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Inference for Nonlinear Stochastic Equations with Random Effects. Application to Epidemic Model

We consider the maximum likelihood estimator of the parameters for stochastic differential equations with a drift that depends on random effects. An explicit formulae was given and the asymptotic properties are investigated when the random effects have Gaussian distribution. In this article, we deal with a nonlinear model, by using the approximate Log-likelihood instead of the exact one. We prove the asymptotic properties using existing relevant theorems when the drift term does not depend linearly on the random effects. An example of application in epidemiology is treated and discussed in detail.

Introduction

In biomedical research, studies in which repeated measurements are taken on series of individual or experimental animals play an important role. Models icluding random effects to model this kind of data enjoy an increasing popularity. These models account for both intra-individual variability, that is, occuring within the dynamics of each individual over time, and the variability occuring between subjects. The mixed effects SDEs have been introduced as an alternative to classical ODE-based models (Ditlevsen and De Gaetano, 2005b [4]; Overgaard et al., 2005 [11]; Donnet and Samson, 2008 [5]) in Pharmacokinetic/Pharmacodynamic modelling. SDEs with random effects have also proposed for neuronal data (Picchini et al., 2008 [13]).

Maximum likelihood estimation (MLE) of parameters of random effects, also called population parameters, is generally not straightforward as the likelihood or log likelihood function can rarely be expressed in closed form because of complexity of logarithm and integration. Approximations of the likelihood have been proposed, based on linearization [START_REF] Beal | Estimating population kinetics[END_REF] or Laplce's approximation (Wolfinger, 1993 [16]). Alternative methods have also been developed such as the SAEM algorithm (Kuhn and Lavielle, 2004 [9]). Maximum likelihood estimation in SDEs with random has been tackled in few papers. Ditlevsen and De Gaetano (2005a) show that in specific case of mixed effects Brownian motion with drift, the likelihood function can be explicitly derived, leading to explicit parameters estimators. For general mixed SDEs approximations of the likelihood have been proposed (Picchini et al., 2010[12]; Picchini and Ditlevsen, 2011 [START_REF] Picchini | Practicle estimation of a high dimensional stochastic differential mixed-effects models[END_REF]).

2 Model and assumptions [START_REF] Delattre | Maximum likelihood estimation for stochastic differential equations with random effects[END_REF] consider classical inference in the context of mixed-effects stochastic differential equations (SDE's) having the form

dX i (t) = b(X i (t), φ i )dt + σ (X i (t), φ i )dW i (t), (1) 
where, for i = 1, ..., N , X i (0) = x i , is the initial value of the stochastic process X i (t), which is assumed to be continuously observed on the time interval [0, T i ],

where T i > 0 assumed to be known. Each X i models an individual with dynamics given by (1). W 1 , ..., W N are N independent Wiener processes, φ 1 , ..., φ N are R d -valued random variables which represent random effects. (φ 1 , ..., φ N ) are independent of Brownian motions and identically distributed with common distribution g(ϕ, θ)dν(ϕ). Here g(ϕ, θ) is density with respect (w.r.t for short) to a dominating measure ν on R r , for all θ, where θ ∈ Θ ⊂ R d is the unknown parameter of interest, which is to be estimated. Delattre et al., 2012 [2] impose regularity conditions that ensure existence of solutions of (1). Our interest is the estimation of the population parameter θ, where b(., .) and σ (., .) are real valued functions, but b(x, φ i ) is not necessary linear in φ i as considered in Delattre et al., (2012) [START_REF] Delattre | Maximum likelihood estimation for stochastic differential equations with random effects[END_REF]. Thus we construct the approximate likelihood function. To simplify notations, we write dϕ instead of dν(ϕ). We also consider firstly the one dimensional case where ϕ, x ∈ R, which is be extended in multidimensional case. Notationally,

P -→, D

=⇒ and

Pa.s -→, denote, respectively, convergence in probability, in distribution and almost surely under P. The following assumptions and notations will be needed throughout the paper.

Assumption (1) ( Smoothness of the coefficients )

(i) b(x, ϕ) ∈ C 1 (R 2 ,
R) and its x-derivative is bounded uniformly in ϕ.

(ii) σ (x, ϕ) ∈ C 2 (R 2 , R) and all its x-derivatives up to order 2 are bounded uniformly in ϕ.

Assumption (2) ( Non degeneracy of the diffusion )

There exists σ 0 > 0 such that, σ 2 (x, ϕ) ≥ σ 2 0 > 0, for all x, ϕ ∈ R

Assumption (3)

There exits L > 0 such that, b(x, ϕ) σ (x, ϕ)

+ |σ (x, ϕ)∂ xx σ (x, ϕ)| ≤ L for all x, ϕ ∈ R,
where ∂ xx f (x, ϕ) denotes the second derivative of f with respect to x.

Assumption (4) ( Law of random effects ) g(ϕ, θ)dϕ = N (ν, ω 2 ) for all parameter θ = (ν, ω 2 ) in a compact set Θ ⊆ R × (0, ∞), with true value θ 0 = (ν 0 , ω 2 0 ) ∈ Θ ( Θ is the interior of Θ).

Assumption [START_REF] Donnet | Parametric inference for mixed models defined by stochastic differential equations[END_REF] The Fisher matrix I(θ 0 ) is nonsingular.

If f (x, ϕ) ∈ C k (R 2 , R), k ≥ 1
, we denote by f (i) the ith derivative with respect to x.

The exact likelihood function

Consider N real valued stochastic processes (X i (t), t ≥ 0), i = 1, . . . , N , with dynamics ruled by [START_REF] Beal | Estimating population kinetics[END_REF]. The processes (W i ) 1≤i≤N and the random variables (r.v.'s) φ i , i = 1, . . . , N are defined on a common probability space (Ω, F , P). Consider the filtration (F t , t ≥ 0) defined by

F t = σ (φ i , W i (s), s ≤ t, i = 1, . . . , N ). As F t = σ (W i (s), s ≤ t) ∧ F i t , with F i t = σ φ i , φ j , W j (s), s ≤ t, j i independent of W i each process W i is a (F t , t ≥ 0)-Brownian motion.
Moreover, the r.v.'s φ i are F 0 -measurable. Under the assumption (H 1 ), the process X i (t) is well defined φ i , X i (t) is strong Markovian adapted to the filtration (F t , t ≥ 0). The N processes φ i , X i (•) 1≤i≤N are independent (this is inherited from the independence of φ i and W i ). For all ϕ ∈ R, x i ∈ R, the following SDE

dX i ϕ (t) = b X i ϕ (t), ϕ + σ X i ϕ (t), ϕ dW i ϕ (t), X i ϕ (0) = x i (2)
admits a unique strong solution process X i ϕ (t), 0 ≤ t ≤ T i adapted to the filtration (F t , 0 ≤ t ≤ T i ). We construct The exact likelihood in the same way as in Delattre ( see [START_REF] Delattre | Maximum likelihood estimation for stochastic differential equations with random effects[END_REF] 

[2, Section 3]) Λ N (θ) = N i=1 λ i (X i , θ) , λ i (X i , θ) = R L T i (X i , ϕ)g(ϕ, θ)dϕ (3)
where L T i (X i , ϕ) is the usual conditional likelihood function of the SDE (2). It is worth stressing that is difficult to obtain an exact form of the likelihood in our situation, for two reasons. The first, is that the transition densities of (2) are not explicit in general. The second, is that the marginal densities λ i (X i , θ) are of integral form which cannot be expressed in closed-form, unless we consider a linear model with a specific distribution as in Delattre et al., 2012[2].

Let the processes (X i (t), t ∈ [0, T i ]), i = 1, . . . , N be discretely observed at equidistant time points t i j = jT i n , j = 0, . . . , n and set

∆ i = T i n , X i = X i (t i j ) = X i j , j = 0, . . . , n with T i ≤ T , i = 1, . . . , N
where T 1 , . . . T N , T are fixed. Using transition densities combined with the Markovian nature of ( 2), which the discreet data inherit, we have

Λ N ,n (θ) = N i=1 R n i=1 p ∆ i (X i j , X i j-1 , ϕ)g(ϕ, θ)dϕ (4)
Since the transition densities of (2) are generally not explicit, we propose to use the Gaussian approximation based on Euler scheme. First, we start by standardizing the diffusion functions of X i , i.e., transforming X i into Y i defined as

Y i = γ(X i , ϕ) = X i du σ (u, ϕ) , for allϕ ∈ R.
where any primitive of 1/σ may be selected, i.e.,the constant of integration is irrelevant, because σ (•,

•) ≥ σ 0 > 0 ( otherwise σ (•, •) ≤ -σ 0 < 0 )
. The function γ is increasing (resp decreasing) and invertible for all ϕ ∈ R. applying Ito's Lemma, for i = 1, . . . , N , Y i has unit diffusion, that is :

dY i (t) = µ Y i (t), ϕ dt + dW i (t) , for allϕ ∈ R where µ (y, ϕ) = b γ -1 (y, ϕ), ϕ σ (γ -1 (y, ϕ), ϕ) - 1 2 σ γ -1 (y, ϕ), ϕ
4 Approximating the transition densities we are interested in approximating the transition densities P ∆ i (X i j , X i j-1 , ϕ), i = 1, . . . , N for two adjacent discrete time observations X i j-1 and X i j . To simplify notations, we focus on approximating the transition densities corresponding to X 1 = X. we set W 1 = W , T 1 = T , and ∆ 1 = ∆ = T n . Let P X (∆, x, w) denote the conditional density of X t+∆ = w given X t = x, induced by the model :

dX t = b(X t , ϕ)dt + σ (X t , ϕ)dW t
We define the functions M i (ϕ), i = 1, . . . , N , G(y, ϕ) and Ψ ϕ (∆, x, w) :

M i (ϕ) = ess sup y∈D Y i µ (y, ϕ) + µ 2 (y, ϕ) (5) Ψ ϕ (∆, x, w) = 1 2π∆σ 2 (w, ϕ) exp - 1 2∆ (z -y -∆µ(y, ϕ)) 2 (6) 
with y = γ(x, ϕ) and z = γ(w, ϕ)

G(y, ϕ) = y y 0 µ(v, ϕ)dv , for some fixed y 0 ∈ R. (7) 
Lemma 1. Under the assumptions ( 1)-( 3), the function M 1 (ϕ) is bounded and P X (∆, x, w) ∼ Ψ ϕ (∆, x, w) as ∆ -→ 0 uniformly in x, w and ϕ.

Proof of Lemma 1 : Let y = γ(x, ϕ), z = γ(w, ϕ) and Y = γ(X, ϕ). we have 

µ (y, ϕ) + µ 2 (y, ϕ) ≤ b (x, ϕ) + b(x, ϕ) σ (x, ϕ) σ (x, ϕ) + 1 2 σ (x, ϕ)σ (x, ϕ) + b(x, ϕ) σ (x, ϕ) - 1 2 σ (x, ϕ) 2 ≤ b (x, ϕ) + L 1 2 + σ (x, ϕ) + 2 b 2 (x, ϕ) σ 2 (x, ϕ) + 1 2 σ 2 (x, ϕ) ≤ 2L 2 + L 2 + sup x,ϕ b (x, ϕ) + L σ (x, ϕ) + 1 2 σ 2 (x, ϕ) < ∞ Hence, the functions M i (ϕ), i = 1, . . . ,
P Y (∆, y, z) ∼ e G(z,ϕ)-G(y,ϕ) P W (∆, y, z)
as ∆ -→ 0 uniformly in y, z.

P W (∆, y, z) = d dz P (W t+∆ ≤ z|W t = y) = d dz P(W t+∆ -W t ≤ z -y) = e -1 2∆ (z-y) 2 √ 2π∆
Applying the jacobian formula for the change of density, we get :

P (∆, x, w) = |σ (w, ϕ)| -1 P Y (∆, y, z) ∼ e G(z,ϕ)-G(y,ϕ) 2π∆σ 2 (w, ϕ) × e -1 2∆ (z-y) 2
Hence,

P X (∆, x, w) Ψ ϕ (∆, x, w) ∼ exp G(z, ϕ) -G(y, ϕ) - 1 2∆ (z -y) 2 + 1 2∆ (z -y -∆µ(y, ϕ)) 2 =Ψ ( 8 
)
Taking the logarithm of the right hand side in [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF] followed by the absolute value, we have

|log Ψ | ≤ z y µ(u, ϕ)du -µ(y, ϕ)(z -y) + ∆ 2 µ 2 (y, ϕ) ≤ z y [µ(u, ϕ) -µ(y, ϕ)] du + L 2 1 2 ∆ ≤ L 2 1 2 ∆ + sgn(z -y) z y µ(u, ϕ) -µ(y, ϕ) du ≤ L 2 1 2 ∆ + L 2 sgn(z -y) z y u -y du ≤ L 2 1 2 ∆ + L 2 2 (z -y) 2 ≤ L 2 1 2 ∆ + L 2 2 γ(X t+∆ , ϕ) -γ(X t , ϕ) 2 L 2 1 2 ∆ + L 2 2σ 2 0 |X t+∆ -X t | 2 with L 1 := L + 1 2 sup
x,ϕ σ (x, ϕ) and L 2 := sup y,ϕ µ (y, ϕ) . Taking the expectation and using theorem 4 of Gikhman and Skorokhod (1972, p. 48), there exists C > 0 such that,

E |log Ψ | ≤ L 2 1 2 ∆ + CL 2 2σ 2 0 (E(X 2 0 ) + 1) ∆ -→ 0 as ∆ -→ 0
and this holds uniformly in x, w and ϕ.

5 Approximating the likelihood function Λ N ,n (θ)

Remark 2. One may use the approximations given in section 4 instead of the transition densities P ∆ i (X i j , X i j-1 , ϕ). That is not enough to construct a consistent approximate likelihood, since it may not be possible to bound the total asymptotic error of the approximations given by ( 6). Thus we trim the approximations Ψ ϕ (∆ i , X i j-1 , X i j ) by the following compensatory error functions

Φ n,i = exp 1 2n T i 0 µ (Y i (s), ϕ) + µ 2 (Y i (s), ϕ) ds , with Y i (s) = γ(X i (s), ϕ)
We define the approximate likelihood function of the parameter θ by

Λ N ,n (θ) = N i=1 R n j=1 Φ n,i Ψ ϕ (∆ i , X i j-1 , X i j )g(ϕ, θ)dϕ = N i=1 R exp 1 2 U i (ϕ) -1 2 S i (ϕ) (2π∆ i ) n/2 R 1/2 i (ϕ) g(ϕ, θ)dϕ (9)
where

R i (ϕ) = n j=1 σ 2 (X i j , ϕ), U i (ϕ) = T i 0 µ (Y i (s), ϕ) + µ 2 (Y i (s), ϕ) ds and S i (ϕ) = 1 ∆ i n j=1 γ(X i j , ϕ) -γ(X i j-1 , ϕ) -∆ i µ(γ(X i j-1 , ϕ), ϕ) 2 Lemma 3.
Under the assumptions ( 1)-( 3), the approximate likelihood given in ( 9) is consistent as n -→ ∞.

Proof of Lemma 3 :

Let Ψ i n (ϕ) = exp 2 U i (ϕ) -1 2 S i (ϕ) (2π∆ i ) n/2 R 1/2 i (ϕ) for i = 1, . . . , N . We shall show that Ψ i n (ϕ) ∼ n j=1 P ∆ i (X i j , X i j-1 , ϕ) as n -→ ∞. We set y i = Y i (0) = γ(X i (0), ϕ), Y i t = γ(X i (t), ϕ) and F(y) = y y i µ(u, ϕ)du. applying Itô formula to F(Y i t ), we get Y i T i y i µ(u, ϕ)du = T i 0 µ 2 (Y i s , ϕ)ds + 1 2 T i 0 µ (Y i s , ϕ)ds + T i 0 µ(Y i s , ϕ)dW i (s) (10)
For sufficiently large n, (8) yields

n j=1 P ∆ i (X i j , X i j-1 , ϕ) Ψ i n (ϕ) ∼ e F(Y i T i )-1 2 U i (ϕ)-n j=1 µ(Y i j-1 ,ϕ)(Y i j -Y i j-1 )+ 1 2 n j=1 µ 2 (Y i j-1 ,ϕ)∆ i (11) 
Taking the logarithm of right hand side in [START_REF] Overgaard | Nonlinear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm[END_REF] and using [START_REF] Liptser | Statistics of random processes I: general theory[END_REF] we get the following term

Σ = 1 2 T i 0 µ 2 (Y i s , ϕ)ds + T i 0 µ(Y i s , ϕ)dW i s - n j=1 µ(Y i j-1 , ϕ)(Y i j -Y i j-1 ) + 1 2 n j=1 µ 2 (Y i j-1 , ϕ)∆ i = - 1 2 T i 0 µ 2 (Y i s , ϕ)ds + T i 0 µ(Y i s , ϕ)dY i s - n j=1 µ(Y i j-1 , ϕ)(Y i j -Y i j-1 ) + 1 2 n j=1 µ 2 (Y i j-1 , ϕ)∆ i = I 1 + 1 2 I 2 with I 1 = T i 0 µ(Y i s , ϕ)dY i s - n j=1 µ(Y i j-1 , ϕ)(Y i j -Y i j-1 ) and I 2 = n j=1 µ 2 (Y i j-1 , ϕ)∆ i - T i 0 µ 2 (Y i s , ϕ)ds
Clearly E(Σ) -→ 0 as n -→ ∞ (see e.g. Bishwal 2008), and the proof is complete.

Consistency of the AMLE

Consider x i = x and T i = T , for i = 1, . . . , N so that the set-up boils down to the iid situation. Following Schervish 1995[15, Theorem 7.49 and Lemma 7.54], we propose to prove sufficient conditions ensuring consistency of the Maximum Likelihood Estimator (MLE) of the parameter θ based on Λ N ,n . Let C T 1 denote the space of real continuous functions (x(s) : s ∈ [0, T 1 ]), defined on [0, T 1 ], endowed with σ -field B 1 associated with the topology of uniform convergence [0, T 1 ]. Consider the sequence X i ∞ i=1 of random variables conditionally iid given θ, with density function λ 1 (x, θ) on the space (C T 1 , B 1 ).

λ 1 (x, θ) ∝ R exp 1 2 U 1 (ϕ) -1 2 S 1 (ϕ) R 1 (ϕ) 1/2 g(ϕ, θ)dϕ. ( 12 
)
Fix θ 0 ∈ R × (0, ∞), and define for each

M ⊆ R × (0, ∞) and x ∈ C T 1 Z (M, x) = inf θ∈M log λ 1 (x, θ 0 ) λ 1 (x, θ)
Lemma 4. Under the assumptions ( 1)-( 4), and for each θ θ 0 , there exists an open set N θ such that θ ∈ N θ and

E θ 0 Z(M, X i ) > -∞.
Proof of Lemma 4 : Clearly U 1 (ϕ) is bounded. Indeed, for all ϕ ∈ R, we have

U 1 (ϕ) ≤ (L 2 1 + L 2 )T 1 2S 1 < ∞. Let g(ϕ, θ)dϕ = N (ν, ω 2 ), θ = ω 2 ). For θ θ 0 set A = log R exp 1 2 U 1 (ϕ) -1 2 S 1 (ϕ) R 1 (ϕ) 1/2 e -1 ω 2 0 (ϕ-ν 0 ) 2 dϕ and B = log R exp 1 2 U 1 (ϕ) -1 2 S 1 (ϕ) R 1 (ϕ) 1/2 e -1 ω 2 (ϕ-ν) 2
dϕ. To prove lemma 4 it suffices to bound A and -B from below by random variables with finite expectation. Applying the fact that for all a, b ∈ R; (a + b) 2 ≤ 2(a 2 + b 2 ), we can assert that

S 1 (ϕ) = 1 ∆ 1 n j=1 Y 1 j -Y 1 j-1 -∆ 1 µ(Y 1 j-1 , ϕ) 2 ≤ 2 ∆ 1 n j=1 (Y 1 j -Y 1 j-1 ) 2 + 2∆ 1 n j=1 µ 2 (Y 1 j-1 , ϕ) ≤ 2 ∆ 1 σ 2 0 n j=1 (X 1 j -X 1 j-1 ) 2 S 2 + 2T 1 L 2 1 S 3 Therefore A = log R exp 1 2 U 1 (ϕ) -1 2 S 1 (ϕ) R 1 (ϕ) 1/2 e -1 ω 2 0 (ϕ-ν 0 ) 2 dϕ ≥ -(S 1 + S 2 + S3) + log R e -1 ω 2 0 (ϕ-ν 0 ) 2 R 1 (ϕ) 1/2 dϕ
Let K be a linear growth constant for σ , i.e., σ 2 (x, ϕ)

≤ K 2 (1 + x 2 + ϕ 2 ) , for all x, ϕ ∈ R R 1 (ϕ) = n j=1 σ 2 (X 1 j , ϕ) ≤ K 2n 1 + sup 0≤j≤n (X 1 j ) 2 + ϕ 2 n ≤ K 2n 2 n-1 2 + sup 0≤j≤n (X 1 j ) 4n + ϕ 4n =⇒ R 1/2 1 (ϕ) ≤ K n 2 (n-1)/2 √ 2 + sup 0≤j≤n (X 1 j ) 2n + ϕ 2n ≤ K n 2 (n-1)/2 √ 2 + sup 0≤j≤n (X 1 j ) 2n 1 + ϕ 2n ≤ K n 2 (n-1)/2 √ 2 + sup 0≤j≤n (X 1 j ) 2n e 2nϕ Hence, R e -1 ω 2 0 (ϕ-ν 0 ) 2 R 1 (ϕ) 1/2 dϕ ≥ K -n 2 (1-n)/2 √ 2 + sup 0≤j≤n (X 1 j ) 2n -1 R e -1 ω 2 0 (ϕ-ν 0 ) 2 -2nϕ dϕ Taking the logarithm yields log R e -1 ω 2 0 (ϕ-ν 0 ) 2 R 1 (ϕ) 1/2 dϕ ≥ -log(K n 2 (n-1)/2 ) -log √ 2 + sup 0≤j≤n (X 1 j ) 2n + log R e -1 ω 2 0 (ϕ-ν 0 ) 2 -2nϕ dϕ ≥ -log(K n 2 (n-1)/2 ) + log R e -1 ω 2 0 (ϕ-ν 0 ) 2 -2nϕ dϕ - √ 2 -sup 0≤j≤n (X 1 j ) 2n
By virtue of Delattre et al., 2012 [2, Proposition 1] and the fact that all moments of φ i are finite, the random variables S 2 and sup 0≤j≤n (X 1 j ) 2n have finite expectation

under P θ 0 , thereby E θ 0 (A) > -∞. It remains to show that E θ 0 (-B) > -∞. Note that e 1 2 U 1 (ϕ) ≤ e (L 2 1 +L 2 )T 1 /2 = e S 1 and 1 
R 1/2 1 (ϕ) ≤ σ -n 0 .
Simple computations leads to the following inequality

-B ≥ S 1 + log σ -n 0 R e -1 ω 2 (ϕ-ν) 2 dϕ
From the computations given above, it follows that E θ 0 Z(M, X i ) > -∞ and N θ could be any neighborhood of θ. We claim that the function θ → λ 1 (x, θ) is continuous. In fact the smoothness of g(ϕ, •) on the compact set

Θ = [µ, µ] × [ω 2 , ω 2 ]
for any fixed ϕ ∈ R provides the lipschitz criterion, thus we construct a density function h(.), so that

|g(ϕ, θ 1 ) -g(ϕ, θ 2 )| ≤ C Θ h(ϕ) θ 1 -θ 2 , ∀(θ 1 , θ 2 ) ∈ Θ,
and λ 1 (x, θ 1 )λ 1 (x, θ 2 ) ≤ MC Θ σ -n 0 e S 1 θ 1θ 2 where C Θ is some positive constant depending only on the parameter space Θ and M is the positive proportionality constant in [START_REF] Picchini | Stochastic differential mixed-effects models[END_REF], hence the continuity of λ 1 (x, θ) at θ for every θ, a.s P θ 0 . Then all conditions of Lemma 7.54 in Schervish 1995 [START_REF] Schervish | Theory of Statistics[END_REF] are fulfilled. Hence the following statement is fully established.

Theorem 5. The AMLE θ N ,n of θ is almost surely consistent under P θ 0 , that is

θ N ,n P θ 0 a.s -→ N →∞ θ 0 .
7 Asymptotic normality of the approximate maximum likelihood estimator

Let l N ,n (θ) be the logarithm of the approximate likelihood defined as :

l N ,n (θ) = log Λ N ,n (θ) ∝ N i=1 R exp 1 2 U i (ϕ) -1 2 S i (ϕ) R i (ϕ) 1/2 g(ϕ, θ)dϕ
The smoothness of the function (ϕ, θ) → g(ϕ, θ) allowed us to compute the score function and the Fisher Information matrix. Here we give the exact formula of the score function with integral components with finite expectation under P θ 0 . Let θ = (θ 1 , θ 2 ) = (ν, ω 2 ). Note that there exist functions P sk (ϕ, θ), P s (ϕ, θ), k, s = 1, 2 polynomial in ϕ such that ∂ θ s g(ϕ, θ) = P s (ϕ, θ)g(ϕ, θ), ∂ 2 θ s g(ϕ, θ) = P ss (ϕ, θ)g(ϕ, θ) and ∂ θ s ∂ θ k g(ϕ, θ) = P sk (ϕ, θ)g(ϕ, θ). For every function f (ϕ, θ), we define the functions f i (θ) as

f i (θ) = R exp 1 2 U i (ϕ) -1 2 S i (ϕ) R i (ϕ) 1/2 f (ϕ, θ)g(ϕ, θ)dϕ
The functions f i (θ) are well defined if f (ϕ, θ) is polynomial in ϕ. Indeed, for any θ

E f i (θ) ≤ E R exp 1 2 U i (ϕ) -1 2 S i (ϕ) R i (ϕ) 1/2 |f (ϕ, θ)| g(ϕ, θ)dϕ ≤ e (L 2 1 +L 2 )T i /2 σ n 0 R |f (ϕ, θ)| g(ϕ, θ)dϕ < ∞ Let P (ϕ, θ) = 1.
Simple computations lead to the following form of the score function

S(ν, σ 2 ) = N i=1 P i 1 (θ) P i (θ) -1
N i=1 P i 2 (θ) P i (θ) -1 and the Fisher Information matrix given by:

I(ν 0 , σ 2 0 ) = - E θ 0 Σ 1.1 E θ 0 Σ 1.2 E θ 0 Σ 2.1 E θ 0 Σ 2.2 ,
where

Σ 1.1 = P 1 11 (θ 0 ) -P 1 1 (θ 0 ) 2 P 1 (θ 0 ) -2 , Σ 2.2 = P 1 22 (θ 0 ) -P 1 2 (θ 0 ) 2 P 1 (θ 0 ) -2
and Σ 1.2 = P 1 12 (θ 0 ) -P 1 1 (θ 0 ) P 1 2 (θ 0 ) P 1 (θ 0 ) -2 . To prove the finiteness of the Fisher matrix, it remains to show that P 1 (θ 0 ) -2 is bounded from above by a random variable with finite expectation. For that purpose we add the following assumption Assumption (6) The processes X i , i = 1, . . . , N are discretely observed at n 2 + 1 equidistant time points t i j = jT i /n 2 , j = 0, . . . , n 2 ,

∆ i = T i /n 2
It is well known that under the assumption (6),

n 2 j=1 W 1 (t j ) -W 1 (t j-1 ) 2 -→ T 1
almost surely under P θ 0 . Fix ε > 0, there exist n 0 ∈ N, such that

n 2 j=1 W 1 (t j ) -W 1 (t j-1 ) 2 ≤ T 1 + ε for all n ≥ n 0 Hence, P 1 (θ 0 ) ≥ e -S 1 -(T 1 +ε)/2∆ 1 K n 2 ( √ 2 + sup j (X 1 j ) 2n 2 ) R e -2n 2 ϕ g(ϕ, θ)dϕ C =⇒ P -1 (θ 0 ) ≤ e S 1 +(T 1 +ε)/2∆ 1 C K n 2 ( √ 2 + sup j (X 1 j ) 2n 2 ) =⇒ P -2 (θ 0 ) ≤ C 1 + sup j (X 1 j ) 4n 2
The right hand side of the last inequality is of finite expectation. Hence the Fisher matrix is well defined. Proposition 6. Under the assumptions ( 1)-( 6), the MLE based on Λ N ,n 2 (θ) is asymptotically normal.

Proof of Proposition 6 : The proof is based on the result given in Schervish 1995 [15, theorem 7.63]. We state first this result and check their regularity conditions.

Lemma 7. [START_REF] Schervish | Theory of Statistics[END_REF]) Let Θ be a subset of R p , and let {X N } ∞ N =1 be conditionally iid given θ each with density f X 1 |θ (.|θ). Let θk be an MLE. Assume that θ N P -→ θ under P θ for all θ. Assume that f X 1 |θ (x|θ) has continuous second partial derivatives with respect to θ and that differentiation can be passed under the integral sign. Assume that there exists H r (x, θ) such that, for each θ 0 ∈ Int(Ω) and for each k, j,

sup θ-θ 0 ≤r ∂ 2 ∂ θ k ∂ θ j log f X 1 |θ (x|θ 0 ) - ∂ 2 ∂ θ k ∂ θ j log f X 1 |θ (x|θ) ≤ H r (x, θ 0 ); ( 13 
)
with lim r→0 E θ 0 H r (X, θ 0 ) = 0. ( 14)

Assume that the Fisher Information matrix is finite and nonsingular. Then, under

P θ 0 , √ N θ N -θ 0 D =⇒ N 0, I -1 X 1 (θ 0 ) . ( 15 
)
In section 6, we proved almost sure consistency of the ALME θ N ,n . Hence θ N ,n 2 P -→ θ for all θ. We have shown that the logarithm of the approximate likelihood l N ,n (θ) has second partial derivatives with finite expectation (section 7). We can also prove, in similar fashion that l N ,n (θ) has third partial derivatives with finite expectation. Hence ( 13) and ( 14) clearly hold. The Fisher matrix I(θ 0 ) is nonsingular by hypothesis [START_REF] Donnet | Parametric inference for mixed models defined by stochastic differential equations[END_REF]. Therefore, asymptotic normality of the MLE based on Λ N ,n 2 (θ), of the form [START_REF] Schervish | Theory of Statistics[END_REF] holds in this case.

  N are bounded. By corollary 2 in Downes (2008), we have