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Existence of periodic orbits in grazing bifurcations of
impacting mechanical oscillators

Arne B Nordmark

Department of Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract
Grazing bifurcations are local bifurcations that can occur in dynamical models
of impacting mechanical systems. The motion resulting from a grazing
bifurcation can be complex. In this paper we discuss the creation of periodic
orbits associated with grazing bifurcations, and we give sufficient conditions
for the existence of a such a family of orbits. We also give a numerical example
for an impacting system with one degree of freedom.

1. Introduction

When modelling impacting mechanical systems, one common approach is to use an impact
law where velocities change discontinuously at the moment of impact. One effect of using
such a model is that a trajectory that undergoes a low-velocity impact becomes sensitive to
changes in initial conditions. The sensitivity is inversely proportional to the impact velocity.
We will also find a new type of local bifurcation, the grazing bifurcation of a periodic orbit,
see Nordmark [1], Foale and Bishop [2], Budd and Dux [3]. These bifurcations happen when
a periodic orbit, with zero or more impacts during the period, is displaced by a parameter
change in such a way that it encounters a new impact, which then will take place with zero
impact velocity (a grazing impact). Grazing bifurcations are associated with rich and complex
dynamical behaviour, such as the sudden loss of stability or existence of the orbit, the creation
of a large number of periodic orbits, and the possibility of localized attracting chaotic motion.
They are also typical bifurcations under the change of a single bifurcation parameter in these
impact models, and for these models they are thus just as important to understand as other
typical bifurcations of smooth dynamical systems.

Of the rich set of phenomena involved in grazing bifurcations, here we will study one
particular aspect: the creation of a set of periodic orbits branching off from the grazing
bifurcation point. Several of these orbits have been observed in various particular systems.
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Foale and Bishop [4] studied linear impact oscillators with one degree of freedom. Ivanov [5]
has studied a particular two-parameter grazing bifurcation for an equivalent system. Chin
et al [6,7] have made a thorough study of maximal periodic orbits of a two-dimensional (2D)
mapping, which is similar to the Poincaré mappings found for single-degree-of-freedom impact
oscillators.

In this paper, we present a general scheme for finding the periodic orbits that branch off
in a grazing bifurcation. The analysis can be applied to systems with one or several degrees of
freedom, provided that an impact law is used. We give a set of sufficient conditions involving
only linear equations and linear inequalities for the existence of a periodic orbit of a given
impact pattern.

The paper is divided as follows. In section 2 we state the form of the Poincaré mapping near
a grazing periodic orbit. From this we calculate periodic orbits and their stability. Section 3 is
a parameter study covering two-dimensional Poincaré mappings. Selected results for a linear
driven impact oscillator are shown in section 4.

2. Grazing bifurcation of a periodic orbit

We will study the dynamics of a class of mappings that have a particular form containing a
square root term. These mappings are interesting since they occur as local Poincaré mappings
for mechanical systems of the type considered by Fredriksson and Nordmark [8]. There, the
mechanical system is assumed to have the following properties:

• there is a condition for the occurrence of impact that is a smooth surface of codimension
one in state space;
• the equations of motion are also smooth slightly beyond the impact surface;
• there is a smooth impact law mapping that takes the system to a new state when reaching the

impact surface, and this impact law becomes the identity mapping as the impact velocity
approaches zero.

We will assume that our mechanical system has these characteristics.

2.1. Form of the local Poincaré mapping

Suppose now that our system has a periodic orbit with a single grazing impact. We may
well allow for an additional finite number of non-grazing impacts. To study the stability and
bifurcations of this orbit we introduce a transversal local Poincaré section through a point on
the trajectory that is not on the impact surface, so the periodic orbit becomes a fixed point of
the Poincaré mapping. A section coordinate x ∈ R

N and a bifurcation parameter µ ∈ R
M are

introduced in such a way that the fixed point is at x = 0 when µ = 0 and that µ = 0 is the
parameter value for which this orbit is grazing.

From the assumed characteristics of the system it follows that non-grazing impact does
not lead to any discontinuity or non-smoothness in the Poincaré mapping, but a grazing impact
introduces a non-differentiability (but not a discontinuity). Also, trajectories starting in the
Poincaré section close to the grazing trajectory may encounter a low-velocity impact, a grazing
impact or no impact near the point where there is a grazing impact of the original trajectory.
On the other hand, they will always encounter non-grazing impacts close to the points where
the original trajectory had such impacts. This leads us to the idea that the possible low-velocity
impact should be treated separately from the rest of the motion. Following Fredriksson and
Nordmark [8] (where the results stated in the following are derived), we can study a modified
system where impacts with impact velocities below a threshold (safely lower than any of the
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non-grazing impacts of the original trajectory) are ignored and do not imply a state change
according to the impact law. In this case the trajectories will penetrate a little bit beyond the
impact surface, but above we have assumed that the equations of motion are still valid and
smooth here. This modified system has a smooth local Poincaré mapping and we will view
the effects of the real, low-velocity impact as a modification of this system.

Making things more precise, the Poincaré mapping near x = 0, µ = 0 of the modified
system (where low-velocity impacts are ignored) is smooth and described by the function

f (x, µ): R
N × R

M → R
N

with f (0, 0) = 0. For later reference we define

A = Dxf (0, 0). (1)

Next, we incorporate the effect of the possible low-velocity impact as a correction to f .
This is done by writing the Poincaré mapping of the real system as g ◦ f , with

g(x, µ): R
N × R

M → R
N.

Points near x = 0 may or may not undergo a low-velocity impact. We introduce a smooth
function h that has the value of zero on a set coinciding with the set of points leading to grazing
impacts, has negative values for points leading to low-velocity impacts and has positive values
for points that do not impact (with low velocity). The function h should have the properties

h(x, µ): R
N × R

M → R

with h(0, 0) = 0. We write

C = Dxh(0, 0) (2)

and we should chose h such that C �= 0.
A non-negative value of h means no low-velocity impact, so then g should be the identity

mapping. The function g takes the particular form

g(x, µ) =
{
x if h(x, µ) � 0

b(x, y, µ)y + x if h(x, µ) � 0
(3)

where

y =
√
−h(x, µ) (4)

and b is a smooth function

b(x, y, µ): R
N × R× R

M → R
N.

We write

B = b(0, 0, 0) (5)

and assume B �= 0.
We see that g is a continuous mapping, but Dxg is unbounded as h(x, µ) approaches

zero from the negative side. Still, the state space volume must not increase if the system is
conservative or dissipative, and, in particular, it must remain bounded, so det(Dxg) should be
bounded, which implies CB = 0.

When µ = 0, there is a fixed point at x = 0 of the Poincaré mapping g ◦f . We now want
to study the dynamics of this mapping near x = 0, µ = 0, and more specifically the possibility
of other periodic orbits.

For an example of these mappings for a particular system, see section 3.
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2.2. Changing the Poincaré section

We will briefly discuss the effect of the particular choice of Poincaré section. Let p(x, µ) be
a mapping that maps points from the original section to a new one according to the flow (in
the flow direction that avoids the part of the trajectory with possible low-velocity impacts).
This will be a smooth mapping, and we will assume that it is invertible with respect to the first
argument with inverse p−1. Denoting quantities in the new section with a hat, we find

x̂ = p(x, µ) (6)

f̂ (x̂, µ) = p(f (p−1(x̂, µ), µ), µ) (7)

ĝ(x̂, µ) = p(g(p−1(x̂, µ), µ), µ) (8)

ĥ(x̂, µ) = h(p−1(x̂, µ), µ) (9)

b̂(x̂, y, µ) = p(b(p−1(x̂, µ), y, µ), µ). (10)

Furthermore, defining

P = Dxp(0, 0) (11)

we find

Â = PAP−1 (12)

B̂ = PB (13)

Ĉ = CP−1 (14)

which means that quantities such as the eigenvalues of A and the values of CAkB that are used
in the following are invariant with respect to changes of the Poincaré section.

By the same reasoning, these results also apply to smooth changes of the coordinate system
on the same Poincaré section.

2.3. Equations for periodic orbits

A periodic point x̄ of period n should satisfy

x̄ = (g ◦ f )n(x̄, µ) (15)

but this equation is awkward to work with because of the two different expressions of g, and
because of the derivative singularity at h = 0. Instead we will try to find periodic orbits with
a fixed pattern of visits in h > 0 and h < 0, respectively. Using a terminology where only
low-velocity impacts are important, we will say that a point with h < 0 will lead to an impact,
but a point with h > 0 will not.

We will first classify periodic points as being impacting or not, depending on whether
some point in the orbit will lead to an impact or not. A non-impacting periodic point satisfies
the equation

x̄ − f n(x̄, µ) = 0 (16)

with the restrictions

h(f k(x̄, µ), µ) > 0 for 1 � k � n. (17)

Linear stability is given by

(Dx(g ◦ f )n)(x̄, µ) = (Dxf
n)(x̄, µ). (18)
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A way to characterize an impacting periodic point is by its impact sequence
(n1, n2, . . . , nm), which denotes the situation of n1 − 1 non-impacting iterations followed
by one impacting, followed by n2 − 1 non-impacting iterations followed by one impacting,
and so on. The period is n =∑

ni . We will look for periodic points with a specified impact
sequence. To do this we rewrite (15) as a system of equations by introducing xi for the x value
immediately following impacting iteration number i − 1, (thus x̄ = x1), and yi for the y value
associated with impact iteration number i, and using all these xi and yi values as unknowns.
Furthermore, equation (4) is squared to remove the singularity. This gives us the set

x2 − b(f n1(x1, µ), y1, µ)y1 − f n1(x1, µ) = 0

h(f n1(x1, µ), µ) + y2
1 = 0

... (19)

x1 − b(f nm(xm, µ), ym, µ)ym − f nm(xm, µ) = 0

h(f nm(xm, µ), µ) + y2
m = 0

of equations to be solved for xi and yi , subject to the restrictions

h(f k(xi, µ), µ) > 0 for 1 � k � ni − 1 (20)

and

yi > 0. (21)

We need (20) since we have assumed that these iterations are non-impacting, and (21) since
we have squared (4).

To check the stability of a periodic orbit we also need the linearization of the Poincaré
mapping. In terms of the xi , yi and ni , this matrix is

(Dx(g ◦ f )n)(x̄) =
m∏
i=1

{[
I − [

b(f ni (xi, µ), yi, µ)/yi

+(Dyb)(f
ni (xi, µ), yi, µ)

]
(Dxh)(f

ni (xi, µ), µ)/2
]
(Dxf

ni )(xi, µ)

+(Dxb)(f
ni (xi, µ), yi, µ)yi

}
. (22)

2.4. Single-parameter bifurcations in the generic case

In the following we will study grazing bifurcations under the change of a single parameter.
Thus we take the parameter space dimension M = 1. We will assume that there is an isolated
fixed point x̃(µ) of f for small µ with x̃(0) = 0. This is guaranteed by the implicit function
theorem if we have

det(I − A) �= 0 (23)

and the point satisfies

x̃(µ) = f (x̃(µ), µ). (24)

We also assume that the fixed point crosses the surface h = 0 transversally when µ is
changed, such that

h(x̃(µ), µ)) = eµ + O(µ2) (25)
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where

e = Dµ(h(x̃(µ), µ))(0) = C(I − A)−1(Dµf )(0, 0) + (Dµh)(0, 0) (26)

and e �= 0. When eµ is small and positive, x̃ is also a non-impacting fixed point for the full
Poincaré mapping g ◦ f , since g is the identity mapping for positive values of h. We will now
consider the existence of impacting periodic points near x = 0, µ = 0 with µ �= 0.

Defining

z =




x1

y1

...

xm

ym




(27)

we can summarize the set of equations (19) as F(z, µ) = 0 with the known particular solution
F(0, 0) = 0, and for small µ this defines z(µ) with z(0) = 0 uniquely by the implicit function
theorem unless (DzF )(0, 0) is singular. This z(µ) will of course also have to be checked for
compliance with (20) and (21).

We use the notation D(n1,...,nm) for (DzF )(0, 0). This matrix has a banded structure. For
example, with m = 3 we have

D(n1,n2,n3) =




−An1 −B I 0 0 0

CAn1 0 0 0 0 0

0 0 −An2 −B I 0

0 0 CAn2 0 0 0

I 0 0 0 −An3 −B
0 0 0 0 CAn3 0



. (28)

We can make the form of (19)–(21) a bit clearer by introducing rescaled versions X and Y
of the offsets from the fixed point: x = x̃(µ) + eµX, y = eµY . Then we find using (24)

f k(x, µ) = f k(x̃(µ) + eµX,µ)

= f k(x̃(µ), µ) + eµAkX + O(µ2) = x̃(µ) + eµAkX + O(µ2) (29)

and using (25)

h(f k(x, µ), µ) = h(x̃(µ) + eµAkX + O(µ2), µ)

= h(x̃(µ), µ) + eµCAkX + O(µ2) = eµ + eµCAkX + O(µ2). (30)

The first and second lines of (19) become

eµ(X2 − BY1 − An1X1 + O(µ)) = 0

eµ(1 + CAn1X1 + O(µ)) = 0

and making Z the vector

Z =




X1

Y1

...

Xm

Ym




(31)
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the full system after dividing by eµ is

D(n1,...,nm)Z(µ) =




0
−1

...

0

−1




+ O(µ) (32)

with conditions

sign(eµ)(CAkXi(µ) + 1) + O(µ) > 0 for 1 � k � ni − 1 (33)

sign(eµ)Yi(µ) > 0. (34)

These equations have well defined one-sided limits as µ → 0+ or µ → 0−. The result can
be summarized as follows.

Theorem 1. Suppose det(I −A) �= 0, e �= 0, det(D(n1,...,nm)) �= 0, and letZ(0) be the solution
of (32). If (33) and (34) are fulfilled forµ = 0+ orµ = 0−, then there exists a unique periodic
orbit with impact pattern (n1, . . . , nm) for all small µ of that sign, that approaches x = 0 as
µ→ 0. If any of the quantities in (33) and (34) are negative for µ = 0+ or µ = 0−, then no
periodic orbit with impact pattern (n1, . . . , nm) can be continued to x = 0 for small µ of that
sign.

Of course, equations (33) and (34) can be satisfied for at most one sign of small µ, so all
branches are one-sided. Uniqueness tells us that there exists at most one branch per impact
pattern.

Returning to the question of stability, equation (22) for these solutions has a leading term
that is O(µ−m):

(Dx(g ◦ f )n)(x̄) =
m∏
i=1

[−BCAni /(2yi)
]

+ O(µ1−m) (35)

(with matrix multiplication from the left) since yi = O(µ) as µ → 0. In particular, if all
CAniB �= 0, then there is an eigenvector near B with eigenvalue near

m∏
i=1

[−CAniB/(2yi)
]

(36)

which is also O(µ−m) as µ → 0. Thus in general, these impacting periodic solutions have
eigenvalues that approach infinity as µ → 0, and consequently they are not expected to be
stable, but stability cannot be ruled out for non-generic cases.

2.5. Comments on non-generic cases

If theorem 1 applies, then the results are unchanged for small enough perturbations of the system
(at least for a fixed impact pattern). We have put emphasis on a system where symmetries or
similar phenomena do not put any important constraints on the form of f , b or h. Then we can
always perturb any bifurcation situation into one where theorem 1 applies, using arbitrarily
small perturbations. This could, in principle, be accomplished using more than one bifurcation
parameter.

There are a few different ways in which the bifurcation situation is not fully covered by
theorem 1. If the non-impacting fixed point is not hyperbolic, we must also investigate ordinary
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smooth bifurcations of the point. If e = 0 it is not guaranteed that the fixed point of f crosses
the line h = 0, and it is a sign of the degeneration of the choice of bifurcation parameter.

A more interesting situation is when det(D(n1,...,nm)) = 0. The implicit function theorem
does not apply, and there may be several branches of (19). The branches may be found using
standard techniques of smooth bifurcation theory, and some of them are probably pruned
by (20) and (21). The branches may also be stable. An example of this is examined in
section 4.

Another interesting situation is when some the quantities of (33) and (34) are zero and the
rest positive. Higher-order terms are needed to determine existence, and a zero in (33) means
that the bifurcating orbit is itself close to grazing.

Lastly, we have studied the situation for a fixed impact pattern. If there are an infinite
number of orbits of different impact patterns for some sign of µ, the intersection of the µ

intervals may well be zero. In this case, we cannot be certain that more than a finite number
of the orbits exists for given small non-zero µ.

3. Analysis when N = 2

A class of models showing grazing bifurcations that has been the subject of much recent
study is periodically forced oscillators with one degree of freedom. Here we present a general
model.

The state of such a system is described by a position q, a velocity u and the time t , where t
is only significant modulo the driving period T . Impacting is specified by position constraints
Q1(t) � q � Q2(t) and by impact laws, giving the velocity after impact u+ from the velocity
before impact u− at the two boundaries: u+ = Ui(u−, t), i = 1, 2. The dynamics when not
impacting is specified by an acceleration function a:

q̇ = u (37)

u̇ = a(q, u, t). (38)

All of Qi , Ui and a are periodic in t with period T . To keep the system within bounds, we
require that u+ > Q̇1(t) if u− < Q̇1(t) (and u+ < Q̇2(t) if u− > Q̇2(t)). To ensure that zero
relative incoming velocity is mapped to zero relative outgoing velocity we require u+ = u− if
u− = Q̇i(t).

3.1. Poincaré mappings near a grazing periodic orbit

We now assume that there is a periodic orbit with a single grazing impact. Furthermore,
it is assumed that it occurs at the lower bound and at t = tG. At the grazing impact
we have q = Q1(tG), u = Q̇1(tG), and we define the relative acceleration at grazing
aG = a(Q1(tG), Q̇1(tG), tG)− Q̈1(tG), with aG > 0.

We now introduce a Poincaré section as a plane of constant forcing phase (which is also
constant time modulo the period T ). The simplest form of the function g would be obtained as
we let the section phase approach tG from above, but we have assumed that the section must not
lie at an impact so we cannot use t = tG as a Poincaré section. Instead we will use a section at
an arbitrary time a bit later than tG (but well before any other impact) and then transform back
to tG using the flow of (37) and (38) without any impacts. The resulting mapping is almost
the Poincaré mapping at tG, except that all low-velocity impacts have taken place, regardless
of whether they occur just before or just after tG.
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Figure 1. The definition of the mapping g.

In this section we use coordinates

x =
[
q −Q1(tG)

u− Q̇1(tG)

]
. (39)

The dynamics without the possible low-velocity impact near t = tG is a mapping f (x)which is
smooth, since all other impacts of the periodic orbit are assumed to occur at non-zero velocity
(Nordmark [1]). Still disregarding the possibility of a low-velocity impact, any trajectory of
(37) and (38) passing through the Poincaré section at the point x close to 0 defines a local
minimum value h(x) of the function q(t) − Q1(t), since aG > 0. When h(x) < 0, the
trajectory has two intersections with q = Q1(t), so let tC(x) denote the earlier of these time
points.

Now we can define the mapping g. For h(x) � 0 we let g(x) = x. For h(x) < 0 we start
at x with t = tG, integrate (37) and (38) forwards or backwards in time until t = tC , use the
impact law U1, and integrate back to t = tG again. This resulting point in the Poincaré section
defines g(x) if h(x) < 0.

The effect of the mapping g is shown in figure 1, where the x coordinate is not shown.
The incoming and outgoing trajectories are broken, and we see how following the flow to tC ,
applying U1 and following the flow from tC forwards, is equivalent to following the flow to
tG, applying g, and following the flow from tG forwards.

Let τ = −(DuU1)(Q̇1(tG), tG) � 0. We then find

h(x) = x1 + O(x)2 (40)

g(x) = x +

[
0
1

] √
2aG(1 + τ)y + O(x, y)2 if h(x) < 0 (41)

where x1 is the first component of x and y = √−h(x). Using the notation of (2) and (5), we
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have

C = [
1 0

]
(42)

B =
[

0
1

] √
2aG(1 + τ). (43)

We also set

A = (Dxf )(0) =
[

α γ

β δ

]
. (44)

In a real system, the somewhat artificial Poincaré section used here cannot be directly
observed. To use the theory to interpret data from a simulation with a real Poincaré section
that is away from the grazing phase, the formulae (7)–(14) should be used.

3.2. Coordinate transformation

A parameter study of the existence of bifurcating periodic orbits is simplified by using
transformed coordinates. To begin with, if γ = 0, all the Ani are lower triangular, and
AniB is parallel to B, and we can easily construct null vectors for D(n1,...,nm). Since this matrix
was assumed to be non-singular, we must have γ �= 0. Then A, B and C can be transformed
into (Nordmark [1])

A =
[

a1 1

−a2 0

]
(45)

B =
[

0
1

] √
2aG(1 + τ)γ (46)

C = [
1 0

]
(47)

where a1 = α + δ is the trace of A, and a2 = αδ−βγ is the determinant. a2 > 0 since it is the
determinant of the Poincaré mapping of a flow. For a parameter study, we may also assume
that a2 � 1, since otherwise we can let time run backwards, which makes a1 ← a1/a2 and
a2 ← 1/a2. We also note that γ only influences the Yi values, and that the signs of the Yi are
what matters.

All in all, the relevant parameters in the case N = 2 are then a1, a2, sign(γ ) and sign(eµ).
It should be noted that the sign of γ is the sign of CAB.

It should be remarked that this coordinate transformation is made to simplify the parameter
study, and is not a very useful tool when studying a particular system. For example, if γ is
very small, the transformation is almost singular and large deformations are introduced. This
case is more properly studied as a two-parameter bifurcation.

3.3. Single-impact bifurcating orbits

First, we study orbits with the simple impact pattern (n). These orbits are termed maximal
orbits in Chin et al [6], and since there is only one low-velocity impact in the period, one
can hope that these orbits are those most likely to become stable as we move away from the
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bifurcation point. Equations (32)–(34) become (in the limitµ→ 0, withX = X1 and Y = Y1)[
I − An −B
CAn 0

] [
X

Y

]
=

[
0
−1

]
(48)

sign(eµ)(CAkX + 1) > 0 for 1 � k � n− 1 (49)

sign(eµ)Y > 0. (50)

We can eliminate Y and simplify to obtain[ [
1 0

]
(I − An)[

1 0
]

]
X =

[
0
−1

]
(51)

sign(eµ)bn,k > 0 for 1 � k � n− 1 (52)

sign(eµ) sign(γ )cn > 0. (53)

We have introduced the notation

bn,k =
[

1 0
]
AkX + 1 (54)

and

cn =
[

0 1
]
(I − An)X (55)

where X is the solution of (51). To denote the different sign combinations of eµ and γ we will
use the notation (sign of eµ, sign of γ ). Thus (+,−) means eµ > 0 and γ < 0.

If we introduce the two eigenvalues of A: λ1 and λ2, we can write a1 = λ1 + λ2 and
a2 = λ1λ2. If (a1/2)2 �= a2, then λ1 and λ2 are distinct, and we find

An = 1

λ1 − λ2

[
λn+1

1 − λn+1
2 λn1 − λn2

−λ1λ2(λ
n
1 − λn2) −λ1λ2(λ

n−1
1 − λn−1

2 )

]
. (56)

The curve (a1/2)2 = a2, where eigenvalues are equal, is, in fact, not special in this discussion
of periodic orbits. All the relevant formulae have well defined limits when λ1 → λ2, and no
new phenomena are connected with this limit. Thus we will skip the case of equal eigenvalues
in the following.

We can solve (51) to obtain

X =
[
−1

X2

]
(57)

where

X2 = (λn+1
1 − λn+1

2 )− (λ1 − λ2)

λn1 − λn2
(58)

and compute

bn,k = −(λ1λ2)
k(λn−k1 − λn−k2 )− (λk1 − λk2) + (λn1 − λn2)

λn1 − λn2
(59)

and

cn = −(λ1 − λ2)(λ
n
1 − 1)(λn2 − 1)

λn1 − λn2
. (60)

The asymptotic value of the eigenvalue of largest modulus is given by (36)

1 = −CAnB/2y + O(1)

= aG(1 + τ)2γ 2

eµ

(
λn1 − λn2

λ1 − λ2

)2 1

(λn1 − 1)(λn2 − 1)
+ O(1). (61)
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3.4. Existence boundaries of single-impact orbits

The existence of a bifurcating periodic orbit is determined by the values of a1, a2, sign(eµ),
sign(γ ) and n. Thus the parameter set where single-impact orbits exist is a subset of
R × [0, 1] × {+,−}2 × N

+. Visualizing this subset in meaningful ways presents a bit of a
problem. For a particular bifurcation, we have a1, a2 and γ given and want a table for the
different combinations of sign(eµ) and n. Another way is to give a diagram in the a1–a2 plane
for given n. We will use either of these methods as seems best fitted to the situation at hand.

We see that if n = 1, equation (52) does not come into play. Thus only sign(eµγ ) is
important, so the (+,+) and (−,−) cases coincide, as do the (+,−) and (−,+) cases. For
given n > 1, all four combinations of sign(eµ) and sign(γ ) lead to different inequalities, and
an orbit exists for at most one of these sign combinations. In the a1–a2 plane, there will be a
set of non-overlapping regions corresponding to different sign combinations. The boundaries
have to do with the violation of one or more of the inequalities (52) and (53). There are three
types of boundaries.

• λn1 − λn2 = 0 with λ1 − λ2 �= 0: this is when the system matrix is singular, and will be
called a singular boundary. It can only happen when (a1/2)2 < a2, so eigenvalues must
be complex.

• bn,k = 0 for some k. This will be called an iterate boundary of order k.

• cn = 0. This will be called a sign boundary.

It will be convenient to label regions of the a1–a2 plane (figure 2):

1. a2 + 1 < a1, where 0 < λ2 < 1 < λ1;

2. 2
√
a2 < a1 < a2 + 1, where 0 < λ2 < λ1 < 1;

3. −2
√
a2 < a1 < 2

√
a2, where λ1,2 are complex;

4. −(a2 + 1) < a1 < −2
√
a2, where −1 < λ2 < λ1 < 0;

5. a1 < −(a2 + 1), where λ2 < −1 < λ1 < 0.

There are three regions that are simple, since they do not contain any internal boundaries (see
appendix A).

In region 1, both bn,k and cn are positive for all k and n. Thus orbits of all periods exist
in the (+,+) case and additionally period 1 exists in the (−,−) case. The longer orbits first
move towards the origin along the stable eigenvector and then exit along the unstable one, and
orbits are bounded as n→∞.

In region 2, both bn,k and cn are negative for all k and n. Period 1 exists for (+,−), and
all periods exist for (−,+). The longer orbits start far from the origin and come in along the
eigenvector corresponding to λ1. Since X2 → −∞ exponentially as n → ∞, the smallness
assumptions are not fulfilled for the longer periods whenµ has a non-zero value and we should
not expect to find more than a finite number of them.

In region 5, we have bn,k > 0 and cn < 0. Period 1 exists for (−,+) and all periods exist
for (+,−). As in region 1, longer periods tend to follow the stable and unstable eigenvectors
and orbits are bounded.

The complete orbit when n = 15 is shown in figure 3 for the parameter values: λ1 = 1.5,
λ2 = 0.5 (region 1), λ1 = 0.8, λ2 = 0.5 (region 2) and λ1 = −0.5, λ2 = −1.5 (region 5).
The points plotted are AkX for 0 � k � 14. The forbidden area for the iterates is shaded.
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Figure 2. Regions in the a1–a2 plane.

Figure 3. Single-impact orbits of period 15 for parameters in region 1 (top left), region 2 (top
right) and region 5 (bottom).

3.5. Boundary structure in regions 3 and 4

Regions 3 and 4 are much more complicated, each containing an infinite number of boundaries.
Period 1 exists in the (+,−) and (−,+) cases. Period 2 exists in the (+,+) case for a1 < 0 and
in the (−,+) case for a1 > 0. The line a1 = 0 is a singular boundary.

13



When n � 3 iterate boundaries start to come into play. In region 3, where eigenvalues are
complex, we will write λ1,2 = re±iθ with 0 < θ < π (giving a1 = 2r cos(θ), a2 = r2). Then

sign(bn,k) = sign

(−rn sin((n− k)θ) + rn−k sin(nθ)− sin(kθ)

sin(nθ)

)
(62)

sign(cn) = − sign(sin(nθ)). (63)

The analysis is easiest when r = 1 (a2 = 1). We can show:

Theorem 2. Let n be an integer with n � 3, r = 1 and denote s = θ/(2π). Then period
n exists in the (−,+) case for 0 < s < 1/(2n). Furthermore, let m be an integer relative
prime to n with 0 < m/n < 1

2 . Let m−, n−, m+ and n+ be the unique integers given by
mn− −m−n = −1, mn+ −m+n = 1 and 0 < n−, n+ < n. Then period n exists in the (+,−)
case for m/n < s < m−/n−. For the (+,+) case, period n exists for m+/n+ < s < m/n,
unless m = 1 when the interval is 1/(2n) < s < 1/n instead. These intervals are the only
places where period n exists.

For proof, see appendix B. We note that for given n � 3, the number of intervals is
φ(n) + 1, where φ(n) is the value of the Euler φ function.

Take n = 8 as an example. We first have the (−,+) interval
(

0
1 ,

1
16

)
. Integers m

relative prime to 8 and smaller than 4 are 1 and 3. With m = 1, we find m+/n+ = 0/1
and m−/n− = 1/7. This gives the (+,−) interval

(
1
8 ,

1
7

)
and the (+,+) interval

(
1
16 ,

1
8

)
. Using

m = 3 gives us the (+,−) interval
(

3
8 ,

2
5

)
and the (+,+) interval

(
1
3 ,

3
8

)
.

We can find all of these intervals through the Farey tree construction starting with the
sequence of the two rational numbers 0/1 and 1/2. That is, between a pair of adjacent rationals
m1/n1 and m2/n2 in the sequence, we insert the Farey mediant (m1 + m2)/(n1 + n2). This
will eventually give us all rationals between 0 and 1/2, and in a form where the numerator and
denominator are relative prime. The relevance of this construction to the existence intervals, is
that when we insert a Farey mediant (m1 +m2)/(n1 +n2) between m1/n1 and m2/n2, we have
found for the period n = n1 + n2 a (+,−) interval (m1 + m2)/(n1 + n2) < s < m2/n2 and a
(+,+) intervalm1/n1 < s < (m1 +m2)/(n1 +n2) (unlessm1/n1 = 0/1, when instead we have
a (−,+) interval 0 < s < 1/(2(1 + n2)) and a (+,+) interval 1/(2(1 + n2)) < s < 1/(1 + n2)).

The intervals on the line r = 1 can be extended into areas of regions 3 and 4, with r < 1.
Is also seems that all existence areas include one of the intervals. We make the following
hypothesis, based on numerical experiments:

Conjecture 1. When n � 3 the areas in regions 3 and 4 where period n exists are associated
with the intervals in the following way:

• an interval (0, 1
2n ) extends to a (−,+) area bounded by 0 < s < 1/(2n);

• an interval
(

1
2n ,

1
n

)
extends to a (+,+) area bounded to the left by bn,n−1 = 0 and to the

right by s = 1/(2n);

• an interval
(
(n−1)/2

n
, 1

2

)
(where n is necessarily odd) extends to a (+,−) area bounded to

the left by −(a2 + 1) < a1 and to the right by bn,n−2 = 0;

• an interval
(
m+
n+
, m
n

)
with m+

n+
�= 0

1 extends to a (+,+) area bounded by bn,n−n+ = 0;

• an interval
(
m
n
,
m−
n−

)
with m−

n−
�= 1

2 extends to a (+,−) area bounded by bn,n−n− = 0.

The different active iterate boundaries bn,k = 0 for given n do not seem to cross in the
a1–a2 plane, and all iterate boundaries with 3 � n � 15 are shown in figure 4.
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Figure 4. Iterate boundaries bn,k = 0 for n � 15. Boundaries with n � 5 are labelled n, k.

3.6. Eigenvalue of largest modulus

For all the orbits considered here, one eigenvalue approaches infinity as µ → 0, as follows
from (61). From this formula we can also see the sign of 1:

• in region 1, sign(1) = − sign(eµ);

• in regions 2–4, sign(1) = sign(eµ);

• in region 5, sign(1) = (−1)n+1 sign(eµ).

3.7. Summary by period

The results obtained can be summarized as follows.
Period 1 exists for (+,+) and (−,−) when a2 + 1 < a1 and for (+,−) and (−,+) when

a1 < a2 + 1. There is a sign boundary at a1 = a2 + 1.
Period 2 exists for (+,+) when a2 + 1 < a1, for (−,+) when 0 < a1 < a2 + 1, for (+,+)

when −(a2 + 1) < a1 < 0, and for (+,−) when a1 < −(a2 + 1). The line a1 = a2 + 1 is a
sign boundary and an iterate boundary of order 1. At a1 = 0 there is a singular boundary and
a1 = −(a2 + 1) is a sign boundary.

When n � 3, period n exists for (+,+) when a2 + 1 < a1, and for (−,+) when
2
√
a2 cos(π/n) < a1 < a2 + 1. For each integer m relative prime to n and with 0 < m < n/2

there is a (+,+) area and a (+,−) area in regions 3 and 4. If n is odd the leftmost (+,−) area
continues into region 5. For even n region 5 is a separate (+,−) area. At a1 = a2 + 1, all bn,k
and cn are zero, and a1 = 2

√
a2 cos(π/n) is a singular boundary. In regions 3 and 4 there is

an iterate boundary bn,k = 0 for each k relative prime to n. If n is even, cn = 0 and bn,k = 0
for even k at a1 = −(a2 + 1).

Figure 5 shows the different areas for n = 8, and it can be seen how each of the intervals
at r = 1 given above is connected with an area.
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Figure 5. Existence areas for period 8.

3.8. Significance of the boundaries

There are some cases where a boundary in parameter space is associated with a branch switching
from existing for one sign of µ, to the other sign. For n = 1, this happens when γ = 0. For
n > 1, it happens in region 3 when θ = π/n. An example is given in the next section.

An iterate boundary shows the possibility of having the bifurcating orbit itself grazing.
At the boundary a1 = a2 + 1, the existence of the non-impacting fixed point is not

guaranteed. The fixed point is not hyperbolic when a1 = a2 + 1, a1 = −(a2 + 1) or a2 = 1
in region 3. In these cases there might be other non-impacting solutions involved in the
bifurcation.

3.9. Multiple-impact orbits

When N = 2, solving for impact patterns with more than one impact becomes particularly
simple. Using the fact that CB = 0, it is easy to show that solutions must satisfy (51) and (52)
with X = Xi and n = ni for all i, and the sign condition (53) changes into

sign(eµ) sign(γ )
[

0 1
]
(Xi+1 − AniXi) > 0 for 1 � i � m. (64)

This is then a condition telling whether period ni+1 can follow period ni . Since the Xi are the
same as for the single-impact situation, we see that multiple-impact orbits tend to follow µ2

close to single-impact orbits between impacts, but it can switch orbit at impacts. In region 1 for
example, any pair of periods can follow one another in the (+,+) case, so we can immediately
conclude that a unique periodic orbit exists for any given impact pattern.

16



4. Some numerical examples

A particularly simple case to analyse is the grazing impact of a non-impacting orbit of a linear
periodically driven impact oscillator with a coefficient of restitution. This system has become
the most widely studied example of grazing bifurcations. Since we can express the motion
between impacts in closed form, it is sometimes possible to find closed-form impacting periodic
solutions by pasting non-impacting solutions together. In particular, single-impact orbits can
be found in this way. In the following, we will not use this technique, but rather derive results
using the local theory presented in earlier sections.

As the local theory does not predict any stable bifurcating periodic orbits (except perhaps
for degenerate cases, see below), the question arises as to where motion will go after the
bifurcation. In the generic case, the grazing periodic orbit at µ = 0 is not stable unless
we are in region 2 with sign(γ ) > 0, see Nordmark [1]. Then the motion after bifurcation
grows continuously out of the non-impacting orbit, and the scenario is determined by the
value of the largest eigenvalue. In the other cases, a jump to an attracting motion that is not
necessarily close must take place. This analysis is then not local, and we do not attempt
to give any analysis here. These cases come up in the numerical example given below,
though.

The linear oscillator can be written in a number of equivalent forms. Here we will use (in
the notation of section 3)

a(q, u, t) = −2d

w
u− 1

w2
q (65)

Q1(t) = (1 + µ) cos(t)− 1 (66)

U1(u, t) = −τu− (1 + τ)(1 + µ) sin(t) (67)

with d,w > 0. There is a non-impact solution q(t) = 0, u(t) = 0 when −1 < µ < 0. At
µ = 0, it undergoes a grazing bifurcation with tG = 0, aG = 1 and e = −1. The non-impact
Poincaré mapping f becomes

f (x) = exp


2π


 0 1

−2d

w
− 1

w2





 (

x −
[ −µ

0

])
+

[ −µ
0

]
. (68)

For d > 1 we are in region 2 with

a1 = 2 exp(−2πd/w) cosh
(
2π

√
d2 − 1/w

)
(69)

a2 = exp(−4πd/w) (70)

sign(γ ) > 0. (71)

By varying d and w, all a1 and a2 in this region are accessible, but the sign of γ is fixed. For
0 < d < 1 we are in region 3 with

a1 = 2 exp(−2πd/w) cos(2π
√

1− d2/w) (72)

a2 = exp(−4πd/w) (73)

sign(γ ) = sign
(

sin
(
2π

√
1− d2/w

))
. (74)

All combinations of a1, a2 and sign(γ ) are available here.
Apart from the grazing bifurcation of the non-impacting solution at µ = 0, the system

displays lots of other grazing bifurcations involving impacting periodic orbits. For these
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bifurcations, any combination of a1, a2 < 1 and sign(γ ) should be possible. We will probably
have to determine the orbit and bifurcation point numerically, and thus obtain numerical values
of the derivatives needed, but in other respects the analysis method is as outlined in this
work.

4.1. Bifurcation at a resonance

When d = 0.6 and w = 4.8, we have sign(γ ) > 0 and complex eigenvalues with
r = exp(−π/4) and θ/(2π) = 1

6 . We find that single-impact orbits of periods 1 and 2
should exist for small positive µ (negative eµ), and period 4 exists for µ < 0. Period 3 is
right at the singular boundary. This type of degenerate bifurcation was treated by Ivanov [5]
using exact equations for the single-impact orbits. To study it by local techniques we need an
expansion to order two. We find

h = x1 − x2
2/2 + O(x, y, µ)3 (75)

b = (1 + τ)


 2y +

√
2x2

√
2− 4

d

w
y − 3

√
2
d

w
x2 +
√

2/2
w2 − 1

w2
µ


 + O(x, y, µ)2. (76)

Seeking a solution of (19) of the form x(ε), y(ε) and µ(ε), where ε is a parameter along the
solution curve, we find

x1 = O(ε)2 (77)

x2 =
√

2(1 + τ)ε + O(ε)2 (78)

y = (1 + r3)ε + O(ε)2 (79)

µ = (1− τr3)2ε2 + O(ε)3 (80)

ε > 0. (81)

Eliminating ε, we see that period 3 exists for µ > 0, but branches off like a square root of µ,
instead of linearly in µ as the other periodic solutions do. The eigenvalues can be determined
using (22), and are both found to be τr3 + o(1). The branch is thus stable as µ approaches 0,
in contrast to the other branches that are not associated with existence borders. These results
were also derived by Ivanov.

4.2. Some bifurcations near the resonance

When w is slightly smaller than 4.8, the period 3 branch first goes towards negative µ but soon
turns in a saddle-node bifurcation and becomes stable. For w a bit larger than 4.8, it exists
for positive µ but soon becomes stable in a flip bifurcation. We will look at some numerical
results for w = 4.9, τ = 1.

The large eigenvalues are asymptotically −32.1/µ for period 1, −4.37/µ for period 2,
−0.005 04/µ for period 3 and 0.203/(−µ) for period 4. We can follow the different orbits out
from the bifurcation point, to see how they affect the dynamics of the system. We will follow
the orbits until they bifurcate, and say something about what happens after these (secondary)
bifurcation points. The non-impact and single-impact branches are plotted in figure 6. Stable
branches are solid and unstable broken. The coordinate x used is q − (Q1 + 1) sampled
when t = π mod 2π . Instead of plotting all n x values for an orbit of period n, only one
x value (the sample taken about half a driving period after the low-velocity impact) per
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Figure 6. Non-impact and single-impact branches for d = 0.6, w = 4.9, τ = 1.

period is plotted. Following each branch from the bifurcation and outwards, we find the
following.

Periods 1 and 2 will stay unstable with an eigenvalue < −1 for all positive µ.
Period 3 will go through a flip bifurcation at µpd = 0.005 479 and become stable.

The flip is subcritical, however, so an unstable double-impact orbit of period 6 exists for a
small interval above µpd . This double-impact orbit then encounters a grazing bifurcation at
µgr3 = 0.006 100, with sign(γ ) > 0 and λ1 = 2.15 in region 1. Thus unstable orbits of all
periods that are multiples of 6 exist below µgr3.

Period 4 will go through a saddle-node bifurcation at µsn = −0.084 338 and turn back
towards more positiveµ on a stable branch. Atµgr4 = −0.024 447, it will encounter a grazing
bifurcation, with λ1 = 0.42, λ2 = 0.0050, γ > 0 and e < 0. This is in region 2, and we
predict the creation of orbits with periods that are any multiple of 4. This situation can be
more thoroughly analysed (see, for example, Chin et al [6] or Nordmark [9]), and it has been
shown that, as µ increases from µgr , all orbits of sufficiently long period first becomes stable
in a subcritical flip bifurcation and then disappears in a grazing bifurcation in region 4 with
γ < 0. Since 1

4 < λ1 < 2
3 , the windows where the orbits are stable do not overlap, and in

between the windows there are intervals of chaos. In figure 7 a numeric bifurcation diagram of
the motion is shown. We also show the stable period 4 branch for µ < µgr4, and the unstable
period 4 branch. Only one of the four components (the same as in figure 6) is shown, and
it should be noted that the µ scale is much enlarged over that figure. Although an infinite
number of periodic windows accumulate upon µ = µgr4, only the two of lowest periods are
clearly visible in the figure, with a thin chaotic band in between. The periods are 4 × 7 and
4× 8, respectively. Since each window has a length that is λ2

1 times the length of the previous
one, they narrow very quickly with increasing period. The asymptotic results obtained near
the bifurcation point fail to predict what happens after the largest periodic window. Here
instead we have a large chaotic band that extends up to µcr = −0.022 577. At this point, the
chaotic attractor collides with the stable manifold of the unstable period 4 orbit that comes
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Figure 7. Attracting motion between µgr4 and µcr , together with single-impact orbit of period 4.

Figure 8. Stable non-impacting period 1 (square), unstable single-impact period 4 (stars), and stable
single-impact period 4 (rings) when µ = −0.05. Points to the left of the curve will encounter a
low-velocity impact during the next iteration.

from the original grazing bifurcation. The collision is also visible in figure 7. The stable
manifold of the unstable period 4 also marks the boundary of the basin of attraction for the
non-impacting solution. Thus chaotic motion is no longer attracting and iterates converge to
the non-impacting solution.
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Figure 9. Stable non-impacting period 1 (square), unstable single-impact period 4 (stars), and noisy
period 4 attractor when µ = −0.024. Points to the left of the curve will encounter a low-velocity
impact during the next iteration.

When µ is increased from negative values, the following attracting solutions will then be
seen.

• For µ < µsn, only the non-impacting period 1 orbit exists.
• For µsn < µ < µgr4, a stable single-impact period 4 coexists with the non-impacting

orbit. Figure 8 shows the Poincaré section whenµ = −0.05. Note how the stable period 4
orbit is close to grazing.
• For µgr4 < µ < µcr , either a stable n+ 1 impact period 4n with n � 7, or a chaotic (noisy

period 4) motion coexists with the non-impacting orbit. Figure 9 shows the Poincaré
section when µ = −0.024. We see how the attractor now contains points with grazing
trajectories.
• For µcr < µ < 0 only the non-impacting orbit is attracting.
• For 0 < µ < µpd we have not identified any candidate in the preceding section. Figure 10

shows the Poincaré section whenµ = 0.003. Numerically, it looks as if the chaotic motion
existing for µ < µcr becomes attracting again as the non-impacting orbit loses stability
at µ = 0. This time it is connected instead of being noisy and of period 4. The unstable
single-impact orbits of periods 1–3 appear to be part of this attractor. This µ interval also
contains periodic windows.
• For µpd < µ, we have a stable period 3 orbit.

4.3. Some comments on the numerical methods

Single-impact orbits for the linear impact oscillator are known be found by solving a quadratic
equation for the sine of the phase at impact, together with a check that the incoming velocity has
the right sign. This will also give the eigenvalues, the point of the saddle-node bifurcation for
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Figure 10. Unstable single-impact period 3 (rings), and attractor when µ = 0.003. Points to the
left of the curve will encounter a low-velocity impact during the next iteration.

period 4, and the flip bifurcation for period 3. Multiple-impact orbits were solved by Newton’s
method, which also gives the stability. Points of grazing periodic orbits were solved by using
the grazing phase and µ as unknowns, integrating backwards and forwards from the assumed
grazing point to a Poincaré section, and using the equality of the forward and backward points
in the sections as two equations for the two unknowns. The resulting system of two equations
was solved using Newton’s method, and this procedure also gives the matrix A and the sign of
γ and e. The point µcr was found using an interactive search.

5. Review of results and discussion

We have studied the problem of finding periodic orbits that are created in grazing bifurcations
occurring in models of impacting systems. The main result is that for a given impact pattern,
we can formulate a system of equations that is smooth, and we can find sufficient conditions
for existence in the form of a finite set of linear equations combined with a finite set of linear
inequalities. We also find a stability estimate for these orbits, and generally at least one
eigenvalue becomes unbounded as the bifurcation point is approached.

For systems with a two-dimensional Poincaré mapping, such as a periodically driven
oscillator with one degree of freedom, we have also made a parameter study for the
existence of single-impact orbits. Especially when eigenvalues are complex and the damping
is low, a large number of orbits is possible, and existence is connected with number
theory.

As a local theory, we are not able to say much about what will happen to the periodic orbits
as we become further from the bifurcation point. We obtain an estimate of the dependence of the
largest eigenvalue on the bifurcation parameter, but the points where (secondary) bifurcations
take place are usually not close. There is also always the possibility that the orbits will
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encounter another grazing bifurcation before becoming stable. There is, however, one case
(corresponding to (−,+) in region 2 for a 2D system) where points with long periods become
stable in a flip bifurcation for small values of the bifurcation parameter. This phenomenon, as
well as other fates of the bifurcating orbits, are shown in a numerical example. By following
the branches, we will also encounter several other grazing bifurcations, and this emphasizes
the importance of grazing bifurcations in the study of these systems.

Another important aspect of the unstable periodic orbits in the two-dimensional system is
that they are saddle points. We have not stressed this aspect here, but it is clearly of importance.
For example, before becoming unstable, the non-impacting fixed point has a basin of attraction,
and numerically it seems that the border of the basin consists of the stable manifold of the
closest of the bifurcating orbits. The basin often has a typical shape that is polygon with thin
attached fibres (for example, in Foale and Bishop [2]), and the polygon is formed by successive
preimages of the line h = 0 under f .

The fact that grazing bifurcations usually produce a large number of unstable periodic
orbits clearly has importance for the global dynamics of the system. A conjecture is that
chaotic motion is also usually produced in these bifurcations, if not necessarily attracting.
The fact that a grazing bifurcation need not involve any stable periodic orbits can make
them go unnoticed in numerical simulations. In a situation close to that of figure 6, the
orbit of period 4 might very well go through a grazing bifurcation before having a chance to
become stable. In that situation, an invisible grazing bifurcation will be the first bifurcation to
occur as the driving amplitude is increased, and complex motion might well be created at this
point.

Appendix A. Signs of bn,k and cn in selected regions

A.1. Sign of bn,k in regions 1, 2 and 5

The expression (59) may be written as

bn,k = (λn1 − 1)(1− λk2)− (λk1 − 1)(1− λn2)

λn1 − λn2
(A1)

or

bn,k =
(λ1 − 1)(1− λ2)(λ1 − λ2)

∑n−1
i=k

∑k−1
j=0

∑i−1
m=j λ

m
1 λ

i+j−m−1
2

(λ1 − λ2)
∑n−1

i=0 λ
i
1λ

n−i−1
2

. (A2)

In regions 1 and 2, where both λ1 and λ2 are positive, the expression (A2) shows that the
sign of bn,k is the sign of (λ1 − 1)(1− λ2), so it immediately follows that bn,k > 0 in region 1
and bn,k < 0 in region 2.

In region 5, we separate into cases. If both n and k are even integers, the value of bn,k is
unchanged if we change the signs of λ1 and λ2, so the result from region 1 gives bn,k > 0. If
n is odd and k even, we obtain from (A1)

bn,k = (1 + |λ1|n)(|λ2|k − 1) + (1− |λ1|k)(|λ2|n + 1)

|λ2|n − |λ1|n > 0. (A3)

If n is even and k odd,

bn,k = (1− |λ1|n)(|λ2|k + 1) + (1 + |λ1|k)(|λ2|n − 1)

|λ2|n − |λ1|n > 0. (A4)
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If both n and k are odd, the expression (59) becomes

bn,k = (|λ2|n − |λ2|k) + (|λ1|k − |λ1|n) + (|λ1||λ2|)k(|λ2|n−k − |λ1|n−k)
|λ2|n − |λ1|n > 0 (A5)

and we have shown that bn,k > 0 in region 5 for all values of n and k.

A.2. Sign of cn

The expression (60) immediately gives cn > 0 in region 1 and cn < 0 in region 2. In region 4,
we write

cn = (−1)n
(|λ2| − |λ1|)(1− λn1)(1− λn2)

|λ2|n − |λ1|n (A6)

so cn > 0 for even n and cn < 0 for odd n. In region 5, we write

cn = − (|λ2| − |λ1|)(1− λn1)(|λ2|n − (−1)n)

|λ2|n − |λ1|n (A7)

so cn < 0 for all n.
In region 3, we write λ1,2 = re±iθ with 0 < θ < π , and

cn = − sin(θ)

rn−1 sin(nθ)

(
1− 2rn cos(nθ) + r2n

)
(A8)

so sign(cn) = − sign(sin(nθ)).

Appendix B. Proof of theorem 2

When r = 1 we can write

bn,k(s) = −2
sin(kπs) sin((n− k)πs)

cos(nπs)
(B1)

cn(s) = −2 sin(2πs) tan(nπs) (B2)

where the variable s = θ/(2π) ∈ (0, 1
2 ). We should assume n � 3. For given n, we are

interested in open subintervals σi ⊂ (0, 1
2 ) in the s variable, where all bn,k are of the same sign

when 1 � k � n− 1 and where cn also has a definite sign.
Firstly, cn changes sign at all multiples of 1

2n , so let τj =
(
j−1
2n ,

j

2n

)
for 1 � j � n. Then

the sign of cn in τj is (−)j . Any σi must be a subinterval of some τj .
The possible zeros of bn,k are located at s = m

k
or s = m

n−k for non-negative integer
m. One notes that the denominator is always smaller than n. If s is a double zero, and thus
s = m1

k
= m2

n−k , then s = m1+m2
n

(since if m1
n1

� m2
n2

, then m1
n1

� m1+m2
n1+n2

� m2
n2

). Thus a zero of bn,k
is double if and only if it is located at an even multiple of 1

2n . We also find that all poles are
simple and located at odd multiples of 1

2n . Thus, within the intervals τj , bn,k is smooth with
only simple zeros. In fact, for given n and k, at most one such zero exists within a τj , since
between m1

k
�= m2

n−k lies m1+m2
n

, which is a multiple of 1
2n . Likewise, if a bn,k has a (double)

zero at an even multiple of 1
2n , there are no zeros in the two adjoining τj .

Again, we want to locate subintervals σi of the τj , where bn,k is of the same sign for all k.
The strategy is to check bn,k values close to multiples of 1

2n , and then show that any σi must
have at least one endpoint that is a multiple of 1

2n .
We start by checking the values when s is an even multiple of 1

2n .
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• If s = m
n

, then bn,k = 2 sin2(πkm/n).

• If s = m
n

+ ε and km
n

is an integer, bn,k = −2π2k(n− k)ε2 + O(ε4).

We will say that two positive integersm and n are relative prime if and only if there are integers
m1 and n1 such that mn1−m1n = 1. If m and n are relative prime, then km

n
is never an integer

for the allowed k values, and bn,k is always positive at and near s = m
n

. If m and n are not
relative prime, there is an allowed value of k such that km

n
is an integer, and bn,k is zero at

s = m
n

and negative on either side of this point. Since bn,1 is always positive, all the bn,k do
not have the same sign near m

n
if m and n are not relative prime.

Now suppose m and n are relative prime. Since zeros of bn,k are rational numbers with
denominator smaller than n, we take advantage of the fact that the largest rational m+

n+
smaller

than m
n

and with 0 < n+ < n is uniquely given by mn+−m+n = 1. If n+ > 2, then 2m−1
2n < m+

n+

and all the bn,k are positive for s ∈ (
m+
n+
, m
n

) ⊂ τ2m. n+ = 2 is not possible. If n+ = 1, which

only happens for m+ = 0 and m = 1, in the interval ( 0
1 ,

1
n
) all the bn,k have a pole at s = 1

2n ,
so bn,k is negative in

(
0
1 ,

1
2n

) = τ1 and positive in
(

1
2n ,

1
n

) = τ2.
The closest zero above m

n
is found similarly since the smallest rational m−

n−
larger than m

n

and with 0 < n− < n is uniquely given by mn− −m−n = −1. Here, n− is always at least 2,
so all the bn,k are positive in the interval

(
m
n
,
m−
n−

) ⊂ τ2m+1. When n− = 2, which only happens

for odd n with m = (n− 1)/2 and m− = 1, the interval is
(
(n−1)/2

n
, 1

2

) = τn.
Next we look at limit values near odd multiples of 1

2n .

• If s = 2m+1
2n and k(2m+1)

n
is an odd integer, then bn,k = 2(n−k)

n
.

• If s = 2m+1
2n and k(2m+1)

n
is an even integer, then bn,k = 2k

n
.

• If s = 2m+1
2n + ε and k(2m+1)

n
is not an integer, then bn,k = sin(πk(2m+1)/n)

πnε
+ O(1).

We find only three cases where bn,k has the same sign for all k when s is near an odd multiple
of 1

2n : below 1
2n it is negative, above 1

2n it is positive and below 1
2 (odd n) it is positive. All of

these were already considered above.
Now we have to show that a σi must have an endpoint on a multiple of 1

2n . Study a
particular τj . Suppose that all bn,k are positive at some interior point. There can be no
zero of any bn,k between this point and the nearest even multiple of 1

2n , since that would
make bn,k negative there. Thus a σi with positive values must extend to an even multiple
of 1

2n . Suppose instead that all bn,k are negative at some interior point. All bn,k must have
a zero between (possibly at) the nearest even multiple of 1

2n and this point. Then there can
be no zeros towards the other endpoint, and a σi with negative values must extend to an odd
multiple of 1

2n . Since the signs near all endpoints are established above, all the σi are already
listed.

To summarize:

• when s ∈ (
0, 1

2n

)
, bn,k is negative and cn is negative: this gives a (−,+) case;

• when s ∈ (
1

2n ,
1
n

)
, bn,k is positive and cn is positive: this gives a (+,+) case;

• when m and n are relative prime, 0 < m < n/2, and s ∈ (
m
n
,
m−
n−

)
, bn,k is positive and cn

is positive: this gives a (+,−) case;

• when m and n are relative prime, 1 < m < n/2, and s ∈ (
m+
n+
, m
n

)
, bn,k is positive and cn

is negative: this gives a (+,+) case.
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