
HAL Id: hal-01297285
https://hal.science/hal-01297285

Submitted on 4 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Bifurcations caused by grazing incidence in many
degrees of freedom impact oscillators

Mats Fredriksson, Arne Nordmark

To cite this version:
Mats Fredriksson, Arne Nordmark. Bifurcations caused by grazing incidence in many degrees of free-
dom impact oscillators. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 1997, �10.1098/rspa.1997.0069�. �hal-01297285�

https://hal.science/hal-01297285
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Bifurcations caused by grazing incidence in
many degrees of freedom impact oscillators

B y Mats H. Fredriksson and Arne B. Nordmark
Department of Mechanics, Royal Institute of Technology,

S-100 44 Stockholm, Sweden

The transition from stable periodic non-impacting motion to impacting motion is
analysed for a mechanical oscillator. By using local methods, it is shown that a graz-
ing impact leads to an almost one-dimensional stretching in state space. A condition
can then be formulated, such that a grazing trajectory will be stable if the condition
is fulfilled. If this is the case, the bifurcation will be continuous and the motion after
the bifurcation can be understood by a one-dimensional mapping. This mapping is
known to exhibit chaotic solutions as well as arbitrary long stable cycles, depending
on parameters.

1. Introduction

Impact oscillators are examples of systems that are inherently strongly nonlinear. As
such, they have proven to be a challenge to analyse and understand. This and the
many practical applications of impact problems, have led to extensive studies, using
the progress in dynamical systems theory in recent years.

One peculiarity in the dynamics of impact oscillators comes from grazing or zero
velocity impacts. Previous investigations have mainly dealt with one degree of free-
dom systems. Studying such a system, Shaw & Holmes (1983) noted that a zero
velocity impact gives a singularity in the derivative of the Poincaré mapping. This
lack of smoothness effects the dynamics in a profound way. Whiston (1992) anal-
ysed consequences for global dynamics. Nordmark (1991) studied the bifurcation of
a stable periodic orbit when it is brought to a grazing impact by a change in a single
parameter. In the generic case stability is lost, but Ivanov (1993) showed that there
are cases when it is possible for the periodic orbit to be stable after the bifurca-
tion. Further analysis of grazing bifurcations can be found in Foale & Bishop (1992),
Budd & Dux (1994) and in Ivanov (1994). Effects similar to those found in Nordmark
(1991) have been observed in systems with more than one degree of freedom, and not
necessarily in systems with explicit time dependence. Knudsen et al. (1992) studied
the dynamics of a model of a railway wheelset, where impact between the wheelset
and the rail was included. On p. 461, figure 4, a bifurcation diagram is shown where
stable periodic motion bifurcates to chaotic motion as the wheelset starts to impact.
Close to the bifurcation point no periodic windows are visible, which is one of the
possible scenarios described in Nordmark (1991).

The purpose of this paper is to study the grazing bifurcation of a stable periodic
motion in a quite general class of mechanical systems. The first section of the paper
reviews the formulation of equations of motion for constrained systems of rigid bodies
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according to Kane. It is briefly discussed how this method can be used in impact
problems where the duration of the impact is negligible. The system to investigate
is then taken to be described by a differential equation, with generalized coordinates
and speeds as coordinates on the state space, and the motion is restricted to take
place on one side of a rigid boundary. When a part of the system impacts with the
boundary, an instantaneous change of generalized speeds is assumed to take place. We
emphasize a geometrical viewpoint, where the boundary is treated as a submanifold
of the state space. The analysis then focuses on the problem of understanding the
dynamics close to a grazing trajectory, close to the boundary. By series expansions an
algebraic expression is obtained, which can be combined with the local dynamics of
the non-impacting motion to give a stability criterion. Consequences for the Poincaré
mapping technique are analysed. If the stability criterion is fulfilled, the motion after
bifurcation can be understood. The dynamics will be similar to the one degree of
freedom case. Finally a numerical example is studied.

2. Equations of motion and impacts in complex systems

Different methods to obtain equations of motion for complex mechanical systems
have been proposed. The fundamental equation of mechanics, Newton’s second law,
has the disadvantage that, for a constrained system, the constraint forces have to
be eliminated to get a minimal set of equations that describes the system. By far
the most well known method that does not suffer from this problem is to use the
Lagrangian equations. Here the method of Kane & Levinson (1985) will be briefly
outlined, using the interpretation by Lesser (1995). The impact problem can be
treated in the same spirit, formally giving an impact law.

(a ) Equations of motion
The positions and attitudes of a set of k constrained bodies are given by n gener-

alized coordinates qi, i = 1, . . . , n, and we denote

q =


q1
...
qn

 . (2.1)

Differentiating q with respect to time, dq/ dt = q̇, we get the generalized velocity.
By the transformation

u = A(q, t)q̇ + a(q, t), (2.2)
where A is an invertible n×n matrix, we introduce a new velocity u. This velocity is
called the generalized speed in Kane & Levinson (1985). By solving for q̇ one obtains

q̇ = B(q, t)u+ b(q, t), (2.3)

where B = A−1 and b = −A−1a. Equation (2.3) is called a kinematic differential
equation. The centre of mass velocity and the angular velocity of a body can then
be written as a linear combination of vectors with either q̇i or ui as coefficients (plus
another term if there is an explicit time dependence or if b 6= 0). Lesser (1995)
interpreted these vectors as tangent vectors to the instantaneous configuration man-
ifold and showed that Kane’s method is equivalent to a projection procedure of the
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Newton–Euler equations, using the tangent vectors. This automatically eliminates
the constraint forces and the resulting equations are on the form

Mu̇ = f, (2.4)

where M = M(q, t) is an n× n matrix and f = f(q, u, t).
There are several advantages of this method. Compared to that of Lagrange, there

is no need to form the kinetic energy and then proceed by differentiation. The intro-
duction of generalized speeds can sometimes significantly reduce difficulties in prob-
lem solving. This method also handles (simple) non-holonomic problems with ease, as
they can be viewed as systems with a knowledge of some uj : uj = 0, j = m+1, . . . , n.
Indeed, there will not be any need to exclude non-holonomic systems. We will thus
assume that the generalized speed is

u =


u1
...
um

 , (2.5)

where m 6 n. The matrix B of the kinematic differential equation (2.3) will then be
an n×m matrix.

(b ) Impacts
Collisions between stiff bodies involve a change of velocities in a short period of

time. Thus, in the limit of infinitely stiff bodies one might anticipate that an instan-
taneous change in velocity will give a reasonable model. The impact approximation is
then to introduce a discontinuity in velocities (speeds) at the time t∗ of impact, while
the generalized coordinates vary continuously. By labelling the generalized speed just
after and just before impact ua and ub, we assume that an impact law can be writ-
ten as ua = G(ub, q∗), where q∗ = q(t∗). We can formally obtain the function G by
integrating equation (2.4), ∫ t∗+∆t

t∗−∆t
Mu̇ dt =

∫ t∗+∆t

t∗−∆t
f dt. (2.6)

M will be slowly varying during the impact. We let ∆u = ua−ub, and by introducing
the impulse

I =
∫ t∗+∆t

t∗−∆t
f dt, (2.7)

we have
M(q∗, t∗)∆u = I, (2.8)

and thus
ua = ub +M−1(q∗, t∗)I. (2.9)

Of course, the impulse must be determined by physical reasoning and by some kind
of model of the impact (in finite time). This paper will not deal with this problem,
it will be assumed that this can be done.

3. System, state space and local geometry

The system to be considered is a set of constrained rigid bodies, described by a 
choice of generalized coordinates, q, and generalized speeds, u. As seen in the previous 
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section, the motion is then given by equation (2.3) and (2.4). These equations might
have an explicit time dependence. Only periodic time dependence will be of interest
here. Whether the system is autonomous or periodically driven is of no importance
for the derivations and conclusions below. In the case of a system without explicit
time dependence the state space is n+m-dimensional, and we let

x =
q

u

)
. (3.1)

The smooth evolution of the system is determined by a differential equation,

ẋ = F (x). (3.2)

In the periodically driven case we convert the system to the autonomous form (3.2)
in the standard way, by extending x with a phase angle proportional to time. The
phase angle is unaffected by impacts, so we can view it as a generalized coordinate.
Hence, there is no reason to treat this case separately. The formal solution of the
differential equation is X = X(x0, t), which satisfies

∂X

∂t
(x0, t) = F (X(x0, t)) (3.3)

and
X(x0, 0) = x0. (3.4)

The formal solution will define a one parameter mapping Φt by

Φt : x0 7→ X(x0, t). (3.5)

In the model we also include impacts by assuming that the motion of the bodies of the
system is restricted to take place on one side of a rigid boundary. An analysis of the
global dynamics will have to deal with the possibility of several contact conditions,
which almost certainly will lead to a complex behaviour. However, our main concern
here will be local dynamics, which allows us to avoid some of the problems involved.
We introduce a bifurcation parameter µ, and we assume that for an interval of
negative µ values there is a stable periodic non-impacting solution. The dependence
of µ is such that when µ is increased, the periodic solution will come closer to the
boundary. When µ = 0 a body will make contact with the boundary somewhere
along the trajectory of the periodic solution, and since this contact will take place at
certain values of the generalized coordinates and speeds, it corresponds to a point O∗
in state space. This is assumed to be the only point where the separation between the
periodic solution and the boundary vanishes. It is also assumed that if it were not for
the possibility of impacts, the stable periodic solution would exist for a parameter
interval of positive µ values.

We define a function h = h(x) in a neighbourhood B of O∗ to be positive and
equal to the minimal distance from the boundary to the impacting body when x is
on the side where motion takes place. For points which corresponds to a penetration
of the boundary we take h(x) < 0. This function only depends on the generalized
coordinates. One will have contact when h(x) = 0, and this can be viewed as an
equation for a local surface in state space, dividing B in two parts. This surface, the
impact surface, is clearly of crucial importance and we use the notation

Σ = {x ∈ B : h(x) = 0}. (3.6)
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Σ

O*

O2

O1

Figure 1. Grazing trajectory.

If the formal solution is inserted in h, we will have a new function

H(x0, t) = h(Φt(x0)), (3.7)

which describes the minimum distance to the boundary as a function of time and
initial condition. It will be convenient to define a function v = v(x) on Σ :

v =
∂H

∂t
(x0, 0), x0 ∈ Σ . (3.8)

This allows us to divide the impact surface into different subsets. We define

Σ + = {x ∈ Σ : v > 0}, (3.9)

Σ 0 = {x ∈ Σ : v = 0}, (3.10)

Σ− = {x ∈ Σ : v < 0}. (3.11)

The impact of the periodic solution when µ = 0 is assumed to be a grazing impact,
which we define as an impact with v = 0 and ∂2H/∂t2 = Ag, where Ag is positive
and of order O(1). Thus part of the system is brought to contact with the boundary,
but is immediately pulled back.

Finally an impact law is used for the impact process. With the definitions above
it can be viewed as a mapping G : Σ− → Σ +, that leaves the position coordinate
unchanged. For a grazing impact the impact law is assumed to be reduced to the
identity mapping. This assumption is valid for simple models that involve motion in
only one dimension, but for more complicated systems this might not be true.

In figure 1 the grazing trajectory is indicated, the point O1 is mapped by the flow
to O∗ ∈ Σ 0. Here another geometrical feature is apparent: choosing a point near
O1 will either result in an impact or not when the trajectory is followed. Thus a
neighbourhood of O1 will be divided in two parts, separated by points that will be
mapped to Σ 0. As we will see, this will be of significant importance for the dynamics.

4. Local mappings

The standard approach to the stability problem is to linearize the mapΦ. For a 
point that undergoes a grazing impact this does not work for the obvious reason that

 on October 18, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

5

http://rspa.royalsocietypublishing.org/


Σ
C(P)

G ◦ φtc (P)

φtc (P)

P

O*

Figure 2. The C mapping, P 7→ C(P ).

only for non-impacting points will the result be correct. For impacting points an error
will be introduced due to the fact that the dynamics of the impact is absent. To solve
this problem a discontinuity bypass mapping is introduced. This will be a crucial step
towards an understanding of the grazing bifurcation, since local flow mappings are
well understood and derivatives are easily calculated from the variational equations.

As in figure 1, let O∗ ∈ Σ 0 be the image of O1, using Φt1 , where t1 is the time of
flight from O1 to O∗. In the same way we let O2 be the image of O∗, and the time of
flight from O∗ to O2 is t2. We now construct a mapping C, defined for points near
O∗, that will enable us to write a locally valid mapping from a neighbourhood of O1

to a neighbourhood of O2 as Φt2 ◦ C ◦ Φt1 .
If the full mapping is to be a series of compositions starting with Φt1 , one should

note that we then must let the flow pass through Σ . This is because the mapping
Φt1 disregards the boundary. By doing so the model is violated and the mapping C
must correct this. The points close to O∗ that will need this correction are the points
lying on trajectories that cross Σ− if the flowline is followed backwards or forwards
for a short time. Starting at a point with coordinates x, H(x, t) will tell us how the
distance to the boundary changes as t is varied. By our assumptions it is clear that
H will have a local minimum for a (small) time τ = τ(x). We can then introduce a
function ψ by

ψ(x) = H(x, τ(x)). (4.1)

This will help us to distinguish impacting points with ψ(x) 6 0, from non-impacting
points. For impacting points we define the mapping ΦtC , where tC is defined as the
time of flight from the impacting point to the crossing point of Σ−. By the definition
of Σ we have that tC must fulfil H(x, tC) = 0. This map takes impacting points
to the impact surface. Hence a natural next step is to use the impact mapping to
include the dynamics of the impact. The mapping G ◦ΦtC will not do as a candidate
for C, since it does not take place in zero time. This is achieved by composition with
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 Φ−tC , so that the full discontinuity bypass mapping will become

C =

{
Φ−tC ◦G ◦ ΦtC , if ψ 6 0,
identity, if ψ > 0.

(4.2)

Finally we note that a point close to O1 that will undergo an impact, will have a
time of flight t1 + tC to reach Σ−. By the properties of Φ we have Φt1+tC = ΦtC ◦Φt1 ,
thus

Φt2−tC ◦G ◦ Φt1+tC = Φt2 ◦ C ◦ Φt1 , (4.3)
which is the desired form.

(a ) Algebraic expressions
We now consider series expansions of C. It will be assumed that local coordinates

have been introduced to make O∗ correspond to x∗ = 0. The notation O(x, t)p will
be used to indicate terms of total order p in x and t.

Let us start by analysing the impact law. To generate a set of n+m−1 independent
coordinates ρ on Σ we note that h(x) = 0 can be used to write, say, q1 = q1(q2, . . . , qn)
by using the implicit function theorem. We define our new coordinates so that v is
used instead of u1 by letting ρ1 = v(q1(q2, . . . , qn), q2, . . . , u) and taking the remaining
coordinates to be q2, . . . , qn, u2, . . . , um. Equation (2.9) then indicates that

∆u = w(ρ). (4.4)

By assumption, ρ1 = 0 will give the identity mapping, thus ∆u = 0 when ρ1 = 0. If
we let

ξu = − ∂w
∂ρ1

(0), (4.5)

the expansion of w must be

∆u = −ρ1(ξu +O(ρ)). (4.6)

We extend ξu to the vector ξ,

ξ =
0
ξu

)
, (4.7)

to enable us to write the change of state given by the impact law as

∆x = −ρ1(ξ +O(ρ)). (4.8)

Focusing on how to determine tC as a function of x, we start by introducing a
smooth coordinate transformation x̃ = x̃(x). This is done by using ψ(x) and τ(x) to
define new coordinates to use instead of, say, q1 and u1. Let x̃1 = ψ(x), x̃2 = τ(x) and
let the remaining x̃ coordinates be equal to q2, . . . , qn, u2, . . . , um. This transformation
lets us write H on a simple form,

H(x, t) = x̃1 + (t− x̃2)2(Ag/2 +O(x̃, t)), (4.9)

where Ag is the acceleration of the grazing impact. Now introduce another coordinate
transformation χ = χ(x̃), by taking χ1 =

√−x̃1, and leaving all other coordinates
unchanged. Using this set of coordinates we have

H(x, t) = −χ2
1 + (t− χ2)2(Ag/2 +O(χ, t)). (4.10)
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By rewriting H(x, tC) = 0 as

χ1 − (χ2 − tC)
√
Ag/2 +O(χ, tC) = 0, (4.11)

where the minus sign is chosen since it is the time to reach Σ− we are interested in,
we obtain an equation which can be used to determine tC as a smooth function of χ
to desired order. We solve to find

tC = χ2 − χ1(
√

2/Ag +O(χ)). (4.12)

In order to express ∆x as a function of χ we need to calculate v as a function of χ,

v =
∂H

∂t
(x, tC) = −χ1(

√
2Ag +O(χ)). (4.13)

This leads to
∆x = χ1(

√
2Agξ +O(χ)). (4.14)

There remains to expand the flow near O∗, and we find that

Φt(x) = x+ t(F (x∗) +O(x, t)). (4.15)

It is now easy to plug tC into Φt, use the impact law and then Φt again. One obtains

ΦtC(x) = x+ tC(F (x∗) +O(χ)), (4.16)

and by using (4.14)

G ◦ ΦtC(x) = x+ tC(F (x∗) +O(χ)) + χ1(
√

2Agξ +O(χ)). (4.17)

We finally obtain

Φ−tC ◦G ◦ ΦtC(x) = x+ χ1(
√

2Agξ +O(χ)). (4.18)

Transforming back to the original set of coordinates we see that for impacting points,
C can be written as

C(x) = x+ y(x)(
√

2Agξ +O(x, y(x))), (4.19)

where y =
√−ψ(x).

5. Stability and behaviour after bifurcation

In the following we will analyse the stability issue and what kind of motion one
might expect after bifurcation. Although we use the assumption that the dynamics
is given by the flow, except for the low velocity impacts, this is merely a question
of convenience. It should be clear that impacts or any other discontinuity in forces
could be allowed as long as they can be handled by differentiable local mappings.

(a ) The stability problem
When µ is increased to zero, x∗ will become a grazing periodic point, with some

period time T : ΦT (x∗) = x∗. We let L be the linearized part of ΦT ,

L =
∂ΦT

∂x
(x∗). (5.1)

If we disregard impacts, ΦT gives all the dynamics. Stability is assumed, hence L has
one eigenvalue equal to one and all other eigenvalues are inside the unit circle.
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When the possibility of impacts is to be included, we know from the previous
section that this can be done in terms of the discontinuity bypass mapping. For
impacting points we have ψ(x) 6 0. One finds the expansion of ψ to be ψ = ηx +
O(x)2, where η is the covector

η =
∂h

∂x
(x∗). (5.2)

We note that h only depends on generalized coordinates, so ηξ = 0.
It follows that the stability can be examined by the mapping

x 7→
{ √−2AgηxLξ +O(x), if ηx 6 0,
Lx+O(x)2, if ηx > 0.

(5.3)

If ηLξ < 0, we see that an impact will be followed by another impact. If this is the
case, then the square root will be iterated and as a result the periodic motion will
become unstable. By just changing L to Li above, this will happen if an impact is
followed by non-impacting motion for some iterations, but eventually impacts again.
Thus, if ηLiξ < 0 for any i > 1, stability will be lost.

If we have equality for some i, ηLiξ = 0, no conclusions can be drawn. This is
because an understanding of this case must involve higher order terms. Lastly, if
ηLiξ > 0 for all i > 1, an impact is followed by non-impacting motion. The non-
impacting motion was assumed to be stable, so in the generic case stability is assured.
However, non-generic cases are possible where trailing terms will be of importance.
We will identify these cases when discussing Poincaré mappings.

(b ) Poincaré mappings
A common method to employ when analysing periodic motion in systems described

by differential equations is the Poincaré mapping technique. This will be most helpful
in our case, because it lets us disregard the action of the mapping C in the direction
of the flow.

Thus, we assume that a suitable Poincaré section ΣP can be chosen, which is
crossed transversally by the flow. It is described by coordinates z and a mapping V ,
such that V (z) = x ∈ ΣP. When µ = 0 the grazing flowline will cross the section
at x̄, and we will assume that z are local coordinates, hence V (0) = x̄. The time of
flight from x̄ to x∗ is t1, Φt1(x̄) = x∗, and we let t2 = T − t1.

If impacts are disregarded, one notes that ΦT ◦ V will take a point close to z = 0
to a point x close to x̄, but not necessarily in the section. We define the mapping
W by starting at x, following the flowline for a short time TW (x) until the section
is reached, and then let z = W (x) be the coordinate for the corresponding crossing
point. It is clear that W ◦ V becomes the identity mapping. We then have that the
Poincaré mapping can be written W ◦ ΦT ◦ V . We include impacts by writing the
complete Poincaré mapping as

P = Ĉ ◦ P̂ , (5.4)

where P̂ = W ◦ ΦT ◦ V . In this way the effects of impacts are separated out from
the smooth dynamics. Obviously, Ĉ must be related to C and reduce to the identity
mapping for non-impacting points. One finds that Ĉ can be written as Ĉ = W ◦Φt2 ◦
C ◦ Φ−t2 ◦ V .

To be able to identify impacting points in ΣP we define ψ′ = ψ ◦ Φt1 ◦ V , so
if ′(z) < 0 then z is an impacting point. This gives a natural way to define a
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covector η′,

η′ =
∂ ′

∂z
(0) = η

∂Φt1

∂x
(x̄)

∂V

∂z
(0), (5.5)

such that if second order terms are neglected, we have impact if η′z 6 0. The mapping
P̂ can be written as P̂ (z) = L′z +O(z)2, where

L′ =
∂W

∂x
(x̄)

∂ΦT

∂x
(x̄)

∂V

∂z
(0). (5.6)

Since W is implicitly defined by

Φ−TW (x)(V (W (x))) = x, (5.7)

one can calculate ∂W/∂x(x̄) by differentiating this expression. By expanding Ĉ one
finds a square root stretching in ΣP. The direction is given given by ξ′,

ξ′ =
∂W

∂x
(x̄)

∂Φt2

∂x
(x∗)ξ. (5.8)

From now on we will discuss all dynamics in terms of the Poincaré mapping, so there
will be no confusion if we drop all prime signs and simply write ψ, η, L and ξ.

Assembling all pieces now gives the full Poincaré mapping in the form

P (z) =

{ √−2Agηzξ +O(z), if ψ(z) 6 0,
Lz +O(z)2, if ψ(z) > 0.

(5.9)

By similar reasoning as in the previous section, the periodic motion is unstable if
ηLiξ < 0 for any non-negative integer i. As indicated earlier, when formulating a
criterion for stability some care must be taken. To see this, assume that L has a single
largest (by modulus) eigenvalue and assume that the corresponding eigenvector is
annihilated by η. It might be possible to have ηLiξ > 0 for all i > 0, but the
asymptotic motion will be in the plane given by η. Hence, a complete understanding
requires higher order terms. There are similar situations, and they can all be viewed
as special cases; arbitrary small changes in parameters will make the periodic motion
unstable. Keeping away from this situation, a sufficient criterion for stability can be
formulated: the grazing periodic point will be stable if

ηLiξ > 0 for i = 0, 1, 2, . . . (5.10)

and this is valid also for neighbouring parameter values.
Figure 3 show the geometric interpretation of the stability criterion. The successive

iterates of ξ always point in the positive direction out from the tangent plane to
= 0.

(c ) Motion when µ > 0

When µ > 0 the mapping P̂ will have a stable periodic point Z(µ), and by as-
sumption we have ψ(Z) < 0, ∂Z/∂µ 6= 0. We introduce a new local coordinate z̃ by
a O(µ) transformation, z̃ = z−Z(µ), so that the periodic point of P̂ will correspond
to z̃ = 0. Writing the Poincaré mapping for non-impacting points as a function of z̃
we have P̂ = Lz̃+O(z̃, µ)2. If we let ψ(Z) = −d, we find by expressing ψ as function
of z̃ that ψ = ηz̃ − d+O(z̃, µ)2. By truncating terms of order greater than one, the
following mapping is obtained,

P̃ (z̃, µ) =

{ √
2Ag(d− ηz̃) ξ +K(z̃, µ), if ηz̃ 6 d,

Lz̃, if ηz̃ > d,
(5.11)
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ξ L1 ξ

L2 ξ

L3 ξ

Figure 3. The stability criterion.

where K is O(z̃, µ) and K(z̃, µ) = Lz̃ when ηz̃ = d. In the following we will assume
that the stability criterion is fulfilled, and to simplify notation we write z instead
of z̃.

Denote the region where ηz 6 d by I, and the region where ηz > d by II. We can see
that z = 0 will not be a fixed point any more. This is because

√
2Agdηξ+ηK(0, µ) >

d for small d values, so the image of z = 0 will be in region II. Since the eigenvalues of
L are inside the unit circle, the iterates of z = 0 will approach region I. Investigating
how many iterations of the linear mapping that will be needed for z = 0 to return
to region I, we see from √

2Ag ηL
iξ +

ηLiK(0, µ)√
d

6 √d, (5.12)

that i → ∞ as d → 0. Assume that L has a single largest eigenvalue (by modulus)
λ, and let ζ be the corresponding eigenvector. From the stability criterion we have
that λ must be real and λ > 0. We choose ζ such that ηζ = 1 and by denoting all
other eigenvalues by λr we find

LiP̃ (0, µ) =
√

2Agdαλ
iζ +

√
dO(λr)i +O(λ, λr)iO(µ), (5.13)

where α > 0 is a constant. When approaching region I, we find that the iterates will
line up on the line segment given by ζ. We expect this behaviour also for points with
ηz < 0, at least for points close to z = 0 and small d values. The crossing point of
this line segment and the surface ηz = d is zζ = dζ, which gives ηLzζ = λd. Thus,
in the limit d → 0, this is the maximal penetration for an orbit which has spent a
large number of iterations in region II. It follows that the motion will be trapped in
a region of size O(

√
d) = O(

√
µ).

Since all orbits entering region II finally will return to region I, it makes sense to
study the first return mapping from I to I. Let N(z, µ) be the number of iterations for
z to re-enter region I. Clearly, from a stability point of view it is most advantageous
to spend many iterations in region II. If the return to region I takes place in just
a few iterations, the derivatives of the return mapping will be large, so no stable
periodic motion is to be expected. For large N , the dominating part of the return
mapping is α

√
2Ag
√
d− ηz λN(z,µ)ζ. Due to the one dimensionality for high iterates,

it is sufficient to study the projection of LN(z,µ)P̃ (z, µ), where ηz 6 d, using η. If δ
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is defined as δ(z) = ηz/d, we obtain

δ(z) 7→ δ(LN(z,µ)P̃ (z, µ)) ≈ α√2Ag(λN(z,µ)/
√
d)
√

1− δ(z). (5.14)

Nordmark (1996) shows by writing d as a function of two new parameters, that the
dependence on z in equation (5.14) as d → 0 is only through δ(z). The resulting
one-dimensional limit mapping is then analysed. Results for similar one-dimensional
mappings can be found in Nusse et al. (1994), Lamda & Budd (1994) and in Foale &
Bishop (1994). An analysis of a two-dimensional mapping with the properties here
described can be found in Chin et al. (1994). We briefly summarize the results from
these investigations. If λ > 2/3, the motion is found to be chaotic for an interval of
µ values, 0 < µ < µ′. If 1/4 < λ < 2/3 there will be an infinite sequence of windows
with stable periodic motion alternating with chaotic bands. The period increases by 1
if µ is decreased from one periodic window to the next. There is a scaling relationship
for the periodic windows: if period N is found for µ, then period N + 1 can be found
close to λ2µ. When 0 < λ < 1/4 no chaotic bands are found. The scaling relationship
still holds, but the windows will overlap.

6. A numerical example

A model of a two degrees of freedom (autonomous) oscillator will have a three-
dimensional Poincaré section. With this in mind we construct an example mapping
based on the theory presented above. We let

z =

 z1

z2

z3

 (6.1)

and the covector η is taken to be

η = ( 1 0 0 ). (6.2)

When ηz > d, the dynamics is given by a linear mapping L, z 7→ Lz. We choose L
to be on the simple form,

L =

 λ 0 0
0 0 −ω
0 ω 0

 . (6.3)

The eigenvalues of L are λ and ±iω, and it is assumed that 0 < |ω| < λ < 1. For the
impact part of the mapping, when ηz 6 d, we use

z 7→
√
d− ηz

 1
1
1

+

 λd+ 3(d− z1)
5(z1 − d)− ωz3

7(d− z1) + ωz2

 . (6.4)

Thus, the vector which gives the direction of the square root stretching is

ξ =

 1
1
1

 . (6.5)
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Figure 4. Bifurcation diagram, λ = 0.5, ω = 0.3.

It is easy to see that this choice of η, L and ξ fulfils the stability criterion. The
bifurcation should then be continuous and the phenomena mentioned are expected
to show up in simulations as d is increased from zero.

In figure 4 a bifurcation diagram is shown, where z1 is plotted against d. Using
λ = 0.5 and ω = 0.3, the example mapping has been simulated for 600 different d
values. For each value of d, the last 1000 iterates are shown from a total of 10 000
iterates. When d = 0.03, the mapping has a stable four-periodic solution. As d is
decreased, the four-periodic solution is interrupted by a chaotic band, which eventu-
ally disappears, leaving a five-periodic orbit. This seems to repeat as d is decreased
further. To investigate this more thoroughly and to check the scaling relationship, an-
other bifurcation diagram was plotted. It is displayed in figure 5. By dividing z1 with√
d the range of the motion should be constant and by plotting against ln

√
d/ lnλ

the width of the chaotic bands should also be constant. This is clearly seen to be the
case.

Choosing d = 1.5 × 10−4 we find that ln
√
d/ lnλ ≈ 6.35, so this corresponds to

chaotic motion. This value can be used to show the appearance of the attractor.
Figure 6 shows 2000 iterates from a simulation including 10 000 iterations of the
mapping. The iterates line up in a many fingered object. This is similar to the result
obtained from a two-dimensional mapping in Nordmark (1991, p. 294, figure 9).
The longest finger consists of points that were located on the impacting side in the
previous step. The expansion given by the square root can be seen, the finger is less
dense closer to zero. Since most points end up well inside the non-impacting region,
the linear mapping comes into action, giving the other fingers. Finally, impact occurs
again and the pattern is repeated in a non-periodic way.

7. Results and discussion

In this paper the bifurcation of a stable periodic orbit in a general mechanical 
oscillator as it grazes a rigid boundary has been considered. By using the assumption 
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Figure 5. Bifurcation diagram using logarithmic scale.
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Figure 6. 2000 iterations when d = 1.5× 10−4.

that impacts can be modelled by an instantaneous change of velocities, given by a
smooth impact law, we have been able to analyse this situation to some extent. To
understand the interaction between the flow and the impact surface close to a grazing
impact, it has been helpful to use the concept of a discontinuity bypass mapping. By
series expansion we have found that for points that undergo a low velocity impact,
this mapping has a square root dependence of the penetration depth if trajectories
were allowed to move inside the impact surface. The square root term acts only in
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one direction, which is given by the impact law. Combining this with the dynamics
of the non-impacting motion gives a criterion for stability.

The bifurcation will be discontinuous if the square root term of the mapping makes
the grazing periodic orbit unstable. The square root term will be iterated, hence the
motion quickly moves away from the formerly stable orbit. The situation then escapes
local analysis, but it should be noted that the local theory gives the direction in which
the system at first moves. With a knowledge of the dynamics in a larger region of
state space, it might be possible to understand this case as well. The direction of
the square root stretching is given by the impact law, so a change in the impact law
might, for certain systems, make different regions of the state space reachable. This
could be useful in applications, where a certain kind of motion usually is preferable.

If the stability criterion is fulfilled, then the bifurcation will be continuous. The
motion after bifurcation is trapped close to the former fixed point. The dynam-
ics is characterized by occasional low velocity impacts that are followed by non-
impacting motion for a while. Depending on the largest eigenvalue of the linearized
non-impacting part of the Poincaré mapping, the motion will be periodic, with arbi-
trary long periods, or non-periodic. This is due to the one-dimensional nature of the
dynamics.

Impacts are possible causes of wear and noise, an important issue in many appli-
cations. The theory presented above gives tools to handle and understand some of
the problems involved in bifurcations when a part of a mechanism starts to impact.
The main underlying cause is the tangency of the flow to a boundary in state space,
a situation that could occur in a variety of different systems. Analysing situations
when higher order terms are of importance and the dependence of parameters in the
stability criterion are topics for future work.

We thank Dr Hanno Essén for helpful comments. The support of this work by the Swedish
Research Council for Engineering Sciences (TFR) is gratefully acknowledged.
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