A $2log_2(n)$ approximation algorithm for directed tour cover
Résumé
Given a directed graph G with non-negative cost on the arcs, a directed tour cover T of G is a cycle (not necessary simple) in G such that either head or tail (or both of them) of every arc in G is touched by T. The minimum directed tour cover problem (DToCP) which is to find a directed tour cover of minimum cost, is NP-hard. It is thus interesting to design approximation algorithms with performance guarantee to solve this problem. Although its undirected counterpart (ToCP) has been studied in recent years [1,6], in our knowledge, the DTCP remains widely open. In this paper, we give a $2log_2(n)$-approximation algorithm for the DTCP.