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Abstract

Background: A better understanding of non-additive variance could lead to increased knowledge on the genetic
control and physiology of quantitative traits, and to improved prediction of the genetic value and phenotype of
individuals. Genome-wide panels of single nucleotide polymorphisms (SNPs) have been mainly used to map additive
effects for quantitative traits, but they can also be used to investigate non-additive effects. We estimated dominance
and epistatic effects of SNPs on various traits in beef cattle and the variance explained by dominance, and quantified
the increase in accuracy of phenotype prediction by including dominance deviations in its estimation.

Methods: Genotype data (729 068 real or imputed SNPs) and phenotypes on up to 16 traits of 10 191 individuals
from Bos taurus, Bos indicus and composite breeds were used. A genome-wide association study was performed
by fitting the additive and dominance effects of single SNPs. The dominance variance was estimated by fitting a
dominance relationship matrix constructed from the 729 068 SNPs. The accuracy of predicted phenotypic values
was evaluated by best linear unbiased prediction using the additive and dominance relationship matrices. Epistatic
interactions (additive × additive) were tested between each of the 28 SNPs that are known to have additive effects
on multiple traits, and each of the other remaining 729 067 SNPs.

Results: The number of significant dominance effects was greater than expected by chance and most of them
were in the direction that is presumed to increase fitness and in the opposite direction to inbreeding depression.
Estimates of dominance variance explained by SNPs varied widely between traits, but had large standard errors.
The median dominance variance across the 16 traits was equal to 5% of the phenotypic variance. Including a
dominance deviation in the prediction did not significantly increase its accuracy for any of the phenotypes.
The number of additive × additive epistatic effects that were statistically significant was greater than expected
by chance.

Conclusions: Significant dominance and epistatic effects occur for growth, carcass and fertility traits in beef cattle but
they are difficult to estimate precisely and including them in phenotype prediction does not increase its accuracy.
Background
Mutations of large effects often show non-additive ef-
fects on the phenotype such as dominance and epistasis
and one well-known example is the coat colour of
mice [1]. However, it is uncertain how important these
non-additive effects are for polymorphisms that control
variation in complex or quantitative traits. Hill et al. [2]
argued that even if gene effects are not additive, most of
the genetic variance is still expected to be additive
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variance. Several studies have estimated epistatic or
dominance variance in livestock using traditional pedi-
gree information (e.g., [3-7]) and reported a small but
significant non-additive variance. However, it is difficult
to estimate non-additive variance because it is often, at
least partially, confounded with other effects such as com-
mon environment or maternal effects. Consequently, esti-
mates of non-additive variance may be biased upwards. In
view of this, it is not surprising that most genetic evalu-
ation systems use an additive model and ignore non-
additive effects, especially considering that their aim is to
estimate breeding values or additive genetic values.
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Genome-wide dense single nucleotide polymorphisms
(SNPs) have been widely used in cattle for association
studies [8-12] and genomic prediction [13-15] and
represent a new opportunity to estimate non-additive ef-
fects at individual loci and to estimate non-additive vari-
ances. However, most genome-wide association studies
(GWAS) have only reported additive effects of SNPs and
additive genetic variance. There are a few studies (e.g.,
[6]) based on high-density SNPs that have reported vari-
ance explained by non-additive effects. In a study on
growth rate (daily gain) in pigs, Su et al. [6] estimated
dominance variance and additive × additive epistatic
variance to account for 5.6 and 9.5% of the total pheno-
typic variance, respectively. It is possible that the pro-
portion of variance that is explained by non-additive
effects varies between traits.
Therefore, the objective of this study was to estimate

dominance and epistatic effects in beef cattle using high-
density SNP genotypes and phenotypic data on growth,
carcass and reproductive traits.

Methods
Animals, phenotypes and SNP data
Animals originated from nine different populations of
three breed types. They included four Bos taurus breeds
(Angus, Murray Grey, Shorthorn, Hereford), one Bos
indicus breed (Brahman cattle), three composite breeds
(Belmont Red, Santa Gertrudis, Tropical composites),
and one recent Brahman cross population (F1 crosses of
Brahman with Limousin, Charolais, Angus, Shorthorn,
and Hereford). The structure of the populations used is
described in Bolormaa et al. [15]. A total of 10 191
animals of the three breed types (3389 B. indicus, 3296
B. taurus, and 3506 B. taurus × B. indicus) with SNP ge-
notypes and phenotypes for at least one trait were used.
Phenotypes for 16 different traits (Table 1), including

growth, feed intake, carcass and meat quality and fertility
traits were obtained from five sources, which will be re-
ferred to as datasets: the Beef Cooperative Research
Centre Phase I (CRCI), Phase II (CRCII), Phase III
(CRCIII), the Trangie selection lines, and the Durham
Shorthorn group (for a detailed description, see [15-17]).
All individuals were not measured for all traits. The
number of genotyped cattle with each trait in each data-
set, trait definitions and abbreviations, means and stand-
ard deviations (SD), and heritability estimates are in
Table 1 and were obtained from Bolormaa et al. [15,18].
The data for two female fertility traits (age at first
detected corpus luteum and post-partum anoestrus
interval PPAI) used in this study were adjusted for non-
genetic effects based on models described in previous
studies [19,20].
Data on 729 068 SNPs were imputed from genotypes

from five different SNP panels: (1) the Illumina HD
Bovine SNP chip (http://res.illumina.com/documents/
products/datasheets/datasheet_bovinehd.pdf ) that con-
tains 777 963 SNPs; the BovineSNP50K BeadChip
(Illumina, San Diego) version 1 (2) and version 2 (3) that
contain 54 001 and 54 609 SNPs, respectively; (4) the
Illumina SNP7K panel that comprises 6909 SNPs; and
(5) the Parallele SNP10K chip (Affymetrix, Santa Clara,
CA) with 11 932 SNPs. All SNPs were mapped to the
UMD 3.1 assembly of the bovine genome sequence
provided by the Centre for Bioinformatics and Computa-
tional Biology at University of Maryland (CBCB) (ftp://ftp.
cbcb.umd.edu/pub/data/assembly/Bos_taurus). Procedures
for stringent quality control of the SNP data and for imput-
ation to 729 068 SNPs are described in Bolormaa et al. [15].
The genotypes for each SNP were encoded in the top/top
Illumina A/B format (http://res.illumina.com/documents/
products/technotes/technote_topbot.pdf).

Statistical analyses
Genome-wide association studies by fitting dominance
Model used for GWAS: GWAS was performed using the
ASReml software [21] based on the following mixed
model:

y ¼ 1nμþXbþ siαi þ wiδi þ Zaþ e; ð1Þ

where y is the vector of observed phenotypic values of
the animals, 1n is an nx1 vector of 1′s (n is the number
of animals with phenotypes), μ is the overall mean, b is a
vector of fixed effects, X is a design matrix relating ob-
servations to the corresponding fixed effects, Z is a de-
sign matrix relating observations to random animal
genetic effects, a is a vector of polygenic breeding values
sampled from N~ (0, Aσa

2), where σa
2 is additive genetic

variance and A is the additive relationship matrix con-
structed from the pedigree of the animals and their
5-generation-ancestors; si is a vector of additive geno-
type codes of each animal at the i-th SNP, with geno-
types AA, AB and BB coded as 0, 1 or 2, respectively, i.e.
according to the number of B alleles present, αi is the
additive effect of the i-th SNP, wi is a vector of domin-
ance genotype codes at SNPi with the heterozygote AB
coded as 1 and the homozygotes AA and BB coded as 0,
δi is the dominance effect of i-th SNP, and e is the vector
of random residual effects. Vectors si and wi were fitted
as covariates. In this parameterization, significance of
the dominance effect was tested after fitting the additive
effect. This analysis was carried out once for each SNP,
i.e. 729 068 times.
The model included dataset, breed, cohort and sex as

fixed effects for all traits, except for the two female fer-
tility traits. Other fixed effects varied by trait, as detailed
in [19,22-26]. The fixed effects were fitted as nested
within a dataset.

http://res.illumina.com/documents/products/datasheets/datasheet_bovinehd.pdf
http://res.illumina.com/documents/products/datasheets/datasheet_bovinehd.pdf
ftp://ftp.cbcb.umd.edu/pub/data/assembly/Bos_taurus
ftp://ftp.cbcb.umd.edu/pub/data/assembly/Bos_taurus
http://res.illumina.com/documents/products/technotes/technote_topbot.pdf
http://res.illumina.com/documents/products/technotes/technote_topbot.pdf


Table 1 Number of genotyped animals and number of phenotypes, and mean, standard deviation (SD) and heritability
estimates (h2) of each trait for animals with a full set of records1

Trait2 Nb3 Total Mean SD h2 Trait name

PW_hip 6359 10515 119.0 7.9 0.53 Hip height measured post weaning (cm)

X_hip 2037 4730 138.8 7.7 0.45 HH measured at feedlot exit (cm)

HUMP 1132 2099 140.4 37.1 0.29 Hump height as assessed by MSA grader (mm)

PW_lwt 9884 16079 230.9 53.4 0.45 Live weight measured post weaning (kg)

X_lwt 5992 11599 497.9 97.9 0.42 Live weight measured at feedlot exit (kg)

RFI 4026 4837 −1.5 2.1 0.36 Residual feed intake (kg)

PWIGF 918 1678 262.2 147.4 0.25 IGF-I concentration measured post weaning (ng/ml)

CP8 5727 11061 11.3 5.0 0.35 Fat depth at P8 site (mm)

CRIB 5464 10690 7.4 4.1 0.31 Fat depth at rib site (mm)

CIMF 5824 11200 3.4 1.9 0.40 Intra-muscular fat (%)

CRBY 2684 3639 66.9 3.4 0.47 Carcass retail beef yield (%)

LLPF 5358 10327 4.5 1.0 0.25 Peak force measured in longissimus dorsi muscle (kg)

SC12 1112 1112 21.2 2.7 0.62 Scrotal circumference measured at ages of 12 months (cm)

PNS24 964 964 73.6 22.1 0.23 Percentage of normal sperm at the age of 24 months (%)

AGECL 2045 2057 698.7 140.4 0.52 Age at first detected corpus luteum (days)

PPAI 1448 1455 158.2 110.8 0.49 Post partum anoestrus interval (days)
1This summary statistics for the above traits can be found in Bolormaa et al. [15,16]; 2trait abbreviation; 3number of genotyped animals.
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Following Bolormaa et al. [27], the false discovery rate
(FDR) of SNP effects was estimated as:

P 1− A
T

� �
A
T

� �
1−Pð Þ ;

where P is the P-value used to declare the additive or
dominance effect of a SNP to be significant (e.g.,
0.00001), A is the number of SNP effects that were de-
clared significant at the stated P -value and T is the total
number of SNPs tested. Although the true FDR cannot
exceed 100%, the estimated FDR can exceed 100% if the
number of significant SNPs is smaller than expected by
chance, but the interpretation is simply that all SNPs
discovered are false positives.

Validation of SNPs with dominance effects
In order to validate statistically significant SNP effects in
an independent population, the animals in the complete
dataset were split into five sets by allocating the off-
spring of randomly selected sires to one of the five data-
sets. Then, one of the five sets was used as a validation
population and the four other sets as the reference
population. In this way, no animal used for validation
had paternal half-sibs in the reference population.
GWAS for each trait was performed in the reference
population. For SNPs with a significant dominance effect
in the reference population, the analysis was repeated in
the validation population. We counted the number of
times that the direction of the estimated SNP effect was
the same in the validation and discovery populations.

Dominance variance explained by SNP genotypes
The dominance variance was estimated by restricted
maximum likelihood (REML) using the following model:

y ¼ 1nμ þ Xbþ het ß þ gþ dþ e; ð2Þ

where y is the vector of observed phenotypic values of
the animals, 1n is a vector of 1′s, μ is the overall mean,
X is a design matrix relating observations to the corre-
sponding fixed effects where the fixed effects were the
same as used in the GWAS, b is vector of fixed effects,
het is a vector containing the average heterozygosity
over all SNPs for each animal, ß is the regression of each
trait on heterozygosity, g is a vector of genomic breeding
values distributed as N ~ (0, Gσg

2), where σg
2 is additive

genetic variance explained by SNPs and G is the gen-
omic relationship matrix (GRM) [28], d is a vector of
dominance deviations distributed as N ~ (0, Dσd

2), where
σd
2 is dominance variance explained by the SNPs and D

is the dominance relationship matrix (DRM), and e is
the vector of random residual effects. The GRM was
constructed using the genotypes of all 10 191 animals in
the combined datasets according to [28]. More details
on the GRM used in this study are in [15]. The DRM
was derived as described below.
Let the allele frequency of A be q and that of B be p =

1-q. The genotype of the j-th animal at the i-th SNP
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(AA, AB, and BB) was coded as Hij = −p/q, +1, and –q/p,
respectively. Then, in a base population in Hardy-Weinberg
equilibrium:

E Hij
� � ¼ −

p
q
q2 þ 2pq−

q
p
p2 ¼ 0

and

E H2
ij

� �
¼ p2

q2
q2 þ 2pq þ q2

p2
p2 ¼ 1 :

The additive contribution of the genotype of the j-th
animal (Tij) is coded as -2p/

ffiffiffiffiffiffiffiffi
2pq

p
, (q-p)/

ffiffiffiffiffiffiffiffi
2pq

p
, and 2q/ffiffiffiffiffiffiffiffi

2pq
p

for AA, BB, and BB genotypes, respectively. Then,
the expectation of the covariance between additive and
dominance contributions to the genotype is as follows:

E HijT ij
� � ¼

−
p
q

−2pð Þq2 þ 1 q−pð Þ2pq− q
p
2qp2

ffiffiffiffiffiffiffiffi
2pq

p

¼ 2p2q þ 2pq2−2p2q−2pq2ffiffiffiffiffiffiffiffi
2pq

p ¼ 0:

This shows that allele substitution effects and domin-
ance deviations that are implicit in the model are orthog-
onal contrasts. Therefore, DRM = HH’/m and GRM =
TT’/m, where m is the total number of SNPs, H is a
matrix of dimension of the number of animals x number
of SNPs, where Hij is present at each position in the
matrix; in the same way, T is a matrix containing Tij. With
this model, σd

2 is the classical definition of dominance vari-
ance. Model (2) is equivalent to a model in which g is re-
placed by Tu, Var(u) = Iσa

2/m, and d is replaced by Hv, Var
(v) = Iσd

2/m where u and v are vectors containing the addi-
tive and dominant effects of each SNP.
This definition of the DRM is similar to that used by

Vitezica et al. [29], except that in our study, the contribu-
tions of each SNP to the DRM was weighted by 1/(2pq).
In the analysis of each trait, only the elements of the GRM
and DRM corresponding to animals with phenotypes were
used to reduce the computing time. The same fixed effects
as those used in the GWAS (model 1) were fitted in this
model. The estimates of variance components were per-
formed using ASReml software [21].
The significance of the dominance variance was tested

by comparing twice the difference in log-likelihood be-
tween additive genomic model (AM) and additive and
dominance genomic model (ADM) to a chi-squared dis-
tribution with degrees of freedom of 1.

Accuracy of predictions of the phenotypic values by
including dominance deviations
For validation purposes, predictions of additive and
dominance genetic values were made using the best lin-
ear unbiased prediction (GBLUP) analysis with variance
estimated by REML. A five-fold cross validation scheme
was carried out. The data were split into five parts of ap-
proximately equal size, by allocating the offspring of
each sire to one of the five datasets. In this way no ani-
mal used for validation had paternal half sibs in the dis-
covery population. The analysis was performed five
times using each dataset in turn as a validation group
and the four other sets as the discovery population. Val-
idation animals were included in the GRM and DRM
but had missing phenotypes in the calculation of gen-
omic estimated breeding values (GEBV). For each valid-
ation population, the genetic and phenotypic value of
each animal in the validation population was predicted

as ĝ ¼ â þ d̂ , where ĝ is a predicted total genetic value,

â is the estimated genomic breeding value, and d̂ is the
estimated dominance deviation predicted from ADM,
that is model (2) above. Estimates of ĝ were obtained
using ASReml software [21]. The phenotypic values for
each trait were corrected for all fixed effects as: cor-
rected phenotype = phenotype - fixed effects.
The accuracy of this prediction was calculated as the

correlation between ĝ and the corrected phenotype
within each breed. Accuracies were reported only when
the number of records per breed was greater than 200.
When combining accuracies across breeds, the overall
accuracy was the mean accuracy within breeds weighted
by the number of records of each breed. The accuracy
when including dominance effects was compared to the
accuracy obtained using the same model but without the
dominance effects.

Epistatic interactions between SNPs
Bolormaa et al. [18] identified 28 SNPs, referred to as
lead SNPs, that had significant additive effects (P < 10−5)
in a multi-trait analysis of the same traits as those used
here. To minimise multiple-testing, we tested only addi-
tive × additive interactions between each of the 28 lead
SNPs and all other 729 068 SNPs. Therefore, for each
trait and for each lead SNP, we performed a GWAS in
which we fitted the same model as for the dominance
GWAS but, instead of a dominance effect, we fitted the
additive effects of the lead SNP and one other SNP and
the interaction between the two of them. The statistical
model used for each trait was:

y ¼ 1n’μþXbþ ljuj þ siai þ lj � si
� �

mji þ Zaþ e;

where y is the vector of observed phenotypic values of
the animals, 1n is a vector of 1′s, μ is the overall mean,
b is a vector of fixed effects, X is a design matrix relating
observations to the corresponding fixed effects, Z is a
design matrix relating observations to the random ani-
mal effect, a is the vector of polygenic breeding values,
e is the vector of random residual effect, lj is a vector
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containing the coded genotypes for the j-th lead SNP (lj,
j = 1, 2, 3, …, 28), uj is the additive effect of the j-th lead
SNP, si is a vector containing coded genotypes for the
i-th SNP (SNPi, i = 1, 2, 3, … , 729 068), ai is the additive
effect of the i-th SNP, lj × si is a vector of the interactions
between the lead SNPj and SNPi, and mji is the effect of
the interaction between the lead SNPj and SNPi. The ef-
fects of the j-th lead SNP, the i-th SNP, and their inter-
action (lj × si) were fitted simultaneously as covariates.

Results
Genome-wide association studies fitting dominance
A Manhattan plot of the –log10(P-values) of SNP domin-
ance effects is in Figure 1. The number of SNPs showing
a significant (P < 10−4) dominance effect in the discovery
population for each trait is in Table 2. For instance, for
post-weaning hip height (PW_hip), 191 SNPs had sig-
nificant (P < 10−4) dominance effects. Since 729 068
SNPs were tested, 70 significant SNPs are expected by
chance alone and therefore the FDR was 36%. Among
these 191 SNPs, 174 had a positive and 17 a negative
dominance effect. In the validation population, only 185
of the 191 SNPs could be tested for dominance because,
for the other six SNPs, not all three genotypes were rep-
resented in the validation population. Among the SNPs
that had a positive effect in the discovery population,
Figure 1 Manhattan plot of the –log10(P-values) of SNP dominance of
measured at feedlot exit (X_lwt).
66% also had a positive effect in the validation popula-
tion and among those that had a negative effect in the
discovery population, 56% also had a negative effect in
the validation population. If the significant SNPs in the
discovery population were all false positives, we would
expect 50% of the effects to be in the same direction in
the validation population. Based on a chi-squared test,
66% differs significantly (P < 0.001) from 50% but 56%
does not differ significantly from 50%. For the trait,
weight measured at feedlot exit (X_lwt), similar results
were observed (Table 2).
Table 2 shows that for height and weight traits and for

percentage of normal sperm in semen, the number of
positive dominance effects (d > 0) was greater than the
number of negative dominance effects (d < 0). For re-
sidual feed intake, age at puberty and postpartum anoes-
trus interval, there were more negative effects. These
results show dominance in the direction one might asso-
ciate with increased fitness and in the direction of heter-
osis in crosses between breeds. In fact, the number of
significant dominance effects in the direction expected
to decrease fitness for these traits was smaller than ex-
pected by chance, while the number of effects in the
expected direction (corresponding to heterozygote ad-
vantage) was greater than expected by chance for all
these traits. We did not attempt to validate individual
the whole genome except chromosome X for live weight



Table 2 Total number of SNPs with significant (P < 10−4) dominance effects, number of SNPs with positive (+ve) and
negative (−ve) dominance effects in the discovery population, number of SNPs tested for validation of dominance
effects (Nb tested), and percentage of SNPs with positive and negative dominance effects that had an effect in the
same direction in the validation population for each trait

Trait1 Total Nb FDR (%) +ve Nb -ve Nb Nb tested +ve validated2 (%) -ve validated2 (%)

PW_hip 191 36.3 174 17 185 66*** 56

X_hip 203 34.1 197 6 113 61* 25

HUMP 71 97.5 29 42 68 39 63

PW_lwt 207 33.4 197 10 205 74*** 70

X_lwt 265 26.1 253 12 265 60** 67

RFI 106 65.3 44 62 105 57 89***

PWIGF 183 37.8 99 84 108 64 33**

CP8 63 109.9 24 39 60 54 50

CRIB 75 92.3 32 43 72 48 71**

CIMF 197 35.1 71 126 194 69** 61*

CRBY 114 67 56 58 112 38 41

LLPF 102 67.9 66 36 101 47 43

SC12 186 37.2 26 160 70 30 42

PNS24 260 26.6 249 11 80 51* 18*

AGECL 136 59 20 116 82 40 55

PPAI 90 76.9 27 63 67 58* 36*

1Trait abbreviations are in Table 1; 2percentage of significant SNPs (%) that had an effect in the same direction in the validation population: * those that significantly
differ from the expected number of SNPs at P < 0.05; **those that significantly differ from the expected number of SNPs at P < 0.01; and ***those that significantly differ
from the expected number of SNPs at P < 0.001.
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SNP dominance effects because the validation popula-
tion was not large enough to have sufficient power for
this. Instead, we attempted to validate the dominance ef-
fects as a group by observing the percentage of effects
that had the same direction in the validation population
as in the discovery population. For 11 of the 16 traits,
the percentage of effects in the same direction was larger
than 50%. The most convincing results were obtained
for traits that show more dominance effects in the direc-
tion that is expected for heterosis and for which statis-
tical power was greatest, i.e. height and weight traits. For
other traits, such as fat depth, the FDR was high, the
proportion of positive and negative effects was similar
and the percentage of effects that had the same direction
in the training and validation populations was close to
50%, which suggests that most of these effects were false
positives. One exception was marbling measured by
CIMF, for which the FDR was only 35%, the number of
negative effects was greater and more than 50% of the
SNPs had effects in the same direction in the training
and validation populations.

Dominance variance
Estimates of genetic variance using the additive genomic
model (AM) and the model fitting both additive and
dominance genetic effects (additive-dominance genomic
model, ADM) are in Table 3 for each trait. The dominance
variance was significant (P < 0.05) for PW_hip, PW_lwt,
X_lwt, PWIGF, CIMF, CRBY and AGECL (Table 3). Esti-
mates of the dominance variance as a proportion of
phenotypic variance (VD/VP) varied from 0 to 0.42 but the
standard errors were large in some cases (e.g., SC12 and
PNS24). For seven traits, VD/VP was estimated to be 0.
Therefore, the average VD/VP across traits was biased up-
wards but the median, which was 0.05, should not be
biased. The only fertility trait that had a significant domin-
ance variance was AGECL (18%). Dominance variance
was not significant for both male fertility traits (SC12 and
PNS24) and for PPAI (Table 3), which may be due to the
low number of records for these traits (Table 2), large en-
vironmental variance and low relationships among re-
corded animals, which results in lack of power to estimate
dominance variance.
The effect of the overall observed heterozygosity (tHe)

for each trait is in Table 3 as a signed t-value. Heterozy-
gosity significantly increased growth traits and SC12 and
significantly decreased age at puberty (Table 3). The
direction of these effects largely agreed with the prepon-
derance of positive or negative effects at individual SNPs
that are reported in Table 2. Dominance variance tended
to be significant for traits that have a significant effect
of average heterozygosity, such as post-weaning live
weight. However, CIMF and CRBY also had significant
dominance variance but these traits showed no effect of



Table 3 Proportion of genetic variance based on the additive genomic model (AM) and the additive and dominance
genomic model (ADM) for each trait

AM ADM

Trait1 VA/VP VP
(2) tHe VA/VP VD/VP VG/VP VD/VG (%)

PW_hip 0.57 (0.03) 15.9 7.53*** 0.57 (0.03) 0.04 (0.02)* 0.62 (0.03) 7

X_hip 0.47 (0.06) 22.0 2.77** 0.47 (0.06) 0 .00 (0.00) 0.47 (0.06) 0

HUMP 0.29 (0.08) 584.3 −4.15*** 0.29 (0.08) 0.00 (0.00) 0.29 (0.08) 0

PW_lwt 0.39 (0.02) 547.1 7.19*** 0.39 (0.02) 0.11 (0.02)*** 0.50 (0.03) 23

X_lwt 0.46 (0.03) 2056.0 7.46*** 0.47 (0.03) 0.07 (0.03)** 0.54 (0.04) 13

RFI 0.43 (0.04) 0.9 0.11 0.43 (0.04) 0.00 (0.00) 0.43 (0.04) 0

PWIGF 0.47 (0.10) 6905.7 1.69 0.38 (0.12) 0.42 (0.20)* 0.79 (0.18) 53

CP8 0.43 (0.03) 12.3 1.96* 0.43 (0.03) 0.00 (0.00) 0.43 (0.03) 0

CRIB 0.35 (0.03) 8.2 1.18 0.35 (0.03) 0.00 (0.00) 0.35 (0.03) 0

CIMF 0.35 (0.03) 1.4 −0.35 0.34 (0.03) 0.10 (0.03)*** 0.44 (0.04) 23

CRBY 0.40 (0.05) 4.2 0.02 0.40 (0.06) 0.18 (0.06)*** 0.58 (0.07) 31

LLPF 0.29 (0.03) 0.005 1.65 0.29 (0.03) 0.01 (0.03) 0.29 (0.04) 2

SC12 0.68 (0.07) 5.1 2.98** 0.62 (0.09) 0.14 (0.14) 0.76 (0.10) 18

PNS24 0.44 (0.08) 502.3 0.91 0.39 (0.12) 0.11 (0.19) 0.50 (0.13) 22

AGECL 0.50 (0.05) 11683.4 −2.76** 0.47 (0.05) 0.18 (0.08)*** 0.65 (0.08) 27

PPAI 0.39 (0.06) 9.5 −0.11 0.39 (0.06) 0.00 (0.00) 0.39 (0.06) 0

ADM = estimates of total phenotype variance (VP), t-value of heterozygosity effect (tHe), proportion of additive genetic variance (VA), dominance variance (VD) and
genetic variance (VG) to total phenotype variance (VP)1, and ratio of dominance variance to total genetic variance (%); 1trait abbreviations are shown in Table 1;
2VP is the sum of variance components including error variance in the model; *those that significantly differ from 0 at P < 0.05; **those that significantly differ
from 0 at P < 0.01; and ***those that significantly differ from 0 at P < 0.001.
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average heterozygosity. Trait PWIGF had the largest
proportion of variance explained by dominance but this
estimate had a high standard error due to the small
number of records.

Accuracy of prediction of the phenotypic value
The accuracy of prediction of the phenotypic value using
a model that included additive and dominance effects
was compared to that obtained with an additive model
(Table 4). The accuracy was calculated for the nine traits
for which the variance explained by dominance devia-
tions was not equal to 0 (Table 3). The average accuracy
across traits was equal to 0.22 for both the additive model
and the model with dominance deviations (Table 4). No
significant improvement from including dominance devia-
tions was observed for any trait.

Epistatic effects
The number of significant (P < 10−5) epistatic interactions
between one lead SNP and one of the other remaining
729 067 SNPs was calculated for the 16 traits (Table 5).
For example, for PW_lwt, 153 significant (P < 10−5) inter-
actions were found between the lead SNP BTA14_25
(close to the PLAG1 gene) and other SNPs. Two examples
of these interactions are in Table 6 and show that
the SNPs on chromosome 2 or 5 had a greater effect on
weight when the animals carried the A allele at the lead
SNP than when they carried the B allele. The minus log
P-values of epistatic effects for PW_lwt between lead SNP
BTA14_25Mb and all other SNPs are shown in Figure 2.
Clusters of significant (P < 10−5) epistatic effects for
PW_lwt on BTA2, 5, 8, 9, 19, and 29 were observed
(Figure 2). For each cluster, we examined the genes within
a region of 50 kb up- and down-stream and, in a few
cases, we identified possible candidate genes that could
interact with the PLAG1 gene for PW_lwt. These include
the genes MBNL1 (muscleblind-like splicing regulator 1)
on BTA1, FAT/CD36 (fatty acid translocase/cluster of
differentiation 36) on BTA4, GRN (granulin), FASN (fatty
acid synthase), and ITG (platelet glycoproteins (A2B and
B3)) on BTA19, and INS (insulin) and IGF2 (insulin-like
growth factor 2) on BTA29.
Analysis of epistatic effects shows that the number of

significant interactions between SNPs was greater than
expected by chance and varied widely between traits
(Table 5). As described in Bolormaa et al. [18], the first
four lead SNPs have an allele that increased mature size
(increases height and weight and decreased fatness, RFI
and blood concentration of IGF1). The highest number of
epistatic effects between these lead SNPs and other SNPs
was found for weight (PW_lwt; X_lwt), height (HUMP;
PW_hip), fatness (CIMF; CRIB), RFI and PWIGF. In



Table 4 Average weighted accuracies of predicted phenotypic values across breeds for the 5-fold cross-validation
populations based on the GBLUP model without dominance (GRM) and with dominance (GRM + DRM)

Trait1 AA BB BR BX HH MG SG SS TC ALL (SD)

GRM

PW_hip 0.12 0.33 0.24 0.17 0.16 0.15 0.34 0.275 (0.090)

PW_lwt 0.17 0.28 0.18 0.20 0.14 0.14 0.07 0.29 0.223 (0.072)

X_lwt 0.21 0.20 0.21 0.23 0.22 0.22 0.21 0.33 0.227 (0.043)

PWIGF 0.13 0.07 0.102 (0.047)

CIMF 0.15 0.17 0.27 0.18 0.13 0.21 0.23 0.17 0.24 0.190 (0.046)

CRBY 0.18 0.15 −0.01 −0.04 0.14 0.17 0.117 (0.098)

SC12 0.32 0.318

PNS24 0.23 0.233

AGECL 0.33 0.20 0.260 (0.090)

Mean 0.16 0.24 0.18 0.21 0.12 0.21 0.18 0.15 0.25 0.216 (0.039)

GRM + DOM

PW_hip 0.13 0.33 0.25 0.16 0.17 0.15 0.34 0.275 (0.088)

PW_lwt 0.16 0.27 0.18 0.23 0.12 0.16 0.06 0.29 0.222 (0.078)

X_lwt 0.21 0.20 0.21 0.25 0.20 0.22 0.21 0.34 0.227 (0.047)

PWIGF 0.15 0.06 0.109 (0.059)

CIMF 0.13 0.15 0.27 0.17 0.13 0.20 0.22 0.15 0.24 0.179 (0.050)

CRBY 0.18 0.17 0.02 −0.03 0.13 0.16 0.121 (0.090)

SC12 0.31 0.314

PNS24 0.23 0.231

AGECL 0.33 0.20 0.257 (0.092)

Mean 0.16 0.24 0.19 0.22 0.12 0.20 0.18 0.15 0.24 0.215 (0.072)

Cells without values are cases for which they could be not estimated or they were removed when the number of records was less than 200 for the given trait;
SD = standard deviation of accuracies across breeds; 1trait abbreviations are in Table 1.
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addition, large numbers of significant interactions with
other SNPs were found for lead SNPs 5_48Mb and
6_40Mb for LLPF and AGECL, respectively.
Five lead SNPs (BTA7_98Mb; BTA10_92Mb; BTA25_

3.7 Mb; BTA26_28Mb; BTA29_45Mb) had an allele that
increased meat tenderness and fatness, as described by
Bolormaa et al. [18] and showed interactions that had an
effect on weight (X_lwt), RFI, fatness and SC12 (Table 5).
The next seven lead SNPs (BTA2_25Mb; BTA3_80Mb;
BTA6_13Mb; BTA13_35Mb; BTA17_25; BTA19_25Mb;
BTA25_15Mb) had an allele that increased both fatness
and weight [18] and showed interactions that affected
RFI, CIMF and SC12.

Discussion
Traits related to fitness, including growth rate, are com-
monly found to show inbreeding depression and heter-
osis [30,31], which is usually explained by directional
dominance at loci that control these traits. Our results
are consistent with this. We found an effect of average
heterozygosity on traits related to fitness, such that in-
creasing heterozygosity changed the trait in the direction
that is presumed to increase fitness, for instance, in-
creased growth rate. In accordance with this, more indi-
vidual SNPs had dominance effects in the direction
presumed to increase fitness than in the reverse direc-
tion. However, the FDR associated with these effects was
moderate to high, so the evidence for significant domin-
ance effects at individual SNPs was not strong, especially
for traits that do not have a clear relationship to fitness,
such as fat depth, retail beef yield and tenderness. The
FDR of dominance effects (ranging from 26.1 to 109.9%;
Table 2) was considerably higher than the FDR of addi-
tive effects in the same data (ranging from 1.5 to 21.1%;
[15,16]). This suggests that dominance effects are
smaller than additive effects and/or more difficult to es-
timate (note that an estimated FDR greater than 100%
occurs when the number of significant SNPs is smaller
than expected by chance).
Directional dominance can cause a significant regres-

sion of trait phenotype on average heterozygosity, as we
observed. In fact, the effect of average heterozygosity on
trait phenotype could be considered as an estimate of in-
breeding depression based on SNP genotypes. However,



Table 5 Number of significant epistatic interactions (P < 10−5) between each of the 28 lead SNPs and each of the other
remaining 729 067 SNPs for each trait

Trait2 Chromosome number and position of the 28 lead SNPs1

20 14 5 6 26 25 10 7 29 3 17 13 2 25 6 19 17 8 4 13 12 9 15 23 21 21 9 7

49 25 48 40 28 3.7 92 99 45 80 25 35 25 15 13 25 61 59 78 66 48 18 58 44 0.9 19 101 93

PW_hip 29 24 17 10 4 48 2 25 3 2 3 5 9 39 16 0 34 11 32 6 5 3 1 2 14 3 7 38

X_hip 3 11 22 5 0 14 1 21 24 1 5 9 14 75 7 1 4 20 25 66 2 2 2 7 26 1 0 2

HUMP 0 13 0 201 14 20 6 22 15 0 1 6 0 0 1 8 0 14 28 0 0 24 0 0 1 0 1 1

PW_lwt 39 153 49 3 5 4 18 11 18 10 6 7 7 4 4 18 22 18 17 9 0 6 2 0 26 34 2 8

X_lwt 140 10 33 6 5 389 6 8 8 3 2 13 48 1 31 25 3 4 10 4 17 1 3 5 97 13 9 31

RFI 10 23 9 36 17 19 184 6 28 23 0 12 3 67 5 12 10 20 35 13 0 12 13 0 7 4 25 17

PWIGF 0 28 8 0 7 5 2 12 8 16 3 1 3 2 21 1 1 8 9 12 0 18 4 26 19 14 2 0

CP8 2 14 23 0 4 9 6 3 23 6 6 6 115 6 5 1 0 13 64 7 7 9 2 4 21 2 0 1

CRIB 3 4 31 0 53 8 1 0 42 9 0 3 4 1 0 2 26 36 13 16 11 3 2 1 28 0 109 0

CIMF 57 6 36 0 71 0 2 1 0 15 49 20 3 34 1 41 21 24 0 0 48 6 111 6 13 30 12 113

CRBY 19 9 20 12 11 15 7 0 16 1 0 0 31 0 2 6 9 48 5 1 32 5 0 7 3 4 10 16

LLPF 2 12 41 11 4 28 10 4 27 1 6 6 12 15 29 6 5 32 14 5 3 7 6 7 28 8 11 3

SC12 0 7 0 12 64 28 13 16 10 75 33 23 3 0 23 1 0 75 9 15 0 10 7 0 34 0 6 2

PNS24 0 6 0 14 2 12 12 6 6 11 2 0 10 566 0 5 0 9 5 0 501 23 4 0 29 12 3 0

AGECL 1 13 11 35 1 2 29 3 0 1 4 5 3 4 0 0 3 13 2 83 31 3 0 0 0 1 5 18

PPAI 1 6 4 14 1 26 21 2 1 13 53 20 4 1 19 0 18 3 71 11 0 10 6 2 58 0 196 1
1Numbers in bold are chromosome numbers and numbers in italics are positions in Mb; 2trait abbreviations are in Table 1.
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significant inbreeding depression can occur without gen-
erating much dominance variance if it is due to small
dominance deviations at very many loci. The fact that
we observed significant dominance variance for some
traits implies that some individual loci have moderate
dominance effects. This is supported by the finding
of significant dominance effects at individual SNPs in
the GWAS.
Across traits, the proportion of phenotypic variance

that was estimated to be due to dominance varied widely
(from 0 to 42%) but much of this variation could be due
to large standard errors of the estimates. The median
values across traits for the dominance variance as a
Table 6 Example of significant epistasis of the lead SNP
BTA14_25Mb with SNPs BTA2_70715761 and BTA29_
50068561) for post-weaning live weight (PW_lwt, kg)

Lead SNP

A allele B allele

BTA2_70715761

A allele 0 3.732

B allele −6.769 1.023*

BTA5_103576732

A allele 0 3.25

B allele −4.162 2.954*

*This was calculated as the sum of the effect of B allele of the lead SNP and
the effect of the SNP and their interaction.
proportion of total phenotypic variance is 0.05 compared
with a median value for the additive variance which was
0.4 of the total phenotypic variance. The results for
post-partum anoestrous interval (PPAI) are somewhat
surprising for a fertility trait for the following reasons:
(1) the heritability for PPAI was equal to 0.39, which is
higher than many heritability estimates of fertility traits
in beef cattle [32]; (2) there was weak evidence at best
for dominance effects of individual SNPs; (3) there was
no significant effect of average heterozygosity and (4)
the estimate of dominance variance was close to zero.
Fertility traits are usually considered to be fitness traits
and the expectation is therefore that non-additive effects
are important. The results reported here may indicate
lack of power in this subset of the data but it could
also be that an intermediate value of PPAI is optimal
for fitness.
The model that we used to estimate dominance vari-

ance is similar to that of Vitezica et al. [29], except that
SNPs were weighted differently to calculate the DRM
and we also fitted the average heterozygosity. Variation
in average heterozygosity is equivalent to variation in
inbreeding in a classical model and thus, we accounted
for the effect of this on the phenotype. Our assumptions
that E(d) = 0 and cov(a,d) = 0 hold after correcting for aver-
age heterozygosity (inbreeding). If average heterozygosity is
not included in the model, then the average effects of in-
breeding contribute to the estimate of dominance variance.



Figure 2 Manhattan plot showing the –log10(P-values) of pair-wise epistatic effects for post-weaning live weight (PW_lwt) between
lead SNP (BovineHD1400007259 at position 25015640 on BTA 14) and SNPs across the genome, except SNPs on the X chromosome.
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The usual definition of dominance variance (e.g., [33]) does
not include the effect of variation in inbreeding and we
have followed that practice.
There are a few publications (e.g., [3-5,34]) that have

reported estimates of the non-additive genetic variance
based on pedigree information in cattle. Using an animal
model, Rodriguez-Almeida et al. [34] estimated the dom-
inance variance at 28% and 11% of total phenotypic vari-
ance for weaning weight and hip height, respectively,
while we obtained lower estimates for weaning live
weight (11%) and a hip height (4%). In dairy cattle, esti-
mates of dominance variance for milk, fat, and protein
yields have been reported by many authors [3,35-37],
with values ranging from 3 to 24% of total phenotypic
variance. Palucci et al. [4] estimated the dominance vari-
ance for fertility traits such as non-return rate (0.6% of
total phenotypic variance) and calving to first service (7.3%
of total phenotypic variance) in Canadian dairy cows. Our
estimates of dominance variance as a proportion of total
genetic variance were also low for fertility traits, but it
should be noted that there was insufficient power due to
the limited number of records for these traits.
Su et al. [6] estimated non-additive genetic variance

for average daily gain in pigs using high-density SNPs
and reported that 5.6 and 9.5% of total phenotypic
variance was explained by dominance and additive by
additive variance, respectively, which is similar to our me-
dian estimate of 5%. However, they did not use the clas-
sical definition of dominance variance and consequently
their dominance variance might be slightly over-estimated.
We used a set of animals that originated from multiple

breeds. The extension of the traditional model with
additive and dominance variance components to mul-
tiple breeds has been done in two ways. Either the
breeds are regarded as separate populations (e.g., [38])
or the breeds are regarded as partially inbred lines
within a larger population [33]. Both formulations result
in the definition of multiple variance components. For
instance, the model with inbreeding [33] has five vari-
ance components, as well as the regression on average
heterozygosity. Consequently, it is not possible to obtain
accurate estimates of all parameters using real data and
thus, these models are seldom used. The model that we
used considered partially inbred lines within a larger
population but the variances were defined in terms of
SNP genotype effects. The model is best understood
from a model that is equivalent to model (2), in which
the breeding value (g) and the dominance value (d) are
replaced by the sum of all the effects of individual SNPs,
that is g = Tu and d = Hv. Thus, our model can be con-
sidered as estimating the combined variances due to all
SNPs. T and H are defined using the allele frequencies
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over the whole dataset and thus correspond to a model
in which the current breeds have descended from a base
population with these allele frequencies, and the current
breeds are regarded as inbred relative to this base popu-
lation. Consequently, the diagonal elements of the GRM
and DRM are not expected to be 1. Diagonal elements
of the GRM are greater than 1 when calculated by TT’/m,
as expected. Diagonal elements of the DRM calculated
from HH’/m are also typically greater than 1, which re-
flects the effect of inbreeding. The estimated variance
components refer to the variances in the hypothetical base
population. A potential problem is that the additive (T)
and dominance (H) values are not necessarily orthogonal
when genotype frequencies deviate from Hardy-Weinberg
equilibrium. However, the results in Table 3 show that
the additive variances obtained with the AM and ADM
models were almost the same. Therefore, additive and
dominance effects were nearly orthogonal.
Although there were more significant epistatic effects

than expected by chance, the FDR was high (overall FDR
of 39% at P < 10−5). This could be due to the additive ×
additive epistatic variance being small and/or to the epi-
static effects being difficult to estimate. There were no
significant epistatic interactions among the 28 lead
SNPs, for which the power for detecting such interac-
tions was expected to be greatest, since the lead SNPs
had highly significant additive effects on multiple traits.
By focusing on these 28 SNPs, we may have missed
many important epistatic interactions. However, testing
interactions between all pairs of SNPs would have
greatly increased the multiple-testing problem. There-
fore, caution is warranted in interpreting the significant
interactions that we identified. Still, an interaction be-
tween PLAG1 and IGF2 is biologically plausible, since
PLAG1 is a transcription factor that regulates many
genes and pathways, including the IGF2 and IGF1R
pathways [39].
To the best of knowledge, there are no publications on

the estimation of non-additive genetic variance in beef
cattle using high-density SNPs. Only a few papers [6,34]
have reported results on the variance explained by epi-
static (additive by additive) variance in dairy cattle and
pigs. Su et al. [6] used a Hadamard product of GRM ×
GRM to calculate the epistatic relationship matrix. Since
the off-diagonal elements of the GRM in our data were
small, the square of these numbers will be close to 0,
which means that the estimation of epistatic variance
would suffer from a large sampling error and therefore
we did not attempt it.
Although the dominance variance was significant for

some traits, inclusion of dominance deviations in gen-
omic prediction did not increase the accuracy of predic-
tion of the genetic value of individuals and hence the
prediction of their phenotypic values. This is consistent
with the high FDR of dominance effects, which indicates
that the dominance effects were not estimated with high
precision. This could be because the dominance effects
were small and/or because they were difficult to esti-
mate. For instance, all three genotypes at a given SNP
must be present in the data to estimate the dominance
effect. Su et al. [6] reported an increase in accuracy of
prediction (from 0.319 to 0.330) as a result of fitting a
dominance effect in pigs but their data included pigs
that were more closely related to each other than the an-
imals in our dataset. Therefore, inclusion of dominance
effects in genetic evaluations for important traits (e.g.,
CIMF and AGECL) could increase the accuracy of
prediction of genetic effects, but only if the animals are
closely related. In these situations, caution should be
taken to minimize the tendency to confound dominance
with common environment effects such as litter.
Conclusions
Across all SNPs, we observed dominance effects for
growth and fertility traits in the direction that is expected
to increase fitness. The dominance effects were not equal
for all SNPs, which resulted in some dominance effects
reaching significance (P < 10−5) and significant variance
explained by dominance deviations for some traits. Des-
pite this, including dominance in the prediction model did
not increase the accuracy of prediction of genetic and
phenotypic values for any trait, which is probably because
the dominance variance is much smaller than the additive
genetic variance, and dominance effects are difficult to es-
timate accurately. The number of additive × additive epi-
static effects was greater than expected by chance but
their FDR was high.
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