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We aim to study the persistence of periodic orbits contained in A when (1) is perturbed inside the class of all piecewise smooth vector fields with two zones separated by the hyperplane . A similar problem was addressed in [START_REF] Du | Bifurcation of periodic orbits in a class of planar Filippov systems[END_REF] but for planar piecewise smooth systems. In this case the authors developed the Poincaré map in power series of some small parameter, and then a Melnikov-like function was obtained just by taking the first coefficient of this series. In dimension n ≥ 3 the arguments are more delicate, and some recent techniques (see [START_REF] Llibre | Improving the averaging theory for computing periodic solutions of the differential equations[END_REF]) on Lyapunov-Schmidt reduction have to be used. For instance, in [START_REF] Liu | Poincaré bifurcation of a three-dimensional system[END_REF] the authors have used similar techniques to study the same problem but for 3D smooth systems.

In smooth systems the normal form theory provides simplifications on the systems reducing the number of parameters and, eventually, simplifying the study of their dynamics. On the other hand, for nonsmooth systems formed by two regions separated by a hyperplane, more simplifications on the parameters can be done. In fact, piecewise continuous change of variables (smooth on each region determined by the hyperplane) is used to obtain normal forms for each one of the systems constituting the nonsmooth system. Some normal forms have been obtained in [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF] for planar piecewise smooth systems separated by a straight line.

Taking all the comments above into account our first main result, Theorem A, develops a Melnikov-like function to control the persistence of periodic solutions of A for small discontinuous perturbations of system [START_REF] Buzzi | Chaotic planar piecewise smooth vector fields with non-trivial minimal sets[END_REF]. Our second main result, Theorem B, provides normal forms for all 3D piecewise linear systems which admits an invariant plane transversal to containing a period annulus A fulfilled by periodic orbits. Finally, in section 4, we apply Theorem A, with n = 3, to study discontinuous perturbations of the normal forms established in section 3.

We point out the importance of nonsmooth systems, particularly piecewise smooth systems, as a source of new interesting phenomena in dynamics (see, for instance, [START_REF] Buzzi | Chaotic planar piecewise smooth vector fields with non-trivial minimal sets[END_REF][START_REF] Novaes | Shilnikov problem in Filippov dynamical systems[END_REF]), and their relevance in modelling real phenomena (see, for instance, [START_REF] Bernardo | Piecewise-Smooth Dynamical Systems: Theory and Applications[END_REF][START_REF] Coombes | Neuronal networks with gap junctions: a study of piecewise linear planar neuron models[END_REF]).

Persistence of crossing periodic orbits

Consider the following discontinuous perturbation of system [START_REF] Buzzi | Chaotic planar piecewise smooth vector fields with non-trivial minimal sets[END_REF] Z(x, y, z; ε) = Z + (x, y, z; ε) = X + 0 (x, y, z)

+ εX + 1 (x, y, z) if z > 0, Z -(x, y, z; ε) = X - 0 (x, y, z) + εX - 1 (x, y, z) if z < 0, (2) 
where

(x, y, z) ∈ D ⊂ R × R n-2 × R, X j = (X j,1 , X j,2 , .
. . , X j,n ) for j = 0, 1 and the set of discontinuity is given by the hyperplane = {z = 0}. As usual the following open regions are distinguished in :

(i) Crossing region: c = {p ∈ : (Z + f )(p)(Z -f )(p) > 0}; (ii) Escaping region: e = {p ∈ : (Z + f )(p) > 0, (Z -f )(p) < 0}; (iii) Sliding region: s = {p ∈ : (Z + f )(p) < 0, (Z -f )(p) > 0}.
Here

(Z ± f )(p) = Z ± (p), ∇f (p) .
A crossing periodic orbit of system ( 9) is a closed curve γ composed by trajectories of Z ± having the same orientation such that γ ∩ ⊂ c . We recall our main hypothesis:

(H ) the hyperplane = {x = 0} has a period annulus A = {(y, z) ∈ : r 0 ≤ |(y, z)| ≤ r 1 }
surrounding the origin and fulfilled by crossing periodic solutions of the unperturbed system ( ẋ, ẏ, ż) T = Z(x, y, z; 0).

Let ϕ ± (t, x, y, z; ε) = ϕ ± 1 (t, x, y, z; ε), ϕ ± 2 (t, x, y, z; ε), . . . , ϕ ± n (t, x, y, z; ε) be the solutions of the systems ( ẋ, ẏ, ż) T = Z ± (x, y, z; ε) such that ϕ ± (0, x, y, z; ε) = (x, y, z). From hypothesis, the solutions of (2), for ε = 0, contained in A reach transversally the set of discontinuity . So for a small neighborhood U ⊂ R n of A and |ε| = 0 small enough there exists a time t + (x, y; ε) > 0 (resp. t -(x, y; ε) < 0) such that an orbit of (2) starting in (x, y, 0) ∈ U ∩ returns, forward in time (resp. backward in time), to , that is ϕ ± n (t ± (x, y; ε), x, y, 0; ε) = 0. The solutions ϕ ± (t, x, y, z; ε) can be expressed in power series of ε, that is

ϕ ± i (t, x, y, z; ε) = ψ ± 0,i (t, x, y, z) + εψ ± 1,i (t, x, y, z) + O(ε 2 ), i = 1, 2, . . . , n such that ϕ ± (t, x, y, z; ε) = ψ ± 0 (t, x, y, z) + εψ ± 1 (t,
x, y, z) where ψ ± 0 (t, x, y, z) are the solutions of the unperturbed systems ( ẋ, ẏ, ż) T = Z ± (x, y, z; 0). The times t ± , introduced above, can also be written as power series of ε, that is

t ± (x, y; ε) = τ ± 0 (x, y) + ετ ± 1 (x, y) + O(ε 2 ).
However here we only have to assume that the expressions σ ± j (y) = τ ± j (0, y), j = 0, 1, are explicitly known. In fact, the next result gives the expressions of σ ± 1 and ψ ± 1 in terms of the solutions ψ ± 0 of the unperturbed system.

Proposition 1. Let p = (x, y, z) ∈ R × R n-2 × R
, and denote by Y ± (t, p 0 ) = D p ψ ± 0 (t, p 0 ) the derivative of ψ ± 0 (t, p) with respect to the initial condition p evaluated at p 0 = (x 0 , y 0 , z 0 ). Then the following equalities hold:

ψ ± 1 (t, p) = Y ± (t, p) t 0 Y ± (s, p) -1 X ± 1 ψ ± 0 (s, p) ds, ( 3 
)
σ ± 1 (y) = - ψ ± 1,n (σ ± 0 (y), 0, y, 0) X ± 0,n ψ ± 0 (σ ± 0 (y), 0, y, 0) . ( 4 
)
Proof. Computing the derivative in the variable t of both sides of the equality ϕ ± (t, x, y, z; ε) = ψ ± 0 (t, x, y, z) + εψ ± 1 (t, x, y, z) + O(ε 2 ) we obtain

X ± 0 ϕ ± (t, p; ε) + εX ± 1 ϕ ± (t, p; ε) = X 0 ψ ± 0 (t, p) + ε ∂ψ ± 1 ∂t (t, p) + O(ε 2 ).
Developing the left hand side of the above equation in power series of ε, and studying the coefficient of ε we obtain

∂ψ ± 1 ∂t (t, p) = DX ± 0 ψ ± 0 (t, p) ψ ± 1 (t, p) + X ± 1 ψ ± 0 (t, p) .
Moreover ψ ± 0 (0, p) = 0. Hence the solution of the above differential equation is given by (3). To see equality (4) we first develop the equality ϕ ± n (t ± (0, y; ε), 0, y, 0; ε) = 0 in power series of ε, being t ± (0, y; ε) = σ ± 0 (y) + εσ ± 1 (y) + O(ε). After that σ ± 1 can be isolated as (4). This concludes the proof of the proposition. 2

Now let V = {ν ∈ R n-2 : (0, ν, 0) ∈ U }. We define a Melnikov-like function M : V → R n-2 as M(ν) = (ν) - λ 1 (ν) ω 1 (ν) (ν), (5) 
where

λ i (ν) = X + 0,i (ψ + 0 (σ + 0 (ν), 0, ν, 0))σ + 1 (ν) -X - 0,i (ψ - 0 (σ - 0 (ν), 0, ν, 0))σ - 1 (ν) + ψ + 1,i (σ + 0 (ν), 0, ν, 0) -ψ - 1,i (σ - 0 (ν), 0, ν, 0), ω i (ν) = ∂ψ + 0,i ∂x (σ + 0 (ν), 0, ν, 0) - X + 0,i ψ + 0 (σ + 0 (ν), 0, ν, 0) X + 0,n (ψ + 0 (σ + 0 (ν), 0, ν, 0)) ∂ψ + 0,n ∂x (σ + 0 (ν), 0, ν, 0) - ∂ψ - 0,i ∂x (σ - 0 (ν), 0, ν, 0) + X - 0,i ψ - 0 (σ + 0 (ν), 0, ν, 0) X - 0,n (ψ - 0 (σ - 0 (ν), 0, ν, 0)) ∂ψ - 0,n ∂x (σ - 0 (ν), 0, ν, 0), (6) 
for i = 1, 2, . . . , n -1, and

(ν) = λ 2 (ν), λ 3 (ν), . . . , λ n-1 (ν) , (ν) = ω 2 (ν), ω 3 (ν), . . . , ω n-1 (ν) .
Let J M (ν) denote the determinant of the Jacobian matrix of M evaluated at ν. The next theorem is the main result of this section.

Theorem A. In addition to hypothesis (H ) we assume that ω 1 (ν) = 0 for every ν ∈ V. Then for each ν * ∈ V such that M(ν * ) = 0 and J M (ν * ) = 0, there exists a unique crossing periodic solution φ(t, ε) of system (2) such that φ(0, ε) → (0, ν * , 0) ∈ A when ε → 0. Moreover if M(ν) = 0 for every ν ∈ V then there are no crossing periodic solutions bifurcating from A for |ε| = 0 sufficiently small.

To prove Theorem A we shall use a version (see [START_REF] Llibre | Improving the averaging theory for computing periodic solutions of the differential equations[END_REF]) of the so-called Lyapunov-Schmidt reduction for finite dimensional function (see [START_REF] Chicone | Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators[END_REF]). In what follows, for positive integers k < d, the functions ξ : [START_REF] Llibre | Improving the averaging theory for computing periodic solutions of the differential equations[END_REF].) Assume that k ≤ d are positive integers. Let D and V be open bounded subsets of R d and R k , respectively. Let g 0 , g 1 and β :

R k × R d-k → R k and ξ ⊥ : R k × R d-k → R d-k will denote the projections onto the first k coordinates and onto the last d -k coordinates, respectively. A point ζ ∈ R d is denoted by ζ = (a, b) ∈ R k × R d-k .

Lemma 2. (See

V → R d-k be C 2 functions, consider g : D × (-ε 0 , ε 0 ) → R d as g(ζ, ε) = g 0 (ζ ) + εg 1 (ζ ) + O(ε 2 ),
and take

Z = {ζ ν = (ν, β(ν)) : ν ∈ V } ⊂ D. We denote by ν the upper right corner k × (d -k) matrix of D g 0 (ζ ν ), and by ν the lower right corner (d -k) × (d -k) matrix of D g 0 (ζ ν ). Assume that for each ζ ν ∈ Z, det( ν ) = 0 and g 0 (ζ ν ) = 0. We define the bifurcation function f 1 : V → R k as f 1 (ν) = -ν -1 ν ξ ⊥ g 1 (ζ ν ) + ξg 1 (ζ ν ). ( 7 
)
If there exists

ν * ∈ V such that f 1 (ν * ) = 0 and J f 1 (ν * ) = 0, then there exists ν ε such that g(ζ ν ε , ε) = 0 and ζ ν ε → ζ ν * when ε → 0.
Remark 3. The proof of Lemma 2, done in [START_REF] Llibre | Improving the averaging theory for computing periodic solutions of the differential equations[END_REF], is based on the implicit function theorem. So it is easy to check the uniqueness of its predicted branch of zeros

ζ ν ε such that ζ ν ε → ζ ν * when ε → 0. Moreover, it is also a direct consequence of the implicit function theorem that if f 1 (ν) = 0 for every ν ∈ V then g(•, ε)
does not admit branches of zeros converging to V when ε goes to 0.

Proof of Theorem A. For (x, y) ∈ R × R n-2 such that (x, y, 0) ∈ U we define the map δ(x, y; ε) = δ 1 (x, y; ε), δ 2 (x, y; ε), . . . , δ n-1 (x, y; ε) as

δ i (x, y; ε) = ϕ + i (t + (x, y; ε), x, y, 0; ε) -ϕ - i (t -(x, y; ε), x, y, 0; ε), i = 1, 2, . . . , n -1. So δ i (x, y; ε) = δ 0 i (x, y) + εδ 1 i (x, y) + O(ε 2 )
, where

δ 0 i (x, y) = ψ + 0,i (τ + 0 (x, y), x, y, 0) -ψ - 0,i (τ - 0 (x, y), x, y, 0), δ 1 i (x, y) = X + 0,i (ψ + 0 (τ + 0 (x, y), x, y, 0))τ + 1 (x, y) + ψ + 1,i (τ + 0 (x, y), x, y, 0) -X - 0,i (ψ - 0 (τ - 0 (x, y), x, y, 0))τ - 1 (x, y) -ψ - 1,i (τ - 0 (x, y), x, y, 0). ( 8 
)
Here O is one of the Landau's symbols, that is g(ε) = O(ε ) for some positive integer if there exists constants

ε 1 > 0 and M > 0 such that |g(ε)| ≤ M|ε | for -ε 1 < ε < ε 1 .
Clearly δ(x ε , y ε , ε) = 0 for some (x ε , y ε , 0) ∈ U if and only if the solution of system (2) passing through (x ε , y ε , 0) is periodic.

In the sequel, for the purpose of proving Theorem A, we identify the elements of Lemma 2.

Take d = n -1, k = n -2, D = {(a, b) ∈ R n-2 × R : (b, a, 0) ∈ U }, V = {ν ∈ R n-2 : r 0 < |ν -ν * | < r 1 }, β = 0, ζ ν = (ν, 0), g 0 (a, b) = δ 0 (b, a), δ 0 1 (b, a) , g 1 (a, b) = δ 1 (b, a), δ 1 1 (b, a) , with δ j = (δ j 2 , δ j 3 , . . . , δ j n-1 ) for j = 0, 1, and Z = {ζ ν = (ν, β(ν)) = (ν, 0) : ν ∈ V } ⊂ D. From (8), g 1 (ζ ν ) = (ν), λ 1 (ν) . Now for each ν ∈ V the solution of system (2), for ε = 0, passing through (0, ν, 0) ∈ A is periodic. Therefore δ 0 1 (0, ν), δ 0 (0, ν) = δ(0, ν, 0) = (0, 0) and g 0 (ζ ν ) = g 0 (ν, 0) = δ 0 (0, ν), δ 0 1 (0, ν) = (0, 0). Moreover Dg 0 (ν, 0) = ⎛ ⎜ ⎜ ⎜ ⎝ ∂δ 0 ∂y (0, ν) ∂δ 0 ∂x (0, ν) ∂δ 0 1 ∂y (0, ν) ∂δ 0 1 ∂x (0, ν) ⎞ ⎟ ⎟ ⎟ ⎠ . So ν = ∂δ 0 1 ∂x (0, ν) = ω 1 (ν) and ν = ∂δ 0 ∂x (0, ν) = (ν). Indeed ∂δ 0 i ∂x (0, ν) = X + 0,i ψ + 0 (σ + 0 (ν), 0, ν, 0) τ + 0 ∂x (0, ν) -X - 0,i ψ - 0 (σ + 0 (ν), 0, ν, 0) τ - 0 ∂x (0, ν) + ∂ψ + 0,i ∂x (σ + 0 (ν), 0, ν, 0) - ∂ψ - 0,i ∂x (σ - 0 (ν), 0, ν, 0),
and computing implicitly the derivative in the variable ε of the equality ϕ ± n (t ± (x, y; ε), x, y, 0; ε) = 0 we get

∂τ ± 0 ∂x (0, ν) = - ∂ψ ± 0,n ∂x (τ ± 0 (0, ν), 0, ν, 0) X ± 0,n (ψ ± 0 (τ ± 0 (0, ν), 0, ν, 0))
.

Therefore

∂δ 0 i ∂x (0, ν) = ∂ψ + 0,i ∂x (σ + 0 (ν), 0, ν, 0) - X + 0,i ψ + 0 (σ + 0 (ν), 0, ν, 0) X + 0,n (ψ + 0 (σ + 0 (ν), 0, ν, 0)) ∂ψ + 0,n ∂x (σ + 0 (ν), 0, ν, 0) - ∂ψ - 0,i ∂x (σ - 0 (ν), 0, ν, 0) + X - 0,i ψ - 0 (σ + 0 (ν), 0, ν, 0, 0) X - 0,n (ψ - 0 (σ - 0 (ν), 0, ν, 0)) ∂ψ - 0,n ∂x (σ - 0 (ν), 0, ν, 0) = ω i (ν),
for i = 1, 2, . . . , n -1. Now we compute the function [START_REF] Colombo | Nondeterministic chaos and the two-fold singularity in piecewise smooth flows[END_REF] as

f 1 (ν) = -ν -1 ν ξ ⊥ g 1 (ζ ν ) + ξg 1 (ζ ν ) = - λ 1 (ν) ω 1 (ν) (ν) + (ν) = M(ν).
Since ω 1 (ν) = 0, the proof of this theorem follows by applying Lemma 2 and Remark 3. 2

Normal forms of piecewise linear systems

Consider the following piecewise linear differential system

Z(x, y, z) = X + (x, y, z), if z > 0 X -(x, y, z), if z < 0, (9) 
(x, y, z) ∈ R 3 . The discontinuity set is given by = {z = 0}. Here

X ± = (X ± 1 , X ± 2 , X ± 3 )
, where

X ± j (x, y, z) = a ± j x + b ± j y + c ± j z + d ± j ,
for j ∈ {1, 2, 3}. Note that = f -1 (0), where f (x, y, z) = z. Moreover, we denote

+ = {p ∈ R 3 ; f (p) > 0} and -= {p ∈ R 3 ; f (p) < 0}.
Firstly we assume the existence of a plane transversal to which is invariant through the flow of system [START_REF] Christopher | Limit Cycles of Differential Equations[END_REF]. Without loss of generality, after a linear change of variable, we may assume that = {x = 0}, equivalently b

± 1 = c ± 1 = d ± 1 = 0.
In what follows we assume, without loss of generality, that system (9) has a center at the origin turning the orbits around it in counterclockwise sense, that is b + 3 > 0 and b - 3 > 0. Therefore (0, y, 0) ∈ c , for y = 0 small enough, and d ± 3 = 0. Now (0, y, 0) ∈ c if and only if

(X + f )(0, y, 0)(X -f )(0, y, 0) = b + 3 b - 3 y 2 > 0.
In order to simplify the computations it is convenient to make a continuous piecewise linear change of variables which transforms system (9) into a simple form. This change of variables is a homeomorphism h which keeps invariant the discontinuity set , the plane = {x = 0} and the sets + and -. Furthermore, h restricted to + ∪ -will be a topological equivalence between the vector fields. More precisely, following closely the ideas of [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF], we have the next result.

Proposition 4. Consider system [START_REF] Christopher | Limit Cycles of Differential Equations[END_REF] 

with b ± 1 = c ± 1 = d ± 1 = d ± 3 = 0, b + 3 > 0 and b - 3 > 0. Then the homeomorphism (u, v, w) = h(x, y, z) given by (u, v, w) T = M ± (x, y, z) T if (x, y, z) ∈ ± ∪ ,
where

M ± = ⎛ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 1 c ± 3 b ± 3 0 0 1 b ± 3 ⎞ ⎟ ⎟ ⎟ ⎠ ,
transforms system (9) into the normal form

( u, v, ẇ) T = Y ± (u, v, w) = A ± (u, v, w) T + (0, d ± 2 , 0) T , ( 10 
)
where

A ± = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ a ± 1 0 0 a ± 2 b ± 3 +a ± 3 c ± 3 b ± 3 b ± 3 + c ± 3 -(b ± 2 c ± 3 -c ± 2 b ± 3 ) a ± 3 b ± 3 1 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
.

The discontinuity set and the plane {x = 0} are invariant by h. Moreover the following statements hold.

(i) h transforms the crossing and sliding sets, tangency points and boundary equilibria from the original system (9) into sets and points of same type for system (10);

(ii) h is a topological equivalence between systems (9) and (10) for all their orbits which do not have points in common with e ∪ s ; (iii) h preserves the sets e and s , that is h( e ) and h( s ) are the escaping and sliding regions of system [START_REF] Du | Bifurcation of periodic orbits in a class of planar Filippov systems[END_REF], respectively.

Proof. With straightforward computations system (9) becomes system [START_REF] Du | Bifurcation of periodic orbits in a class of planar Filippov systems[END_REF]. Obviously the set and the plane {x = 0} are invariant by h. The statements (i), (ii) and (iii) follow immediately from the equalities

Y ± f (h(x, y, 0)) = Y ± f (u, v, 0) = 1 b ± 3 X ± f (u, v, 0), because Y + f • Y -f | differs from X + f • X -f | by a positive constant.
Clearly, orbits totally contained in ± are transformed in a homeomorphic way. Furthermore, the topological equivalence is not lost at the crossing set because orbits arriving at the crossing set are continued by the natural concatenation. 2

A point p ∈ where the flow of X + | (resp. X -| ) has a parabolic contact with of the form

X ± f (p) = 0 and (X ± ) 2 f (p) = 0 is called fold point of X + (resp. X -| ). Moreover, when the orbit of X + | (resp. X -| ) through p is locally contained in -(resp. + ), that is (X + ) 2 f (p) < 0 (resp. (X + ) 2 f (p) > 0), the fold point p is called invisible, otherwise, it is called visible.
A point p ∈ ∩ is a center of system ( 9) if there exists a neighborhood V of p such that V ∩ \ {p} is fulfilled by crossing periodic orbit of system [START_REF] Christopher | Limit Cycles of Differential Equations[END_REF]. This means that (X + f )(q)(X -f )(q) > 0 for all q ∈ (V ∩ {x = 0}) ∩ \ {p}, and (X + f )(p) = (X -f )(p) = 0. For system (9) there are three different types of centers in a point p ∈ : focus-focus (FF), focus-parabolic (FP) and parabolic-parabolic (PP). Now we give a briefly description of each one below.

In the focus-focus type both systems X ± | have a singular point at p which has eigenvalues with non-zero imaginary part. In the focus-parabolic (resp. parabolic-focus) type the system X + | (resp. X -| ) has a singular point having eigenvalues with non-zero imaginary part, while the system X -| (resp. X + | ) has an invisible fold. Finally, in the parabolic-parabolic type both systems X ± | have an invisible fold at p.

In order to state the main result of this section, which classifies the centers of system ( 9), we need some preliminary notations:

S ± = (b ± 1 ) 2 + (c ± 1 ) 2 + (d ± 1 ) 2 + (d ± 3 ) 2 , η ± = b ± 2 + c ± 3 , χ ± = -[(b ± 2 + c ± 3 ) 2 -4(b ± 2 c ± 3 -c ± 2 b ± 3 )], and γ ± = η ± /χ ± provided χ ± = 0. We note that S ± = 0 if and only if b ± 1 = c ± 1 = d ± 1 = d ± 3 = 0.
Theorem B. System (9) has a center in the plane = {x = 0} of type:

(i) focus-focus if and only if

S ± = 0, b + 3 b - 3 > 0, d ± 2 = 0, χ ± > 0 and γ + + γ -= 0; (ii) focus-parabolic (resp. parabolic-focus) if and only if S ± = 0, b + 3 b - 3 > 0, d + 2 = 0, d - 2 > 0 (resp. d - 2 = 0, d + 2 < 0), χ + > 0 (resp. χ -> 0) and η ± = 0; (iii) parabolic-parabolic if and only if S ± = 0, b + 3 b - 3 > 0, d + 2 < 0, d - 2 > 0, either η ± = 0 or η + = 0, η -d + 2 = η + d - 2 and (b - 2 c - 3 -c - 2 b - 3 )(d + 2 ) 2 = (b + 2 c + 3 -c + 2 b + 3 )(d - 2 ) 2 .
Remark 5. A point p ∈ is a T-singularity of the vector field associated to system (9), if p is an invisible fold of both vector fields X ± and the fold-curves X ± f = 0 are transversal at p. Therefore in addition to the hypotheses of statement (iii), the parabolic-parabolic center is a T-singularity if and only if a -

3 b + 3 -a + 3 b - 3 = 0.
The proof of Theorem B follows the same ideas of [START_REF] Han | On Hopf bifurcation in non-smooth planar systems[END_REF] for proving its Theorem 3.1. Indeed our proof could be obtained by applying this theorem to the restriction of system ( 9) to . So a major part of it could be omitted here. However, since the conditions on the original parameters that characterize the types of centers are not given explicitly in [START_REF] Han | On Hopf bifurcation in non-smooth planar systems[END_REF], and also for sake of completeness, we prefer to write the whole proof here.

In order to prove Theorem B we shall apply the normal form [START_REF] Du | Bifurcation of periodic orbits in a class of planar Filippov systems[END_REF]. To do that the next lemma is needed. Lemma 6. (See [START_REF] Filippov | Differential Equations with Discontinuous Righthand Side[END_REF].) Consider the equation

dy dx = ax + by + G(x, y), a = 0, ( 11 
)
where G is of class C 4 at the origin satisfying

G(x, y) = cx 2 + dxy + ey 2 + f x 3 + gx 2 y + hx 4 + O(x 4 + y 2 ),
for (x, y) near the origin. Let y = Y (x) be the solution of [START_REF] Filippov | Differential Equations with Discontinuous Righthand Side[END_REF] satisfying

Y (-ρ) = Y (σ ) = 0 for -ρ < 0 < σ, aY (x) < 0 for -ρ < x < σ.
Then for ρ > 0 small

σ = ρ + μρ 2 + μ 2 ρ 3 + kρ 4 + O(ρ 5 ),
where

μ = 2 3 b - c a , k = 10 11 μ 3 + μ 5 d + 2 15 L, L = bc 2 a 2 - 2c 3 a 3 -2ae - 2bf a + 5cf a 2 + g - 3h a .
Proof of Theorem B. If system (9) has a center in the plane {x = 0} it satisfies the conditions b

± 1 = c ± 1 = d ± 1 = d ± 3 = 0 and b + 3 b - 3 > 0.
Conveniently we assume the counterclockwise direction for the flow, i.e. b - 3 > 0 and b + 3 > 0. Hence, by Proposition 4 we write system (9) in the form [START_REF] Du | Bifurcation of periodic orbits in a class of planar Filippov systems[END_REF]. Denoting the dependent variables of system (10) by x, y, z, system (10), restricted to the plane {x = 0}, reads

ẏ = (b ± 3 + c ± 3 )y -(b ± 2 c ± 3 -c ± 2 b ± 3 )z + d ± 2 , ż = y, (12) 
for z ≷ 0, where (0, y, z) ∈ ± ∪ . Now we start the proof of (i). In this case the upper and lower systems have a singular point at the origin, i.e. d ± 2 = 0, with eigenvalues given by

η ± 2 + i χ ± 2 and η ± 2 -i χ ± 2
, where χ ± > 0.

Let ϕ ± (t, (0, r, 0)) = (ϕ ± 1 (t, (0, r, 0)), ϕ ± 2 (t, (0, r, 0))) be the flow of system [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF] where

ϕ ± 1 (t, (0, r, 0)) = re η ± 2 t cos χ ± 2 t + γ ± sin χ ± 2 t , ϕ ± 2 (t, (0, r, 0)) = 2r χ ± e η ± 2 t sin χ ± 2 t .
Therefore the half Poincaré maps of upper and lower systems are given by

π ± (r) = ϕ ± 1 2π χ ± , (0, r, 0) = -re γ ± π , where 2π χ ± is such that ϕ ± 2 2π
χ ± , (0, r, 0) = 0. Hence the Poincaré map is

π(r) = π -• π + (r) = re (γ -+γ + )π .
Thus we have a center if γ -+ γ + = 0, and statement (i) is proved. Under the assumptions of statement (ii) the upper system (12) has a singular point at the origin, i.e. d + 2 = 0 and the eigenvalues of Jacobian matrix are

η + 2 ± i χ + 2 with χ + > 0.
Analogous to the previous case the half Poincaré map of the upper system is π + (r) = -re γ + π . On the other hand, the lower system (12) has an invisible fold at the origin, i.e. d - 2 > 0. Consider the differential equation

dz dy = y (b - 3 + c - 3 )y -(b - 2 c - 3 -c - 2 b - 3 )z + d - 2 , ( 13 
)
associated to the lower system [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF]. Since d - 3 > 0 we can expand the right hand side of (13) around y = 0 and obtain the following expression

dz dy = 1 d - 2 y - (b - 3 + c - 3 ) (d - 2 ) 2 y 2 + (b - 2 c - 3 -c - 2 b - 3 ) (d - 2 ) 2 yz + (b - 3 + c - 3 ) (d - 2 ) 2 y 3 - 2(b - 3 + c - 3 )(b - 2 c - 3 -c - 2 b - 3 ) (d - 2 ) 3 y 2 z - (b - 3 + c - 3 ) 3 (d - 2 ) 4 y 4 + O(y 4 + z 2 ). ( 14 
)
Let z = z(y) be the solution of equation ( 14) with initial condition z(-r) = 0. Then z(π -(-r)) = 0 and by Lemma 6

π -(-r) = r + μ -r 2 + (μ -) 2 r 3 + k -r 4 + O(r 5 ),
where

μ -= 2 3 b - 2 + c - 3 d - 2 , L -= -2(b - 2 c - 3 -c - 2 b - 3 )(b - 2 + c - 3 ) (d - 2 ) 3 , k -= 2 3 (b - 2 + c - 3 ) d - 2 ⎡ ⎣ 40 99 b - 2 + c - 3 d - 2 2 - 1 5 
(b - 2 c - 3 -c - 2 b - 3 ) (d - 2 ) 2 ⎤ ⎦ = μ - ⎡ ⎣ 40 99 b - 2 + c - 3 d - 2 2 - 1 5 
(b - 2 c - 3 -c - 2 b - 3 ) (d - 2 ) 2 ⎤ ⎦ . ( 15 
)
Thus the Poincaré map is

π(r) = π -• π + (r) = π -(-re γ + π ) = e γ + π r + μ -e 2γ + π r 2 + O(r 3 ).
Hence a necessary condition for having a center at the origin is e γ + π = 1 and μ -e 2γ + π = 0, i.e. γ + = μ -= 0, and so η ± = 0. In this case we get π + (r) = r, and the lower system [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF] becomes

ẏ = b - 3 (b - 2 + c - 2 )z + d - 2 , ż = y,
which is invariant under the change of variables (y, z, t) → (-y, z, -t). Therefore π -(-r) = r and so π(r) = r, i.e. the origin is a center. Now the case parabolic-focus can be reduced to the case focus-parabolic trough the change of variables (x, y, t) → (-x, -y, t). Hence statement (ii) is proved.

Finally we prove statement (iii). Then the lower and the upper systems ( 12) have an invisible fold at the origin, i.e. d + 2 < 0 and d - 2 > 0. As in the previous statement applying Lemma 6, we obtain

(π + ) -1 (-r) = r + μ + r 2 + (μ + ) 2 r 3 + k + r 4 + O(r 5 ),
where μ + , L + and k + are the same as in [START_REF] Jacquemard | Piecewise smooth reversible dynamical systems at a two-fold singularity[END_REF] just changing the sign "-" by "+". Hence for r > 0 we obtain

π -(-r) -(π + ) -1 (-r) = (μ --μ + )r 2 + [(μ -) 2 -(μ + ) 2 ]r 3 + (k --k + )r 4 + O(r 5 ).
Then, necessary conditions for having a center at the origin are μ -μ + = 0 and k -k + = 0. Observe that the first condition implies that d + 2 η -= d - 2 η + . Now if η + = 0 we have η -= 0 and k + = k -= 0. For η + = 0 the condition k

+ -k -= 0 implies that (d + 2 ) 2 (b - 2 c - 3 -c - 2 b - 3 ) = (d - 2 ) 2 (b + 2 c + 3 -c + 2 b + 3 
). In the first case, i.e. η + = 0, system [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF] becomes

ẏ = -(b ± 2 c ± 3 -c ± 2 b ± 3 )z + d ± 2 , ż = y,
which is invariant under the change of variables (y, z, t) → (-y, z, -t). Therefore (π + ) -1 (-r) = π -(-r) = r and so π --(π + ) -1 ≡ 0, i.e. the origin is a center.

In the second case the upper and lower systems [START_REF] Freire | Canonical discontinuous planar piecewise linear systems[END_REF] become the systems

ẏ = (b + 3 + c + 3 )y -(b + 2 c + 3 -c + 2 b + 3 )z + d + 2 , ż = y, (16) 
when (0, y, z) ∈ + ∪ , and

ẏ = d - 2 d + 2 (b + 3 + c + 3 )y - d - 2 d + 2 2 (b + 2 c + 3 -c + 2 b + 3 )z + d - 2 , ż = y, (17) 
when (0, y, z) ∈ -∪ , respectively. Note that by the change of variables

(y, z, t) → y, d - 2 d + 2 z, d - 2 d + 2 t , (18) 
system (16) becomes system [START_REF] Liu | Poincaré bifurcation of a three-dimensional system[END_REF]. Hence if ϕ -(t, (0, -r, 0)) = ϕ - 1 (t, (0, -r, 0)), ϕ - 2 (t, (0, -r, 0))

is the solution of system (17) through the point (0, -r, 0), then r), (0, -r, 0)) = 0. Thus, using the inverse of the change of variables [START_REF] Llibre | Averaging theory for discontinuous piecewise differential systems[END_REF], it follows that

π -(-r) = ϕ - 1 (t -(-r), (0, -r, 0)), where t -(-r) is such that ϕ - 2 (t -(-
ϕ + (t, (0, -r, 0)) = (ϕ + 1 (t, (0, -r, 0)), ϕ + 2 (t, (0, -r, 0))) = ϕ - 1 d + 2 d - 2 t, (0, -r, 0) , d + 2 d - 2 ϕ - 2 d + 2 d - 2 
t, (0, -r, 0) , is the solution of system (16) through the point (0, -r, 0). Therefore r) and (π + ) -1 (-r) = π -(-r), i.e. the origin is a center. 2 

(π + ) -1 (-r) = ϕ + 1 (-t + (-r), (0, -r, 0)), where t + (-r) is such that ϕ + 2 (-t + (-r), (0, -r, 0)) = 0. Then d + 2 t + (-r) = -d - 2 t -(-

Perturbation of the normal forms

In this section we use the theory developed in section 2 to study the persistence of crossing periodic solutions of the normal forms given by Theorem B, when it is perturbed inside the class of piecewise linear differential systems with two zones separated by the plane = {z = 0}.

Parabolic-parabolic center

We consider the unperturbed systems X a 0 (x, y, z) = x, -zsign(z), x + y and X b 0 (x, y, z) = x, zsign(z), x + y .

From statement (iii) of Theorem B it is easy to see that the origin is a parabolic-parabolic center of the unperturbed systems ( ẋ, ẏ, ż) T = X a 0 (x, y, z) and ( ẋ, ẏ, ż) T = X b 0 (x, y, z). Indeed for both systems

S ± = 0, b + 3 b - 3 = 1 > 0, d + 2 = -1 < 0, d - 2 =
1 > 0, and η ± = 0. The singular points of the upper and lower vector fields associated to X a 0 are invisible centers and so the period annulus A is all the plane {x = 0}, see Fig. 2. Now, the singular points of the upper and lower vector fields associated to X b 0 are visible saddles and so the period annulus A is bounded by the separatrices of the saddles, see Fig. 3.

The theory developed in the previous sections allows us to study the limit cycles of the following perturbed systems X a (x, y, z; ε) :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋ = x + ε α + 0 + α + 2 y + α + 3 z ẏ = -z -1 + εβ + 2 y ż = x + y + ε κ + 0 + κ + 3 z if z > 0, ẋ = x + ε α - 0 + α - 2 y + α - 3 z ẏ = -z + 1 + ε β - 0 + β - 2 y + β - 3 z ż = x + y + ε κ - 0 + κ - 2 y + κ - 3 z if z < 0. ( 19 
)
So we have the following result. 

+ α + 0 -2α + 0 sech π √ 3 -3(β - 0 + β + 0 + 2κ - 0 ) and B = 2(α - 2 + α - 3 + 3(α + 2 + α + 3 )) √ 3 e π √ 3 -1 + tanh π √ 3 -1 (α - 2 + α - 3 + 3(α + 2 + α + 3 )) √ 3 - 2e - √ 3π (α - 2 + α - 3 ) √ 3 + 2πα - 2 -πα - 3 + 2 √ 3α + 2 -2πα + 2 + 2 √ 3α + 3 -πα + 3 + 3πβ - 3 -2πβ + 2 -πβ + 3 -3πκ - 2 + 3πκ - 3 + πκ + 2 -πκ + 3 .
Moreover if A = 0 and B = 0 then there are no crossing periodic solutions bifurcating from periodic orbits contained in {x = 0}.

It is worth to say that even assuming B = 0 and |ε| = 0 small enough this proposition does not provide the global uniqueness of crossing periodic solutions of system [START_REF] Llibre | Improving the averaging theory for computing periodic solutions of the differential equations[END_REF] close to the plane {x = 0}. Indeed some crossing periodic solutions may bifurcate purely from infinite (see [START_REF] Gouveia | On limit cycles bifurcating from the infinity in discontinuous piecewise linear differential systems[END_REF]).

Proof of Proposition 9. The proof of the first part of this proposition is analogous to the proof of Proposition 7, noting that the solutions of ( ẋ, ẏ, ż) T = X c 0 (x, y, z) are ψ + 0 (t, 0, ν, 0) = 0, νe Clearly if A = 0 and B = 0, then M(ν) = C 0 = 0 for all ν ∈ V. It concludes this proof. 2

Fig. 2 .

 2 Fig. 2. Phase Portrait of unperturbed vector field X a 0 .

Proposition 9 .

 9 If B = 0 then, for |ε| = 0 small enough, there is a unique crossing periodic solution φ(t, ε) of system[START_REF] Llibre | Improving the averaging theory for computing periodic solutions of the differential equations[END_REF] bifurcating from periodic orbits contained in {x = 0}, such that φ(0, ε)

  in this case, the Melnikov-like function (5) is linear, i.e.M(ν)= C 0 + C 1 ν, where
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Proposition 7. There exist parameters α ± i , β - i , κ - i , i = 1, 2, 3, β + 2 , κ + 0 , and κ + 3 such that system [START_REF] Llibre | On the birth of limit cycles for non-smooth dynamical systems[END_REF] admits, for |ε| = 0 small enough, at least 8 limit cycles converging, when ε goes to 0, to some of the periodic orbits contained in {x = 0}. Proposition 8. There exist parameters α ± i , β - i , κ - i , i = 1, 2, 3, β + 2 , κ + 0 , and κ + 3 such that system (20) admits, for |ε| = 0 small enough, at least 8 limit cycles converging, when ε goes to 0, to some of the periodic orbits contained in {x = 0}.

Proof of Proposition 7. In order to prove this proposition we have to identify the elements of Theorem A. Computing the solutions of ( ẋ, ẏ, ż) T = X a 0 (x, y, z) we obtain

Expanding the solutions of system [START_REF] Llibre | On the birth of limit cycles for non-smooth dynamical systems[END_REF] in power series of ε we get

and

Analogously we compute σ ± 0 (t, 0, ν, 0) = ±2 arctan ν,

and

Using the formulae (6) we conclude

e 2 arctan ν 2

,

where

Now expanding the function M(ν) (see [START_REF] Chicone | Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators[END_REF]) in power series of ν we get

Here the parameters C i , i = 0, . . . 8, are linear combinations of the parameters

2 , κ + 0 , and κ + 3 . Moreover they are linearly independent. So we can choose them in order to obtain 8 positive simple zeros of the equation M(ν) = 0. The proof of this theorem follows by applying Theorem A. 2

Proof of Proposition 8. The proof of this proposition is analogous to the proof of Proposition 7, noting that the solutions of ( ẋ, ẏ, ż) T = X b 0 (x, y, z) are ψ + 0 (t, 0, ν, 0) = 0, ν cosh tsinh t, ν sinh tcosh t + 1 , ψ - 0 (t, 0, ν, 0) = 0, ν cosh t + sinh t, ν sinh t + cosh t -1 , and

Here again, expanding the function M(ν) (see [START_REF] Chicone | Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators[END_REF]) in power series of ν we get

where the parameters C i , i = 0, . . . 8, are independent linear combinations of the parameters α

Focus-focus center

We consider the unperturbed systems X c 0 (x, y, z) = x, -z + sign(z)y, x + y . From statement (ii) of Theorem B it is easy to see that the origin is a focus-focus center of the unperturbed system ( ẋ, ẏ, ż) T = X c 0 (x, y, z) in such way that their periodic orbits fulfill all the plane {x = 0} (see Fig. 4). Indeed for both systems

3, η ± = ±1 and then γ 1 + γ 2 = 0.

We study the limit cycles of the following perturbed system X c (x, y, z; ε) :