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ABSTRACT
Interval analysis tools have been used in many techniques
and methods to study dynamical systems. Nevertheless,
custom homemade libraries are usually developed for these
purposes. DynIBEX is a free open-source library combining
validated numerical integration methods with a constraint
programming library named IBEX. Its purpose is to provide
all the basic interval operators which may be used into more
complex algorithms for studying dynamical systems.
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1. INTRODUCTION
An important amount of research deals with cyber-phy-

sical systems to prove safety or study stability properties.
One of the mathematical foundation of cyber-physical sys-
tems are (hybrid) dynamical systems which are complex ob-
jects to study, due to their non trivial temporal evolutions.

Studying dynamical systems to prove safety or stability
properties refers to consider the set of all the trajectories.
Interval analysis is an appealing approach because it is tract-
able for high dimensional systems and combining with space
decomposition it is possible to represent complex geometric
forms. Interval analysis tools are found in many work such as
for verification methods based on simulation or on reachable
set computation, [9, 5, 4, 3], or in verification techniques
based on SMT solver, mainly to define decision procedures
over the reals, as in [8] or in SMT modulo ODE [6]. Control
synthesis problem have also been considered in [7, 1].
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In all the previous cited works a common set of inter-
val operators are used which could be gathered into a li-
brary. DynIBEX1 is such a library providing operator to
deal with interval constraints (IBEX library2) and differen-
tial equations. Note that DynIBEX follows the same pur-
pose than CORA [2] with an emphasis on the interval con-
straint programming approach. We report the main features
of DynIBEX in this poster.

2. FEATURES OF DYNIBEX

2.1 Features coming from IBEX library
The most basic notion used in interval analysis is the in-

clusion function [f ] : IRn → IRk for a function f : Rn → Rk

which satisfies for all [x] ∈ IRn, f ([x]) = {f(x) | x ∈ [x]} ⊆
[f ] ([x]) . R stands for the set of real values while IR stands
for the set of interval values. The natural inclusion function
is the simplest to obtain: all occurrences of the real variables
are replaced by their interval counterpart and all arithmetic
operations are evaluated using interval arithmetic [10]. To
avoid some limitations with interval arithmetic, other kinds
of arithmetic may bu used such as affine arithmetic [3]. Both
arithmetic are available in IBEX.

Consider some function g : Rn → Rk and some set Z ⊂
Rk. A contractor Cc : IRn → IRn associated to the generic
constraint c ≡ g(x) ∈ Z is a function taking a box [x] as
input and returning a box Cc ([x]) satisfying i) Cc ([x]) ⊆ [x]
and ii) g ([x]) ∩ Z = g (Cc ([x])) ∩ Z. Hence, Cc provides a
box containing the set {x ∈ [x] | g(x) ∈ Z} of solutions of c
included in [x]: i) ensures that the returned box is included
in [x] and ii) ensures that no solution of g(x) ∈ Z in [x] is
lost. Standard contractor operators are defined in IBEX.

Paving is a common method in interval analysis, it is re-
lated to the construction of a set S ⊂ Rn as a list of non-
overlapping boxes [xi] ⊂ S with a non null width. This
approach can be used to describe a set, by a list of inner

boxes ([xi] ⊂ S), of outer boxes ([xi] 6⊂
S), and the frontier, i.e., a list of boxes
for which we cannot conclude of the
membership to S in an acceptable com-
putation time. For example, if the
set S describes a ring such as S =
{(x, y) | x2 + y2 ∈ [1, 2]}, the paving

of S in the box [−2, 2]× [−2, 2] is given on the left.

1http://perso.ensta-paristech.fr/˜chapoutot/dynibex/
2http://www.ibex-lib.org



2.2 Validated numerical integration methods
In DynIBEX different classes of differential equations can

be treated with interval analysis tools: Ordinary Differential
Equations (ODE) defining a function y(t) from f : R ×
Rn× → Rn such that it is solution of ẏ = f(t,y), where
ẏ is the time derivative of y(t), and Differential Algebraic
Equations (DAE) of index 1 defined two functions y(t) and
x(t) from f : R×Rn×Rm → Rn and g : R×Rn×Rm → Rm

such that they are solutions of ẏ = f(t,x,y)∧ 0 = g(t,x,y)
for all t. Note that x(t) is implicitly defined by g.

DynIBEX can solve these kinds of equations, with inter-
val initial values and/or interval parameters, using various
validated numerical integration schemes based on explicit
and implicit Runge-Kutta methods among Heun and Mid-
point methods, Radau-IIA (order 3), classical Runge-Kutta,
Lobatto-IIIA (order 4), Lobatto-IIIC (order 4).

The combination of validated numerical integration meth-
ods for ODEs and DAEs with features of IBEX offers addi-
tional capabilities as considering embedded constraints to
ODEs and DAEs. Such constraints may represent some
physics laws such as energy preservation along trajectories.
Basically, DynIBEX can consider constraints of the form
c ≡ ∀t, 0 = h(t,y,p) with y the solution of an ODE or a
DAE and p stands for a vector of bounded uncertain pa-
rameters.

For example, DynIBEX can solve the following DAE while
checking the consistency of the initial values of the state and
algebraic variables. It produces at time t = 0.5 the enclosure
y ∈ ([1.8732, 1.8733], [1.3651, 1.3653], [5.0552, 5.0558]).

int main (){
Variable y ( 3 ) ; // State va r i a b l e s
IntervalVector y i n i t ( 3 ) ;
y i n i t [0 ]= Interval ( 1 . 0 ) ;
y i n i t [1 ]= 1 . 0 ;
y i n i t [2 ]= 3 . 0 ;

Variable x ( 2 ) ; // Algebraic va r i a b l e s
IntervalVector x i n i t ( 2 ) ;
x i n i t [0 ]= Interval ( 0 . 5 ) ;
x i n i t [1 ]= 1 . 0 ;

Function ydot =
Function (y , x , Return( y [1 ]+x [ 0 ] ,

y [0]−y [ 1 ] ∗ x [ 0 ] ,
y [ 0 ] ∗ y [2]−x [ 1 ] ) ) ;

Function g = Function (y , x , Return( y [0]−x [ 1 ] ,
y [1]−2∗x [ 0 ] ) ) ;

ivp dae h1 problem =
ivp dae h1 ( ydot , g , 0 . 0 , y in i t , x i n i t ) ;

simulation simu = simulation(&problem , 0 . 5 ,
RADAU3 DAE, 1e−14);

simu . run s imu la t i on ( ) ;

IntervalVector s a f e ( 3 ) ;
s a f e [ 0 ] = Interval ( 0 , 9 ) ;
s a f e [ 1 ] = Interval ( 0 , 5 ) ;
s a f e [ 2 ] = Interval ( 0 , 3 ) ;
bool f l a g = simu . s t ayed in ( s a f e ) ;
cout << ”simu stayed in s a f e : ” ;
cout << f l a g ? ”true ” : ” f a l s e ” << endl ;

return 0 ;
}

2.3 Satisfaction problems
Additionally in DynIBEX, a set of operators have been

defined to handle constraints of the form ∀t,y(t) ∈ S or
∃t,y(t)∩U 6= ∅. In the above example, the method stayed in

is used to check if the trajectory y(t) stay in a given box
for all t. This feature, added to the contractors and paving
capabilities, allow to solve satisfaction problems based on
differential equations.

3. CONCLUSION
A quick overview of DynIBEX library has been presented,

showing the main features to study dynamical systems. Note
also that it is straightforward to simulate or study switched
systems such as [7]. Further work has still to be done to
take into account more differential problems such as delay
differential equations.
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