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Abstract

The Carson and Fry (1937) introduced the con-
cept of variable frequency as a generalization of
the constant frequency. The instantaneous fre-
quency (IF) is the time derivative of the instanta-
neous phase and it is well-defined only when this
derivative is positive. If this derivative is nega-
tive, the IF creates problem because it does not
provide any physical significance. This study pro-
poses a mathematical solution and eliminate this
problem by redefining the IF such that it is valid
for all monocomponent and multicomponent sig-
nals which can be nonlinear and nonstationary in
nature. This is achieved by using the property
of the multivalued inverse tangent function which
provides basis to ensure that instantaneous phase
is an increasing function. The efforts and under-
standing of all the methods based on the IF would
improve significantly by using this proposed defi-
nition of the IF. We also demonstrate that the de-
composition of a signal, using zero-phase filtering
based on the well established Fourier and filter the-
ory, into a set of desired frequency bands with pro-
posed IF produces accurate time-frequency-energy
(TFE) distribution that reveals true nature of sig-
nal. Simulation results demonstrate the efficacy
of the proposed IF that makes zero-phase filter
based decomposition most powerful, for the TFE
analysis of a signal, as compared to other existing
methods in the literature.
Keywords: Analytic signal; Hilbert transform;

an increasing (or a nondecreasing) function; In-
stantaneous frequency; Linearly independent non-
orthogonal yet energy preserving (LINOEP) vec-
tors, zero-phase filtering.

1 INTRODUCTION

The time-domain representation and the
frequency-domain representation are two classical
representations of a signal. In both domains, the
time (t) and frequency (f) variables are mutually
exclusive [2]. The Time-Frequency Distributions

∗Author’s E-mail address: spushp@gmail.com (P.
Singh); pushpendrasingh@iitkalumni.org

(TFD) representation on the other hand, provides
localized signal information in time and frequency
domain. The TFD provides insight into the
complex structure of a signal consisting of several
components. There exist many types of time-
frequency analysis methods such as short-time
Fourier transform (STFT), Gabor transform,
wavelet transforms, Wigner-Ville distribution.

The Carson and Fry [25] introduced the con-
cept of variable frequency, required to the theory
of frequency modulation (FM), as a generalization
of the definition of constant frequency. Moreover,
the nonstationary nature of the signals and non-
linear systems require the idea of instantaneous
frequency (IF). The IF is the basis of the TFD or
time-frequency-energy (TFE) representation and
analysis of a signal. The IF is a practically im-
portant parameter of a signal which can reveal the
underlying process and provides explanations for
physical phenomenon in many applications such
as vibration, acoustic, speech signal analysis [18],
meteorological and atmospheric applications [1],
seismic [18], radar, sonar, solar physics, structural
engineering, communications, health monitoring,
biomedical and medical applications [20], cosmo-
logical gravity wave and financial market data
analysis.

The IF is the time derivative of the instanta-
neous phase (IP) and it is well-defined only when
this derivative is positive. If this derivative is
negative, it creates problem because it does not
provide any physical significance. In order to
avoid this problem, recently many nonlinear and
nonstationary signal representation, decomposi-
tion and analysis methods, e.g. empirical mode
decomposition (EMD) algorithms [1,3–8,14], syn-
chrosqueezed wavelet transforms (SSWT) [9], vari-
ational mode decomposition (VMD) [10], eigen-
value decomposition (EVD) [11], empirical wavelet
transform (EWT) [12], sparse time-frequency rep-
resentation [15], time-varying vibration decom-
position [16], resonance-based signal decompo-
sition [17] and Fourier decomposition methods
(FDM) [13, 18, 19, 21, 22, 24] based on the Fourier
theory, are proposed. The Fourier theory is the
only tool for spectrum analysis of a signal and the
FDM has established that it is a superior tool for
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nonlinear and nonstationary time series analysis.
The main objective of all these methods is to ob-
tain the signal representation such that the IF of
a signal understudy is always positive.

Unlike these decomposition methods, the IF
proposed in this study does not necessitate to de-
compose a signal into a set of narrow band com-
ponents, which satisfy certain properties, to gen-
erate the TFE distribution of a signal. That is,
without any decomposition the TFE distribution
of a signal can be obtained. It also provide free-
dom and potential to decompose a signal into a set
of desired (preferably orthogonal or LINOEP [5])
frequency bands by a zero-phase filtering approach
to obtain TFE distribution of a signal. All these
features are obtained by redefining the IF when
it is negative and thus defining the IF for both
monocomponent and multicomponent signals. In
order to redefine the IF, we use the fact that in-
verse tangent is a multivalued (i.e. one-to-many
mapping) function. So defined IF of a signal is
always positive and valid for any signal.

The main contributions as well as some impor-
tant observations of this study are as follows:

1. We use conventional definition of the IF when
it is positive, if it is negative then redefine the
IF to make it positive. Thus, the proposed
IF is always positive and valid for all mono-
component as well as multicomponent signals,
which can be nonstationary and nonlinear in
nature.

2. Since many decades, there has been a gen-
eral understanding in the literature, e.g. [1–
4, 11, 30, 31, 34], that the Fourier theory (due
to linearity, periodicity and stationarity) is
not suitable for nonstationary signal analysis.
This proposed IF provides an elegant way to
use the Fourier and filter theory based zero-
phase filtering for the decomposition of a sig-
nal into a set of suitable bands with desired
cutoff frequencies. In order to validate this,
in the study, we have used only the Fourier
and finite impulse response (FIR) filter the-
ory based decomposition (except when com-
paring with EMD, FDM, wavelet transform
and conventional non zero-phase FIR filter-
ing) to obtain TFE analysis of a signal.

3. We demonstrate that the zero-phase discrete
Fourier transform (DFT) filter-bank based de-
composition of a signal produces orthogonal
components, however it is more natural to
obtain LINOEP components with zero-phase
FIR filter based decomposition. The both set
of orthogonal and LINOEP vectors preserve
the energy in decomposition, and present sim-
ilar TFE distribution of a signal.

4. The proposed method, using the Hilbert spec-

trum, produces average frequencies in the
TFE distribution with good time resolution
when envelope of signal is smooth. However,
if envelope of a signal is fluctuating randomly
and rapidly, e.g. the Gaussian white noise and
Earthquake time series, the TFE plot presents
good time and frequency resolution.

5. We demonstrate that the different decomposi-
tion methods are producing the different TFE
distributions of a signal. Using the proposed
method, when a signal is decomposed into
more number of orthogonal or LINOEP nar-
row bands, true frequencies present in the
signal are revealed, frequency resolution also
increases while the time resolution reduces
marginally.

Thus, this study presents a new paradigm for non-
linear and nonstationary data analysis. This paper
is organized as follows: The proposed methodology
is presented in Section 2. Simulation results and
discussion are presented in Section 3. Section 4
presents conclusion of the work.

2 METHODS

The concept of variable frequency with applica-
tion to the theory of frequency modulation (FM)
is proposed in [25], and it is postulated that the
notion of IF is a generalization of the definition of
constant frequency. A definition of the IF by an-
alyzing an expression for simple harmonic motion
(SHM) is considered in [26] as

xSHM(t) = a cos
[ ∫ t

0

2πf(t) dt+ θ
]

= a cos(ψ(t)),

(1)
where the argument of the cosine function is the
phase ψ(t) = [

∫ t
0

2πf(t) dt + θ]. This leads to the
definition of instantaneous frequency [26]

f(t) =
1

2π

dψ(t)

dt
. (2)

The concept of instantaneous frequency was en-
hanced in [27] where a method for generating a
unique complex signal z(t) from a real signal x(t)
and its Hilbert transform x̂(t) was proposed. This
method obtains

z(t) = x(t) + jx̂(t) = a(t)ejφ(t), (3)

where

a(t) = [x2(t) + x̂2(t)]1/2 ≥ 0,

φ(t) = tan−1[x̂(t)/x(t)]

}
(4)
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and z(t) is the Gabor’s complex signal (well-known
as the analytic signal) and x̂(t) is the Hilbert
Transform (HT) of x(t), defined as

x̂(t) = p.v.

∫ ∞
−∞

x(τ)

π(t− τ)
dτ = p.v.

[
x(t) ∗ 1

π(t)

]
,

(5)
where p.v. denotes the Cauchy principal value of
the integral [28] and ∗ denotes convolution oper-
ation. The work done in [25] and [27] was uni-
fied in [29] to define the IF of a signal x(t) =
a(t) cos(φ(t)) as

ω(t) = 2πf(t) =
d

dt
(arg[z(t)]) , (6)

where z(t) is the analytic signal given by (3) and
arg[z(t)] = φ(t) as defined in (4). The IF, as de-
fined in (6), provides physical meaning only when
it is positive and it becomes meaningless when it is
negative [1,3–5,7,9–11,13,18,30,31]. This is where
we improve and provide the solution to make the
IF positive for all time t. From (4) and (6), one
can obtain the TFE distribution by 3-D plot of
{t, f(t), a2(t)}. However, it is to be noted that
the frequencies, of signal x(t) = a(t) cos(φ(t)), ob-
tained by the Fourier transform and Hilbert spec-
trum (6) are same only if a(t) is a constant, oth-
erwise Hilbert spectrum gives frequencies of signal
cos(φ(t)) and not of signal x(t).

Before evaluating the time derivative of phase
in (6), phase unwrapping is necessary to ensure
that all appropriate multiples of 2π have been in-
cluded in phase φ(t). Phase unwrap operation
corrects the radian phase angles by adding multi-
ples of ±2π when absolute jumps between consec-
utive elements of a phase vector are greater than
or equal to the default jump tolerance of π radi-
ans [32]. This is being done for phase delay and
IF determination by all the methods available in
literature.

As is well-known that the tangent is a surjective
(many-to-one mapping) function. The domain,
range and period of tan(x) are {x|x 6= π

2
+nπ,∀n ∈

Z}, all real numbers R = (−∞,∞) and π, respec-
tively. The inverse tangent is the multivalued func-
tion. The domain of tan−1(x) is all real numbers,
R, and range is (−π

2
, π

2
). If z = x + jy, then the

range of tan−1(y/x) is (−π, π], sign of x and y is
used to determine the specific quadrant.

In order to obtain the IF positive for all the
time, we consider the discrete signal processing
which is the only practical way to process data
by a processor. The discrete time version of the

equations (3), (4), (5) and (6) are [31]

z[n] = x[n] + jx̂[n] = a[n]ejφ[n], (7a)

a[n] =
[
x2[n] + x̂2[n]

]1/2 ≥ 0, (7b)

φ[n] = tan−1 (x̂[n]/x[n]) , (7c)

x̂[n] = x[n] ∗
(

1− cos(πn)

πn

)
, (7d)

and ω[n] = φd[n], (7e)

respectively, where the differentiation in discrete-
time can be approximated by [31] forward finite
difference (FFD), φd[n] =

(
φ[n + 1] − φ[n]

)
, or

backward finite difference (BFD), φd[n] =
(
φ[n]−

φ[n−1]
)

or central finite difference (CFD), φd[n] =(
φ[n + 1] − φ[n − 1]

)
/2. It is to be noted that

the phase in (7c) is computed by the function,
atan2(x̂[n], x[n]), which produces the result in the
range (−π, π] and also avoids the problems of di-
vision by zero.

By considering the phase unwrapping fact and
multivalued nature of the inverse tangent function,
we redefine the IF ω[n], defined in (7e) as a discrete
version of (6), as

ω[n] =

{
φd[n], if φd[n] ≥ 0,

φd[n] + π, otherwise,
(8)

which makes the IF positive for all time n. This
small and trivial but extremely important fact has
been illusive for many decades. This IF would not
only significantly improve the computational ef-
forts (e.g. sifting process in EMD algorithms) and
understanding of any method which uses the IF,
but also provides an elegant solution in mathe-
matical terms to use the Fourier and filter theory
based zero-phase filtering for nonstationary sig-
nal decomposition and TFE analysis. The math-
ematical validity of this solution can easily be
seen by the fact that φ[n] = tan−1 (x̂[n]/x[n]) and
φ[n] + knπ = tan−1 (x̂[n]/x[n]) ,∀k, n ∈ Z (due to
periodicity of tangent function, i.e. tan(φ[n]) =
tan(φ[n] + knπ)). In solution (8), we have taken
k = 0 if φd[n] ≥ 0, otherwise k = 1, thus we can
write

ω[n] = φd[n] + kπ. (9)

The equation (9) is also valid when φ[n] ∈ (−π, π]
is a wrapped phase and in this case we select the
value of k ∈ Z such that ω[n] ∈ [0, π]. Thus, the
proposed IF ω[n] in (8) or (9) is estimated by us-
ing the multivalued property of the inverse tangent
function which provides basis to ensure that the
instantaneous phase function φ[n] defined in (7c)
is an increasing (or a nondecreasing) function, i.e.
φ[n+ 1] ≥ φ[n],∀n.

A dual to IF (8), the group delay (GD) is de-
fined as the negative frequency derivative of the
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phase in the Fourier domain. It measures the rela-
tive delay of different frequencies from the input to
the output in a system. Thus, similar to (8), we
can modify the GD definition to make it always
positive and valid for all signals. The proposed
definition of IF can easily be extended for multidi-
mensional signals such as spatial data (image) and
space-time data (3D wave equation).

A MATLAB implementation code of the pro-
posed method is outlined in Algorithm 2. In or-
der to avoid unnecessary variations in the IF, be-
fore evaluating the IF, the mean and dominating
low frequency component like trend present in the
signal can be removed. These can be easily re-
moved by any zero-phase low pass filtering oper-
ation [18, 22]. Moreover, depending upon the re-
quirements, signal can be decomposed into a set
of desired frequency bands.

In the examples presented in the following sec-
tion, to decompose a signal x[n] into a set of de-
sired frequency bands, we have used the signal
model

x[n] = c0 +
M∑
i=1

yi[n] = c0 +
M∑
i=1

ci[n], (10)

where c0 is the mean-value of signal x[n], {yi[n]}Mi=1

and {ci[n]}Mi=1 are the M orthogonal and LINOEP
components, respectively. A simple block dia-
gram of the zero-phase filter-bank (i.e. Hi[k] ∈
R, ∀i, k) to decompose a signal x[n] into a set
{y1[n], y2[n], · · · , yM [n]} is shown in Figure 1. The
frequency response of i-th band of the DFT based
zero-phase filter-bank can be defined by setting
Hi[k] = 1 at desired frequency band and zero oth-
erwise, i.e.

Hi[k] = 1, (Ki−1 + 1) ≤ k ≤ Ki &

(N −Ki) ≤ k ≤ (N −Ki−1 − 1),

= 0, otherwise

 (11)

where i = 1, 2, · · · ,M ; K0 = 0 and KM = N/2 (or
KM = (N − 1)/2 if N is odd). Using the inverse
DFT (IDFT), component yi[n] can be computed
as

yi[n] =
N−1∑
k=0

[
Hi[k]X[k] exp(j2πkn/N)

]
, (12)

where X[k] = 1
N

N−1∑
n=0

x[n] exp(−j2πkn/N) is the

DFT of signal x[n] of length N samples.
In this work, we use non-causal finite impulse re-

sponse (FIR) and infinite impulse response (IIR)
filter to decompose a signal into a set of LINOEP
vectors by the filter mode decomposition (FMD)
algorithm proposed in [13, 18, 22], as summarized

x[n] DFT ...

H1[k]

H2[k]

HM [k]

IDFT

IDFT

...

IDFT

y1[n]

y2[n]

...

yM [n]

Figure 1: Block diagram of the zero-phase filter-bank to decompose
a signal x[n] into a set {y1[n], y2[n], · · · , yM [n]} of orthogonal desired
frequency bands.

Algorithm 1: A MATLAB implementation
code of the proposed method to estimate am-
plitude and frequency of data x. Here, Fs is
the sampling frequency.

z=hilbert(x);amp=abs(z);phi=unwrap(angle(z));
diffPhase=diff(phi);index=find(diffPhase<0);
diffPhase(index)=diffPhase(index)+pi;
frequncy=[diffPhase;diffPhase(end)]*(Fs/(2*pi));

in Algorithm 2. In this algorithm, for each it-
eration, ZPHPFi (ZPLPFi) is zero-phase high
(low) pass filter (e.g. filtfilt function of MAT-
LAB) with desired cutoff frequency fci, and value
of αi is obtained such that ci ⊥ c̃i+1. It is to be
noted that, in general, filter is not ideal (non brick
wall frequency response) and therefore ci 6⊥ cl for
i, l = 1, 2, . . . ,M − 1 and only cM−1 ⊥ cM . We
use PART A or PART B of algorithm to obtain
{c1, · · · , cM} in order of highest to lowest or low-
est to highest frequency components. The FMD
with proposed IF can easily be adapted for multi-
channel and multidimensional data decomposition
into a set of AM-FM components.

We advocate to use zero-phase filtering because
it preserves salient features such as minima and
maxima in the filtered waveform exactly at the
position where those features occur in the unfil-
tered waveform. It is pertinent to note that the
conventional (i.e. non zero-phase) filtering shifts
these features in the filtered waveform and there-
fore cannot be used to obtain a meaningful TFE
distribution, which is clearly demonstrated in sim-
ulation results. The zero-phase filtering of a signal
can be obtained by the DFT, non-causal FIR and
IIR filters, or via other decomposition methods like
FDM, VMD, EVD, EWT and EMD algorithms.

3 SIMULATION RESULTS
AND DISCUSSION

In this section, we consider number of examples
that are mostly discussed in literature to validate
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Algorithm 2: An FMD algorithm to obtain
LINOEP vectors ci from decomposition of a
signal x such that x = c0 +

∑M
i=1 ci and

ci ⊥
∑M

l=i+1 cl. Use PART A (PART B) to ob-
tain {c1, · · · , cM} in order of highest to lowest
(lowest to highest) frequency components.

%PART A
x1 = x;
for i = 1 to M − 1 do

yi = ZPHPFi(xi, fci);
ri = xi − yi;

αi = 〈yi,ri〉
〈ri,ri〉 ;

ci = yi − αiri;
c̃i+1 = (1 + αi)ri;
xi+1 = c̃i+1;

cM = c̃M ;
%PART B
x1 = x;
for i = 1 to M − 1 do

yi = ZPLPFi(xi, fci);
ri = xi − yi;

αi = 〈ri,yi〉
〈yi,yi〉 ;

ci = (1 + αi)yi;
c̃i+1 = ri − αiyi;
xi+1 = c̃i+1;

cM = c̃M ;

the efficacy of method understudy. A complete
MATLAB code of the proposed method is avail-
able on request and would be made publicly avail-
able soon.
Example 1: In this example, we consider three

nonstationary signals (a) linear chirp (unit ampli-
tude and [1000–2000] Hz), (b) frequency modu-
lated (FM) sinusoid (unit amplitude, carrier fc =
780 Hz and frequency deviation 200 Hz) and (c)
mixture of a linear chirp and frequency modulated
(FM) signals, i.e sum of signals of cases (a) and
(b). Figure 2 (top to bottom) shows the time-
frequency-energy (TFE) estimates of these three
nonstationary signals [(a), (b) and (c)] obtained
by using the proposed IF without decomposition.
We observe that the frequencies in case (c), Fig-
ure 2 (bottom one), are average frequencies of the
first two cases (a) and (b).

Figure 3 shows the IF estimates of nonstation-
ary signal, which is sum of linear chirp and FM
signals i.e. case (c), without decomposition: (1)
top figure with conventional IF (7e) where notice
the both positive and negative estimates of fre-
quencies, (2) bottom figure with proposed IF (8)
that produces only positive and correct values of
frequencies. This, clearly, demonstrate that the
proposed definition of the IF is able to obtain cor-
rect values of frequencies at all times.
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Figure 2: The TFE analysis of nonstationary signals by this proposed
method without decomposition: (top figure) linear chirp, (middle fig-
ure) frequency modulated signal and (bottom figure) sum of linear
chirp and FM signals.

Figure 4 shows the TFE estimates of nonstation-
ary signal, case (c), by this proposed method with
decomposition: (top figure) into 2 bands of [0–
1000, 1000–4000] Hz and (bottom figure) into 100
bands of equal frequencies. The proposed method
is, clearly, able to track TFE distribution present
in all these signals.

Figure 5 shows the TFE estimates of nonsta-
tionary signal, case (c), by this proposed IF: (top
figure) with zero-phase FIR filter based decompo-
sition into 100 bands; and (bottom figure) with
conventional (non zero-phase) FIR filter based de-
composition into 100 bands of equal frequencies,
which is not able to detect and track true frequen-
cies present in the signal.

Example 2: We obtain a nonstationary sig-
nal by adding five unit amplitude linear chirps of
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Figure 3: The instantaneous frequency (IF) estimates of nonstation-
ary signal, which is sum of linear chirp and FM signals, without de-
composition: (top figure) with conventional IF (7e) and (bottom fig-
ure) with proposed IF (8). Notice the both positive and negative
frequencies with conventional IF (top figure); only positive and cor-
rect values of frequencies by the proposed IF (bottom figure).
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Figure 4: The TFE analysis of nonstationary signal, which is sum
of linear chirp and FM signals, by this proposed method with DFT
based decomposition: (top figure) into 2 bands of [0–1000, 1000–4000]
Hz and (bottom figure) into 100 bands of equal frequencies.
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Figure 5: The TFE analysis of nonstationary signal, which is sum of
linear chirp and FM signals, by this proposed method: (top figure)
with zero-phase FIR filter based decomposition into 100 bands and
(bottom figure) with conventional (non zero-phase) FIR filter based
decomposition into 100 bands of equal frequencies.

frequencies [500–1500] Hz, [1000–2000] Hz, [1500–
2500] Hz, [2000–3000] Hz and [2500–3500] Hz. Fig-
ure 6 shows the TFE analysis of this nonstationary
signal, which is sum of five linear chirp signals, by
this proposed IF: (top figure) without decomposi-
tion that presents average frequencies [1500–2500]
Hz, which are average of frequencies present in
five chirp signals; (middle figure) with DFT based
decomposition into 10 bands and (bottom figure)
with DFT based decomposition into 20 bands of
equal frequencies. These two (middle and bottom
one) figures clearly reveal the five chirp signals
present in the signal under analysis.

Figure 7 shows the TFE distribution of a nonsta-
tionary signal (sum of five linear chirp signals) (1)
by this proposed method with zero-phase FIR fil-
ter based decomposition into 10 bands (upper fig-
ure), and with conventional (non zero-phase) FIR
filter based decomposition into 10 bands of equal
frequencies (middle figure); and (2) by the EMD
algorithm (lower figure). Clearly, both the conven-
tional and EMD algorithm not able to detect true
frequencies present in the signal.
Example 3: In Figure 8, we present the TFE

analysis of a nonstationary signal, which is sum of
a unit amplitude linear chirp signal [500-1500] Hz
([0–1] s chirp signal and [1–1.5] s no signal) and
its delayed version ([0–0.5] s no signal and [0.5–
1.5] s same chirp signal), by this proposed method.
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Figure 6: The TFE analysis of a nonstationary signal, which is sum of
five linear chirp signals, by this proposed method: (top figure) without
decomposition, (middle figure) with DFT based decomposition into
10 bands and (bottom figure) with DFT based decomposition into 20
bands of equal frequencies.

The top figure is obtained without decomposition
that has three parts: (1) [0–0.5] s chirp signal fre-
quencies, (2) [0.5–1] s average of overlapped chip
signals frequencies and (3) [1–1.5] s chirp signal
frequencies of delayed version. The bottom figure
is obtained by DFT based decomposition of signal
into 10 bands of equal frequencies, which clearly
reveals that the signal understudy is sum of a chirp
signal and its delayed version.

Figure 9 shows the TFE distribution of a non-
stationary signal (sum of a linear chirp signal and
its delayed version) by this proposed IF: (top fig-
ure) with zero-phase FIR filter based decomposi-
tion into 10 bands; and (bottom figure) with con-
ventional FIR filter based decomposition into 10
bands of equal frequencies, which clearly not able
to reveal true frequencies present in the signal.
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Figure 7: The TFE analysis of a nonstationary signal, which is sum of
five linear chirp signals (1) by this proposed method with zero-phase
FIR filter based decomposition into 10 bands (upper figure), and with
conventional (non zero-phase) FIR filter based decomposition into 10
bands of equal frequencies (middle figure); (2) by the EMD algorithm
(lower figure).

Discussion: From Examples (1, 2 and 3), it is
clear that the zero-phase DFT or zero-phase FIR
filter based decomposition is able to track TFE
distribution present in a signal. However, conven-
tional filtering cannot be used to obtain meaning-
ful TFE distribution of a signal, which is clearly
demonstrated in bottom figures of Figure 5, Fig-
ure 7 and Figure 9.

Example 4: The unit sample sequence
(delta function) is defined as x[n] = δ[n −
n0] = 1 at n = n0 and zero other-
wise. Using the discrete-time Fourier trans-
form (DTFT) X(ω) =

∑∞
n=−∞ x[n] exp(−jωn),

one can obtain the DTFT of unit sample se-
quence as X(ω) = exp(−jωn0) ⇒ |X(ω)| =
1. Using the inverse DTFT (IDTFT), x[n] =
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Figure 8: The TFE analysis of a nonstationary signal, which is sum of
a linear chirp signal and its delayed version, by this proposed method:
(top figure) without decomposition, and (bottom figure) with DFT
based decomposition into 10 bands of equal frequencies.
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Figure 9: The TFE analysis of a nonstationary signal, which is sum of
a linear chirp signal and its delayed version, by this proposed method:
(top figure) with zero-phase FIR filter based decomposition into 10
bands, and (bottom figure) with conventional FIR filter based decom-
position into 10 bands of equal frequencies.

1
2π

∫ π
−πX(ω) exp(jωn) dω, one can represent the

unit sample sequence as x[n] = 1
2π

∫ π
−π exp(jω(n−

n0)) dω. This representation demonstrate that
it is a superposition of equal amplitude sinu-
soidal functions of all frequencies [0–π). The
Nyquist frequency (Fs/2) is the highest fre-
quency that can be present at a given sam-
pling rate, Fs, in a discrete-time signal. The
analytic representation of this signal is given

by [18] z[n] = sin(π(n−n0))+j[1−cos(π(n−n0))]
π(n−n0)

=

a[n] exp(jφ[n]), where a[n] =
∣∣∣ sin(π

2
(n−n0))

π
2

(n−n0))

∣∣∣, and

φ[n] = π
2
(n−n0). Thus, frequency ω[n] = φ[n+1]−

φ[n] = π
2
, which corresponds to half of the Nyquist

frequency, i.e. Fs/4. Figure 10 shows the TFE es-
timates of this signal (with n0 = 1999, Fs = 1000
Hz and length N = 4000) using the EMD (top
figure) and proposed method without decomposi-
tion (bottom figure). We again observe that the
frequency present in this TFE plot is a average
frequency (because delta function contains equal
amplitude sinusoids of all frequencies 0 to Fs/2).
This example also demonstrate that the TFE plot,
obtained by the Hilbert spectrum, is not limited
by uncertainty principle and signal can be highly
concentrated in time and frequency plane. How-
ever, it is to be noted that this TFE plot is not
providing the true frequencies of delta function.
Discussion: In order to explain a average fre-

quency effect in Figure 2, Figure 6, Figure 8
and Figure 10, let us consider a sum of sinusoids
of equal amplitudes x(t) =

∑N
k=1A cos(ω0kt).

Its analytic representation is given by z(t) =∑N
k=1A exp(jω0kt) =

A sin(ω0
N
2
t)

sin(ω0t/2)
exp(jω0

N+1
2
t) =

a(t) exp(jφ(t)) which implies phase φ(t) =
(ω0

N+1
2
t) and hence IF f(t) = 1

2π
ω0

N+1
2

. This is
what we observe in these figures (especially Fig-
ure 10 bottom one). Here, it is to be noted that if
amplitudes of constituent sinusoids are not equal,
then resultant IF would not be a constant (aver-
age) frequency but it would be a variable one.
Example 5: Figure 11 shows the TFE analysis

of a white Gaussian noise (with zero mean, unit
variance, 10240 samples and sampling frequency
Fs = 100 Hz) obtained from the EMD (top one)
and this proposed method without decomposition
(bottom one), which shows that the energy is ran-
domly distributed across all the frequency range.

Example 6: An Earthquake time series signal
is a nonlinear and nonstationary data. The Elcen-
tro Earthquake data (sampled at Fs = 50Hz) has
been taken from [33] and is shown in Figure 12
(top one). The critical frequency range that mat-
ter in the structural design is less than 10Hz, and
the Fourier based power spectral density (PSD),
Figure 12 (bottom one), show that almost all the
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Figure 10: The TFE analysis of unit sample sequence δ[n−n0] (with,
n0 = 1999, sampling frequency Fs = 1000 Hz, length N = 4000)
by ensemble EMD (EEMD) (top figure) and this proposed method
without decomposition (bottom figure).
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Figure 11: The TFE analysis of the Gaussian white noise with zero
mean and unit variance (with sampling frequency Fs = 1000 Hz,
lengthN = 10240) by the EMD (top figure) and this proposed method
without decomposition (bottom figure).

energy in this data is within 10Hz. The TFE dis-
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Figure 12: The Elcentro Earthquake May 18, 1940 North-South Com-
ponent data (top figure), Fourier based power spectral density (PSD)
(bottom figure).

tributions by the (a) continuous wavelet transform
(CWT) (b) EMD and (c) FDM methods are shown
in Figure 13. The TFE distributions by the pro-
posed method (a) without decomposition (b) with
DFT based decomposition into four bands [0–5,
5–10, 10–20, 20–25] Hz and (c) with DFT based
decomposition into 25 bands of 1 Hz are shown
in Figure 14. These TFE distribution indicate
that the maximum energy concentration is around
1.7Hz and 2 second. The TFE plot provide details
of how the different waves arrive from the epical
center to the recording station, e.g. the compres-
sion waves of small amplitude but higher frequency
range of 10 to 20Hz, the shear and surface waves
of strongest amplitude and lower frequency range
of below 5Hz which does most of the damage, and
other body shear waves which are present over the
full duration of the data span.

Discussion: It is clear from the above examples
that different methods are producing the different
TFE distributions of a signal. So, before conclud-
ing anything one needs to be careful while doing
the analysis. For example, frequencies present in
the Fourier spectrum is telling that these frequen-
cies are present all the time in a signal under anal-
ysis, which may not be true. Consider another
example, Figure 10 (bottom), of unit sample se-
quence which is telling that this signal is concen-
trated in time (which is true) and also concen-
trated in frequency (which is not true). If this
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Figure 13: The TFE plot of the Elcentro Earthquake data (top to
bottom) using the: (a) CWT (b) EMD and (c) FDM.

were true, then we could transmit delta function
in almost zero time with zero bandwidth through
any system or channel. Thus, we conclude that
the TFE representation depends on the number
of bands in which data has been divided. In or-
der to further illustrate this point we divided the
same data, which is used for Figure 10, by DFT
based zero-phase filtering into five and ten bands
to obtain top and bottom figures in Figure 15, re-
spectively, which reveal many those frequencies of
data which are not present in Figure 10.

From the Figures (2, 6, 8, 10 and 15), it is
clear that the proposed method using the Hilbert
spectrum produces average frequencies and good
time resolution when envelope of signal is smooth.
However, if envelope of a signal is fluctuating ran-
domly or rapidly, e.g. consider the case of Gaus-
sian white noise and Earthquake time series, the
TFE plot has good time and frequency resolution
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Figure 14: The TFE plot of the Elcentro Earthquake data (top to
bottom) using the: (a) proposed method without decomposition and
(b) proposed method with DFT based decomposition into four bands
[0–5, 5–10, 10–20, 20–25] Hz and (c) DFT based decomposition into
25 bands of 1 Hz each.

as shown in Figure 11 and Figure 14 (top one).
It is also clear, form Figures (4, 6, 8, 10 and 15),
that as the signal is decomposed into more num-
ber of narrow bands, true frequencies present in
the signal under analysis are revealed, frequency
resolution is also increasing while the time resolu-
tion is reducing marginally.

4 CONCLUSION

The instantaneous frequency (IF) is an important
parameter for the analysis of nonstationary sig-
nals and nonlinear systems. It is the basis of the
time-frequency-energy (TFE) analysis of a signal.
The IF is the time derivative of the instantaneous
phase and, originally, it is well-defined only when
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Figure 15: The TFE analysis of unit sample sequence δ[n−n0] (with,
n0 = 1999, sampling frequency Fs = 1000 Hz, length N = 4000)
by proposed method with DFT based decomposition into five (top
figure) and ten (bottom figure) bands of equal frequencies.

this derivative is positive. That is, the IF is valid
only for monocomponent signals. If time deriva-
tive of instantaneous phase is negative, i.e. the IF
is negative, then it does not provide any physical
significance. This study proposed a mathematical
solution and eliminate this problem by modifying
the present definition of IF. This is achieved by
using the property of the multivalued inverse tan-
gent function that provides base to ensure that the
instantaneous phase is an increasing function.

There are two fundamental and important con-
ceptual innovation of this work. First, the exten-
sion of the conventional definition of IF by re-
defining it such that it is always positive. This
proposed IF is valid for all types of signals such
as monocomponent and multicomponent, narrow-
band and wideband, stationary and nonstationary,
linear and nonlinear signals. The understanding of
the time-frequency-energy representation, by all
the methods which are using the IF, would im-
prove significantly by using this definition. Sec-
ond, we have also demonstrated that the zero-
phase filtering based decomposition of a signal
into a set of desired frequency bands with pro-
posed IF accurately reveals the TFE distribution.
Whereas, conventional (non zero-phase) filtering
based decomposition cannot be used to obtain
correct and meaningful TFE distribution. The
Fourier and filter theory are well established, fully
matured and developed, thus the zero-phase filter-

ing based decomposition of a signal is most power-
ful which presents full control over the number of
bands with desired cutoff frequencies. This kind
of control and features are difficult to achieve or
may not be possible by the decomposition meth-
ods such as empirical mode decomposition (EMD)
algorithms, synchrosqueezed wavelet transforms
(SSWT), variational mode decomposition (VMD),
eigenvalue decomposition (EVD), time-varying vi-
bration decomposition, resonance-based signal de-
composition, EMD based on constrained optimiza-
tion and empirical wavelet transform (EWT) avail-
able in the literature. Simulations and numerical
results demonstrated the superiority, validity and
efficacy of the proposed IF for the TFE analysis
of a signal as compared to other existing methods
available in the literature.
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