
HAL Id: hal-01297284
https://hal.science/hal-01297284v1

Submitted on 4 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Complementarity methods for multibody friction
contact problems in finite deformations
Patrick Chabrand, Olivier Chertier, Frédéric Dubois

To cite this version:
Patrick Chabrand, Olivier Chertier, Frédéric Dubois. Complementarity methods for multibody friction
contact problems in finite deformations. International Journal for Numerical Methods in Engineering,
2001, �10.1002/nme.170�. �hal-01297284�

https://hal.science/hal-01297284v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Complementarity methods for multibody friction contact
problems in �nite deformations

Patrick Chabrand∗;†, Olivier Chertier and Fr�ed�eric Dubois

Laboratoire de M�ecanique et d’Acoustique—C.N.R.S. 31; Chemin Joseph Aiguier;
13402 Marseille Cedex 20; France

SUMMARY

This paper deals with the frictional contact occurring between deformable elastoplastic bodies subjected
to large displacements and �nite deformations. Starting from a standard slave=master formulation we
have developed a symmetrical formulation with which the unilateral contact conditions and the friction
law are satis�ed for each body. From the continuum equations, the discretized frictional contact problem
is set as a complementarity problem and solved using Lemke’s mathematical programming method. The
e�ciency of the method is illustrated in the case of several examples.

KEY WORDS: multibody frictional contact; �nite elastoplasticity; symmetrical slave-master formulation;
complementarity problem; Lemke’s method

1. INTRODUCTION

Methods for solving frictional contact problems are needed in many industrial processes.
Friction plays a crucial role, particularly in metal forming processes such as extrusion, rolling
and sheet metal forming. Modelling these processes leads to strongly non-linear problems.
Non-linearities arise from the �nite displacements, the behaviour of the material and the
contact conditions. These non-linearities give rise to problems which are extremely di�cult
to compute and costly to solve. A great deal of e�ort is still required to develop e�cient
algorithms for use in this context.
Numerical methods for treating contact problems with �nite deformations have been devel-

oped by many authors in the case of contact between a rigid obstacle and a deformable body.
The main algorithms used so far to solve the contact inequalities have been direct solutions of
the inequalities, the penalty method, and the Lagrangian multiplier and augmented Lagrangian
methods.
Contact problems can be directly solved using algorithms which are based on a �xed-

point method on the sliding limit combined with a minimization problem under constraints,
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corresponding to a Tresca problem. To solve the minimization problem under constraints, over-
relaxation procedures [1] and conjugate gradient methods [2], both associated with projection
techniques, have been developed. The frictional contact problem is regularized before being
solved using the conjugate gradient method. These two iterative methods can be used to deal
with many friction contact problems, but they can be costly in terms of the computational time
required. With the penalty method or the augmented Lagrangian method [3–8] the inequality
constraints are only approximately satis�ed when there is an insu�ciently large number of
augmentations. The penalty method has been widely used, but with this method the unilateral
conditions and the friction conditions are again only approximately satis�ed. The accuracy
depends on the penalty coe�cient. With Lagrange multiplier methods, the multipliers, which
correspond to the physical contact forces, can be exactly computed.
Friction contact problems have also been formulated in the same way as linear comple-

mentarity ones [9]. Mathematical programming methods can then be used. The displacements
and the contact forces, which are both unknowns, are exactly determined in order to satisfy
the constraints. Moreover, with such methods the tangent sti�ness matrix remains symmetric
when penalty and Lagrange multipliers methods, introduce unsymmetric contributions. We
have developed an extension of the Lemke method which gives quite a good description of
the contact state. In addition, the stick=slip status is not required to be studied separately, as
it is the case when using a regularized approach.
To deal with multibody contact problems, the notion of slave=master bodies was introduced

by Hallquist et al. [10] and Wriggers and Simo [11]. The use of a continuum mechanics for-
mulation was originally restricted to frictionless contact problem and was recently extended to
the frictional problem by Klarbring [12], Laursen and Simo [13] and Wriggers and Miehe [14].
With this approach, the choice as to which body is the master one and which the slave one

has to be made a priori. This choice generally depends on the geometry of the antagonist
surfaces and on the material characteristics. However, if the solids are not both meshed with a
discretization of the same �neness, the master body will be the one meshed with the coarser
grid. The contact is then taken to be the contact between the slave nodes and the master
surface, and the numerical methods developed constrain the slave nodes so that they do not
penetrate into the master body. With this approach, whether or not penetration of the master
nodes into the slave body occurs is not checked and the unilateral conditions can be violated.
To prevent this from occurring, it is also possible at the same loading increment to reverse
the roles played by the bodies: the slave one becomes the master one and vice versa [10]. As
noted by Laursen [15] and Zavarise and Wriggers [16], with methods of this kind one loses the
physical interpretation of the traction forces to be evaluated at each contact node. Pavanachand
and Krishnakumar [17] have furthermore observed that there exist some geometric conditions
under which some two-pass algorithms fails to converge.
In the present paper, we present a symmetrical treatment for dealing with frictional contact.

Both bodies simultaneously play the role of both the slave and the master body. The contact
is then taken to be the contact between a slave node on each of the contact surfaces and a
master segment on the antagonist surface. With this formulation, no a priori choice between
the bodies is required. In addition, a coe�cient � is introduced to weight the role played by
each body and to generalize the notion of two-pass master=slave algorithms. Depending on
the value of this coe�cient, we can choose either the standard formulation, the symmetrical
one or a formulation in which one of the bodies can be more master than slave. This means
that in a general presentation of the problem, it is possible to give one of the bodies a
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greater inuence on the contact depending on the characteristics of the problem in hand. The
advantage of using a coe�cient of this kind is that it introduces into the same algorithm
both the standard slave=master approach and a generalized two-pass algorithm. In addition,
introducing this coe�cient into the continuum formulation means that each of the bodies
involved in the contact can be simultaneously master and slave, which preserves the physical
meaning of the numerical contact traction forces.
Another aim of this paper is to describe the various steps which are necessary to transform

the initial discrete problem into a suitable one for being solved using Lemke’s method. To be
able to use this solver, it is necessary �rst to condense the problem to the contact variables
involved in the contact alone and then to write the contact with friction as complementarity
conditions. Another important step consists of introducing into the problem to be solved the
distance between a slave node and a master segment and their tangential velocity. Details are
given here about the matrix construction, both in the standard master=slave formulation and in
the symmetrical one. This paper can be summarized as follows. We begin by presenting the
continuum formulation of the frictional contact problem. The impenetrability conditions are
associated with the de�nition of the gap between a slave particle and the master’s surface. We
introduce a convected basis associated with the parametrization of the contact surfaces and we
write Coulomb’s friction law with an objective relative velocity. The symmetrical formulation
of the virtual work of contact is then given. The contact and friction constraints, which
are reduced to the two-dimensional case, are both established and the matrix construction is
described in both cases. The last section deals with the examples. First, we describe some very
simple tests used to illustrate the di�erences between the two formulations. An extrusion test
is then modelled, and lastly, in the context of the study of friction, we analyse the shearing
of two identical deformable microscopic asperities present at the surface of a sheet metal.

2. CONTACT KINEMATICS

In this paragraph, we introduce the variables necessary for modelling the kinematics of the
contact between the deformable bodies. Constitutive equations of frictional contact account
for the impenetrability condition at every point on a body into other bodies or itself. These
conditions also have to be consistent with the fact that the relative sliding between bodies
results from a shear stress. There exist many such constitutive equations, which are often
used in the phenomenological approach to contact. The kinematics of the �nite deformations
introduce further di�culties. As a matter of fact, the contact conditions are implicit ones
(the contact surfaces are unknown a priori) and the friction equations are associated with
a tangential relative velocity between the bodies. This velocity, which has to satisfy the
objectivity principle is based on objective time derivatives such as convective derivatives and
justi�es the use of convected bases. Without loss of generality, we restrict our attention to
the case of two bodies. It is easy to extend the solution to cases involving a larger number
of bodies in contact. We parametrize each surface in its reference and current con�gurations.
Let 
(i) denote body i in a reference con�guration C0. In the current con�guration Ct , the
bodies are denoted !(i); i=1; 2. Classically, let (e(i); i=1; 2) be the map of the associated
deformations between C0 and Ct de�ned by

e(i) : 
(i)×R−→Rn; 
(i) ∈ Rn; n=2 or 3 (1)
3



Figure 1. Contact geometry.

and

!(i) =e(i)(
(i)) (2)

The potential contact surfaces [12–14] are denoted as (�(i)c ; i=1; 2) in C0. The current po-
sition of the surfaces is given by (i)c =e(i)(�(i)c ), i=1; 2. Surface coordinates are introduced,
corresponding to �(i)c . A su�ciently smooth mapping is de�ned as

���(i) :A(i) ∈ Rn−1−→�(i)c ; i=1; 2 (3)

here A(i) is an open subset of Rn−1, and one component of A(i) is written ^=(�1; : : : ; �n−1).
Let X(i) =���(i)(^) denote the position of a particle of �(i)c and let x(i) =M(i)(^)=e(i)(���(i)(^))
denote the position of a particle of (i)c .
F(i)t is the deformation gradient corresponding to e(i)t .

2.1. Distance function

In this section, the aim is to introduce the distance between the contact surfaces of the
bodies. Each surface will be simultaneously taken to be both a slave and a master surface.
At time t, at a given point on one surface (taken to be the slave) x(s) (Figure 1), let us
de�ne �X(m) and �x(m) the position of the closest point on the other surface in the reference
and current con�gurations, respectively, introducing the curvilinear co-ordinate solution of the
problem:

�̂ = argmin
^∈A(m)

1
2‖x(s) − M(m)(^)‖2 (4)

then we have

�x(m) =M(m)( �̂)
�X(m) =���(m)( �̂)

(5)
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For a given slave point x(s), �x(m) =M(m)( �̂) is determined by writing the minimum of the
distance function

(
x(s) − �x(m)

) · @M(m)( �̂)
@^� =0; �=1; : : : ; n− 1 (6)

2.2. Local basis

It is then possible to de�ne a local basis (Figure 1) on �(m)c and (m)c via partial derivatives
with respect to the curvilinear co-ordinates

G� =
@���(m)( �̂)
@^� (7)

g� =
@M(m)( �̂)
@^� =F(m)t G�( �̂) (8)

Writing the orthogonality of unit outward normals to the tangential plane to the surface of
body (m):

N=
G1 ∧G2
‖G1 ∧G2‖ (9)

n=
g1 ∧ g2
‖g1 ∧ g2‖ =

(
F(m)t

)−TN
‖(F(m)t

)−TN‖
(10)

As proposed by Klarbring [12], it is also possible to treat x(s) like a translation of �x(m) ∈ (m)c
in the neighbourhood of M(m)( �̂) de�ned by

x(m)tr ( �̂)=M(m)( �̂) + dnn( �̂) (11)

Natural base vectors of the tangent plane in xmtr ( �̂) are

ĝ�= g� + dn
@n
@^�
( �̂); �=1; n− 1 (12)

The signed distance between a slave particle occupying position x(s) and the master surface
can be then introduced:

d
(
�̂
)
=
(
x(s) − x(m)( �̂)

)
=dnn (13)

These two tangential vectors are obviously identical when contact is established, i.e. when
dn=0.
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2.3. Relative velocity

We now turn to de�ning the relative velocity between x(s) and �x(m). Taking the total time
derivative of Equation (13), we obtain with ṅ=(@n=@t + �̇�� @n=@��):

v(s) − �v(m) − �̇��g�= ḋnn+ dnṅ (14)

One of the main points now consists of introducing an objective relative velocity between the
slave point and the master surface either in the master local reference co-ordinate system or
in the master-translated local reference co-ordinate system. Due to the term ṅ, the velocities
de�ned above are not objective ones. Using the local basis introduced above, the following
relative Eulerian velocities vr or v̂r can be written as

vr = v(s) − �v(m) − dnṅ= �̇��g� + ḋnn (15)

v̂r = v(s) − �v(m) − dn @n@t =
�̇��ĝ� + ḋnn (16)

Equations (15) and (16) show that in both local bases, ḋn is the normal component of the
relative velocities. vg= �̇��g� and v̂g= �̇��ĝ� are the relative tangential velocities, which are
identical when dn=0.

3. UNILATERAL CONTACT AND FRICTION LAW

First, the unilateral contact conditions require the Cauchy contact traction vector onto the
slave surface to be decomposed into

t(s) = tnn+ tg= tnn+ tĝ (17)

with, depending on the contravariant basis used:

tn = t(s) · n (18)

tg= t(s) − tnn= tg�g� = tĝ� ĝ� (19)

The unilateral complementarity conditions for normal contact are speci�ed as the following
complementarity conditions:

dn¿ 0; tn¿ 0; dntn=0 (20)

An alternative equivalent form to Equation (20) is

tn ∈Cn; ∀sn ∈ Cn; dn(sn − tn)¿ 0 (21)

with
Cn= {pn: (s)c −→ R;pn¿ 0} (22)

The friction law used here is Coulomb’s friction law. Let C(tn;e) be the Coulomb’s cone:

C(tn;e)= {tg ∈Rn; tg · n=0; ‖tg‖6�tn} (23)
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where ‖a‖=[a�m��a�]1=2 with m��= g� · g�. An equivalent way of writing this can be obtained
if g is replaced by ĝ, then ‖a‖=[â�m̂��â�]1=2 with m̂��= ĝ� · ĝ�.
Coulomb’s friction law can be expressed in a variational form:

tg ∈C(tn;e); ∀sg ∈C(tn;e); vg · (sg − tg)= �̇��(sg� − tg�)¿ 0 (24)

The unilateral conditions (21) and the Coulomb’s friction law (24) both can be written in the
following integral forms:

∀sn ∈Cn
∫
(s)c

dn(sn − tn) dac¿ 0 (25)

∀sg ∈C(tn;e)
∫
(s)c

vg · (sg − tg) dac¿ 0 (26)

3.1. Virtual work of contact

We consider test function ẽ(i) for each body (i) in spaces T (i)’ of kinematically admissible
variations (virtual displacements). The virtual contact work is then given by

(Gc)=−
∫
(s)c

t(s) · ẽ(s) da(s)c −
∫
(m)c

t(m) · ẽ(m) da(m)c (27)

The law of action and reaction can be expressed as follows:

t(s) da(s)c =−t(m) ( �x(m)) da(m)c (28)

3.2. Standard slave=master formulation

Using Equation (28), we express the virtual contact work with a single integral:

Gc =−
∫
(s)c

t(s):
(
ẽ(s)

(
X(s)

)− ẽ(m) ( �̂ (X(s)))) da(s)c (29)

The contribution of the part of the master potential surface (m)c not involved in the contact
(t(m) = 0) has been simply omitted.
In order to write the virtual contact work in terms of normal and tangential contribu-

tions, some preliminary results are needed. Following Laursen and Simo [13] for a quantity
F
(
X(s);e(s);e(m)

)
we introduce its Gateau derivative �F

(
X(s);e(s);e(m)

)
by

�F
(
X(s);e(s);e(m)

)
=
d
d�
F
(
X(s);e(s)� ;e(m)�

)
�=0 (30)

where the perturbed �elds e(s)� and e(m)� are de�ned by

e(s)� =e(s) + �ẽ(s); e(m)� =e(m) + �ẽ(m) (31)

Using Equation (8), the variation of e(m)( �̂) is given by

�(e(m)( �̂))= � ���g� + ẽ(m)( �̂) (32)
7



Furthermore, noting that tg�dn=0 �=1; n− 1 and tndn=0, which along with (28) constitute
the strong law of action and reaction, we write the following variation:

t(s) · �
(
e(s)

(
X(s)

)− e(m)( �̂)) = t(s) · �(dnn) = (tnn+ tg�g�)(�dnn+ dn�n)= tn�dn (33)

This leads to the following expression:

t(s) · (ẽ(s) − ẽ(m)( �̂))= tn�dn + � ���tg� (34)

Using these relations one can write:

∫
(s)c

t(s) ·
(
ẽ(s)

(
X(s)

)− ẽ(m) ( �̂ (X(s)))) da(s)c =
∫
(s)c

tn�dn + tg�� ��
� da(s)c (35)

3.3. Symmetrical master=slave contact formulation

In order to introduce our symmetric master–slave formulation, we split the virtual contact
work into two parts, which are weighted by a coe�cient (�)

∫
(1)c

t(1) · ẽ(1) da(1)c +
∫
(2)c

t(2) · ẽ(2) da(2)c = �
∫
(1)c

(
t(1)n �d

(1)
n + t(1)g� �

���
)
da(1)c

+ (1− �)
∫
(2)c

(
t(2)n �d

(2)
n + t(2)g� �

���
)
da(2)c (36)

Taking �=1 (resp. �=0) leads to surface 1 being the slave (resp. master) and surface 2
being the master (resp. slave). The choice of parameter � will not be fully analysed with the
examples presented in this paper. But one can imagine di�erent strategies, such as taking �
to depend on the material properties or the mesh size [18].
Using the previous results, we will now obtain the discrete system to be solved. Finally,

we have to solve

Find e(i) : 
i×R −→ Rn; t(i)n ∈C(i)n and t(i)g ∈C(i)(tn;e) for i=1; 2 such that

∀ẽ(i) ∈T (i)’ :
∑
i=1;2

(∫
!(i)
b(i) :∇sẽ(i) dv(i) −

∫
!(i)
f (i)v · ẽ(i) dv(i) −

∫
(i)f

f (i)s · ẽ(i) da(i)f
)

−�
∫
(1)c

t(1)n �d
(1)
n + t(1)g� �

���
(1)
da(1)c − (1− �)

∫
(2)c

t(2)n �d
(2)
n + t(2)g� �

���
(2)
da(2)c = 0

∀s(i)n ∈C(i)n
∫
c(i)
d(i)n
(
s(i)n − t(i)n

)
da(i)c ¿ 0

∀s(i)g ∈C(i) (t(i)n ;e(1);e(2))
∫

v(i)r · (s(i)g − t(i)g
)
da(i)c ¿ 0

(37)

c(i) 
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Figure 2. Contact area.

where f (i)v are body forces per unit volume, and f (i)s are surface forces per unit area, both of
which are applied to solid 
(i).

4. FINITE ELEMENT DISCRETIZATION

As the discrete complementarity contact with friction problem will be introduced below in
the two-dimensional (2D) case, we restrict our presentation of the �nite element discretization
procedure in this section to the 2D case. In addition, linear triangular or quadrilateral elements
will be used. It is now easy to de�ne the variables of the problem in this restricted framework
(Figure 2).
For a linear element we obtain

�x(m) = (1− ��1)xm + ��1xm−1 (38)

To write the discrete problem, it is convenient to introduce here contact elements in the form
of the slave node and master segment couple. It is clear that these elements are liable to
evolve during the computation. Let the length l of the master segment be de�ned by

l= ‖xm−1 − xm‖ (39)

For a given slave node x(s), let xm and xm−1 be the position of the nodes of the master
segment containing the projection of the slave node. Its curvilinear co-ordinate ��1 is given by

��1 =
x(s) − xm

l
· g (40)

The local unit basis vector g is given by

g=
xm−1 − xm

l
and n= g∧ ez (41)

The choice of a unit basis vector g is made in the 2D case, to avoid having to deal with
the metric in the Coulomb’s friction law. If the covariant or contravariant vectors introduced
above are used, the metric appears in the expression of the Coulomb’s cone and the change
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of variable used to write the whole problem as a complementarity one has to include the
metric, which is unknown. The unit vector g is related to the covariant or contravariant
vector by

g=
ĝ1
l
= ĝ1l (42)

Hence, the tangential contact vector onto the slave surface can be written as

tg= t̂1ĝ1 = ttg with tt =
t̂1
l

(43)

The tangential relative velocity is given by

vg= �̇�1ĝ 1 = vtg with vt = l �̇�1 (44)

The relative distance vector d is expressed in the local basis:

d=dnn=x(s) − (1− ��1)xm − ��1xm−1 (45)

Let the variations of position in the slave and master con�guration be de�ned
by: Tx(s) = Tu(s) and Txm= Tum, respectively, where Tu(s) and Tum are displacement variations
de�ned by

(
Tu(s)

)T
=
(
�u(s)x ; �u

(s)
y

)
(Tum)T = (�umx ; �umy )

(46)

In order to discretize the integrals including the contact related terms in (37), it is necessary
to determine the variations of dn and ��:

�dn =
(
Tu(s) −

(
1− ��1

)
Tum − ��1Tum−1

)
· n (47)

� ��1 =

(
Tu(s) −

(
1− ��1

)
Tum − ��1Tum−1

)
l

· g+ (Tu
m−1 − Tum)
l2

·dnn (48)

These equations can be written in matrix form. Let us �rst introduce the following vectors
for each contact element e:

Tue=



Tu(s)

Tum

Tum−1


 ; Ne0 =



0
−n
n


 ; Te0 =



0

−ĝ1
ĝ1




Ne1 =




n

−(1− ��1)n

− ��1n


 ; Te1 =




ĝ1
−(1− ��1)ĝ1

− ��1ĝ1




(49)
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Using the variations established in Equations (47), (48) and the matrices given in Equation
(49), the virtual work of contact Wc can be written using contact elements:

Wc = �
∫
(1)c

TueT
[
tnNe1 + ttl

(
Te1
l
+
dnNe0
l2

)](1)
dac

+ (1− �)
∫
(2)c

TueT
[
tnNe1 + ttl

(
Te1
l
+
dnNe0
l2

)](2)
dac (50)

Introducing a standard �nite element discretization one can express the previous continuous
problem in term of discrete unknowns:

Find uh ∈Th’	;Rn ∈Chn and Rg ∈Ch(Rn; uh) such that

∀Tuh ∈Th’	:

Tuh · [Fint(uh)− Fext(uh)− (Hn(uh)Rn +Hg(uh)Rg)]=0

∀Sn ∈Chn dn · (Sn −Rn)¿ 0

∀Sg ∈Chg (Rn) vt · (Sg −Rg)¿ 0

(51)

For the sake of simpli�cation, we will omit superscript h below. In (51) Rn and Rg are the
nodal normal and tangential contact force vector, respectively. The dimension of each of these
vectors is nc. nc is the number of contact nodes and ndf will be taken to indicate the total
number of degrees of freedom. dn and vt are vectors of Rnc and denote the nodal relative
distance and the nodal relative velocity. The nc× ndf matrices Hn and Hg arise from the
numerical integration of the discrete problem associated with Equation (51).
The following discrete subspaces have been introduced:

Th’	 := {u∈Rndf ; ui|�u =0; i=1; : : : ; ndf} (52)

Chn := {Rn ∈Rnc such that Rni¿ 0 ∀i=1; : : : ; nc} (53)

Chg (Rn) := {Rg ∈Rnc such that |Rgi |6�Rni ∀i=1; : : : ; nc} (54)

5. NEWTON’S METHOD FOR GENERALIZED EQUATIONS

As proposed by Klarbring and Bjorkman [19], we write the discretized problem as generalized
equations in the sense of Robinson [20], and we use the extension of Newton’s method to
generalized equations [21]. For this purpose, the problem has to be written on the following
form:

(55)0 ∈ f(x) +NC (x) 
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where f(x) is a non-linear operator and NC(x) is the normal cone for a non-empty closed
convex set C in Rn:

NC(x)=

{{y∈Rn=yT (x? − x)6 0 ∀x? ∈C} if x∈C
∅ if x =∈ C

(56)

When C is the whole Rn, we have NRn(x)= {0} and f(x)=0.
Furthermore, Equation (55) is equivalent to the variational inequality:

x∈C; f(x)T (x? − x)¿ 0 ∀x? ∈C (57)

In the framework of an incremental decomposition of the loading, at each increment, at an
iteration (j + 1) of Newton’s method, the problem to be solved is:

Find xj+1 such that

0∈ f(xj) +∇xf(xj)(xj+1 − xj) +NC(xj+1)
(58)

The frictional contact problem previously set can then be written in the identical form to
problem (55):

Find u∈T’	;Rn ∈Cn;Rg ∈Cg(Rn) such that

0∈




L(u;Rn;Rg)
dn
vt


+NC



u
Rn
Rg




with

L(u;Rn;Rg)= (Fint(u)− Fext(u)− (Hn(u)Rn +Hg(u)Rg)

(59)

In Equation (59), C=Rndf × Cn × Cg(Rn). At a given loading increment, at an iteration
(j + 1) of the Newton–Raphson method, the problem to be solved is:

Let (u0;R0n;R
0
g) be given

Find uj+1 ∈T’	; Rj+1n ∈Cn and Rj+1g ∈Cg(Rj+1n ) such that

0∈




Lj

djn
vjt


+



∇u;Rn; RgLj

∇u;Rn; Rgdjn
∇u;Rn; Rgvjt


 ;




duj+1

Rj+1n −Rjn
Rj+1g −Rjg


+NC



uj+1

Rj+1n

Rj+1g




(60)

with

∇u;Rn; RgLj=[∇uLj −Hn(uj) −Hg(uj)]

∇u;Rn; Rgdjn=[∇udjn 0 0]= [�Hn(uj) 0 0]

∇u;Rn; Rgvjt =[∇uvjt 0 0]= [�Hg(uj) 0 0]

∇uLj=K(uj)−∇uHj
nR

j
n −∇uHj

gR
j
g= K̂

Lj=L(uj;Rjn;R
j
g)

duj+1 = uj+1 − uj

(61)
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If the previous system is split into three contributions, a more usual presentation is recovered:

• Equilibrium equation

K̂ duj+1 −Hn(uj)Rj+1n −Hg(uj)Rj+1g =− Fint(uj) + Fext(uj) (62)

• Contact variational inequality
Rj+1n ∈Cn ∀Sn ∈Cn
[d jn +�H

T
n (u

j) duj+1]� [Sn −Rj+1n ]�¿ 0 ∀�=1; : : : ; nc
(63)

• Friction quasi-variational inequality
Rj+1g ∈Cg(Rj+1n ) ∀Sg ∈Cg(Rj+1n )

[vjt +�HT
g (u

j) duj+1]� (Sg −Rj+1g )�¿ 0 ∀�=1; : : : ; nc
(64)

Comments
• The contact condition can be equally well written in the form of complementarity relations:

(Rj+1n )� ¿ 0[
d jn +�H

T
n (u

j) duj+1
]
� ¿ 0

and

(Rj+1n )� ·
[
d jn +�H

T
n (u

j) duj+1
]
� =0 ∀�=1; : : : ; nc (65)

• The friction conditions can also be written as a threshold law:
‖(Rj+1g )�‖6�(Rj+1n )� ∀�=1; : : : ; nc

with

‖ (Rj+1g

)
�
‖¡� (Rj+1n

)
� ⇒

[
vjt +�HT

g (u
j) duj+1

]
�
=0

‖ (Rj+1g

)
�
‖=� (Rj+1n

)
� ⇒

[
vjt +�HT

g (u
j) duj+1

]
�
= − �(Rj+1g )�

(66)

6. MATHEMATICAL PROGRAMMING SOLVER

The frictional contact problem de�ned above can be solved using a mathematical program-
ming method, such as the Lemke’s one. Methods of this kind are appropriate for solving
complementarity problems written in the following form:

Find U∈Rp;R∈Rp such that:

R −KU=F
Uj¿ 0 Rj¿ 0; UjRj=0 ∀j=1; : : : ; p

(67)

where F is a known vector of Rp and K a Rp × Rp matrix.
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It can be observed in problem (67) that all the components of the unknowns are constrained
by complementarity conditions. In order to use this kind of method to solve the frictional
contact problem posed above, several stages are required. First, the constraints have to be
set as complementarity ones. This means that the friction conditions have to be rewritten, the
contact kinematic variables have to be introduced into the system to be solved and the contact
forces have to be described in terms of the local contact referentials. Lastly, a condensation
procedure has to be used to reduce the problem to the sole variables involved in the contact.
Details of these steps are given in the following sections.

6.1. Friction complementarity relations

In dealing with the 3D case, Klarbring and Bjorkman [19] have introduced a piecewise linear
friction law approximating Coulomb’s friction law. This discretization procedure makes it
possible to write the friction relations as complementarity conditions and to set the problem
as a linear complementarity one. In the present study, we restrict ourselves to a 2D analysis
and their approach leads to introducing new couples of variables, (� and �), which de�ne
the boundary of the Coulomb’s cone. The Kuhn Tucker conditions for the frictional contact
problem leads to the following expression for a contact node:

�1(Rn; Rg)= − Rg + �Rn
�2(Rn; Rg)= + Rg + �Rn

vt = −
(
�1
@�1
@Rg

+ �2
@�2
@Rg

)

�i¿ 0; �i¿ 0; �i�i=0; i=1; 2

(68)

Thus for each contact node, the unknowns are dn, �1, �2, and their complementarity variable,
Rn, �1 and �2. The use of the condensation procedure discussed below makes it possible, upon
introducing variables � and �, to write a system in which all the components are constrained
by complementarity conditions. This linear complementarity problem with a 3nc× 3nc square
singular matrix (nc being the total number of nodes involved in the contact) can then be
straightforwardly solved using a pivoting algorithm such Lemke’s method [22].

6.2. Matrix construction

If the whole system is translated into the global referential co-ordinate system, �rst the com-
ponents of the contact forces have to be accounted for in the local referential co-ordinate
system (n; g). In the second step, the kinematic contact variables, namely the contact distance
between a slave node and its master segment dn and the relative tangential velocity, have
to be introduced for the slave nodes or in the symmetrical formulation for the slave=master
nodes. The unknown variables of the master nodes above are the local components of their
incremental displacements. The problem is then written in a similar form to Equation (67) and
it can be straightforwardly solved using Lemke’s method. These procedures will be described
below in greater details in the case of standard and symmetrical slave=master formulation. As
a matter of fact, there are large di�erences between the two cases, which justi�es the two
presentations.
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6.2.1. Standard slave=master formulation. Let us de�ne a contact element by the association
between a contact node (denoted in what follows by the superscript (s)) and the nodes
which characterize its contacting segment (denoted by the superscript (m) below). Then for
each contact element it is possible to write the following linear system schematically as
follows:

[
Kss Ksm Kl1

Kms Kmm Kl2

]j 
du(s)

j+1

du(m)
j+1

du(l)
j+1


 =

[
F(s)

F(m)

]
+

[
Q 0

H I

]j R
(s) j+1

R(m)
j+1


 (69)

where

[
du(s)

j+1
]T
=
[
du(s)

j+1

x du(s)
j+1

y

]
[
du(m)

j+1
]T
=
[
du(m)

j+1

x du(m)
j+1

y du(m−1)
j+1

x du(m−1)
j+1

y

]
[
R(s)

j+1
]T
=
[
R(s)

j+1

n R(s)
j+1

g

]
[
R(m)

j+1
]T
=
[
R(m)

j+1

n R(m)
j+1

g R(m−1)
j+1

n R(m−1)
j+1

g

]

(70)

Superscript l indicates nodes which do not belong to the contact element under consideration
(i.e. l=ndf − 6) and in Equation (69), du(l) j+1 is the unknown displacements vector of these
nodes. It is worth noting that in Equation (70), the slave contact forces and their contribution
to the master nodes have been written in terms of the local referential. In Equation (69),
matrix Q and H have the following expressions:

Q=

[
nx gx
ny gy

]
; H=




−(1− ��)nx −(1− ��)gx − nx dnl
−(1− ��)ny −(1− ��)gy − ny dnl

− ��nx − ��gx + nx dnl
− ��ny − ��gy + ny dnl




(71)

These transformation matrices are constructed for each contact elements, and their analytical
inverse is given by

[
Q 0
H I

]−1
=

[
QT 0

−HQT I

]
(72)
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Substituting from Equation (72), system (69) leads to the following one for each contact
element:

[
QTKss QTKsm QTKl1

−HQTKss +Kms −HQTKsm +Kmm −HQTKl2 +Kmm

][
du(s)

j+1

du(m)
j+1

]

=

[
QTF(s)

−HQTF(s) + F(m)

]j
+

[
R(s)

j+1

R(m)
j+1

]
(73)

In Equation (73), the term −HQTF(s) corresponds to the e�ects of the contact on the master
nodes. As a matter of fact, in considering the contact system outlined above, the discretization
of the virtual contact work leads to additional external forces being exerted on the master
nodes due to the action=reaction principle.
The contact kinematic unknowns with which the unilateral constraints and the Coulomb’s

friction law are written are the normal distance dn and the tangential velocity vt . Additional
work therefore has to be carried out in order to introduce these unknowns into the system to
be solved.
The linearization of dn used in Equation (63) can also be written as follows:

dj+1n =djn +
(
Nj
1

)T
duj+1 (74)

The linearized expression at time tk of the tangential relative velocity vt is chosen so that it
is consistent with the time discretization algorithm used here:

vj+1t = vjt + (∇∇∇j
uvt)

T duj+1 (75)

with

vjt = l
j �̇�j (76)

where superscript j refers to Newton’s iteration. For the sake of simpli�cation, index k, which
refers to the time, has been omitted and will not be used. ∇∇∇j

uvt corresponds to the variation
of the tangential velocity at time tk . Using the forward Euler method to integrate �̇�j:

�t(∇∇∇j
uvt)

T duj+1 =� ��
j
(∇∇∇j

ul)
T duj+1 + lj(∇∇∇j

u
��)T duj+1

with � ��j= ��j − ��k−1 and �t= tk − tk−1
(77)

Substituting Equation (77) into Equation (75) leads to

vj+1t = vjt +

[
���jTe

j

0 + T
ej
1 +

djnNe
j

0

lj

]T
duj+1

�t
(78)
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Thus, for one contact element, we obtain the following system in which all the variables are
expressed with components in the local referential:

[
dj+1n

�t · vj+1t

]
=

[
djn

�t · vjt

]
+


du(s) j+1n

du(s)
j+1

g


 (79)

The transfer of the displacement vector from the global coordinate system (x; y) to the local
one (n; g) is carried out by

du(s) j+1n

du(s)
j+1

g


 =[QT ���HT ] j


du(s) j+1
du(m)

j+1



(x;y)

(80)

where matrix ���H is de�ned by

���H=




−(1− ��)nx −(1− ��)gx − nx dnl −���gx

−(1− ��)ny −(1− ��)gy − ny dnl −���gy

��nx − ��gx − nx dnl −���gx

��ny − ��gy − ny dnl −���gy




(81)

In the standard slave=master approach, these matrices are constructed and reversed analyti-
cally for each contact element, so that it is not necessary to construct global matrices and to
invert them using numerical methods.

6.2.2. Symmetrical slave=master formulation. In this case, each node on the contact surfaces
can simultaneously play the role of a slave and a master node, except for the nodes on the
contact surface which have no opposite master segment. The latter nodes will therefore be
treated only as master ones. We will use subscript (sm) to indicate the nodes which can
be both slave and master nodes and subscript (mm) for nodes which play only the role of
master nodes. The total force applied to a (sm) node is obtained by adding the contact force:
this node is a slave node submitted to the forces resulting from the action of the other body,
which is taken to be the master one. The contact force to which a (mm) node is subjected can
obviously only be due to the action of the other body, which is in contact with the segment
of the master node.
The local contact element matrices can then be constructed in a similar way to what was

done in the previous standard slave=master case. However, due to the coupled action of
(sm) nodes, it is not possible here to determine the local inverse of these matrices. These
matrices are therefore assembled so as to give two global systems. The one relates to the
change of contact variables, and other relates to the contact forces. These two systems can
be schematically represented in the following forms for both the kinematic contact unknowns
and the contact forces:

17



• Kinematic contact unknowns: The system used to express the components of the dis-
placement vectors of the contact nodes in the global coordinate systems as a function
of the components in the local coordinate systems cannot be written for a single contact
element as was done in (80). These relations are related to each other by the following
2nc× 2nc system:




du1(sm)(n; g)

du1(mm)(n; g)

du2(sm)(n; g)

du2(mm)(n; g)



=




Q1
T

sm 0 �H̃
2T

sm �H̃
2T

mm

0 Q1
T

mm 0 0

�H̃
1T

sm �H̃
1T

mm Q2
T

sm 0
0 0 0 Q2

T

sm







du1(sm)(x;y)

du1(mm)(x;y)

du2(sm)(x;y)

du2(mm)(x;y)




(82)

Once the system (82) has been numerically inverted, the kinematic contact variables
can be straightforwardly introduced for the (mm) nodes in the global system, using the
analog of relation (79).

• Reactions:



R1(sm)(x;y)

R1(mm)(x;y)

R2(sm)(x;y)

R2(mm)(x;y)


 =




�Q1sm 0 (1− �)H 2
sm 0

0 �Q1mm (1− �)H 2
sm 0

�H 1
sm 0 (1− �)Q2sm 0

�H 1
sm 0 0 (1− �)Q2mm







R1(sm)(n; g)

R1(mm)(n; g)

R2(sm)(n; g)

R2(mm)(n; g)




(83)

The constraints R1(mm)ng =R2(mm)ng =0 are necessary to be able to write a whole com-
plementarity problem. To deal with these constraints, a new change of variable will
be made. A su�ciently large positive number will be added to the kinematic contact
unknowns which will ensure the strict positivity of the kinematic variables and con-
sequently, the above constraints will be satis�ed, due to the complementarity condi-
tion.

6.3. Condensation procedure

At each equilibrium equation, the system to be solved can be reformulated in terms of contact
components (c) and free components (f); one obtains[

K̂cc K̂cf

K̂fc K̂�

][
duc

duf

]
=

[
Fc

Ff

]
+

[
Rc

0

]
(84)

With F=Fext−cont(uj)−Fint(uj) and Rc = [Hn(uj)R
j+1
n −Hg(uj)R

j+1
g ]T. The condensation pro-

cedure leads to:

K̂
?
duc = F? +Rc

duf = K̂
−1
� Ff − K̂

−1
� K̂fc duc

(85)

18



Figure 3. Symmetrical test—geometry. Figure 4. Standard approach.

with

K̂
?
= K̂cc − K̂cf K̂

−1
� K̂fc

F? = Fc − K̂cfK−1
� Ff

Two connected systems have been described. The �rst one deals only with the contact nodes.
The second system deals with the nodes which are not involved in the contact. This is a non-
constrained problem in which the only unknown vector is the displacement one. Its solution,
which obviously depends on the solution of the previous system, can be obtained using a
more standard algorithm.

7. NUMERICAL APPLICATIONS

7.1. Application tests

7.1.1. Symmetrical test. The standard master=slave approach can lead to large errors in the
contact kinematics. A very simple example is presented below to illustrate this. In this exam-
ple, the geometry of which is given in Figure 3, both bodies have the same material properties,
are discretized with an identical mesh and are subjected to symmetrical loads. In the standard
approach, only one of these bodies, the upper body here, is taken to be the master one, and
the lower one is the slave body.
Figure 4 shows that the contact constraints are satis�ed: none of the slave nodes penetrate

into the master body. However, as penetration of the master body into the slave one is not
checked here, the upper left-hand side node of the master surface is located inside the slave
body. The results shown in Figure 5 were obtained with the symmetrical formulation. The
contact was checked simultaneously and there was obviously no penetration of one body into
the other one.
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Figure 5. Symmetrical approach. Figure 6. Constant pressure patch test.

Figure 7. Finite element meshes for patch test.

7.1.2. Patch test. Here we consider the constant pressure patch test for contact problems
presented in Reference [23]. A rectangular elastic punch is placed in frictionless contact with
an elastic body by means on a uniformly distributed constant pressure (Figure 6). Since the
two bodies have the same material properties, the correct solution corresponds to a constant
contact pressure on the contact area. The meshes A, B, and C given in Figure 7 presented in
Reference [23] were tested. With mesh A, constant contact pressure was found with the single-
and two-pass algorithm, whereas for meshes B and C the standard single-pass master=slave
algorithm failed. Our �-pass master=slave algorithm (� 6=0) makes it possible to determine in
each case a constant pressure in the contact area. In Figure 8, the contact forces obtained
using mesh C are presented.

7.1.3. Large sliding test. With the symmetrical formulation, it is possible to improve the
treatment of large sliding problems. From the numerical point of view, to deal with face-
to-face nodes in the symmetrical formulation, we introduced node neighbourhoods which are
su�ciently small domains around the nodes. If the neighbourhood of a node contains a node
belonging to the antagonist surface, then one of these nodes will be taken to be the slave
one, and the other one will be the master one. Figure 9 shows the ability of the algorithms
to deal with cases of this kind, which arise particularly when large sliding movements occur.
In this example, the upper body slides onto the lower one, and obviously during the sliding,
face-to-face nodes can occur.
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Figure 8. Patch test: mesh c, contact forces. Figure 9. Large sliding test.

Figure 10. Geometry of the extrusion test. Figure 11. Extrusion results—frictionless and
friction cases.

7.2. Extrusion

Here we consider the extrusion of an aluminium cylinder into an aluminium die. This example,
the geometry of which is given in Figure 10, was �rst mentioned by Laursen [15], who com-
pares the results with and without friction. In this axisymmetric problem, the
material properties of both bodies were taken to be E=68; 956MPa, �=0:32. Zero tangen-
tial displacements are prescribed on the right-hand side of the piece, as shown in Figure 10.
The isotropic hardening is given by a Swift law: �0( ��p)=261:2(0:11868+ (��p)). Both bodies
were discretized with Q4=P0 elements. Prescribed displacements were applied at the top of
the cylinder. The cylinder was forced into the hole until its top had covered a distance equal
to its original length. The �nal deformed con�gurations have been plotted in both cases in
Figure 11. In the friction case, the cylinder obviously does not penetrate as far into the block
as in the frictionless case. In the frictionless case, the reduction in the length of the piece is
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Figure 12. Asperity shearing—geometry. Figure 13. Asperity shearing—contact forces.

small. The arrows in Figure 11 indicate the contact nodal forces exerted at a contact node:
their orientation is given by that of the contact force, and their length is proportional to the
intensity of the contact force. Especially, in the presence of large sliding movements, they
depend on the local characteristics of the contact system, namely on the di�erence between
the length of the antagonist segments, the number of nodes and the role played by each of
the nodes (master, slave or both) involved. In this work, as contact conditions were written as
nodal reactions, contact forces on each contact nodes were plotted in Figure 11 rather than a
distribution of these forces on each contact segment. The irregular distribution of these nodal
contact forces which can be observed in Figure 11 is caused by the local conditions (contact
and geometry). One can see in Figure 11, the e�ects of the friction on the orientation and the
intensity of the contact forces. From the computational point of view, convergence is reached
faster in the frictionless case than in the friction one. In the latter case, due to the friction, the
plastic strain and the stresses are greater and convergence requires a smaller step size. Our
results are very similar to those presented by Laursen. This example illustrates the ability of
these methods to accurately describe a severe friction contact problem. As a matter of fact
with friction, the sliding of nodes at the corner of the block is more delicate to treat and it
can lead to numerical problems, depending on the method used.

7.3. Asperity shear o�

In this last example, we consider two asperities with identical geometries face to face mov-
ing in opposite directions. This part deals with the shear e�ects located in the contact
zone. The contact is assumed to be frictionless. This is a preliminary model for charac-
terizing the friction as a plastic shear process between asperities. The geometry of the test
is given in Figure 12. Two di�erent materials are involved. The one was an aluminium with
the following material properties: E=70;000MPa, Poisson’s coe�cient �=0:35. Its harden-
ing law is given by: �0( ��p)=540(0:008057 + ��p)0:28. The second material is a steel with
the following characteristics: E=205;900MPa, �=0:3, and its hardening law is given by:
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Figure 14. Asperity shearing—friction coe�cient.

�0( ��p)=619(0:0078 + ��p)0:235. The two bodies are meshed with 586 Q4=P0 elements. The
height of the asperities is 4:75 �m and their characteristic angle is �=13:36◦. The meshing
between the two asperities is 2:325 �m. The lower aluminium asperity remains �xed. Zero tan-
gential displacements are prescribed on sides AB and CD, and zero vertical displacements are
prescribed on BC. The upper steel asperity is moved with prescribed tangential displacements
from the left to the right hand side.
Figure 13 shows the evolution of the contact forces with the motion of the asperity and

Figure 14 shows the changes in the ratio FN=FT, where FN stands for the global normal
contact force to which the lower asperity is subjected and FT stands for the tangential force.
Assuming the problem to be a frictionless one, this ratio characterizes an apparent friction
coe�cient. As can be observed in Figure 14, at the start of the motion, FN=FT is equal to the
tangent to the characteristic angle of the asperities. As soon as plastic deformations occur,
this coe�cient decreases, reaching its minimum value when the asperity has been completely
sheared o�. During the process, a plastic area appears in the contact zones and increases untill
all the asperities have become plastic. Lastly, Figure 15 shows various steps in the shearing
process. Each arrow indicates a contact point and its length is proportional to the intensity
of the contact force. Computations were carried out until the lower asperity was completely
sheared. This illustrates the ability of the algorithm to deal with large changes in the contact
state from a state with high contact forces to one with very low normal forces.

8. CONCLUSION

A symmetrical slave=master formulation for friction contact was developed, and the discrete
problem arising from this formulation was set as a complementarity one. This made it possible
to use Lemke’s method giving the values of the two contact unknowns (distance and tangential
velocity) without having to use a penalty coe�cient, as required in the standard penalty and
augmented Lagrangian methods. Examples are given to illustrate the e�ciency of the method.
In other studies, we used a formulation of this kind to study the lubricated contact between
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Figure 15. Asperity shearing—deformed mesh.

a sheet-metal piece and tools. The main advantage of Lemke’s method associated with the
symmetrical formulation in comparison with more standard methods is that it gives access to
the contact state without any approximation, which is of great interest in the case of severe
contact situations such as those involved in microscopic surface interactions. As Lemke’s
method is a pivoting method, it may be time-consuming when there are large numbers of
contact nodes. In the examples investigated in our studies, this can occur particularly during
the �rst increments. An adaptive strategy switching between Lemke’s method and classical
regularized methods depending on the number of contact nodes is studied. In sheet-metal-
forming process problems, such as the analysis of a blankholder �tted with a drawbead,
Lemke’s method gives a good description of the contact state, particularly in the small radius
parts of the tools [24]. Various ways of improving the time required by the method are studied,
such as the use of predictive techniques taking the previous contact state into account. The
�-pass approach introduced in this paper means that the standard slave=master approach can be
associated with a symmetrical one in the same algorithm. Advantages of this formulation are to
avoid speci�c treatments for each case, to avoid the a priori choice of the master body and the
slave one and, if � 6=0 and 1, to allow the determination of the nodal contact forces on each
body without any additional computational costs. Algorithm was checked on the patch test and
for the large sliding test we veri�ed that results do not depend on the value of �. In solving
other numerical examples in the symmetrical case, when �= 1

2 , the validity of the results was
checked. The local contact conditions were always satis�ed for each contact surface and in
posttreatment steps, we checked that Coulomb’s sliding conditions were satis�ed on every
contact node. For any values of �∈{0; 12 ; 1} no signi�cant di�erences in computational times
were observed. Until now, none of the tests carried out led to signi�cant lower computational
times with � =∈{0; 12 ; 1} as could be expected when, for example, there are strong di�erences
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between meshes or strong di�erences between the mechanical properties of each bodies. The
subject of this work was to develop the symmetrical complementarity approach presented in
the present paper and to show how a such approach could be e�cient. Di�erent treatments
of certain technical points in the software, when using other values of �, could perhaps lead
to signi�cant di�erences in terms of computational times.
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