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Introduction

The (small) quantum K-theory ring QK(X) of a smooth complex projective variety X is a generalization of both the Grothendieck ring K(X) of algebraic vector bundles on X and the small quantum cohomology ring of X. The ring QK(X) was defined by Givental [START_REF]On the WDVV equation in quantum K-theory[END_REF] when X is a rational homogeneous space and by Lee [START_REF] Lee | Quantum K-theory[END_REF] in general. In this paper we study this ring when X is a complex projective rational homogeneous space with Pic(X) = Z. Equivalently, we have X = G/P where G is a complex semisimple algebraic group and P ⊂ G is a maximal parabolic subgroup. The product in QK(X) of two arbitrary classes α, β ∈ K(X) is a power series

α ⋆ β = d≥0 (α ⋆ β) d q d ,
where each coefficient (α ⋆ β) d ∈ K(X) is defined using the K-theory ring of the Kontsevich moduli space M 0,3 (X, d) of stable maps to X of degree d. For general homogeneous spaces it is an open problem if this power series can have infinitely many non-zero terms. The product α ⋆ β is known to be finite if X is a Grassmann variety of type A [START_REF] Buch | Quantum K-theory of Grassmannians[END_REF]. More generally, when X is any cominuscule homogeneous space, it was proved by the authors in [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF] that all products in QK(X) are finite. Let d X (2) denote the smallest possible degree of a rational curve connecting two general points in X. The main theorem of [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF] states that (α ⋆ β) d = 0 whenever X is cominuscule and d > d X (2), which is the best possible bound.

Given three general points x, y, z ∈ X, let M d (x, y, z) ⊂ M 0,3 (X, d) denote the Gromov-Witten variety of stable maps that send the three marked points to x, y, and z. We will assume that this variety is rationally connected for all sufficiently large degrees d. Let d rc be a positive integer such that M d (x, y, z) is rationally connected for d ≥ d rc . We also let d cl be the smallest length of a chain of lines connecting two general points in X. Our main result is the following theorem. The Gromov-Witten varieties M d (x, y, z) of large degrees are known to be rational when X is a cominuscule homogeneous space, an orthogonal Grassmannian OG(m, N ) for m = N 2 -1, or any adjoint variety of type different from A or G 2 . This was proved in [START_REF] Buch | Quantum K-theory of Grassmannians[END_REF] for Grassmannians of type A and in [START_REF] Chaput | Rationality of some Gromov-Witten varieties and application to quantum K-theory[END_REF] in all other cases. Theorem 1 therefore establishes the finiteness of quantum K-theory for many new spaces. The orthogonal Grassmannian OG(m, N ) is the variety of isotropic mdimensional subspaces in the vector space C N equipped with a non-degenerate symmetric bilinear form; these varieties account for all spaces G/P where G is a group of type B n or D n and P is a maximal parabolic subgroup. The variety X = G/P is called adjoint if it is isomorphic to the closed orbit of the adjoint action of G on P(Lie(G)).

Remark 1.1. We thank Jason Starr for sending us an outline of an argument that uses the results of [START_REF] Jong | Families of rationally simply connected varieties over surfaces and torsors for semisimple groups[END_REF][START_REF] De | Low degree complete intersections are rationally simply connected[END_REF] to prove that the Gromov-Witten varieties M d (x, y, z) of large degrees are rationally connected when X is any projective rational homogeneous space with Pic(X) = Z. As a consequence, Theorem 1 can be applied to all such spaces. We also thank Starr for making us aware of [START_REF] Jong | Families of rationally simply connected varieties over surfaces and torsors for semisimple groups[END_REF]Lemma 15.8].

Stable maps and Gromov-Witten varieties

We recall here some notation and results from [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF]. Let X = G/P be a homogeneous space defined by a semisimple complex linear algebraic group G and a parabolic subgroup P ⊂ G. Let B ⊂ P be a Borel subgroup. Recall that a Schubert variety in X is an orbit closure of a Borel subgroup of G. Equivalently, it is a G-translate of the closure of a B-orbit in X; the latter orbit closure is a B-stable Schubert variety. Given an effective degree d ∈ H 2 (X; Z) and an integer n ≥ 0, the Kontsevich moduli space M 0,n (X, d) parametrizes the isomorphism classes of n-pointed stable (genus zero) maps f : C → X with f * [C] = d, and comes with a total evaluation map ev = (ev 1 , . . . ,

ev n ) : M 0,n (X, d) → X n := X × • • • × X.
Here a map is called stable if its automorphism group is finite, i.e. each of its contracted components has at least 3 special points. A detailed construction of this space can be found in the survey [START_REF] Fulton | Notes on stable maps and quantum cohomology, Algebraic geometry-Santa Cruz[END_REF].

Let d = (d 0 , d 1 , . . . , d r ) be a sequence of effective classes d i ∈ H 2 (X; Z), let e = (e 0 , . . . , e r ) ∈ N r+1 , and set |d| = d i and |e| = e i . Let M d,e ⊂ M 0,|e| (X, |d|) be the closure of the locus of stable maps f : C → X defined on a chain C of r + 1 projective lines, such that the i-th projective line contains e i marked points (numbered from 1 + j<i e j to j≤i e j ) and the restriction of f to this component has degree d i . To ensure that these maps are indeed stable we assume that e i ≥ 1+δ i,0 +δ i,r whenever d i = 0. Moreover, we will assume that e 0 > 0 and e r > 0. Set

Z d,e = ev(M d,e ) ⊂ X |e| . Given subvarieties Ω 1 , . . . , Ω m of X with m ≤ |e|, define a boundary Gromov-Witten variety by M d,e (Ω 1 , . . . , Ω m ) = m i=1 ev -1 i (Ω i ) ⊂ M d,e . We also write Γ d,e (Ω 1 , . . . , Ω m ) = ev |e| (M d,e (Ω 1 , . . . , Ω m )) ⊂ X.
If no sequence e is specified, we will use e = (3) when r = 0 and e = (2, 0, . . . , 0, 1) when r > 0. This convention will be used only when d i = 0 for i > 0. For this reason the sequence d = (d 0 , . . . , d r ) will be called a stable sequence of degrees if d i = 0 for i > 0.

An irreducible variety Y has rational singularities if there exists a desingulariza-

tion π : Y → Y such that π * O e Y = O Y and R i π * O e Y =
0 for all i > 0. An arbitrary variety has rational singularities if its irreducible components have rational singularities, are disjoint, and have the same dimension. We need the following result from [1, Lemma 3].

Lemma 2.1 (Brion). Let Z and S be varieties and let π : Z → S be a morphism.

If Z has rational singularities, then the same holds for the general fibers of π. It was proved in [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF]Prop. 3.7] that M d,e is unirational and has rational singularities. Lemma 2.1 therefore implies that M d,e (x 1 , . . . , x m ) has rational singularities for all points (x 1 , . . . , x m ) in a dense open subset of (ev

A morphism f : Y → Z of varieties is a locally trivial fibration if each point z ∈ Z has an open neighborhood U ⊂ Z such that f -1 (U ) ∼ = U × f -1 (z)
1 × • • • × ev m )(M d,e ) ⊂ X m .
Proposition 2.2 applied to the map ev 1 : M d,e → X shows that M d,e (x) is unirational for all points x ∈ X. Finally, [3, Lemma 3.9(a)] states that the variety Z d,2 = ev(M d,2 ) ⊂ X 2 is rational and has rational singularities for any effective degree d ∈ H 2 (X; Z), 

Rationally connected Gromov-Witten varieties

An algebraic variety Z is rationally connected if two general points x, y ∈ Z can be joined by a rational curve, i.e. both x and y belong to the image of some morphism P 1 → Z. We need the following fundamental result from [START_REF] Graber | Families of rationally connected varieties[END_REF].

Theorem 3.1 (Graber, Harris, Starr). Let f : Z → Y be any dominant morphism of complete irreducible complex varieties. If Y and the general fibers of f are rationally connected, then Z is rationally connected.

We assume from now on that X = G/P is defined by a maximal parabolic subgroup P ⊂ G. Then we have H 2 (X; Z) = Z, so the degree of a curve in X can be identified with an integer. We will further assume that the three-point Gromov-Witten varieties of X of sufficiently high degree are rationally connected. More precisely, assume that there exists an integer d rc such that M d (x, y, z) is rationally connected for all d ≥ d rc and all points (x, y, z) in a dense open subset U d ⊂ X 3 .

For n ≥ 2 we set d X (n) = min{d ∈ N | Z d,n = X n }. This is the smallest integer such that, given n arbitrary points in X, there exists a curve of degree d X (n) through all n points. Finally we set ,d r ) and e ′ = (1, 0, . . . , 0, 1) ∈ N r . It follows from [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF]Prop. 3.6] that M d is the product over X of the maps ev 3 : M d0,3 → X and ev 1 :

d cl = min{d ∈ N | Z (1 d ),(1,0 d-2 ,1) = X
M d ′ ,e ′ → X. The assumption implies that d 0 ≥ d rc or |d ′ | ≥ d cl .
Assume first that |d ′ | ≥ d cl . It then follows from the definition of d cl that Z d = Z d0,2 × X. Let X • = P w 0 .P ⊂ X be the open P -orbit. By Proposition 2.3 and Lemma 2.1 we may choose a dense open subset U ⊂ Z d0,2 such that, for all points (x, y) ∈ U we have that M d0 (x, y) is unirational, Γ d0 (x, y) ∩ X • = ∅, and M d (x, y, 1.P ) has rational singularities. Let (x, y) ∈ U . We will show that M d (x, y, 1.P ) is rationally connected. Let p : M d (x, y, 1.P ) → M d0 (x, y) be the projection. Then the fibers of p are given by p -1 (f ) = M d ′ ,e ′ (ev 3 (f ), 1.P ). Since the morphism ev 1 : M d ′ ,e ′ (X, 1.P ) → X is surjective and P -equivariant, Proposition 2.2 implies that this map is locally trivial over X • . Since M d ′ ,e ′ (X, 1.P ) is unirational, we deduce that M d ′ ,e ′ (z ′ , 1.P ) is unirational for all z ′ ∈ X • . This implies that p -1 (f ) is unirational for all f ∈ M d0 (x, y, X • ), which is a dense open subset of M d0 (x, y) by choice of U . Since the general fibers of p are connected, it follows from Stein factorization that all fibers of p are connected. Therefore M d (x, y, 1.P ) is connected. Since this variety also has rational singularities, we deduce that M d (x, y, 1.P ) is irreducible. Finally, Theorem 3.1 applied to the map p : M d (x, y, 1.P ) → M d0 (x, y) shows that M d (x, y, 1.P ) is rationally connected.

Assume now that d 0 ≥ d rc . In this case we have Z d = X 3 . Let U ⊂ X 3 be a dense open subset such that M d (x, y, z) has rational singularities and M d0 (x, y, z) is rationally connected and has rational singularities for all (x, y, z) ∈ U . Using similar arguments, one can show that M d (x, y, z) is rationally connected for all (x, y, z) ∈ U . This follows from Theorem 3.1 again, applied to the map q : M d (x, y, z) → M d ′ ,e ′ (X, z). Details are left to the reader.

Quantum K-theory

Let K(X) denote the Grothendieck ring of algebraic vector bundles on X. An introduction to this ring can be found in e.g. [2, §3.3]. For each effective degree d ∈ H 2 (X; Z) we define a class Φ d ∈ K(X 3 ) by

Φ d = d=(d0,...,dr) (-1) r ev * [O M d ] ,
where the sum is over all stable sequences of degrees d such that |d| = d, and ev : M d → X 3 is the evaluation map. Let π i : X 3 → X be the projection to the i-th factor. For α, β ∈ K(X) we set (α ⋆ β)

d = π 3 * (π * 1 (α) • π * 2 (β) • Φ d ) ∈ K(X).
The quantum K-theory ring of X is an algebra over Z q , which as a Z q -module is given by QK(X) = K(X) ⊗ Z Z q . The multiplicative structure of QK(X) is defined by

α ⋆ β = d (α ⋆ β) d q d
for all classes α, β ∈ K(X), where the sum is over all effective degrees d. A theorem of Givental [START_REF]On the WDVV equation in quantum K-theory[END_REF] states that QK(X) is an associative ring. We note that the definition of QK(X) given here is different from Givental's original construction; the equivalence of the two definitions follows from [3, Lemma 5.1]. 1 We need the following Gysin formula from [4, Thm. 

[O M d ] = [O Z d ] ∈ K(X 3 ).
Proof. This holds because Z d = Z d0,2 ×X has rational singularities [3, Lemma 3.9], the general fibers of the map ev : M d → Z d are rationally connected by Theorem 3.2, and M d has rational singularities by [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF]Prop. 3.7].

Theorem 1 is equivalent to the following result. It would be interesting to determine the maximal value of d for which Φ d = 0. If X is a cominuscule variety, then this number is equal to d X (2), hence the maximal power of q that appears in products in the quantum K-theory ring of X is equal to the maximal power that appears in the quantum cohomology ring [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF].

1 Lemma 5.1 in [START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF] is stated only for cominuscule varieties, but its proof works verbatim for any projective rational homogeneous space X.
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  and f is the projection to the first factor. The following result is obtained by combining Propositions 2.2 and 2.3 in [3]. Proposition 2.2. Let B ⊂ G be a Borel subgroup, let Y be a B-variety, let Ω ⊂ X be a B-stable Schubert variety, and let f : Y → Ω be a dominant B-equivariant map. Then f is a locally trivial fibration over the dense open B-orbit Ω • ⊂ Ω.

Proposition 2 . 3 .

 23 The variety M d,e (x, y) is unirational for all points (x, y) in a dense open subset of the image (ev 1 × ev 2 )(M d,e ) ⊂ X 2 . Proof. Set Ω = ev 2 (M d,e (1.P )) ⊂ X. Since M d,e (1.P ) is irreducible and P -stable, it follows that Ω is a P -stable Schubert variety. Let U ⊂ Ω be the dense open Porbit. It follows from Proposition 2.2 that ev 2 : M d,e (1.P ) → Ω is a locally trivial fibration over U . Since M d,e (1.P ) is unirational, this implies that M d,e (1.P, x) is unirational for all x ∈ U . Finally notice that (ev 1 × ev 2 )(M d,e ) = G × P Ω = (G × Ω)/P , where P acts by (g, x).p = (gp, p -1 .x), and M d (x, y) is unirational for all points (x, y) in the dense open subset G × P U ⊂ G × P Ω. Remark 2.4. It is proved in [6, Lemma 15.8] that, if d = (1 d ) = (1, 1, . . . , 1) with d large, e = (1, 0 d-2 , 1), and Pic(X) = Z, then the general fibers of ev : M d,e → X 2 are rationally connected. This also follows from Proposition 2.3. A more general statement is proved in [3, Prop. 3.2].

  2 }, where (1 d ) = (1, 1, . . . , 1) denotes a sequence of d ones. This is the smallest length of a chain of lines connecting two general points in X. Notice that d X (3) ≤ d rc and d X (2) ≤ d cl . Theorem 3.2. Let d = (d 0 , d 1 , . . . , d r ) be a stable sequence of degrees such that |d| ≥ d rc + d cl -1. Then we have Z d = Z d0,2 × X, and M d (x, y, z) is rationally connected for all points (x, y, z) in a dense open subset of Z d . Proof. Set d ′ = (d 1 , . . .

3 . 1 ]Proposition 4 . 1 .

 3141 (see also[START_REF] Buch | Finiteness of cominuscule quantum K-theory[END_REF] Prop. 5.2] for the stated version.) Let f : X → Y be a surjective morphism of projective varieties with rational singularities. If the general fibers of f are rationally connected, thenf * [O X ] = [O Y ] ∈ K(Y ).

Corollary 4 . 2 .

 42 Let d = (d 0 , . . . , d r ) be a stable sequence of degrees such that |d| ≥ d rc + d cl -1. Then we have ev *

Theorem 4 . 3 . 1 r- 1 = 0 ,

 43110 We have Φ d = 0 for all d ≥ d rc + d cl . Proof. It follows from Corollary 4.2 that, for d ≥ d rc + d cl we have Φ d = d=(d0,...,dr) (-1) r [O Z d ] ∈ K(X 3 ) , where the sum is over all stable sequences of degrees d with |d| = d. Since Z d = Z d0,2 × X, the terms of this sum depend only on d 0 . Since d ≥ d cl + d rc > d X (2), it follows that Z (d) = Z (d-1,1) = X 3 , so the contributions from the sequences d = (d) and d = (d -1, 1) cancel each other out. Now let 0 ≤ d ′ ≤ d -2. For each r with 1 ≤ r ≤ dd ′ , there are exactly d-d ′ -1 r-1 sequences d in the sum for which d 0 = d ′ and the length of d is r + 1. Since d-d ′ r=1 (-1) r d-d ′ -it follows that the corresponding terms cancel each other out. It follows that Φ d = 0, as claimed.

Remark 4 . 4 .

 44 Theorem 4.3 is true also for the equivariant K-theory ring QK T (X) with the same proof.

Remark 4 . 5 .

 45 If X is not the projective line, then the proof of Theorem 4.3 shows that Φ d = 0 for all d ≥ d rc + d cl -1.