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WEAK ERROR FOR THE EULER SCHEME APPROXIMATION OF

DIFFUSIONS WITH NON-SMOOTH COEFFICIENTS ∗

V. Konakov1 and S. Menozzi2

Abstract. We study the weak error associated with the Euler scheme of non degenerate diffusion

processes with non smooth bounded coefficients. Namely, we consider the cases of Hölder continuous

coefficients as well as piecewise smooth drifts with smooth diffusion matrices.
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1. Introduction

1.1. Setting.

Let T > 0 be a fixed given deterministic final horizon and x ∈ R
d be an initial starting point. We consider

the following multidimensional SDE:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (1.1)

where the coefficients b : [0, T ] × R
d → R

d, σ : [0, T ] × R
d → R

d ⊗ R
d are bounded measurable in time and

space and W is a Brownian motion on some filtered probability space (Ω,F , (Ft)t≥0,P). We assume that the
diffusion matrix a(t, x) := σσ∗(t, x) is uniformly elliptic and at least Hölder continuous in time and space. We
will consider two kinds of assumptions for the drift coefficient b: either Hölder continuous in time and space
(as for the diffusion matrix), or piecewise smooth and having at most a countable set of discontinuities. These
assumptions guarantee that (1.1) admits a unique weak solution, see e.g. Bass and Perkins [BP09], [Men11]
from which the uniqueness to the martingale problem for the associated generator can be derived under the
current assumptions.

Define now for a given N ∈ N
∗ the time step h := T/N and set for all i ∈ [[1, N ]], ti := ih where from now

on the notation [[·, ·]] is used to denote an interval of integers. Consider the continuous Euler scheme associated
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with (1.1) whose dynamics writes Xh
0 = x and for all t ∈ [0, T ]:

Xh
t = x+

∫ t

0

b(φ(u), Xh
φ(u))du+

∫ t

0

σ(φ(u), Xh
φ(u))dWu, (1.2)

where we set φ(u) = inf{(ti)i∈[[0,N−1]] : ti ≤ u < ti+1}.
A useful quantity to study, arising in many applicative fields from physics to finance, is the so-called weak

error which for a suitable real valued test function f writes:

d(f, x, T, h) := E[f(Xh,0,x
T )]− E[f(X0,x

T )], (1.3)

using the usual Markovian notations, i.e. Xh,0,x
T , Xti,x

T respectively stand for the Euler scheme and the diffusion
at time T which start at point x at 0.

There is a huge literature concerning the weak error for smooth and/or non-degenerate coefficients, from the
seminal paper of Talay and Tubaro [TT90], to the extensions to the hypoelliptic framework [BT96a]. Under
those conditions, the quantity d(f, x, T, h) is of order h corresponding to the magnitude of the time step. In the
non degenerate framework (under some uniform ellipticity or hypoellipticity conditions) it is even possible to
take f to be a Dirac mass in the above expression (1.3). The associated convergence rate remains of order h for
the Euler scheme, see [KM02] [BT96b] and h1/2 in the more general case of Markov Chain approximations, see
e.g [KM00] corresponding to i.i.d. sequences (ξi)i≥1 in (1.2) that are not necessarily Gaussian. In the framework
of Lipschitz coefficients we can also mention, in the scalar case, the recent work of Alfonsi et al. [AJKH14], who
obtained bounds on the Wasserstein distances between the laws of the paths of the diffusion and its Euler scheme.
Anyhow, the case of non smooth coefficients, Hölder continuous or less, has rarely been considered. Such cases
might anyhow appear very naturally in many applications, when the drifts have for instance discontinuities at
some given interfaces or when the diffusion coefficients are very irregular (random media).

In the framework of bounded non degenerate and Hölder continuous coefficients, let us mention the work of
Mikulevičius and Platen [MP91] who obtained bounds for the weak error in (1.3) at rate hγ/2 where γ ∈ (0, 1) is
the Hölder exponent of the coefficients b, σ in (1.1) provided f ∈ C2+γ . This regularity is essential in that work
to apply Itô’s formula. Our approach permits to establish that this bound holds true, up to an additional slowly
varying factor in the exponent, for the difference of the densities itself, which again corresponds to the weak
error (1.3) for a δ-function. We also mention the recent work of Mikulevičius et al. [Mik12], [MZ15], concerning
some extensions of [MP91] to jump-driven SDEs with Hölder coefficients.

Finally, concerning numerical schemes for diffusions with non-regular coefficients, we refer to the recent work
of Kohatsu-Higa et al. [KHLY15] who investigate the weak error for possibly discontinuous drifts and diffusion
coefficients that are just continuous. We are able to extend some of their controls to the densities, again up to
an additional slowly varying factor in the exponent which is due to our smoothing approach.

Indeed our strategy is the following. Under the previous assumptions (stated after (1.1)), both processes
(Xt)t∈(0,T ] in (1.1) and (Xh

ti)i∈[[1,N ]] in (1.2) have densities, see e.g. Sheu [She91] for the continuous process

and Lemaire and Menozzi [LM10] for the scheme. Let us denote them respectively for x ∈ R
d, 0 ≤ i < j ≤ N ,

p(ti, tj, x, .) and ph(ti, tj , x, .) for the processes starting at time ti from point x and considered at time tj . To
study the error (p−ph)(ti, tj , x, y) we introduce perturbed dynamics associated with (1.1) and (1.2) respectively.
Namely, for a small parameter ε, we mollify suitably the coefficients, the mollification procedure is described in
its whole generality in Section 2 and depends on the two considered sets of assumptions indicated above, and
consider two additional processes with dynamics:

X
(ε)
t = x+

∫ t

0

bε(s,X
(ε)
s )ds+

∫ t

0

σε(s,X
(ε)
s )dWs,

X
h,(ε)
0 = x, X

h,(ε)
ti+1

= X
h,(ε)
ti + bε(ti, X

h,(ε)
ti )h+ σε(ti, X

h,(ε)
ti )(Wti+1 −Wti),

(1.4)
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where bε, σε are mollified versions of b, σ. It is clear that both (X
(ε)
t )t∈(0,T ] and (X

h,(ε)
ti )i∈[[1,N ]] have densities.

The mollified coefficients indeed satisfy uniformly in the mollification parameter the previous assumptions. Let
us denote those densities for x ∈ R

d, 0 ≤ i < j ≤ T by pε(ti, tj , x, .), p
h
ε (ti, tj, x, .) respectively.

The idea is now to decompose the global error as:

(p− ph)(ti, tj , x, y) = (p− pε)(ti, tj , x, y) + (pε − phε )(ti, tj, x, y) + (phε − ph)(ti, tj , x, y). (1.5)

The key point is that the stability of the densities with respect to a perturbation has been thoroughly investigated
for diffusions and Markov Chains in Konakov et al. [KKM15]. The results of that work allow to control the
differences p−pε, p

h
ε −p

h. On the other hand, since the coefficients bε, σε of (X
ε
t )t∈[0,T ], (X

ε
ti)i∈[[0,N ]] are smooth

the central term pε − phε in (1.5) can be investigated thanks to the work of Konakov and Mammen [KM02]
giving the error expansion at order h on the densities for the weak error. The key point is that the coefficients
in the expansion depend on the derivatives of bε, σε which explode when ε goes to zero. This last condition is
natural in order to control p − pε, p

h
ε − ph. Thus two contributions will need to be equilibrated to derive the

global error bounds. This will be done through a careful analysis of the densities (heat kernel) of the processes
with dynamics described in (1.1), (1.2), (1.4). The estimates required for the error analysis will lead us to refine
some bounds previously established by Il’in et al [IKO62]. Let us indicate that this perturbative approach
had also been considered by Kohatsu-Higa et al. [KHLY15] but for the weak error (1.3) involving at least a
continuous function. Our approach, based on parametrix techniques, allows to handle directly the difference of
the densities, and gives, up to an additional factor going to zero with the time step, the expected convergence
rates.

1.2. Assumptions and Main Results.

Let us introduce the following assumptions.

(A1) (Boundedness of the coefficients). The components of the vector-valued function b(t, x) and the
matrix-valued function σ(t, x) are bounded measurable. Specifically, there exist constants K1,K2 > 0 s.t.

sup
(t,x)∈[0,T ]×Rd

|b(t, x)| ≤ K1, sup
(t,x)∈[0,T ]×Rd

|σ(t, x)| ≤ K2.

(A2) (Uniform Ellipticity). The diffusion matrix a := σσ∗ is uniformly elliptic, i.e. there exists Λ ≥
1, ∀(t, x, ξ) ∈ [0, T ]× (Rd)2,

Λ−1|ξ|2 ≤ 〈a(t, x)ξ, ξ〉 ≤ Λ|ξ|2.

We consider two types of smoothness assumptions for the coefficients b, σ in (1.1).

(H) (Hölder drift and diffusion coefficient). The drift b and the diffusion coefficient σ are time-space
Hölder continuous in the following sense: for some γ ∈ (0, 1] , κ < +∞, for all (s, t) ∈ R

2
+, (x, y) ∈ (Rd)2,

|σ(s, x)− σ(t, y)|+ |b(s, x)− b(t, y)| ≤ κ{|s− t|γ/2 + |x− y|
γ
}.

Observe that the last condition also readily gives, thanks to the boundedness of σ that the diffusion matrix
a = σσ∗ is also uniformly γ-Hölder continuous.

(PS) (Piecewise smooth drift and Smooth diffusion coefficient). The drift b is piecewise smooth, say
C2,4([0, T ] × (Rd\I),Rd) where the set of possible discontinuities I writes as a finite union of smooth, i.e. at
least C4, closed bounded hypersurfaces with non empty interior that do not interesect. On the other hand we
assume that the diffusion coefficient σ is globally C2,4([0, T ]× R

d,Rd ⊗ R
d).
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From now on, we always assume conditions (A1)-(A2) to be in force. We say that assumption (AH) (resp.
(APS)) holds if additionally the coefficients satisfy (H) (resp. (PS)). We will write that (A) holds whenever
(AH) or (APS) is satisfied.

We will denote, from now on, by C a constant depending on the parameters appearing in (A) and T . We
reserve the notation c for constants that only depend on (A) but not on T . The values of C, c may change from
line to line. Other possible dependencies will be explicitly specified.

Theorem 1 (Error for the Euler scheme of a diffusion with Hölder coefficients). Let T > 0 be fixed and consider
a given time step h := T/N , for N ∈ N

∗. Set for i ∈ N, ti := ih. Under (AH), there exist C ≥ 1, c ∈ (0, 1] s.t.
for all 0 ≤ ti < tj ≤ T s.t. (tj − ti) ≥ h2/(2+γ)and (x, y) ∈ (Rd)2:

pc(tj − ti, y − x)−1|(p− ph)(ti, tj , x, y)| ≤
C

(tj − ti)(1−γ/2)γ/2
h

γ
2 −Cψ(h), (1.6)

where p, ph respectively stand for the densities of the diffusion X and its Euler approximation Xh with time step

h, for all (t, z) ∈ R
+
∗ × R

d, pc(t, z) :=
cd/2

(2πt)d/2
exp(−c |z|

2

2t ) and ψ(h) = log3(h
−1)

log2(h
−1) where logk denotes for k ∈ N

∗

the kth iterated logarithm. Let us observe that ψ(h) −→
h→0

0. If we are now interested in the weak error in the

sense of (1.3), if a function f satisfies the growth condition:

∃c0 < c/(2T ), C0 > 0, ∀x ∈ R
d, |f(x)| ≤ C0(1 + exp(c0|x|

2)), (1.7)

and additionally f ∈ Cβ(Rd,R), β ∈ (0, 1), then:

|E[f(Xh,ti,x
tj )]− E[f(Xti,x

tj )]| ≤ Cfh
γ/2, (1.8)

using again the usual Markovian notations, i.e. Xh,ti,x
tj , Xti,x

tj respectively stand for the Euler scheme and the
diffusion at time tj which start at point x at ti.

Eventually, if we consider a connected Borel set A with (piecewise) smooth boundary and non empty interior
when A is bounded, we also get that for all x ∈ R

d s.t. d(x, ∂A) ≥ (tj − ti)
1/2hγ/2 and η > 0 s.t. ηd(x, ∂A)η ≥

hCψ(h):

|E[I
X

h,ti,x
tj

∈A
]− E[I

X
ti,x
tj

∈A
]| ≤ C

{ 1

ηd(x, ∂A)η
+ 1
}

hγ/2, (1.9)

where d(., ∂A) stands for the distance to the boundary of A.

Remark 1. We point out that this result is to be compared with the one obtained by Mikulevičius and Platen
[MP91] for the weak error. The framework they considered is similar to ours, and their main results consists in

controlling at rate hγ/2 the weak error d(f, x, T, h) = Ex[f(X
h,0,x
T )]−E[f(X0,x

T )] for a smooth function f ∈ C2+γ .

The above theorem establishes that |d(f, x, T, h)| ≤ Ch(γ−ψ(h))/2 as soon as f is measurable and satisfies the
growth condition (1.7). This control can be useful for specific and relevant applications, like for instance quantile
estimation (that would involve functions of the form f(x) = I|x|≤K or f(x) = I|x|≤K exp(c|x|)) that appear in
many applications: default probabilities in mathematical finance, fatigue of structures in random mechanics.
We are able to find the expected convergence rate up to a vanishing contribution. The rate hγ/2 again holds,
without the additional term, as soon as f ∈ Cβ(Rd,R), β ∈ (0, 1]. The contribution in ψ(h) appearing in (1.6),
which slightly deteriorates the convergence, seems to be, with our approach, the price to pay to get rid of any
smoothness on f .

Remark 2 (About the Convergence Rate). We also emphasize that the convergence rate in hγ/2 is closer to a
rate associated with a strong error. It indeed corresponds to the typical magnitude of the quantity E[|Wh|

γ ] ≤
cγh

γ/2, which reflects the variations, on one time-step of length h, of the Euler scheme with Hölder coefficients.



WEAK ERROR FOR THE EULER SCHEME WITH NON-SMOOTH COEFFICIENTS 5

Indeed, under (AH), for all i ∈ [[0, N − 1]] :

E[ sup
u∈[ti,ti+1]

|b(u,Xh
u )− b(ti, X

h
ti)|] + E[ sup

u∈[ti,ti+1]

|σ(u,Xh
u )− σ(ti, X

h
ti)|] ≤ κ

{

hγ/2 + E[ sup
u∈[ti,ti+1]

|Xh
u −Xh

ti |
γ ]

}

≤ κ

{

hγ/2 + E[{ sup
u∈[ti,ti+1]

|σ(ti, X
h
ti)(Wu −Wti)|+K1h}

2]γ/2

}

≤ chγ/2.

(1.10)

These terms typically appear in the error analysis when there is low regularity of the coefficients or of the
value function v(t, x) := E[f(Xt,x

T )]. Under the previous assumptions, if the function f is bounded and is
C2+γ(Rd,R), γ ∈ (0, 1) it is then well known, see e.g. Friedman [Fri64] or Ladyzhenskaya et al. [LSU68] that
v ∈ C1+γ/2,2+γ([0, T ] × R

d,R). Also v satisfies the parabolic PDE (∂tv + Ltv)(t, x) = 0, (t, x) ∈ [0, T ) × R
d,

where Lt stands for the generator of (1.1) at time t, i.e. for all ϕ ∈ C2
0 (R

d,R), x ∈ R
d,

Ltϕ(x) = b(t, x) · ∇xϕ(x) +
1

2
Tr(a(t, x)D2

xϕ(x)).

Recalling that t0 = 0, tN = T , we decompose the error as:

d(f, x, T, h) := Ex[f(X
h
T )]− Ex[f(XT )] =

N−1
∑

i=0

Ex[v(ti+1, X
h
ti+1

)− v(ti, X
h
ti)]

=

N−1
∑

i=0

Ex

[

∫ ti+1

ti

{

∂sv(s,X
h
s ) +∇xv(s,X

h
s ) · b(ti, X

h
ti) +

1

2
Tr(D2

xv(s,X
h
s )a(ti, X

h
ti))
}

ds
]

=

N−1
∑

i=0

Ex

[

∫ ti+1

ti

{

∂sv + Lsv
}

(s,Xh
s )ds

]

+ Ex

[

∫ ti+1

ti

{

∇xv(s,X
h
s ) · (b(ti, X

h
ti)− b(s,Xh

s )) +
1

2
Tr(D2

xv(s,X
h
s )(a(ti, X

h
ti)− a(s,Xh

s )))
}

ds
]

=

N−1
∑

i=0

Ex

[

∫ ti+1

ti

{

∇xv(s,X
h
s ) · (b(ti, X

h
ti)− b(s,Xh

s )) +
1

2
Tr(D2

xv(s,X
h
s )(a(ti, X

h
ti)− a(s,Xh

s )))
}

ds
]

,

(1.11)

exploiting the PDE satisfied by v for the last equality. For a bounded f in C2+γ(Rd,R), the derivatives up to order
two are globally bounded. We are thus led to control in (1.11) quantities similar to those appearing in (1.10). The
associated bound then precisely gives the convergence rate. The analysis extends if f is simply Cβ(Rd,R), β ∈
(0, 1). In that case the second derivatives yield an integrable singularity in time for the second order partial
derivatives (see Proposition 4 which holds under the sole assumption (AH) for multi-indices α, |α| ≤ 2 and the
proof of Theorem 1 in Section 3.3).

Remark 3. Even though we have considered γ ∈ (0, 1], our analysis should be extendable in the framework of
Hölder spaces to γ ∈ (1, 2]. On the other hand, Theorem 1 specifies the time-singularity in small time.

Remark 4. We feel that the bounds of Theorem 1 are relevant for functions which are truly Hölder continuous,
that is for coefficients that would involve some simple transformations of the Weierstrass functions, see e.g.
[Zyg36], or of an independent Brownian sample path in order that (AH) is fulfilled. Indeed, for functions which
are just locally Hölder continuous, like the mapping x 7→ 1 + |x|α ∧ K, α ∈ (0, 1], we think that it would be
more appropriate to study some local regularizations, close to the neighborhoods of real Hölder continuity (0
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and K1/α for the indicated example) and to exploit that outside of these neighborhoods, the usual sufficient
smoothness is available. For such coefficients we think that the convergence rates might be definitely better.

Theorem 2 (Error for the Euler Scheme with Smooth Diffusion Coefficients and Piecewise Smooth Drift). Let
T > 0 be fixed and (APS) be in force. With the notations of Theorem 1 we have that:

- there exist C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤ T s.t. (tj − ti) ≥ h1/2 and (x, y) ∈ (Rd)2:

pc(tj − ti, y − x)−1|(p− ph)(ti, tj , x, y)| ≤ C

(

h

tj − ti

)1/(d+1)−Cψ(h)

. (1.12)

- In the special case σ(t, x) = σ, i.e. constant diffusion coefficient1, the previous bound improves to:

pc(tj − ti, y − x)−1|(p− ph)(ti, tj , x, y)| ≤ C

(

h

(tj − ti)1/2

)1/d−Cψ(h)

. (1.13)

Remark 5. This result emphasizes that as soon as the drift is irregular a true diffusion coefficient deteriorates
the convergence rate. This is clear since, in that case, the difference of the densities p − ph involves higher
derivatives of densities of processes with mollified coefficients which are more explosive (see Section 3.2). If the
diffusion coefficient does not depend on space, we find, up to the additional term in ψ(h), the usual convergence
rate for the weak error if d = 1. However, our regularization approach clearly feels the dimension, when
doing e.g. Hölder inequalities on neighborhoods of the hypersurfaces of discontinuity, and the convergence rates
decrease with the dimension.

Let us carefully mention that considering the weak error d(f, x, ti, tj , h) := E[f(Xh,ti,x
tj )] − E[f(Xti,x

tj )] for
smooth functions f and not Dirac masses as we do, should improve the convergence rates and in particular
allow to get rid of the terms in ψ(h) through a careful investigation of the derivatives of the associated heat
kernel, see the estimates of Proposition 4 that could be refined when considering an additional integration w.r.t.
to the final variable.

1.3. On Some Related Applications.

1.3.1. Some Approximating Dynamics for Interest Rates.

A very popular model for interest rates in the financial literature is the Cox-Ingersoll-Ross process with
dynamics:

dXt = (a− kXt)dt+ σ|Xt|
1/2dWt, (1.14)

for given parameters σ, k, a > 0. From the numerical viewpoint, the behavior of the Euler scheme is not
standard. For a given time-step h, the strong error was indeed proved to be, as in the usual Lipschitz case, of
order h1/2 in Berkaoui et al. [BBD08] provided a is not too small. On the other hand, numerical experiments in
Alfonsi [Alf05] emphasized very slow convergence, of order (− lnh)−1, for small values of a. This convergence
order has been established by Gyöngy and Rásonyi [GR11].

Of course the dynamics in (1.14) does not enter our framework, since it is closer to the dynamics of a
Bessel-like process whose density does not satisfy Gaussian bounds. However we could introduce for positive
parameters η,K which are respectively meant to be small and large enough the dynamics:

dXt = (a− kXt)dt+ (η + σ|Xt|
1/2 ∧K)dWt. (1.15)

The diffusion coefficient σ̃(x) = (η+σ|x|1/2∧K) is then uniformly elliptic, 1/2 Hölder continuous and bounded.
On the other hand the drift is not bounded but the analysis of Theorem 1 would still hold true thanks to the

1the case of an inhomogeneous diffusion coefficient independent of x, i.e. σ(t, x) = σ(t) could also be handled provided the
Gaussian part is simulated exactly in a modified Euler scheme.



WEAK ERROR FOR THE EULER SCHEME WITH NON-SMOOTH COEFFICIENTS 7

work of Konakov and Markova [KM15] that allows to get rid of the linear drift through a suitable transforma-
tion. We would then derive a convergence of order h1/4−Cψ(h) at least for the associated Euler scheme on the
densities (see also Remark 4). Even though the marginals in (1.15) enjoy Gaussian bounds, see e.g. [DM10],
the expected properties for an interest rate dynamics, mean reverting and positivity, should hold with some
high probability. Also, the difference between the approximate dynamics in (1.15) and the original one in (1.14)
might be investigated through stochastic analysis tools (occupation times).

1.3.2. Extension to some Kinetic Models

The results of Theorems 1 and 2 should extend without additional difficulties to the case of degenerate
diffusions of the form:

dX1
t = b(t,Xt)dt+ σ(t,Xt)dWt,

dX2
t = X1

t dt,
(1.16)

denoting Xt = (X1
t , X

2
t ), under the same previous assumptions (AH) or (APS) on b, σ. The sensitivity analysis

when we consider perturbations of the non-degenerate components, i.e. for a given ε > 0:

dX
1,(ε)
t = bε(t,X

(ε)
t )dt+ σε(t,X

(ε)
t )dWt,

dX
2,(ε)
t = X

1,(ε)
t dt,

(1.17)

has been performed by Kozhina [Koz16] following [KKM15]. The key point is that under (A), the required
parametrix expansions of the densities associated with the solutions of equation (1.16), (1.17) were established
in [KMM10]. The analysis of the derivatives of the heat kernel, that would require to extend the results of
Section 3 to the considered degenerate setting will concern further research.

The paper is organized as follows. We first introduce a suitable mollification procedure of the coefficients
in Section 2 and derive from the stability results of Konakov et al. [KKM15] how the error of the mollifying
procedure is then reflected on the densities. We then give in Section 3 some pointwise controls on the derivatives
of the heat-kernels with mollified coefficients. From these controls and the previous error expansion obtained for
the Euler scheme with smooth coefficients by Konakov and Mammen [KM02] we establish our main estimates.
Eventually, Section 4 is dedicated to the proof of the controls stated in Section 3. These proofs are based on
the parametrix expansions of the underlying densities following the Mc-Kean and Singer approach [MS67].

2. Mollification of the Coefficients and Stability Results

In order to apply the strategy described in the introduction for the error analysis we first need to regularize
in an appropriate manner the coefficients. The mollifying procedures differ under our two sets of assumptions.

2.1. Mollification under (AH) (Hölder continuous coefficients)

In this case both coefficients b, σ need to be globally regularized in time and space. We introduce the mollified
coefficients defined for all (t, x) ∈ [0, T ]× R

d and ε > 0 by

bε,S(t, x) := b(t, ·) ∗ ρε(x), σε,S(t, x) := σ(t, ·) ∗ ρε(x), (2.1)

where ∗ stands for the spatial convolution and for ε > 0, ρε is a spatial mollifier, i.e. for all x ∈ R
d,

ρε(x) := ε−dρ(x/ε), ρ ∈ C∞(Rd,R+),

∫

Rd

ρ(y)dy = 1, |supp(ρ)| ⊂ K,
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for some compact set K ⊂ R
d. The subscript S in bε,S , σε,S appears to emphasize that the spatial convolution

is considered. We will also need a mollification in time when the coefficients are inhomogeneous. Up to a
symmetrization in time of the coefficients b, σ, i.e. we set for all (t, x) ∈ [0, T ]×R

d, b(−t, x) = b(t, x), σ(−t, x) =
σ(t, x) we can define:

bε(t, x) = bε,S(., x) ⋆ ζε2(t), σε(t, x) = σε,S(., x) ⋆ ζε2 (t), (2.2)

where ⋆ stands for the time convolution and for s ∈ R, ζε2 (s) := ε−2ζ(s/ε2), ζ being a scalar mollifier with com-
pact support in [−T, T ]. The complete regularization in the spatial and time variable reflects the usual parabolic
scaling. This feature will be crucial to balance the singularities appearing in our analysis (see Propositions 4, 5
and their proofs below). We have the following controls.

Proposition 1 (First Controls on the Mollified Coefficients). Assume that (AH) is in force. Then, there exists
C ≥ 1 s.t. for all ε > 0,

∆ε,b := sup
(t,x)∈[0,T ]×Rd

|b(t, x)− bε(t, x)| ≤ Cεγ ,

∀η ∈ (0, γ), ∆ε,σ,η := sup
(t,x)∈[0,T ]×Rd

|σ(t, x) − σε(t, x)| + sup
t∈[0,T ]

|(σ − σε)(t, .)|η

≤ C(εγ + εγ−η),

(2.3)

where for a given function f : Rd → R, we denote for η ∈ (0, 1), |f |η := sup(x,y)∈R2d,x 6=y
|f(x)−f(y)|

|x−y|η .

Proof. Write first for all (t, x) ∈ [0, T ]× R
d:

b(t, x)− bε,S(t, x) :=

∫

Rd

{b(t, x)− b(t, y)}ρε(x− y)dy =

∫

Rd

{b(t, x)− b(t, x− zε)}ρ(z)dz.

From the Hölder continuity of b assumed in (H) and the above equation, we deduce that bε,S satisfies (H) as
well and that:

sup
(t,x)∈[0,T ]×Rd

|(b− bε,S)(t, x)| ≤ Cρε
γ , Cρ := κ

∫

K

|z|γρ(z)dz. (2.4)

The same analysis can be performed for σε,S , so that σε,S satisfies (H) and |σ(t, .) − σε,S(t, .)|∞ ≤ Cρε
γ .

In particular, bε,S , σε,S are both γ/2-Hölder continuous in time uniformly in ε > 0. Repeating the previous
arguments replacing ρε by ζε2 , we therefore deduce |bε,S − bε|∞ + |σε,S − σε|∞ ≤ Cζε

γ , which eventually yields:

|b− bε|∞ + |σ − σε|∞ ≤ Cεγ .

This gives the controls concerning the sup norms in (2.3).
Let us now turn to the Hölder norm. Observe first that, for all t ∈ R

+, (x, y) ∈ (Rd)2:

{σ(t, x)− σε,S(t, x)} − {σ(t, y)− σε,S(t, y)}

=

∫

Rd

{

[σ(t, x) − σ(t, x− zε)]− [σ(t, y)− σ(t, y − zε)]
}

ρ(z)dz,

{σε(t, x)− σε,S(t, x)} − {σε(t, y)− σε,S(t, y)}

=

∫

R

{

[σε,S(t− ε2u, x)− σε,S(t, x)]− [σε,S(t− ε2u, y)− σε,S(t, y)]
}

ζ(u)du.
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It readily follows from the γ-Hölder continuity in space (resp. γ/2-Hölder continuity in time) of σ (resp. σε,S)
that one has the following controls:

|[σ(t, x)− σε(t, x)] − [σ(t, y)− σε(t, y)]| ≤ C(|x− y|γ ∧ εγ) ≤ C|x− y|ηεγ−η,

|(σ − σε)(t, .)|η ≤ Cεγ−η, η ∈ (0, γ). (2.5)

This completes the proof. �

We will need as well some controls on the derivatives of the mollified coefficients.

Proposition 2 (Controls on the Derivatives of the Mollified Coefficients). Under the assumptions of Proposition
1, we have that there exists C ≥ 1 s.t. for all ε ∈ (0, 1) and for all multi-index α, |α| ∈ [[1, 4]]:

|Dα
x bε|∞ + |Dα

xσε|∞ ≤ Cε−|α|+γ , sup
t∈[0,T ]

|Dα
xσε(t, .)|γ ≤ Cε−|α|. (2.6)

Also, there exists a constant C s.t.:

|∂tσε|∞ ≤ Cε−2+γ , sup
t∈[0,T ]

|∂tσε(t, .)|η ≤ Cε−2+γ−η, ∀η ∈ (0, γ]. (2.7)

Proof. For all multi-index α, |α| ∈ [[1, 4]] and (t, x) ∈ [0, T ]× R
d and all ε > 0:

Dα
xσε,S(t, x) =

∫

Rd

σ(t, z)Dα
xρε(x − z)dz =

∫

Rd

[σ(t, z)− σ(t, x)]Dα
x ρε(x− z)dz.

Indeed, setting for all x ∈ R
d, gε(x) :=

∫

Rd ρε(x− z)dz = 1 we have Dα
xgε(x) :=

∫

Rd D
α
xρε(x− z)dz = 0. Thus,

since |Dα
xρε(x− z)| ≤ ε−(|α|+d)|Dα

wρ(w)||w= (x−z)
ε

, we derive:

|Dα
xσε,S(t, x)| ≤

∫

Rd

|σ(t, z)− σ(t, x)|ε−(|α|+d)|Dα
wρ(w)|w= (x−z)

ε
dz

≤ κε−|α|+γ

∫

Rd

(

|z − x|

ε

)γ

ε−d|Dα
wρ(w)|w= (x−z)

ε

dz ≤ cε−|α|+γ ,

exploiting the Hölder continuity assumption (H) for σ in the last but one inequality and the assumptions on ρ
for the last one. Similarly, we derive for all (t, x, y) ∈ [0, T ]× (Rd)2 and all ε > 0:

|Dα
xσε,S(t, x)−Dα

xσε,S(t, y)| ≤

∫

Rd

|σ(t, x − z)− σ(t, y − z)|ε−(|α|+d)|Dα
wρ(w)|w= z

ε
dz

≤ Cκε−|α||x− y|γ .

The same bounds hold for bε,S as well. The previous controls readily imply (2.6) since the additional time
convolution does not have any impact here.

Proceeding similarly for the time convolution, exploiting the γ/2-Hölder continuity in time of σε,S , the bounds
in (2.7) can be derived similarly. This completes the proof. �

2.2. Mollification Under (APS) (Piecewise smooth drift and Smooth Diffusion Coeffi-
cient).

In this case we only need to regularize the drift in a neighborhood of the discontinuity points in I. Let us
denote by m ∈ N

∗, the finite number of hypersurfaces of discontinuities and write I := ∪mi=1Si, where each Si
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is a bounded hypersurface. For a given parameter ε > 0, define its neighborhood Vε(I) := ∪mi=1Vε(Si), where
for i ∈ [[1,m]], Vε(Si) := {z ∈ R

d : d(z,Si) ≤ ε}. The fact is now that we set bε(t, x) = b(t, x) on R
d\Vε(I)

and perform a smooth mollification on the neighborhood Vε(I) of the discontinuities. Of course we have that
|(b − bε)(t, x)| ≤ CIx∈Vε(I) which is not necessarily small. Anyhow, for all q > 1, recalling the (Si)i∈Z are
bounded, we derive as well:

‖b− bε‖Lq([0,T ]×Rd) = {

∫ T

0

dt

∫

Rd

|(b − bε)(t, x)|
qdx}1/q ≤ C{

∫ T

0

dt

∫

Vε(I)

dx}1/q ≤ Cε1/qσg(I)
1/qT 1/q. (2.8)

Observe as well that the following control holds for the derivatives of the mollified coefficient. For all multi-index
α, |α| ≤ 4, there exists C := C((A)) s.t. for all (t, x) ∈ [0, T ]× R

d:

|∂αx bε(t, x)| ≤ C{ε−|α|
Ix∈Vε(I) + Ix 6∈Vε(I)}. (2.9)

Under the considered assumptions it is not necessary to mollify the diffusion coefficients. Under the current
assumption we thus set for all (t, x) ∈ [0, T ]× R

d, σε(t, x) = σ(t, x), in order to keep homogeneous notations
under our two running assumptions for the drift.

2.3. Stability Results

Recall now that under (AH) or (APS) equation (1.1) admits a density (see e.g. [She91]), i.e. for all 0 ≤
s < t ≤ T, x ∈ R

d, B ∈ B(Rd),P[Xt ∈ B|Xs = x] =
∫

B p(s, t, x, y)dy. The same holds for the Euler scheme

in (1.2) (see e.g. [LM10]), for all 0 ≤ i < j ≤ N, x ∈ R
d,P[Xh

tj ∈ B|Xh
ti = x] =

∫

B
ph(ti, tj , x, y)dy. These

properties remain valid for the respective perturbed diffusion and Euler scheme whose coefficients correspond
to the procedures described in Section 2.1 and Section 2.2 depending on whether assumption (AH) or (APS)
is in force. Let us denote the densities associated with the perturbed diffusion and discretization scheme by pε
and phε respectively.

We readily get from Theorems 1 and 2 in [KKM15] the following sensitivity results.

Lemma 1 (Sensitivity under (AH)). Under Assumption (AH), for η ∈ (0, γ) there exist Cη ≥ 1, c ≤ 1 s.t. for
all 0 ≤ i < j ≤ N, (x, y) ∈ (Rd)2:

|(p− pε)(ti, tj , x, y)|+ |(ph − phε )(ti, tj, x, y)| ≤ Cηε
γ−ηpc(tj − ti, y − x). (2.10)

Lemma 2 (Sensitivity under (APS)). Under Assumption (APS), for q > d there exist Cq ≥ 1, c ≤ 1 s.t. for
all 0 ≤ i < j ≤ N, (x, y) ∈ (Rd)2:

|(p− pε)(ti, tj , x, y)|+ |(ph − phε )(ti, tj , x, y)| ≤ Cqε
1/qpc(tj − ti, y − x). (2.11)

Let us mention that the constants Cη, Cq in equations (2.10) and (2.11) respectively explode when η goes to
0 and q goes to d. On the other hand it is very important to specify the explosion rates in order to equilibrate
the global errors. This is the purpose of the next proposition.

Proposition 3 (Explosion of the constants in the Sensitivity analysis). Under (AH), there exists C :=
C((AH), T ) ≥ 1 s.t. for η ∈ (0, γ) we have in equation (2.10):

Cη ≤ C exp(C(2η−1 + 1)2η
−1+1). (2.12)

Under (APS), there exists C := C((APS), T ) ≥ 1 s.t. for q > d we have in equation (2.11):

Cq ≤ C exp(C(α(q)−1 + 1)α(q)
−1+1), α(q) =

1

2
(1 −

d

q
). (2.13)
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Proof. Under (AH). To obtain equation (2.10) with exponent εγ−η, we explicitly chose to exploit the controls
from Theorem 1 and 2 in [KKM15] with a control on the difference |σ− σε|η. This possibly small Hölder index
induces some explosions in the constants appearing in the sensitivity analysis. Those explosive contributions are
quantified, for each term of the parametrix series giving the difference of the densities, in Lemma 3 of [KKM15].
The constant Cη can then, under (AH), be bounded as follows:

Cη ≤
∑

r≥1

(r + 1)
C̄r+1

[

Γ(η2 )
]r

Γ(1 + r η2 )
T r

η
2 ,

for a constant C̄ := C̄((AH), T ) which does not depend on η.
Similarly, under (APS), the controls of Lemma 3 in [KKM15] give:

Cq ≤
∑

r≥1

(r + 1)
C̄r+1 [Γ(α(q))]

r

Γ(1 + rα(q))
T rα(q), C̄ := C̄((APS), T ).

Introducing for θ > 0 the quantity:

I(T, θ) :=
∑

r≥1

(r + 1)
C̄r+1 [Γ(θ)]

r

Γ(1 + rθ)
T rθ,

one actually gets that there exists constants C, C̃, independent of θ s.t.:

I(T, θ) ≤ C exp(C̃(θ−1 + 1)θ
−1+1). (2.14)

Hence, equations (2.12) and (2.13) follow taking θ = η
2 and θ = α(q) respectively.

Let us now prove (2.14). One easily gets that for a given T there exists C̃ independent of θ as well such that:

I(T, θ) ≤
∑

r≥1

(r + 1)
C̃r+1 [Γ(θ)]r

Γ(1 + r θ2 )
.

Set now r0 := ⌈ 1
θ ⌉ and write by monotonicity of the Γ function (see e.g. formula 8.363 (8) in Gradstein and

Ryzhik [GR14]):

I(T, θ) ≤ C
∑

k≥0

(k + 1)r0
∑

kr0≤r<(k+1)r0

{C̃Γ(θ)}r

Γ(1 + k)

≤ C
∑

k≥0

(k + 1)r0
Γ(k + 1)

∑

kr0≤r<(k+1)r0

{C̃(θ−1 + exp(−1))}r

≤ Cr20
∑

k≥0

(k + 1)

Γ(k + 1)
[C̃(θ−1 + exp(−1))r0 ]k+1 ≤ C exp(C̃(θ−1 + 1)θ

−1+1).

This gives (2.14) and completes the proof. �
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3. Error Analysis and Derivation of the Main Results

3.1. Error Decomposition and Parametrix Representation of Densities.

This Section is devoted to the proof of Theorems 1 and 2. Let 0 ≤ ti < tj ≤ T and (x, y) ∈ (Rd)2 be given.
One writes for ε > 0:

|p(ti, tj, x, y)− ph(ti, tj , x, y)| ≤ |p− pε|(ti, tj , x, y) + |pε − phε |(ti, tj , x, y) + |phε − ph|(ti, tj , x, y). (3.1)

Now one derives from Lemma 1 that under (AH), for all η ∈ (0, γ):

|p(ti, tj , x, y)− ph(ti, tj , x, y)| ≤ Cηε
γ−ηpc(tj − ti, y − x) + |(pε − phε )|(ti, tj , x, y). (3.2)

Similarly, Lemma 2 yields that under (APS), for all q > d:

|p(ti, tj , x, y)− ph(ti, tj , x, y)| ≤ Cqε
1/qpc(tj − ti, y − x) + |(pε − phε )|(ti, tj , x, y). (3.3)

To investigate and minimize the contributions in the error it thus remains from equations (3.2) and (3.3)
to precisely quantify the difference pε − phε in (3.1). Let us now recall that since the densities pε, p

h
ε are now

respectively associated with a diffusion process and its Euler scheme with smooth coefficients, they can be
compared thanks to the results in [KM02] adapted to the current inhomogeneous setting. The only delicate,
but crucial, point is that we must here specify the dependence on the derivatives of the coefficients, which
explode when ε goes to 0. A key ingredient, to proceed is the parametrix series representation for the densities
of the diffusion and its Euler scheme.

From Section 2 in [KKM15], we derive that under (A) (i.e. the expansions below hold under both (AH)
and (APS)), for all ε ≥ 0 (the expansion below even holds for the initial coefficients taking ε = 0), 0 ≤ s < t ≤
T, (x, y) ∈ (Rd)2:

pε(s, t, x, y) :=
∑

r∈N

p̃ε ⊗H(r)
ε (s, t, x, y), (3.4)

where for 0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2:

Hε(u, t, z, y) := (Lεu − L̃ε,yu )p̃ε(u, t, z, y), (3.5)

and Lεu, L̃
ε,y
u respectively stand for the generators at time u of the processes

X
(ε)
t = z +

∫ t

u

bε(v,X
(ε)
v )dv +

∫ t

u

σε(v,X
(ε)
v )dWv , X̃

(ε),y
t = z +

∫ t

u

σε(v, y)dWv , (3.6)

i.e. for all ϕ ∈ C2(Rd,R), x ∈ R
d,

Lεuϕ(x) = 〈bε(u, x),∇xϕ(x)〉 +
1

2
Tr
(

σεσ
∗
ε (u, x)D

2
xϕ(x)

)

, L̃ε,yu ϕ(x) =
1

2
Tr
(

σεσ
∗
ε (u, y)D

2
xϕ(x)

)

.

Also p̃ε(u, t, z, y) := p̃yε(u, t, z, w)|w=y where p̃yε(u, t, z, .) stands for the density at time t of the process X̃(ε),y

starting from z at time u. We denote in (3.4), p̃ε ⊗ H
(0)
ε (s, t, x, y) = p̃ε(s, t, x, y) and for all r ≥ 1, p̃ε ⊗

H
(r)
ε (s, t, x, y) =

∫ t

s
du
∫

Rd p̃ε(s, u, x, z)H
(r)
ε (u, t, z, y)dz where for r ≥ 2,H

(r)
ε (u, t, z, y) := Hε⊗H

(r−1)
ε (u, t, z, y) :=

∫ t

u dv
∫

Rd Hε(u, v, z, w)H
(r−1)
ε (v, t, w, y)dw. More generally, the symbol ⊗ stands for the time-space convolu-

tion, i.e. for two real valued functions f, g defined on [0, T ]2 × (Rd)2, 0 ≤ s < t ≤ T, f ⊗ g(s, t, x, y) :=
∫ t

s
du
∫

Rd f(s, u, x, z)g(u, t, z, y)dz. We also recall that under (APS), since the diffusion coefficient is smooth we
do not regularize it and denote in this case σε = σ.
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To investigate the contribution pε−p
h
ε in (3.1) we will also use for 0 ≤ i < j ≤ N, (x, y) ∈ (Rd)2 the function:

pdε(ti, tj, x, y) :=
∑

r∈N

p̃ε ⊗h H
(r)
ε (ti, tj , x, y), (3.7)

where the quantities at hand are the same as above and the symbol ⊗h replacing the ⊗ in (3.4) denotes the
discrete convolution, i.e. for all r ≥ 1,

p̃ε ⊗h H
(r)
ε (ti, tj , x, y) = h

j−i−1
∑

k=0

∫

Rd

p̃ε(ti, ti+k, x, z)H
(r)
ε (ti+k, tj , z, y)dz.

Even though pdε(ti, tj , x, .) is not a priori a density, we will call it so with a slight abuse of terminology. An
important control, under (A), for the terms in the parametrix series is the following:

|p̃ε ⊗h H
(r)
ε (s, t, x, y)|+ |p̃ε ⊗H(r)

ε (s, t, x, y)| ≤
((1 ∨ T (1−γ)/2)c1)

r+1
[

Γ(γ2 )
]r

Γ(1 + r γ2 )
pc(t− s, y − x)(t− s)

rγ
2 , (3.8)

taking γ = 1 under (APS). We emphasize that those bounds are uniform w.r.t. ε ≥ 0 and refer to [KM02] or
Section 2 in [KKM15] for a proof.

From the same references (see also Lemma 3.6 in [KM00]), we have that the density of the Euler scheme also
admits a similar parametrix representation. Introducing for 0 ≤ i < k ≤ N, (z, y) ∈ (Rd)2, the schemes:

X
h,(ε)
tk = z +

k−1
∑

l=i

(

bε(tl, X
h,(ε)
tl )h+ σε(tl, X

h,(ε)
tl )(Wtl+1

−Wtl)
)

,

X̃
h,(ε),y
tk

= z +
k−1
∑

l=i

σε(tl, y)(Wtl+1
−Wtl), (3.9)

viewed as Markov Chains, their generators write for all ϕ ∈ C2(Rd,R), x ∈ R
d:

Lh,εti ϕ(x) := h−1
E[ϕ(X

h,(ε),ti,x
ti+1

)− ϕ(x)], L̃h,ε,yti ϕ(x) = h−1
E[ϕ(X̃

h,(ε),y,ti,x
ti+1

)− ϕ(x)].

Define now for 0 ≤ k < j ≤ N, (z, y) ∈ (Rd)2 the Markov chain analogue of the parametrix kernel H in (3.5)
by:

Hh
ε (ti, tj , z, y) := (Lh,εti − L̃h,ε,yti )p̃hε (ti + h, tj , x, y).

One gets the following parametrix representation for the density of the Euler scheme:

phε (ti, tj , x, y) :=

j−i
∑

r=0

p̃ε ⊗h H
h,(r)
ε (ti, tj , x, y). (3.10)

Again, the subscript ε is meant to explicitly express the dependence on the mollified coefficients. Also, the
terms in the above series satisfy the controls of equation (3.8) uniformly in ε ≥ 0.

3.2. Error Expansion for The Euler Scheme: Controls on the Densities.

From Theorem 1.1, Theorem 2.1 and their proofs in [KM02] we have with the notations of the previous
paragraph:

(pε − phε )(ti, tj , x, y) = (pε − pdε)(ti, tj , x, y) + h

∫ 1

0

(1− τ)
{

pdε ⊗h (L̃
ε
.,∗ − L̃.∗,ε)2pτ,hε (ti, tj , x, y)

}

dτ, (3.11)
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where we denote for 0 ≤ ti < tj ≤ T, τ ∈ [0, 1]:

pτ,hε (ti, tj , x, y) :=

j−i
∑

r=0

p̃τε ⊗h H
h,(r)
ε (ti, tj , x, y),

∀(k, z) ∈ (i, j]]× R
d, p̃τε (ti, tk, x, z) :=

∫

Rd

p̃xε (ti, ti + τh, x, w)p̃zε(ti + τh, tk, w, z)dw.

Also, for k ∈ {1, 2}, t ∈ (ti, tj), (L̃
ε
t,∗)

kφ(x, y) := (Lεt,ξ)
kφ(x, y))|ξ=x, (L̃

∗,ε
t )kφ(x, y) := (L̄εt,ξ)

kφ(x, y))|ξ=y for

Lεt,ξφ(x, y) = 〈bε(t, ξ), Dxφ(x, y)〉 +
1

2
Tr(aε(t, ξ)D

2
xφ(x, y)),

L̄εt,ξφ(x, y) =
1

2
Tr(aε(t, ξ)D

2
xφ(x, y)).

Observe that Lεtφ(x, y) = Lεt,∗φ(x, y), but more generally the operators do not coincide anymore when iterated.
Also, we indicate that the operators involved slightly differ from [KM02] since we chose to use a Gaussian process
without drift as proxy, see (3.6) and (3.9). Another difference is the fact that we deal with inhomogeneous

coefficients, and the notations L̃ε.,∗, L̃.
∗,ε in (3.11) are used to emphasize the time dependence of the operators

in the discrete convolution ⊗h. Anyhow, reproducing the proof of [KM02] taking into account the indicated
differences leads to the expression in (3.11).

We mention carefully that in order to analyze the contribution of the last two terms in the r.h.s. of (3.11)
no smoothness in time of the coefficients is needed. On the other hand, such smoothness is clearly required
to derive some convergence rates, since to control pε − pdε we need to investigate the difference between time
integrals and Riemann sums (see Proposition 5 and its proof below).

The term
∫ 1

0
(1 − τ){pdε ⊗h (L̃ε.,∗ − L̃.∗,ε)2pτ,hε (ti, tj, x, y)}dτ involves derivatives of the coefficients and heat

kernels up to order 4. The point is again that the derivatives of the coefficients and kernels explode with ε
going to 0 (see equation (2.6)). It is precisely this aspect that deteriorates the convergence rate w.r.t. the usual
smooth case. We carefully mention that if σ(t, x) = σ, the previous contributions involve lower derivatives of
the heat kernel (up to order 2).

The key elements are now the following Propositions. The first one gives bounds for the derivatives of the
densities involved in the parametrix series (3.4), (3.7). The second one controls the difference between the
discrete and continuous convolutions in (3.11).

Proposition 4 (Controls for the derivatives of the densities). Let α, |α| ≤ 4 be a multi-derivation index.
Under (AH), there exist constants C, c s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

|Dα
x p̄ε(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x), |α| ≤ 2,

|Dα
x p̄ε(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x)(1 + ε−|α|+2(t− s)γ/2), |α| ∈ [[3, 4]],

|Dα
y p̄ε(s, t, x, y)| ≤

Cε−|α|+γ

(t− s)|α|/2
pc(t− s, y − x).

(3.12)
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Under (APS), for all q > d, η ∈ (0, α(q)), α(q) = 1
2 (1 −

d
q ), there exist constants C, c s.t. for all 0 ≤ s <

t ≤ T, (x, y) ∈ (Rd)2:

|Dxp̄ε(s, t, x, y)| ≤
C

(t− s)1/2
pc(t− s, y − x),

|Dα
x p̄ε(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x)(1 + Cη,qε

−|α|+2−η+1/qI|α|≥3(t− s)η/2), |α| ∈ [[2, 4]],

|Dyp̄ε(s, t, x, y)| ≤
C

(t− s)1/2
(1 + ε−ηCη(t− s)η/2)pc(t− s, y − x),

|Dα
y p̄ε(s, t, x, y)| ≤

C(1 + Cη,qε
−|α|+1−η(t− s)η/2)

(t− s)|α|/2
pc(t− s, y − x), |α| ∈ [[2, 4]],

(3.13)

where Cη,q = Cη × Cq and Cη, Cq are as in Proposition 3.
In the above expressions p̄ε can be any of the densities pε, p

d
ε , p

τ,h
ε uniformly in τ ∈ [0, 1]. For pdε , p

τ,h
ε , the

time variables s, t are taken on the time grid.

Remark 6. We point out that, under (AH), the previous controls for p̄ε = pε improve in some sense those
of [IKO62], since we do not exploit any smoothness in time of the coefficients and we get the same pointwise
controls for the derivatives of the non degenerate heat-kernel with Hölder coefficients in space up to order 2,
uniformly in ε ∈ [0, 1].

Proposition 5 (Bounds for the difference between continuous and discrete time convolutions). Under (AH),
there exist C, c s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2, η ∈ (0, γ):

|(pε − pdε)(ti, tj, x, y)| ≤ C[
ε−2+γh

(tj − ti)1−γ/2
+
h(γ−η)/2

η
]pc(tj − ti, y − x). (3.14)

Under (APS), there exist C, c s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2, q > d, η ∈ (0, α(q)):

|(pε − pdε)(ti, tj , x, y)| ≤ C
{

Cη,q
hε−(1+η)

(tj − ti)1−η/2
+
h1−η/2

η

}

pc(tj − ti, y − x), (3.15)

with Cη,q, α(q) as in Propositions 3.12, 3 respectively. If now σ(t, x) = σ, i.e. constant diffusion term, the
previous bound improves to:

|(pε − pdε)(ti, tj , x, y)| ≤ C
{ 1

α(q)

hε−(1+η)+1/q

(tj − ti)1/2+α(q)
+
h1−η/2

η

}

pc(tj − ti, y − x). (3.16)

We postpone the proof of Propositions 4 and 5 to Section 4 for clarity. It now remains to exploit Propositions
4, 5 and (3.11) to specifically control how the weak error for the densities depends on the explosive norms of
the mollified coefficients.

3.3. Proof of The Main Results for Hölder Coefficients (Theorem 1 under (AH))

Observe from Proposition 4 that, for all k ∈ [[1, j − 1]], (z, y) ∈ (Rd)2, τ ∈ [0, 1]:

|(L̃εtk,∗ − L̃∗,ε
tk )pτ,hε (tk, tj , z, y)| ≤

C

(tj − tk)1−γ/2
pc(tj − tk, y − z).
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We analyze the contribution [pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj , x, y) in (3.11) thanks to Proposition 4 as follows:

|[pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj, x, y)| ≤ Ch

×
{

∑

k∈[[i+1,⌈(i+j)/2⌉]]

∫

Rd

ε−1+γ

(tk − ti)1/2
pc(tk − ti, z − x)[

1 + ε−1(tj − tk)
γ/2

(tj − tk)3/2
]pc(tj − tk, y − z)dz

+
∑

k∈[[⌈(i+j)/2⌉+1,j−1]]

∫

Rd

ε−2+γ

(tk − ti)
pc(tk − ti, z − x)

1

(tj − tk)1−γ/2
pc(tj − tk, y − z)dz

}

, (3.17)

where we perform one integration by part w.r.t. z for the first integral and two for the second one (taking once
the adjoints). We thus get:

|[pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj , x, y)| ≤ C
ε−1+γ

(tj − ti)

{

1 + ε−1(tj − ti)
γ/2
}

pc(tj − ti, y − x). (3.18)

We thus finally derive from (3.11), (3.14), (3.18):

|(pε − phε )(ti, tj , x, y)|

≤ C
{( hε−2+γ

(tj − ti)1−γ/2
+
h(γ−η)/2

η

)

+
hε−1+γ

tj − ti
(1 + ε−1(tj − ti)

γ/2)
}

pc(tj − ti, y − x). (3.19)

We can assume for the rest of the proof that 0 ≤ tj − ti ≤ T ≤ 1, which is the only case leading to include

the possibly explosive contributions
(

(tj − ti)
−(1−βγ/2)

)

β∈{0,1}
in (3.19) for the optimization over ε. For T ≥ 1

those contributions can indeed be bounded by 1.
Equation (3.19) together with (3.1), (3.2) now yields for ε ≤ (tj − ti)

γ/2, recalling as well from Proposition
3 that η−1 ≤ Cη :

|(p− ph)(ti, tj, x, y)| ≤ C
{

Cη(ε
γ−η + h(γ−η)/2) +

hε−2+γ

(tj − ti)1−γ/2

}

pc(tj − ti, y − x), η ∈ (0, γ).

Taking now Cηε
γ−η = hε−2+γ

(tj−ti)1−γ/2 leads to:

ε2−η =
h

(tj − ti)1−γ/2Cη
⇐⇒ Cηε

γ−η = C(2−γ)/(2−η)
η

{

h

(tj − ti)1−γ/2

}

γ−η
2−η

. (3.20)

Observe now that, since (tj − ti) ≤ T ≤ 1:

ε ≤ (tj − ti)
γ/2 ⇐ h ≤ (tj − ti)

(γ/2+1).

Hence, the condition (tj − ti) ≥ h2/(2+γ) indeed guarantees that ε ≤ (tj − ti)
γ/2 as we assumed above. Thus,

for this choice of ε, we derive:

|(p− ph)(ti, tj , x, y)| ≤ C
{

Cηh
(γ−η)/2 + C

2−γ
2−η
η

(

h

(tj − ti)1−γ/2

)

γ−η
2−η }

pc(tj − ti, y − x)

≤ C exp(C(2η−1 + 1)2η
−1+1)

{

h(γ−η)/2 +
( h

(tj − ti)1−γ/2

)

γ
2−η

1−γ/2
2−η

}

pc(tj − ti, y − x), (3.21)
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using the bounds of Proposition 3 for the last inequality. The point is now to carefully choose η := η(h). Let

us consider the specific sequence η = η(h) := 2 log3(h
−1)

log2(h
−1) , where we recall that for k ∈ N, logk(x) stands for the

kth iterated logarithm of x. Setting βh := h−η and αh := exp
(

C(2η−1 + 1)2η
−1+1

)

, we get that:

log2(βh) = log(η log(h−1)) = log(2) + log4(h
−1)− log3(h

−1) + log2(h
−1),

log2(αh) = log(C(2η−1 + 1)2η
−1+1) = log(C) + (2η−1 + 1) log(2η−1 + 1)

= log(C) + (
log2(h

−1)

log3(h
−1)

+ 1) log(2η−1(1 +
η

2
))

= log(C) + (
log2(h

−1)

log3(h
−1)

+ 1){log(2η−1) + log(1 +
η

2
)}

= log(C) + (
log2(h

−1)

log3(h
−1)

+ 1){log3(h
−1)− log4(h

−1) + log(1 +
η

2
)}

= log2(h
−1)−

log2(h
−1) log4(h

−1)

log3(h
−1)

+ log3(h
−1)− log4(h

−1) +Rh,

Rh := log(C) + log(1 +
log3(h

−1)

log2(h
−1)

)

{

log2(h
−1)

log3(h
−1)

+ 1

}

.

It is easily seen that there exists a finite constant C̄ > 0 s.t. for all h small enough, Rh ≤ C̄ and that
log2(βh) ≥ log2(αh)− C̄. By monotonicity of the exponential, recalling as well that η ∈ (0, γ), we thus derive:

(

β
1
2

h + β
1−γ/2
2−η

h

)

αh =
(

h−
η
2 + h−η

1−γ/2
2−η

)

exp(C(2η−1 + 1)2η
−1+1) ≤ 2h−η(1/2+exp(C̄)). (3.22)

Plugging (3.22) into (3.21) we complete the proof of equation (1.6) in Theorem 1.
To prove the other statements concerning the weak error let us first point out that we do not need to

regularize the coefficients as above. Let tj = jh ∈ [0, T ] be fixed. Observe that setting for all (t, x) ∈ [0, tj]×R
d,

v(t, x) := E[f(Xt,x
tj )], as soon as f satisfies the integrability condition (1.7) and from Proposition 4, which is

valid for ε = 0 (no regularization), we have that for all (t, x) ∈ [0, tj)× R
d:

|∇xv(t, x)| ≤
C

(tj − t)1/2
. (3.23)

On the other hand, we get that for f ∈ Cβ(Rd,R), β ∈ (0, 1], we have for a multi-index α, |α| = 2, (t, x) ∈
[0, tj)× R

d:

∂αx v(t, x) =

∫

Rd

∂αx p(t, tj , x, y)f(y)dy =

∫

Rd

∂αx p(t, tj , x, y)(f(y)− f(x))dy,

recalling that ∂αx
∫

Rd p(t, tj , x, y)dy = 0 for the last identity. Then, under (AH) we derive from the above

equation, (3.12) (for ε = 0) and the Hölder continuity of f , that there exists C ≥ 1 s.t. for all (t, x) ∈ [0, tj)×R
d:

|∂αx v(t, x)| ≤
C

(tj − t)1−β/2
, (3.24)

yielding an integrable singularity in time.
We can now also suppose, without loss of generality that γ ≥ β. Indeed, if f ∈ Cβ(Rd,R) for β > γ, it is

locally Cγ(Rd,R). Observe in that case that we have hγ/β ≤ h ≤ 1. Plugging (3.24) and (3.23) in an expansion
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similar to (1.11), recalling from Proposition 4 that v ∈ Cβ/2,β([0, tj ]× R
d,R) ∩ C1,2([0, tj)× R

d,R), gives:

|E[f(Xh,ti,x
tj )− f(Xti,x

tj )]| ≤ |E[f(Xh,ti,x
tj )− v(tj−1, X

h,ti,x
tj−1

)]|

+C

j−2
∑

k=i

∫ tk+1

tk

dsE[{|∇xv(s,X
h,ti,x
s )|+ |D2

xv(s,X
h,ti,x
s )|}{|s− tk|

γ/2 + |Xh,ti,x
s −Xh,ti,x

tk |γ}]

≤ E[|f(Xh,ti,x
tj )− f(Xh,ti,x

tj−hγ/β)|] + E[|v(tj , X
h,ti,x
tj−hγ/β)− v(tj − hγ/β, Xh,ti,x

tj−hγ/β)|]

+
∣

∣E[v(tj − hγ/β, Xh,ti,x

tj−hγ/β)− v(tj−1, X
h,ti,x
tj−1

)]
∣

∣+ Chγ/2
j−2
∑

k=i

∫ tk+1

tk

(1 +
1

(tj − s)1−β/2
)ds

≤ E[|f(Xh,ti,x
tj )− f(Xh,ti,x

tj−hγ/β)|] + E[|v(tj , X
h,ti,x
tj−hγ/β)− v(tj − hγ/β, Xh,ti,x

tj−hγ/β)|]

+

∫ tj−h
γ/β

tj−1

E[|∇xv(s,X
h,ti,x
s ||b(s,Xh,ti,x

s )− b(tj−1, X
h,ti,x
tj−1

)|+ |D2
xv(s,X

h,ti,x
s ||a(s,Xh,ti,x

s )− a(tj−1, X
h,ti,x
tj−1

)|]ds

+Chγ/2
j−2
∑

k=i

∫ tk+1

tk

(1 +
1

(tj − s)1−β/2
)ds

≤ CE[|Xh,ti,x
tj −Xh,ti,x

tj−hγ/β |
β ] + Chγ/2

{

1 +

∫ tj−h
γ/β

ti

(1 +
1

(tj − s)1−β/2
)ds
}

≤ Chγ/2,

(3.25)

expanding as in (1.11) the term |E[v(tj −hγ/β, Xh,ti,x

tj−hγ/β )− v(tj−1, X
h,ti,x
tj−1

)]| with Itô’s formula and using (1.10)

for the last two inequalities. This gives the required control in (1.8).
Let us now prove (1.9). We write for 0 ≤ i < j ≤ N, x ∈ R

d:

E[I
X

h,ti,x
tj

∈A
]− E[I

X
ti,x
tj

∈A
]

= {E[I
X

h,ti,x
tj

∈A
]− E[fδ(X

h,ti,x
tj )]}+ {E[fδ(X

h,ti,x
tj )]− E[fδ(X

ti,x
tj )]}+ {E[fδ(X

ti,x
tj )]− E[I

X
ti,x
tj

∈A
]} =:

3
∑

i=1

T δi ,

(3.26)

where δ > 0 is such that A satisfies the interior ball condition with radius 2δ, fδ stands for a smooth approxi-
mation of the mapping x 7→ Ix∈A which is equal to 1 on Aδ := {y ∈ A : d(y, ∂A) ≥ δ} where d(·, ∂A) stands for
the distance to the boundary and to 0 outside of A ∪ Vδ(A), Vδ(A) := {y ∈ R

d : d(y, ∂A) ≤ δ} (neighborhood
of size δ of the boundary). In particular |∇fδ|∞ = supx∈Vδ(A) |∇fδ(x)| ≤ Cδ−1.

The terms T δ1 and T δ3 can be handled similarly thanks to the Gaussian upper bound that is satisfied, under
(AH), by the density of both the diffusion and its Euler scheme, see Proposition 4 or again [She91], [LM10].
Precisely, with the notations of (3.26) and provided that δ ≤ (tj − ti)

1/2:

|T δ1 + T δ3 | ≤ E[I
X

ti,x
tj

∈Vδ(A)
] + E[I

X
h,ti,x
tj

∈Vδ(A)
] ≤

Cδ

(tj − ti)1/2
exp

(

− c
d(x, ∂A)2

tj − ti

)

. (3.27)

Indeed, we have that locally, up to a change of coordinate, only one variable is orthogonal to the hypersurface
∂A. We can thus integrate the Gaussian bounds w.r.t. the other ones. This yields the above control.

Observe that to find the indicated convergence rate this imposes δ ≤ (tj − ti)
1/2hγ/2 which specifies the

admissible magnitude for the parameter δ. On the other hand, to analyze T δ2 we have that setting for all

(t, x) ∈ [0, tj) × R
d, vδ(t, x) := E[fδ(X

t,x
tj )] the terminal function fδ is η-Hölder continuous, for all η ∈ (0, γ],
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with Hölder modulus of continuity bounded by δ−η on V2δ(A). We will now establish, similarly to (3.24), that
for all multi-index α, |α| ≤ 2, (t, x) ∈ [0, tj)× R

d:

|Dα
xvδ(t, x)| ≤

C

(δ ∨ d(x, ∂A))η
1

(tj − t)1−η/2
. (3.28)

Recall indeed that

|Dα
xvδ(t, x)| =

∣

∣

∣

∣

∫

Rd

Dα
xp(t, tj , x, y)(fδ(y)− fδ(x))dy

∣

∣

∣

∣

≤
C

(tj − t)

∫

Rd

pc(tj − t, y − x)|fδ(y)− fδ(x)|dy, (3.29)

exploiting Proposition 4 for the last inequality. Thus

- if both x, y 6∈ Vδ(A), then fδ(x) = Ix∈A, fδ(y) = Iy∈A. If x ∈ (A ∪ Vδ(A))
C , y ∈ A\Vδ(A), or by symmetry

y ∈ (A∪ Vδ(A))
C , x ∈ A\Vδ(A), then |x− y| ≥ δ ∨ d(x, ∂A). If now x, y ∈ (A∪ Vδ(A))

C or x, y ∈ A\Vδ(A) then
fδ(x) = fδ(y) yielding a trivial contribution in (3.29).

- if x, y ∈ Vδ(A), then the control of the Hölder modulus gives: |fδ(x) − fδ(y)| ≤ Cδ−η|x − y|η = C(δ ∨
d(x, ∂A))−η |x− y|η.

- if x ∈ Vδ(A), y 6∈ Vδ(A) (resp. y ∈ Vδ(A), x 6∈ Vδ(A)) we can exploit the Hölder continuity for y ∈ V2δ(A) (resp.
x ∈ V2δ(A)) and the fact that |x− y| ≥ δ ∨ d(x, ∂A) for y 6∈ V2δ(A) (resp. x 6∈ V2δ(A)).

In all cases, we have established that |fδ(x)−fδ(y)| ≤ C(δ∨d(x, ∂A))−η |x−y|η, which plugged into (3.29) yields
the control (3.28). Recall now that, again from Proposition 4, we have vδ ∈ Cη/2,η([0, tj]×R

d)∩C1,2([0, tj)×R
d).

In particular, vδ has the same Hölder continuity modulus as fδ. We can as well assume w.l.o.g. that γ/η ≥ 1
so that hγ/η ≤ h ≤ 1.

Exploiting now (3.28) in an expansion similar to (1.11) and (3.25), we get:

|T δ2 | ≤ |E[fδ(X
h,ti,x
tj )− fδ(X

h,ti,x
tj−hγ/η)|+ |E[vδ(tj , X

h,ti,x
tj−hγ/η)− vδ(tj − hγ/η, Xh,ti,x

tj−hγ/η)]|+

+|E[vδ(tj − hγ/η, Xh,ti,x

tj−hγ/η)− vδ(tj−1, X
h,ti,x
tj−1

)]|

+C

j−2
∑

k=i

∫ tk+1

tk

dsE[{|∇xvδ(s,X
h,ti,x
s )|+ |D2

xvδ(s,X
h,ti,x
s )|}{|s− tk|

γ/2 + |Xh,ti,x
s −Xh,ti,x

tk |γ}]

≤ Chγ/2
{

E[(δ ∨ d(Xh,ti,x
tj , ∂A))−2η]1/2 + 1 +

∫ tj−h
γ/η

ti

(1 +
1

(tj − s)1−η/2
E[{δ ∨ d(Xh,ti,x

s , ∂A)}−2η]1/2)ds
}

,

(3.30)

where the term |E[vδ(tj − hγ/η, Xh,ti,x
tj−hγ/η)− vδ(tj−1, X

h,ti,x
tj−1

)]| is again expanded with Itô’s formula which yields

bounds similar to those appearing for the contributions associated with the indexes k ∈ [[i, j − 2]].
Recalling as well that the Euler scheme satisfies the Aronson Gaussian bounds (see Proposition 4 and [LM10]

for details) we obtain:

E[{δ ∨ d(Xh,ti,x
s , ∂A)}−2η] ≤ C

{

(δ ∨ d(x, ∂A))−2η +

∫

1
2d(x,∂A)≥d(y,∂A)

exp(−c |x−y|
2

s−ti
)

(δ ∨ d(y, ∂A))2η
dy

(s− ti)d/2

}

.
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Since on { 1
2d(x, ∂A) ≥ d(y, ∂A)} we have |x − y| ≥ |x − π∂A(y)| − |π∂A(y) − y| ≥ d(x,∂A)

2 ≥ d(y, ∂A), where
π∂A(y) denotes the projection of y on the boundary ∂A, we get:

E[{δ ∨ d(Xh,ti,x
s , ∂A)}−2η] ≤ C

{

(δ ∨ d(x, ∂A))−2η +

∫

1
2d(x,∂A)≥d(y,∂A)

exp(−cd(y,∂A)2

s−ti
)

(δ ∨ d(y, ∂A))2η
dy

(s− ti)d/2

}

≤ C
{

(δ ∨ d(x, ∂A))−2η + 1
}

.

Hence, since d(x, ∂A) ≥ (tj − ti)
1/2hγ/2 ≥ δ, we get from (3.30)

|T δ2 | ≤ Chγ/2
{ 1

ηd(x, ∂A)η
+ 1
}

,

which together with (3.27) gives (1.9). We conclude emphasizing that the condition ηd(x, ∂A)η ≥ hCψ(h),

indeed guarantees that hγ/2

ηd(x,∂A)η ≤ hγ/2−Cψ(h). This means that the bound in (1.9) is then better than the

more general one appearing in (1.6).

3.4. Proof of The Main Results for piecewise smooth coefficients (Theorem 2 under (APS))

The idea is to proceed as in the previous section from equation (3.11) and (3.17). To emphasize the specificity
of Assumptions (APS), due to the approximation of the piecewise smooth drift, we begin with the special case
σ(t, x) = σ. In that framework, a global integration by part, associated with the controls of (2.9) and Proposition
4, yields:

|[pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj , x, y)|

≤ Ch
∑

k∈[[i+1,j−1]]

∣

∣

∣

∫

Rd

divz

(

pdε(ti, tk, x, z)bε(tk, z)
)

〈bε(tk, z),∇zp
τ,h
ε (tk, tj, z, y)〉dz

∣

∣

∣

≤ Ch
∑

k∈[[i+1,j−1]]

∫

Rd

(ε−η + (1 + ε−1
Iz∈Vε(I)))pc(tk − ti, z − x)×

1

(tj − tk)1/2
pc(tj − tk, y − z)dz.

The point is now to use the Hölder inequality to exploit that the set on which ∇zbε gives an explosive bound
is small. We get:

|[pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj , x, y)|

≤ Ch
∑

k∈[[i+1,j−1]]

1

(tj − tk)1/2

(

ε−ηpc(tj − ti, y − x) + ε−1+1/q(

∫

Rd

pc(tk − ti, z − x)q̄pc(tj − tk, y − z)q̄dz)1/q̄
}

,

denoting by q̄ > 1 the conjugate of q, q−1 + q̄−1 = 1. Recall now that:

(

∫

Rd

pc(tk − ti, z − x)q̄pc(tj − tk, y − z)q̄dz)1/q̄ =
( c(tj − ti)

(2π)(tk − ti)(tj − tk)

)d/2(1−1/q̄)

q̄−d/(2q̄)pc(tj − ti, y − x).

This yields:

|[pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj , x, y)| ≤
C

α(q)

ε−1+1/q

(tj − ti)1/2+α(q)
pc(tj − ti, y − x). (3.31)

Performing now in the general case, involving derivatives of the heat kernel up to order 4, an integration by
part similar to the one described for (3.17) and using the Hölder inequality as above for the terms involving
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derivatives of bε, we derive from Proposition 4 that for all q > d, η ∈ (0, α(q)):

|[pdε ⊗h (L̃
ε
.,∗ − L̃∗,ε

. )2pτ,hε ](ti, tj , x, y)| ≤
C

(tj − ti)

{

1 + Cη,qε
−(1+η)(tj − ti)

η/2
}

pc(tj − ti, y − x). (3.32)

We thus get, from (3.3), (3.11) and Proposition 5:

|p− ph(ti, tj , x, y)| ≤ C
{

Cqε
1/q +

{

1 + (tj − ti)
η/2
}

Cη,q
hε−(1+η)

(tj − ti)

+
{

Cη,q
hε−(1+η)

(tj − ti)1−η/2
+
h1−η/2

η

}}

pc(tj − ti, y − x),

using equations (3.15), (3.32) in the general case and

|p− ph(ti, tj , x, y)| ≤ C
{

Cqε
1/q +

1

α(q)

hε−1+1/q

(tj − ti)1/2+α(q)
+
{ 1

α(q)

hε−(1+η)+1/q

(tj − ti)1/2+α(q)
+
h1−η/2

η

}}

pc(tj − ti, y − x),

from (3.16), (3.31), if σ(t, x) = σ. We then set Cqε
1/q = Cη,q

hε−(1+η)

(tj−ti)1−η/2 in the general case and Cqε
1/q =

1
α(q)

hε−(1+η)+1/q

(tj−ti)1/2+α(q) if σ(t, x) = σ. The results can be derived as in the previous section choosing η := η(h) = ψ(h),

q := q(h) s.t. α(q) = ψ(h).

4. Proof of the Technical Results from Section 3.

4.1. Proof of Proposition 4.

4.1.1. Proof under (AH).

Let us establish the result for pε. We start from the parametrix representation of pε obtained in (3.4). In all

cases, we can readily derive from (3.6) (recall that X̃ε,y is a non degenerate Gaussian process) and (2.6) that
for the main term in the expansion:

|Dα
x p̃ε(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x), |Dα

y p̃ε(s, t, x, y)| ≤
Cε−|α|+γ

(t− s)|α|/2
pc(t− s, y − x). (4.1)

Let us now concentrate on the remainder term:

Rε(s, t, x, y) :=
∑

i≥1

p̃ε ⊗H(i)
ε (s, t, x, y) = p̃ε ⊗ Φε(s, t, x, y),Φε(s, t, x, y) :=

∑

i≥1

H(i)
ε (s, t, x, y).

We focus on the first two inequalities in (3.12), the last one can be proved similarly. The ideas are close to
those in [IKO62], but we need to adapt them since they considered the “forward” version of the parametrix
expansions. The key point is that, for Hölder coefficients we have bounded controls for the derivatives of the
remainder in the backward variable up to order two. It is first easily seen for the first derivatives, since the
first order derivation gives an integrable singularity in time in the previous expansions. Indeed, from (4.1) and
(3.8), one readily gets the statement if |α| = 1. The case |α| ≥ 2 is much more subtle and needs to be discussed
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thoroughly. Write indeed:

Dα
xRε(s, t, x, y) = lim

τ→0

∫ (t+s)/2

s+τ

du

∫

Rd

Dα
x p̃ε(s, u, x, z)Φε(u, t, z, y)dz +

∫ t

(t+s)/2

du

∫

Rd

Dα
x p̃ε(s, u, x, z)Φε(u, t, z, y)dz

=: lim
τ→0

Dα
xR

τ
ε (s, t, x, y) +Dα

xR
f
ε (s, t, x, y). (4.2)

The contribution Dα
xR

f
ε (s, t, x, y) does not exhibit time singularities in the integral, since on the considered

integration set u− s ≥ 1
2 (t− s). Let us now recall the usual control on the parametrix kernel under (AH), see

e.g. Section 2 in [KKM15]. There exist c, c1 s.t. for all 0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2:

|Hε(u, t, z, y)| ≤
c1(1 ∨ T

(1−γ)/2)

(t− u)1−γ/2
pc(t− u, z − y). (4.3)

Equation (4.3) for Hε then yields for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

|H(r)
ε (s, t, x, y)| ≤ ((1 ∨ T (1−γ)/2)c1)

r
r−1
∏

i=1

B(
γ

2
, 1 + (i − 1)

γ

2
)pc(t− s, y − x)(t− s)−1+ rγ

2 , (4.4)

with the convention
∏0
i=1 = 1. We thus derive that for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2::

|Φε(s, t, x, y)| ≤
C

(t− s)1−γ/2
pc(t− s, y − x) (4.5)

|Φε(u, t, z, y)| ≤
C

(t−u)1−γ/2 pc(t− u, y − z) and |Φε(u, t, x, y)| ≤
C

(t−u)1−γ/2 pc(t− u, y − x).

Thus, from equations (4.1) and (4.5):

|Dα
xR

f
ε (s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x). (4.6)

The delicate contribution is indeed Dα
xR

τ
ε (s, t, x, y) for which we need to be more careful. If |α| = 2 we exploit

some cancellation properties of the derivatives of the Gaussian kernels. Recall now that for an arbitrary w ∈ R
d,

setting for 0 ≤ s < u ≤ T, Σε(s, u, w) :=
∫ u

s σεσ
∗
ε (v, w)dv,

p̃wε (s, u, x, z) =
1

(2π)d/2det(Σε(s, u, w))1/2
exp

(

−
1

2
〈Σε(s, u, w)

−1(z − x), z − x〉

)

,

D2
xixj

p̃wε (s, u, x, z) =
{

(

Σ−1
ε (s, u, w)(z − x)

)

i

(

Σ−1
ε (s, u, w)(z − x)

)

j

−δij(Σ
−1
ε (s, u, w))ii

}

p̃wε (s, u, x, z), ∀(i, j) ∈ [[1, d]]2, (4.7)

where for q ∈ R
d, we denote for i ∈ [[1, d]] by qi its i

th entry. Hence, for all multi-index α, |α| = 2:

∫

Rd

Dα
x p̃

w
ε (s, u, x, z)dz = 0. (4.8)
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Introducing the centering function cαε (s, u, x, z) := (Dα
x p̃

w
ε (s, u, x, z)) |w=x, we rewrite:

Dα
xR

τ
ε (s, t, x, y) =

∫ (s+t)/2

s+τ

du

∫

Rd

(Dα
x p̃ε − cαε )(s, u, x, z)Φε(u, t, z, y)dz

+

∫ (s+t)/2

s+τ

du

∫

Rd

cαε (s, u, x, z)(Φε(u, t, z, y)− Φε(u, t, x, y))dz

:= (Rτ,1ε +Rτ,2ε )(s, t, x, y), (4.9)

exploiting the centering condition (4.8) to introduce the last term of the first equality. On the one hand,
the terms Dα

x p̃ε(s, u, x, z), c
α
ε (s, u, x, z) only differ in their frozen coefficients (respectively at point z and x).

Exploiting the Hölder property in space of the mollified coefficients, it is then easily seen that:

|(Dα
x p̃ε − cαε )(s, u, x, z)| ≤

C|x− z|γ

(u− s)
pc(u− s, z − x) ≤

C

(u− s)1−γ/2
pc(u− s, z − x),

yielding an integrable singularity in time so that, from (4.5):

|Rτ,1ε (s, t, x, y)| ≤
C

(t− s)1−γ
pc(t− s, y − x). (4.10)

Let us now control the other contribution. The key idea is now to exploit the smoothing property of the kernel
Φε. Assume indeed that for A := {z ∈ R

d : |x− z| ≤ c(t− s)1/2} (recall as well that u ∈ [s, s+t2 ]) one has:

|Φε(u, t, x, y)− Φε(u, t, z, y)| ≤ C
|x− z|γ/2

(t− u)1−γ/4
pc(t− u, y − z). (4.11)

Then, we can derive from (4.1), (4.9) and (4.11):

|Rτ,2ε (s, t, x, y)| ≤ C2

∫ (s+t)/2

s+τ

du

∫

A

|x− z|γ/2

(u − s)
pc(u− s, z − x)

1

(t − u)1−γ/4
pc(t− u, y − z)dz

+
C

(t− s)γ/4

∫ (s+t)/2

s+τ

du

∫

AC

|x− z|γ/2

(u− s)
pc(u− s, z − x){|Φε(u, t, z, y)|+ |Φε(u, t, x, y)|}dz. (4.12)

From (4.5), we finally get on the considered time set:

|Rτ,2ε (s, t, x, y)| ≤ Cpc(t− s, y − x)

∫ (s+t)/2

s+τ

du
1

(u− s)1−γ/4
1

(t− u)1−γ/4

≤
C

(t− s)1−γ/2
pc(t− s, y − x),

which together with (4.10), (4.9), (4.6) and (4.2) gives the statement. It remains to establish (4.11). From
the definition of Φε and the smoothing effect of the kernel Hε in (4.4), it suffices to prove that on the set
Ā := {z ∈ R

d : |z − x| ≤ c(u′ − u)1/2}:

|Hε(u, u
′, x, w) −Hε(u, u

′, z, w)| ≤ C
|x− z|γ/2

(u′ − u)1−γ/4
pc(u

′ − u,w − z), (4.13)
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for u′ ∈ (u, t], u ∈ [s, (s+ t)/2]. Observe that Ā ⊂ A. Indeed, recalling that we want to establish (4.11) on A if
z 6∈ Ā, we get from (4.4):

∫ t

u

du′
∫

Āc

|Hε(u, u
′, x, w) −Hε(u, u

′, z, w)||(
∑

i≥2

H(i)
ε )(u′, t, w, y)|dw

≤

∫ t

u

du′
∫

Āc

C

(u′ − u)1−γ/2
(pc(u

′ − u,w − x) + pc(u
′ − u,w − z))

×
|x− z|γ/2

(u′ − u)γ/4
C

(t− u′)1−γ
pc(t− u′, y − w)dw ≤ C

|x− z|γ/2

(t− u)1−5γ/4
pc(t− u, y − z) ≤ C

|x− z|γ/2

(t− u)1−γ/4
pc(t− u, y − z),

exploiting that z ∈ A, t− u ≥ 1
2 (t− s), and the usual convexity inequality |y−x|2

t−u ≥ |y−z|2

2(t−u) −
|z−x|2

t−u ≥ |y−z|2

2(t−u) − c

for the last but one inequality. On the other hand, on Ā we get (4.11) from (4.13) and (4.4).
Let us turn to the proof of (4.13). We concentrate on the second derivatives in Hε which yield the most

singular contributions:

Tr((aε(u, x)− aε(u,w))D
2
xp̃ε(u, u

′, x, w)) − Tr((aε(u, z)− aε(u,w))D
2
xp̃ε(u, u

′, z, w))

= Tr((aε(u, x)− aε(u, z))D
2
xp̃ε(u, u

′, x, w)) − Tr((aε(u, z)− aε(u,w))(D
2
xp̃ε(u, u

′, z, w)−D2
xp̃ε(u, u

′, x, w)))

=: I + II. (4.14)

Then, from (4.1),

|I| ≤ C
|x− z|γ

(u − u′)
pc(u

′ − u,w − x) ≤
C|x− z|γ/2

(u− u′)1−γ/4
pc(u

′ − u,w − x) ≤
C|x − z|γ/2

(u− u′)1−γ/4
pc(u

′ − u,w − z), (4.15)

using that z ∈ Ā for the second inequality, again combined with the convexity inequality |x−w|2

u′−u ≥ |z−w|2

2(u′−u) −
|x−z|2

u′−u ≥ |z−w|2

2(u′−u) − c for the last one. Now, from the explicit expression of the second order derivatives in (4.7),

(A2) and usual computations we also derive:

|II| ≤
C|z − w|γ

(u′ − u)

|z − x|γ/2

(u′ − u)γ/4
pc(u

′ − u,w − z) ≤
C|z − x|γ/2

(u′ − u)1−γ/4
pc(u

′ − u,w − z). (4.16)

This gives (4.13) and completes the proof for |α| ≤ 2.
Let us now turn to |α| ≥ 3. In those cases the singularities induced by the derivatives are not integrable in

short time, even if we exploit cancellations. We are thus led to perform integration by parts, deteriorating the
bounds since these operations make the derivatives of the mollified coefficients appear.

Recalling α ∈ N
d, denote by l a multi-index s.t. |l| = 2 and α−l ≥ 0 (where the inequality is to be understood

componentwise). From equations (4.2), (4.6), we only have to consider the contribution Dα
xR

τ
ε (s, t, x, y). Write:

Dα
xR

τ
ε (s, t, x, y) = Dα−l

x

∫ (t+s)/2

s+τ

du

∫

Rd

Dl
xp̃ε(s, u, x, z)Φε(u, t, z, y)dz

= Dα−l
x

∫ (t+s)/2

s+τ

du

∫

Rd

gl,ε(s, u, x, z)Φε(u, t, z, y)dz, (4.17)
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where gl,ε(s, u, x, z) := Dl
xp̃ε(s, u, x, z). Let us write introducing the cancellation term clε:

Dα
xR

τ
ε (s, t, x, y) = Dα−l

x

∫ (s+t)/2

s+τ

du

∫

Rd

(gl,ε − clε)(s, u, x, z)Φε(u, t, z, y)dz

+Dα−l
x

∫ (s+t)/2

s+τ

du

∫

Rd

clε(s, u, x, z)(Φε(u, t, z, y)− Φε(u, t, x, y))dz

= Dα−l
x

∫ (s+t)/2

s+τ

du

∫

Rd

(gl,ε − clε)(s, u, x, x + z)Φε(u, t, x+ z, y)dz

+Dα−l
x

∫ (s+t)/2

s+τ

du

∫

Rd

clε(s, u, x, x+ z)(Φε(u, t, x+ z, y)− Φε(u, t, x, y))dz.

(4.18)

The purpose of that change of variable, already performed in [KM02], is that we get integrable time singularities
in the contributions Dα−l

x (gl,ε − clε)(s, u, x, x + z). Anyhow, the mollified coefficients bε, σε have explosive
derivatives. From the definition of gl,ε and (2.6) one easily gets that there exists c, C s.t. for all α, |α| ≤ 4:

|Dα−l
x (gl,ε − clε)(s, u, x, x+ z)| ≤

Cε−|α−l|

(u− s)1−γ/2
pc(u − s, z),

|Dα−l
x clε(s, u, x, x+ z)| ≤

Cε−|α−l|+γ

(u− s)
pc(u − s, z).

(4.19)

From (4.18) and (4.19) it thus remains to control the terms Dα−l
x Φε(u, t, z + x, y), Dα−l

x (Φε(u, t, x + z, y) −
Φε(u, t, x, y)) which are the most singular ones in Dα

xR
τ
ε (s, t, x, y). To this end, we will establish by induction

that the following control holds:

∃c, C, ∀0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2, ∀β, |β| ≤ 3, |Dβ
xH

(i)
ε (s, t, x, y)| ≤

Ciε−|β|

(t− s)|β|/2
(t− s)−1+iγ/2

i−1
∏

j=1

B(γ/2, jγ/2)pc(t− s, y − x), (4.20)

with the convention that
∏0
j=1 = 1. Observe first that for |β| = 0 (no derivation), estimate (4.20) readily

follows from (4.3). Let us now suppose |β| > 0. Observe from the definition of Hε that (4.20) is satisfied for
i = 1. Let us assume it holds for a given i and let us prove it for i+ 1. Write again:

Dβ
xH

(i+1)
ε (s, t, x, y) =

∫ t

(s+t)/2

du

∫

Rd

Dβ
xHε(s, u, x, z)H

(i)
ε (u, t, z, y)dz

+Dβ
x

∫ (s+t)/2

s

du

∫

Rd

Hε(s, u, x, x+ z)H(i)
ε (u, t, x+ z, y)dz =: (Ri,β1 +Ri,β2 )(s, t, x, y).

The term Ri,β1 is easily controlled by (4.20) for β = 0 and the induction hypothesis. Observe also that, from
Proposition 2 one derives similarly to (4.19) that:

|Dβ
xHε(s, u, x, x+ z)| ≤

Cε−|β|

(u− s)1−γ/2
pc(u− s, z).
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Together with the induction hypothesis and the Leibniz rule for differentiation, this allows to control Ri,β2 . The

controls on {Ri,βj }j∈{1,2} give (4.20) for i+ 1. We eventually derive (reminding that |l| = 2):

|Dα−l
x Φε(u, t, x+ z, y)| ≤

C

(t− u)(|α|−2)/2

ε−|α|+2

(t− u)1−γ/2
pc(t− u, y − (x+ z)). (4.21)

The spatial Hölder continuity of the derivatives of the kernel Φε could be checked following the previous steps
performed respectively to get the spatial Hölder continuity of the kernel and the controls on its derivatives. One
gets, on |z| ≤ c(t− u)1/2:

|Dα−l
x Φε(u, t, x+ z, y)−Dα−l

x Φε(u, t, x, y)| ≤
C|z|γ/2

(t− u)(|α|−2)/2

ε−|α|+2

(t− u)1−γ/4
pc(t− u, y − (x+ z)),

which together with (4.21), (4.19), (4.18) gives (proceeding as above for |z| ≥ c(t− u)1/2):

|Dα
xR

τ
ε (s, t, x, y)| ≤

Cε−|α|+2(t− s)γ/2

(t− s)|α|/2
pc(t− s, y − x).

The second equation of (3.12) follows for p̄ε = pε from the above control and (4.6), (4.2). Observe that the
control for the derivative w.r.t. y has additional singularity in ε. This is clear since we directly differentiate
the frozen mollified coefficients. Now the statements readily hold for pdε , since the integration in time played
no role in the previous computations. For phε , the only point that should be totally justified is the smoothing

property and Hölder continuity of the discrete Kernel Φhε (ti, tj , x, y) :=
∑j−i

r=1H
h,(r)
ε (ti, tj , x, y). The smoothing

property, equivalent of (4.20), has been investigated in [LM10]. The spatial Hölder continuity can be derived
as above.

4.1.2. Proof under (APS)

Let us now turn to the proof of the heat kernel bounds for pε under (APS), which almost follows the same
lines. Observe first that the result for |α| = 1 still follows from (4.1) and (3.8). The key point is again that the
derivative of the Gaussian kernel yields an integrable singularity. For |α| = 2, we still separate the contribution
Rε(s, t, x, y) as in (4.2) and again focus on limτ→0D

α
xR

τ
ε (s, t, x, y) which is the only term yielding a potential

singularity. With then notations of (4.9), it is sufficient to investigate Rτ,2ε (s, t, x, y). Indeed, under (APS),
equation (4.10) actually holds with γ = 1. We recall that to control Rτ,2ε (s, t, x, y), the key estimate was (4.11).
We aim at proving the different control, for all u ∈ [s, t), for all η ∈ (0, 1]:

|Φε(u, t, x, y)− Φε(u, t, z, y)| ≤ Cε−η
|x− z|η

(t− u)3/4
pc(t− u, y − z), (4.22)

on A := {z ∈ R
d : |x− z| ≤ (t− s)1/2 ∧ ε}. Then, we can derive from (4.1), (4.9) and (4.22):

|Rτ,2ε (s, t, x, y)| ≤ Cε−η
∫ (s+t)/2

s+τ

du

∫

A

|x− z|η

(u− s)
pc(u − s, z − x)

1

(t − u)3/4
pc(t− u, y − z)dz

+C((t− s)1/2 ∧ ε)−η
∫ (s+t)/2

s+τ

du

∫

AC

|x− z|η

(u− s)
pc(u − s, z − x){|Φε(u, t, z, y)|+ |Φε(u, t, x, y)|}dz.

Since the drift bε is uniformly bounded, uniformly in ε ∈ [0, 1], we have under (APS) the following usual control
on the parametrix kernel (see e.g. Section 2 in [KKM15]):

|Hε(u, t, z, y)| ≤
c1

(t− u)1/2
pc(t− u, z − y). (4.23)
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Equation (4.23) for Hε then yields

|H(r)
ε (s, t, x, y)| ≤ cr1

r−1
∏

i=1

B(
1

2
, 1 + (i− 1)

1

2
)pc(t− s, y − x)(t − s)−1+ r

2 , (4.24)

again with the convention
∏0
i=1 = 1. We thus derive |Φε(u, t, z, y)| ≤

C
(t−u)1/2

pc(t−u, y−z) and |Φε(u, t, x, y)| ≤
C

(t−u)1/2
pc(t− u, y − x). We finally get on the considered time set:

|Rτ,2ε (s, t, x, y)| ≤ C((t − s)1/2 ∧ ε)−ηpc(t− s, y − x)

∫ (s+t)/2

s+τ

du
1

(u− s)1−η/2
1

(t− u)3/4

≤
C((t − s)1/2 ∧ ε)−η

η(t− s)3/4−η/2
pc(t− s, y − x).

It remains to establish (4.22). From the definition of Φε and the smoothing effect of the kernel Hε in (4.24), it
suffices to prove that on Ā := {z ∈ R

d : |x− z| ≤ c[(u′ − u)1/2 ∧ ε]}:

|Hε(u, u
′, x, w)−Hε(u, u

′, z, w)| ≤ C{
|x− z|η

(u′ − u)3/4
((u′ − u)1/2 ∧ ε)−η}pc(u

′ − u,w − z), (4.25)

for u′ ∈ (u, t], u ∈ [s, (s + t)/2]. The contributions associated with z ∈ ĀC can be handled as above. To
establish the above control we focus on the first order terms involving the regularized coefficient with initial
discontinuities. Indeed the second order contribution can be analyzed as in (4.14), (4.15), (4.16), taking γ = 1
in those expressions. In particular, the time singularity in (u−u′)3/4 in (4.25) comes precisely from those terms.
Recalling that under (APS) the driftless proxy does not depend on ε (since the diffusion is smooth, see (3.9) in
which one has σε = σ under (APS)), we denote its density by p̃ and write:

〈bε(u, x), Dxp̃(u, u
′, x, w)〉 − 〈bε(u, z), Dxp̃(u, u

′, z, w)〉

= 〈bε(u, x)− bε(u, z), Dxp̃(u, u
′, x, w)〉 + 〈bε(u, z), Dxp̃(u, u

′, x, w) −Dxp̃(u, u
′, z, w)〉 := I + II.

On the one hand, from the mean value theorem and recalling that |Dxbε|∞ ≤ Cε−1 ≤ C((u′ − u)1/2 ∧ ε)−1 we
get:

|I| ≤
C

(u′ − u)1/2

{

2|b|∞

( |x− z|

(u′ − u)1/2 ∧ ε

)η

I|x−z|>(u′−u)1/2∧ε + ε−1|x− z|I|x−z|≤(u′−u)1/2∧ε

}

pc(u
′ − u,w − x)

≤ C((u′ − u)1/2 ∧ ε)−η
|x− z|η

(u′ − u)1/2
pc(u

′ − u,w − x) ≤ C((u′ − u)1/2 ∧ ε)−η
|x− z|η

(u′ − u)1/2
pc(u

′ − u,w − z),

using again a convexity inequality for the last control, recalling that z ∈ Ā. On the other hand still from the
mean value Theorem and usual controls on the derivatives of the Gaussian density:

|II| ≤
C|x− z|

(u′ − u)

∫ 1

0

pc(u
′ − u,w − {z + λ(x − z)})dλ ≤

C|x− z|η

(u′ − u)η/2
pc(u

′ − u,w − z) ≤
C|x− z|η

(u′ − u)1/2
pc(u

′ − u,w − z).

The above estimates give (4.25) and concludes the proof for |α| = 2.
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Let us turn to |α| ≥ 3. The idea is again to proceed as under (AH), up to a suitable modification of the key
estimate (4.20) which can now be localized and becomes for all q > d:

∃c, C, ∀0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2, ∀β, |β| ≤ 3, |Dβ
xH

(i)
ε (s, t, x, y)| ≤

Ci(ε
−|β|

Ix∈Vε(I) + ε−|β|+1/q)

(t− s)|β|/2
(t− s)−1+iα(q)

i−1
∏

j=1

B(α(q), α(q)j)pc(t− s, y − x), α(q) =
1

2
(1−

d

q
), (4.26)

with
∏0
j=1 = 1. We again proceed by induction. Observe first that for |β| = 0 (no derivation), estimate (4.26)

readily follows from (4.23). Let us now suppose |β| > 0. Observe as well from the definition of Hε that (4.26)
is satisfied for i = 1. Let us assume it holds for a given i and let us prove it for i+ 1. Write again:

Dβ
xH

(i+1)
ε (s, t, x, y) =

∫ t

(s+t)/2

du

∫

Rd

Dβ
xHε(s, u, x, z)H

(i)
ε (u, t, z, y)dz

+Dβ
x

∫ (s+t)/2

s

du

∫

Rd

Hε(s, u, x, x+ z)H(i)
ε (u, t, x+ z, y)dz =: (Ri,β1 +Ri,β2 )(s, t, x, y).

The term Ri,β1 is easily controlled by (4.26) that holds from the induction hypothesis for j = 0 (direct differen-

tiation of Hε) and β = 0 for the considered i (no differentiation of H
(i)
ε ). Observe also that, similarly to (4.19),

one has:

|Dβ
xHε(s, u, x, x+ z)| ≤

C(ε−|β|
Ix∈Vε(I) + 1)

(u− s)1/2
pc(u − s, z). (4.27)

Now, from the Leibniz rule for differentiation, (4.27) and the induction hypothesis, we have:

|Ri,β2 (s, t, x, y)| ≤ Ci+1
i−1
∏

j=1

B(α(q), α(q)j)
{

∑

β̃,|β̃|≤|β|

C
|β̃|
|β|

∫ (s+t)/2

s

du(t− u)−1+iα(q)

(u − s)1/2(t− u)(|β|−|β̃|)/2

×

∫

Rd

pc(u− s, z)(ε−|β̃|
Ix∈Vε(I) + 1)(ε−(|β|−|β̃|)

Ix+z∈Vε(I) + ε−(|β|−|β̃|)+1/q)pc(t− u, y − x− z)dz
}

≤ Ci+1
i−1
∏

j=1

B(α(q), α(q)j)
{

∑

β̃,|β̃|≤|β|

C
|β̃|
|β|

∫ (s+t)/2

s

du(t− u)−1+iα(q)

(u − s)1/2(t− u)(|β|−|β̃|)/2

×[pc(t− s, y − x)(ε−|β|
Ix∈Vε(I) + ε−|β|+1/q) + ε−|β|+1/q(

∫

Rd

pc(u− s, z)q̄pc(t− u, y − x− z)q̄dz)1/q̄
}

, (4.28)

denoting by q̄ > 1 the conjugate of q, q−1 + q̄−1 = 1. Recall now that:

(

∫

Rd

pc(u − s, z)q̄pc(t− u, y − x− z)q̄dz)1/q̄ =
( c(t− s)

(2π)(u− s)(t− u)

)d/2(1−1/q̄)

q̄−d/(2q̄)pc(t− s, y − x)

≤ C(u− s)−d/(2q)pc(t− s, y − x),
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for u ∈ [s, (s+ t)/2]. Hence,

|Ri,β2 (s, t, x, y)| ≤
Ci+1

(t− s)|β|/2

i−1
∏

j=1

B(α(q), α(q)j)
{

∫ (s+t)/2

s

du(t− u)−1+iα(q)

(u− s)1/2(1+d/q)

}

×pc(t− s, y − x)(ε−|β|
Ix∈Vε(I) + ε−|β|+1/q),

≤
Ci+1

(t− s)|β|/2

i−1
∏

j=1

B(α(q), α(q)j)(t − s)−1+(i+1)α(q)

∫ 1/2

0

(1 − u)−1+iα(q)u−1+α(q)du

×pc(t− s, y − x)(ε−|β|
Ix∈Vε(I) + ε−|β|+1/q).

The controls on {Ri,βj }j∈{1,2} give (4.26) for i+ 1.

Estimate (4.26) yields for every multi-index l, |l| = 2:

|Dα−l
x Φε(u, t, x+ z, y)| ≤

Cq
(t− u)(|α|−2)/2

Ix+z∈Vε(I)ε
−|α|+2 + ε−|α|+2+1/q

(t− u)1−α(q)
pc(t− u, y − (x+ z)). (4.29)

The spatial Hölder continuity of the derivatives of the kernel Φε could be checked following the previous steps
performed respectively to get the spatial Hölder continuity of the kernel and the controls on its derivatives. One
gets, on |z| ≤ c{(t− u)1/2 ∧ ε} for all η ∈ (0, 1]:

|Dα−l
x Φε(u, t, x+ z, y)−Dα−l

x Φε(u, t, x, y)|

≤
Cqε

−η|z|η

(t− u)(|α|−2)/2

ε−|α|+2
Ix+z∈Vε(I) + ε−|α|+2+1/q

(t− u)1−α(q)+η/2
pc(t− u, y − (x+ z)).

(4.30)

Now, equation (4.18) still holds under (APS), with g
l,ε = gl, clε = cl, i.e. the driftless proxy does not depend

on ε. Also, the smoothness assumption on σ allows to improve (4.19). Precisely, there exist c, C s.t. for all
α, |α| ≤ 4:

|Dα−l
x (gl − cl)(s, u, x, x+ z)| ≤

C

(u− s)1/2
pc(u− s, z), |Dα−l

x cl(s, u, x, x+ z)| ≤
C

(u− s)
pc(u− s, z),

which together with (4.29), (4.30), (4.18) and choosing α(q) > η gives (proceeding as above for |z| ≥ c{(t −
u)1/2 ∧ ε}):

|Dα
xR

τ
ε (s, t, x, y)| ≤

Cη,qε
−(η+|α|)+2+1/q(t− s)η/2

(t− s)|α|/2
pc(t− s, y − x).

The controls on the derivatives w.r.t. to the forward variables are derived similarly. We here simply illustrate
on the first term p̃ε ⊗Hε(s, t, x, y) of the parametrix series how the derivatives must be handled. The stated
controls would follow from inductions similar to the previous ones. Write for a given multi-index β:

Dβ
y

(

p̃ε ⊗Hε(s, t, x, y)
)

=

∫ (s+t)/2

s

du

∫

Rd

p̃(s, u, x, z)Dβ
y{〈bε(u, z), Dzp̃(u, t, z, y)〉+

1

2
Tr{(a(u, z)− a(u, y))D2

z p̃(u, t, z, y)}}dz +

lim
τ↓0

∫ t−τ

(s+t)/2

du

∫

Rd

Dβ
y

(

p̃(s, u, x, z)[〈bε(u, z), Dzp̃(u, t, z, y)〉

+
1

2
Tr{(a(u, z)− a(u, y))D2

z p̃(u, t, z, y)}]
)

dz := (Dβ
1 +Dβ

2 )(s, t, x, y).
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We readily get from the controls of (4.1) that:

|Dβ
1 (s, t, x, y)| ≤

C

(t− s)(|β|−1)/2
pc(t− s, y − x), (4.31)

which is the expected control. Since a is smooth the terms involving the second derivatives w.r.t. z in Dβ
2 can be

handled performing the change of variables z′ = z + y as above (see also [KM02] under the current smoothness
assumption on the diffusion coefficient). Let us thus focus on the contribution:

Dβ
21(s, t, x, y) := lim

τ↓0

∫ t−τ

(s+t)/2

du

∫

Rd

Dβ
y

(

p̃(s, u, x, z)〈bε(u, z), Dz p̃(u, t, z, y)〉
)

dz.

Consider first the case |β| = 1. Write:

Dβ,τ
21 (s, t, x, y) :=

∫ t−τ

(s+t)/2

du

∫

Rd

Dβ
y

(

p̃(s, u, x, z)〈bε(u, z), Dzp̃(u, t, z, y)〉
)

dz

=

∫ t−τ

(s+t)/2

du

∫

Rd

p̃(s, u, x, z)〈bε(u, z), D
β
yDz p̃(u, t, z, y)〉dz

=

∫ t−τ

(s+t)/2

du

∫

Rd

[p̃(s, u, x, z)− p̃(s, u, x, y)]〈bε(u, z), D
β
yDz p̃(u, t, z, y)〉dz

+

∫ t−τ

(s+t)/2

du

∫

Rd

p̃(s, u, x, y)〈bε(u, z)− bε(u, y), D
β
yDz p̃(u, t, z, y)〉dz

=: [Dβ,τ
211 +Dβ,τ

212](s, t, x, y), (4.32)

recalling that for all y ∈ R
d,
∫

Rd Dz p̃(u, t, z, y)dz = 0, so that Dβ
y

∫

Rd Dz p̃(u, t, z, y)dz = 0, for the last but one
equality. Still from the controls of (4.1), we readily get:

|Dβ,τ
211| ≤

C

(t− s)1/2

∫ t−τ

(s+t)/2

du

∫

Rd

|z − y|
{

∫ 1

0

pc(u− s, z − x+ λ(y − z))dλI|z−y|≤(t−s)1/2

+(pc(u− s, z − x) + pc(u− s, y − x))I|z−y|>(t−s)1/2

} 1

(t− u)
pc(t− u, y − z)dz ≤ Cpc(t− s, y − x).

On the other hand:

|Dβ,τ
212](s, t, x, y)| ≤ Cpc(t− s, y − x)

∫ t−τ

(s+t)/2

du

∫

Rd

{I|z−y|≤ε
|z − y|

ε
+ I|z−y|>ε

|z − y|η

εη
}

1

(t− u)
pc(t− u, y − z)dz

≤
C

η
ε−η(t− s)η/2pc(t− s, y − x), η ∈ (0, 1].

We therefore eventually derive from the above controls, (4.32) and (4.31) that for |β| = 1

Dβ
y

(

p̃⊗Hε(s, t, x, y)
)

≤ Cpc(t− s, y − x){1 +
C

η
ε−η(t− s)η/2}.

Take now |β| ≥ 2, and let l be a multi-index s.t. |l| = 1 and β − l ≥ 0. Set for all 0 ≤ u < t ≤ T, (z, y) ∈
R
d, gl(u, t, z, y) := Dl

yDz p̃(u, t, z, y). Observe that there exists C ≥ 1, |gl(u, t, z, y)| ≤ C(t−u)−1pc(t−u, y− z)

and also, similarly to (4.27), for all multi-index β̃, |β̃| ≤ 4, |Dβ̃
y gl(u, t, z+y, y)| ≤ C(t−u)−1pc(t−u, z). Rewrite
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now from (4.32):

Dβ,τ
21 (s, t, x, y) = Dβ−l

y

∫ t−τ

(s+t)/2

du

∫

Rd

(p̃(s, u, x, z)− p̃(s, u, x, y))〈bε(u, z), gl(u, t, z, y)〉
)

dz

+Dβ−l
y

∫ t−τ

(s+t)/2

du

∫

Rd

p̃(s, u, x, y)〈bε(u, z)− bε(u, y), gl(u, t, z, y)〉dz,

recalling that
∫

Rd gl(u, t, z, y)dz = 0 for the last equality. Now,

|Dβ,τ
21 (s, t, x, y)| =

∣

∣

∣
Dβ−l
y

∫ t−τ

(s+t)/2

du

∫

Rd

(p̃(s, u, x, z + y)− p̃(s, u, x, y))〈bε(u, z + y), gl(u, t, z + y, y)〉
)

dz

+Dβ−l
y

∫ t−τ

(s+t)/2

du

∫

Rd

p̃(s, u, x, y)〈bε(u, z + y)− bε(u, y), gl(u, t, z + y, y)〉dz
∣

∣

∣

≤
∑

β1, β2, β3,∑3
i=1 |βi| = |β| − 1

(|β1|, |β2|, |β3|)!

∫ t−τ

(s+t)/2

du

∫

Rd

|Dβ1
y p̃(s, u, x, z + y)−Dβ1

y p̃(s, u, x, y)||D
β2
y bε(u, z + y)||Dβ3

y gl(u, t, z + y, y)|dz

+

∫ t−τ

(s+t)/2

du

∫

Rd

|Dβ1
y p̃(s, u, x, y)||D

β2
y bε(u, z + y)−Dβ2

y bε(u, y)||D
β3
y gl(u, t, z + y, y)|dz,

where (|β1|, |β2|, |β3|)! =
(
∑3

i=1 |βi|)!∏3
i=1(|βi|!)

stands for the multinomial coefficients with entries (|β|i)i∈[[1,3]]. Recall as

well from (2.9) that we have the following control:

|Dβ2
y bε(u, z + y)−Dβ2

y bε(u, y)| ≤ C
(

(

1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

) |z|

(t− s)1/2
I|z|>(t−s)1/2

+
(

(1 + ε−|β|
Iy∈V2ε(I))|z|I|z|≤ε +

(

1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

)

(
|z|

ε
)ηI|z|>ε

)

I|z|≤(t−s)1/2

)

≤
(

(

1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

) |z|

(t− s)1/2
I|z|>(t−s)1/2

+
(

(1 + ε−|β|+1
Iy∈V2ε(I))I|z|≤ε +

(

1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

)

I|z|>ε

)

(
|z|

ε
)ηI|z|≤(t−s)1/2

)

.

Thus,

|Dβ,τ
21 (s, t, x, y)| ≤ C

∑

β1, β2, β3,∑3
i=1 |βi| = |β| − 1

(|β1|, |β2|, |β3|)!

∫ t−τ

(s+t)/2

du

∫

Rd

{ |z|

(u− s)(|β1|+1)/2
pc(u− s, x− y + λz)I|z|≤(t−s)1/2

+
|z|

(t− s)1/2
(pc(u− s, y + z − x) + pc(u − s, y − x))I|z|>(t−s)1/2

}

(1 + ε−|β|+1
Iy+z∈Vε(I))

1

t− u
pc(t− u, z)dz

+

∫ t−τ

(s+t)/2

du

∫

Rd

1

(t− s)|β1|/2
pc(t− s, y − x)

{

(1 + ε−|β|+1(Iy+z∈Vε(I) + Iy+z∈Vε(I)))
|z|

(t− s)1/2
I|z|>(t−s)1/2

+{(1 + ε−|β|+1
Iy∈V2ε(I))I|z|≤ε + (1 + ε−|β|+1(Iy∈Vε(I) + Iy+z∈Vε(I)))I|z|>ε}I|z|≤(t−s)1/2(

|z|

ε
)η
}

1

t− u
pc(t− u, z)|dz ≤

C|β|

(t− s)|β|
pc(t− s, y − x)(1 + ε−|β|+1(

ε−η

η
+
ε1/q

α(q)
)),
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recalling that the contribution in ε1/q

α(q) comes from the terms involving
Iy+z∈Vε(I)

(t−u)1/2
that can be handled using

Hölder inequalities similarly to (4.28). This gives the stated control.

4.2. Proof of Proposition 5

Write similarly to the proof of Theorem 2.1 in [KM02]:

(pε − pdε)(ti, tj , x, y) = (pε ⊗Hε − pε ⊗h Hε)(ti, tj , x, y) + (pε − pdε)⊗h Hε(ti, tj , x, y)

=
∑

r≥0

(pε ⊗Hε − pε ⊗h Hε)⊗h H
(r)
ε (ti, tj , x, y), (4.33)

where we apply iteratively the first equality to get the second one. From (4.4), that holds for γ = 1 under
(APS), the key point is thus to control pε ⊗Hε − pε ⊗h Hε. Write:

(pε ⊗Hε − pε ⊗h Hε)(ti, tj, x, y)

=

j−i−1
∑

k=0

∫ ti+(k+1)h

ti+kh

du

∫

Rd

dz{pε(ti, u, x, z)Hε(u, tj , z, y)− pε(ti, ti+k, x, z)Hε(ti+k, tj , z, y)}

=

j−i−1
∑

k=0

{

∫ ti+(k+1)h

ti+kh

du

∫

Rd

dz{[pε(ti, u, x, z)− pε(ti, ti+k, x, z)]Hε(u, tj , z, y)}

+

∫ ti+(k+1)h

ti+kh

du

∫

Rd

dz{pε(ti, ti+k, x, z)[Hε(u, tj , z, y)−Hε(ti+k, tj , z, y)]}
}

=: (Dd,1
ε +Dd,2

ε )(ti, tj , x, y).(4.34)

For the term Dd,1
ε we first write:

pε(ti, u, x, z)− pε(ti, ti+k, x, z) = (u − ti+k)

∫ 1

0

(

∂vpε(ti, v, x, z)
)

v=ti+k+λ(u−ti+k)
dλ

= (u− ti+k)

∫ 1

0

(

Lε,∗v pε(ti, v, x, z)
)

v=ti+k+λ(u−ti+k)
dλ.

Under (AH), reproducing the integration by parts strategy that led to (3.18), we then derive:

|Dd,1
ε |(ti, tj, x, y) ≤ C

hε−2+γ

(tj − ti)1−γ/2
pc(tj − ti, y − x). (4.35)

Similarly, under (APS), from the computations described in Section 3.4, we derive in the general case that for
all q > d, η ∈ (0, α(q)):

|Dd,1
ε |(ti, tj , x, y) ≤ Cη,q

hε−1−η

(tj − ti)1−η/2
pc(tj − ti, y − x). (4.36)

On the other hand introduce:

(D̄d,21
ε + D̄d,22

ε )(ti, ti+k, u, tj, x, y) :=

C

∫

Rd

pc(ti+k − ti, z − x)|aε(u, z)− aε(u, y)− (aε(ti+k, z)− aε(ti+k, y))|
1

tj − ti+k
pc(tj − ti+k, y − z)dz

+|

∫

Rd

pε(ti, ti+k, x, z)(aε(u, z)− aε(u, y))[D
2
z p̃ε(u, tj, z, y)−D2

z p̃ε(ti+k, tj , z, y)]|,
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that correspond to the most singular contributions in Dd,2
ε as far as the time singularity is concerned. For D̄d,22

ε

we can again perform Taylor expansion in time, use the Kolmogorov equations and integrate by parts as above
to derive under (AH):

j−i−1
∑

k=0

∫ ti+(k+1)h

ti+kh

du|D̄d,22
ε |(ti, ti+k, u, tj , x, y) ≤ C

hε−2+γ

(tj − ti)1−γ/2
pc(tj − ti, y − x). (4.37)

On the other hand, using the γ/2-Hölder continuity in time of a we get:

|D̄d,21
ε (ti, ti+k, u, tj, x, y)|

≤ C

∫

Rd

pc(ti+k − ti, z − x)|u − ti+k|
γ/2 1

tj − ti+k
pc(tj − ti+k, y − z)dz

≤ Ch(γ−η)/2pc(tj − ti, y − x)(tj − ti+k)
−1+η/2,

for η ∈ (0, γ). Plugging now the above control, (4.37), (4.35) in (4.34) we derive the result under (AH) from
(4.4) and (4.33).

Now under (APS), the previous strategy yields:

j−i−1
∑

k=0

∫ ti+(k+1)h

ti+kh

du|D̄d,22
ε |(ti, ti+k, u, tj, x, y) ≤ Cη,q

hε−1−η

(tj − ti)1−η/2
pc(tj − ti, y − x). (4.38)

Also, the smoothness in time (Lipschitz continuity) of the diffusion coefficients gives for η ∈ (0, 1],

|D̄d,21
ε (ti, ti+k, u, tj , x, y)| ≤ Ch1−η/2pc(tj − ti, y − x)(tj − ti+k)

−1+η/2,

for η ∈ (0, 1]. Again, the results under (APS) follows from (4.4) and (4.33) plugging the above control, (4.38),
(4.36) in (4.34). In the particular case σ(t, x) = σ, the bound of the proposition is derived similarly, using again
Proposition 4, equation (3.13), since in that case at most one integration by part is needed.
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