∇ ·

(
ρu⊗ u + PI + Ω

)
= 0,

where the capillary tensor Ω is given by:

Ω = −σ‖∇c‖
(
I − n⊗ n

)
.

The variation of the Hamilton action with respect to the volume fraction gives as the
pressure equilibrium condition:

P1 = P2 = P = α1P1 + α2P2.

resulting to the non-conservative equation (2) for α1 (see Gavrilyuk [13] for details).
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Using the constraints on the entropies and mass fractions of each phase, the mixture
entropy equation is given by:

∂s

∂t
+ u ·∇ (s) = 0.

The mixture entropy, mass and momentum equations admit the following mixture total
energy equation:

∂ρE

∂t
+ ∇ · ((ρE + P ) u) = −

(
∇ · Ω

)
· u.

To transform the previous equation to a fully conservative form, the following relation is
used: (

∇ · Ω
)
· u = ∇ ·

(
Ω · u

)
− Ω :

∂u

∂x
,

where the right term still needs to be transformed. It can be developed as:

σ

(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
:
∂u

∂x
= σ

(
‖∇c‖∇ · u−

(
∇c · ∂u

∂x

)
· ∇c

‖∇c‖

)
. (20)

Using the material derivative equation of ‖∇c‖:

d‖∇c‖
dt

=
d∇c

dt
· ∇c

‖∇c‖
, (21)

with the material derivative operator d(·)/dt = ∂(·)/∂t+ u ·∇(·) and the Schwarz theorem,
we have:

d∇c

dt
= ∇

(
dc

dt

)
−∇c · ∂u

∂x
. (22)

Hence with equations (19) and (22), equation (21) is rewritten as:

d‖∇c‖
dt

= −
(
∇c · ∂u

∂x

)
· ∇c

‖∇c‖
.

Thus relation (20) is now developed as:

σ

(
‖∇c‖I − ∇c⊗∇c

‖∇c‖

)
:
∂u

∂x
= σ

(
‖∇c‖∇ · u +

d‖∇c‖
dt

)

=
∂σ‖∇c‖

∂t
+ ∇ · (σ‖∇c‖u) .

Finally, the energy conservation law is:

∂ρE + εσ
∂t

+ ∇ ·
(

(ρE + εσ + P ) u + Ω · u
)

= 0,

with the capillary energy term εσ = σ‖∇c‖.

35



Appendix II: Eigenvectors of model (3)

Remind that model (3) can be written under a vector form (6) with the vector W and

the matrix A defined by:

W = [α1, u, v, w, P, w1, w2, w3, s1, s2, Y1, c]
T ,

A (W) =



u −K 0 0 0 0 0 0 0 0 0 0
0 u 0 0 1

ρ
1
ρ
∂Ω11

∂w1

1
ρ
∂Ω11

∂w2

1
ρ
∂Ω11

∂w3
0 0 0 0

0 0 u 0 0 1
ρ
∂Ω12

∂w1

1
ρ
∂Ω12

∂w2

1
ρ
∂Ω12

∂w3
0 0 0 0

0 0 0 u 0 1
ρ
∂Ω13

∂w1

1
ρ
∂Ω13

∂w2

1
ρ
∂Ω13

∂w3
0 0 0 0

0 ρa2 0 0 u 0 0 0 0 0 0 0
0 w1 w2 w3 0 u 0 0 0 0 0 0
0 0 0 0 0 0 u 0 0 0 0 0
0 0 0 0 0 0 0 u 0 0 0 0
0 0 0 0 0 0 0 0 u 0 0 0
0 0 0 0 0 0 0 0 0 u 0 0
0 0 0 0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 0 0 0 u


The corresponding eigenvalues are real, explicit and given by:

λ1,2,3,4,5,6,7,8 = u,

λ9,10 = u± as,

λ11,12 = u± ac,

where:

a2
s =

a2 + b+
√

(a2 + b)2 − 4a2b (n2
2 + n2

3)

2
,

a2
c =

a2 + b−
√

(a2 + b)2 − 4a2b (n2
2 + n2

3)

2
,

a is the Wood mixture speed of sound previously defined (5) and:

b =
σ‖w‖
ρ

(
n2

2 + n2
3

)
.

The system is hyperbolic if the multiple eigenvalues λ = u have exactly 8 linearly inde-
pendent eigenvectors R. 5 of them are straightforward:
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R1 =



1
0
0
0
0
0
0
0
0
0
0
0



R2 =



0
0
0
0
0
0
0
0
1
0
0
0



R3 =



0
0
0
0
0
0
0
0
0
1
0
0



R4 =



0
0
0
0
0
0
0
0
0
0
1
0



R5 =



0
0
0
0
0
0
0
0
0
0
0
1


And the 3 last eigenvectors for λ = u have to be found using the following reduced matrix:

a =



u 0 0 1
ρ

1
ρ
∂Ω11

∂w1

1
ρ
∂Ω11

∂w2

1
ρ
∂Ω11

∂w3

0 u 0 0 1
ρ
∂Ω12

∂w1

1
ρ
∂Ω12

∂w2

1
ρ
∂Ω12

∂w3

0 0 u 0 1
ρ
∂Ω13

∂w1

1
ρ
∂Ω13

∂w2

1
ρ
∂Ω13

∂w3

ρa2 0 0 u 0 0 0
w1 w2 w3 0 u 0 0
0 0 0 0 0 u 0
0 0 0 0 0 0 u


The corresponding reduced eigenvectors r are the solutions of

(
a− uI

)
r = 0, where r

is written as:
r = [r1, r2, r3, r4, r5, r6, r7]T .

3 distinct systems of equations results from this equality:

ρa2r1 = 0,
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w1r1 + w2r2 + w3r3 = 0, 1
ρ
r4

0
0

 + C

 r5

r6

r7

 =

 0
0
0


where C is the matrix with the only capillary terms:

C =


1
ρ
∂Ω11

∂w1

1
ρ
∂Ω11

∂w2

1
ρ
∂Ω11

∂w3
1
ρ
∂Ω12

∂w1

1
ρ
∂Ω12

∂w2

1
ρ
∂Ω12

∂w3
1
ρ
∂Ω13

∂w1

1
ρ
∂Ω13

∂w2

1
ρ
∂Ω13

∂w3


A solution of the first two equations is: r1 = 0, r2 = −ηw3 and r3 = ηw2, where η is

any real constant. If the matrix C is invertible, the components r5, r6 and r7 are uniquely
defined for a given r4. First, the derivatives of the capillary tensor terms are:

∂Ω11

∂w1

=
σ

ρ
n1

(
n2

2 + n2
3

)
,

∂Ω11

∂w2

=
σ

ρ
n2

(
n2

2 + n2
3 − 2

)
,

∂Ω11

∂w3

=
σ

ρ
n3

(
n2

2 + n2
3 − 2

)
,

∂Ω12

∂w1

=
σ

ρ
n2

(
n2

2 + n2
3

)
,

∂Ω12

∂w2

=
σ

ρ
n1

(
n2

1 + n2
3

)
,

∂Ω12

∂w3

=
σ

ρ
n1n2n3,

∂Ω13

∂w1

=
σ

ρ
n3

(
n2

2 + n2
3

)
,

∂Ω13

∂w2

=
σ

ρ
n1n2n3,

∂Ω13

∂w3

=
σ

ρ
n1

(
n2

1 + n2
2

)
.

And then the determinant of the matrix C is:

det
(

C
)

=

(
σ

ρ

)3

n1(n2
2(n2

1 + n2
2)3 + n2

3(n2
1 + n2

3)3

+6n4
1n

2
2n

2
3 + 9n2

1n
4
2n

2
3 + 4n6

2n
2
3 + 9n2

1n
2
2n

4
3 + 6n4

2n
4
3 + 4n2

2n
6
3).
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The determinant is non-zero as long as n1 is non-vanishing, which is numerically always the
case. Thus:  r5

r6

r7

 = −r4C
−1

 1
ρ

0
0


Finally the resulting reduced eigenvectors are:

r =



0
−ηw3

ηw2

r4

−r4C
−1

 1
ρ

0
0




Thus, only a two-parameter family of eigenvectors exists. Linearly independent eigen-

vectors can be given as:

R6 =



0
0
−w3

w2

0
0
0
0
0
0
0
0



R7 =



0
0
0
0
1

−C
−1

 1
ρ

0
0


0
0
0
0


and thus 1 eigenvector is missing to have a hyperbolic model. Model (3) is then weakly
hyperbolic.
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