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Abstract

The Carson and Fry (1937) introduced the concept of
variable frequency, required to the theory of frequency
modulation (FM), as a generalization of the definition
of constant frequency. Moreover, the nonstationary
nature of the signals and nonlinear systems require the
idea of instantaneous frequency (IF). It is also the basis
of the time-frequency-energy (TFE) analysis of a sig-
nal. The IF is the time derivative of the instantaneous
phase and it is well-defined only when this derivative
is positive. If this derivative is negative, the IF cre-
ates problem because it does not provide any physical
significance. This study proposes a mathematical solu-
tion and eliminate this problem by redefining the defi-
nition of IF such that it is valid for all monocomponent
and multicomponent signals which can be nonlinear
and nonstationary in nature. This is achieved by using
the property of the multivalued inverse tangent func-
tion. The efforts and understating of all the methods,
which are using the IF, would improve significantly by
using this definition. Simulations and numerical re-
sults demonstrate the efficacy and superiority of the
proposed method, for the TFE analysis of a signal, as
compared to other existing methods in the literature.

INTRODUCTION

The time-domain representation and the frequency-
domain representation are two classical representations
of a signal. In both domains, the time (t) and fre-
quency (f) variables are mutually exclusive [2]. The
Time-Frequency Distributions (TFD) representation
on the other hand, provides localized signal informa-
tion in time and frequency domain. The TFD provides
insight into the complex structure of a signal consist-
ing of several components. There exist many types of
Time-Frequency (TF) analysis methods such as short-
time Fourier transform, Gabor transform, Wavelet
transforms, Wigner-Ville distribution.

The instantaneous frequency (IF) is the basis of the
TFD or time-frequency-energy (TFE) analysis of a sig-
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nal. The IF is a practically important parameter of a
signal which can reveal the underlying process and pro-
vides explanations for physical phenomenon in many
applications such as vibration, acoustic, speech signal
analysis [13], meteorological and atmospheric applica-
tions [1], seismic [13], radar, sonar, solar physics, struc-
tural engineering, communications, health monitoring,
biomedical and medical applications [14], cosmological
gravity wave and financial market data analysis.

The IF is the time derivative of the instantaneous
phase and it is well-defined only when this deriva-
tive is positive. If this derivative is negative, it cre-
ates problem because it does not provide any physical
significance. In order to avoid this problem, recently
many nonlinear and nonstationary signal representa-
tion, decomposition and analysis methods, e.g. empir-
ical mode decomposition (EMD) algorithms [1, 3–8],
synchrosqueezed wavelet transforms (SSWT) [9], vari-
ational mode decomposition (VMD) [10], eigenvalue
decomposition (EVD) [11] and Fourier decomposition
methods (FDM) [12,13,15,16,18] based on the Fourier
theory, are proposed. The Fourier theory is the only
tool for spectrum analysis of a signal and the FDM has
established that it is a superior tool for nonlinear and
nonstationary time series analysis. The main objective
of all these methods is to obtain the signal representa-
tion such that the IF of a signal under study is always
positive.

Unlike these decomposition methods, the method
proposed in this study does not necessitate to decom-
pose the signal into a set of narrow band components,
which satisfy certain properties, to generate the TFE
distribution of any signal. That is, without any decom-
position we can generate TFE distribution of a signal.
It also provide freedom and potential to decompose
the signal into desired (preferably orthogonal) bands
by a (preferably zero-phase) filtering approach to ob-
tain TFE distribution of a signal. All these features
are obtained by redefining the IF when it is negative
and thus defining the IF for both monocomponent and
multicomponent signals. In order to redefine the IF,
we use the fact that inverse tangent is a multivalued
(i.e. one-to-many mapping) function. So defined IF of
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a signal is always positive and valid for any signal.

METHODS

The concept of variable frequency with application to
the theory of frequency modulation (FM) is proposed
in [19], and it is argued that the notion of IF is a
generalization of the definition of constant frequency.
In order to formulate a definition of the IF by analyzing
an expression for simple harmonic motion (SHM) is
considered in [20] as

xSHM(t) = a cos
[ ∫ t

0
2πf(t) dt+ θ

]
= a cos(ψ(t)), (1)

where the argument of the cosine function is the phase
ψ(t) = [

∫ t
0 2πf(t) dt + θ]. This leads to the definition

of instantaneous frequency

f(t) =
1

2π

dψ(t)

dt
. (2)

The concept of instantaneous frequency was enhanced
in [21] where a method for generating a unique com-
plex signal z(t) from a real signal x(t) and its Hilbert
transform x̂(t) was proposed. This method obtains

z(t) = x(t) + jx̂(t) = a(t)ejφ(t), (3)

where
a(t) = [x2(t) + x̂2(t)]1/2 ≥ 0,

φ(t) = tan−1[x̂(t)/x(t)]

}
(4)

and z(t) is the Gabor’s complex signal (well-known as
the analytic signal) and x̂(t) is the Hilbert Transform
(HT) of x(t), defined as

x̂(t) = p.v.

∫ ∞
−∞

x(τ)

π(t− τ)
dτ = p.v.

[
x(t) ∗ 1

π(t)

]
, (5)

where p.v. denotes the Cauchy principal value of the
integral [22] and ∗ denotes convolution operation. The
work done in [19] and [21] was unified in [23] to define
the IF of a signal x(t) = a(t) cos(φ(t)) as

ω(t) = 2πf(t) =
d

dt
(arg[z(t)]) , (6)

where z(t) is the analytic signal given by (3) and
arg[z(t)] = φ(t) as defined in (4). The IF, as de-
fined in (6), provides physical meaning only when it
is positive and it becomes meaningless when it is neg-
ative [1, 3–5, 7, 9–13, 24, 25]. This is where we improve
and provide the solution to make the IF positive for
all time t. From (4) and (6), one can obtain the
TFE distribution by 3-D plot of {t, f(t), a2(t)}. How-
ever, it is to be noted that the frequencies, of signal
x(t) = a(t) cos(φ(t)), obtained by the Fourier trans-
form and Hilbert spectrum (6) are same only if a(t) is
a constant, otherwise Hilbert spectrum gives frequen-
cies of signal cos(φ(t)) and not of signal x(t).

Before evaluating the time derivative of phase in (6),
phase unwrapping is necessary to ensure that all appro-
priate multiples of 2π have been included in phase φ(t).
Phase unwrap operation corrects the radian phase an-
gles by adding multiples of ±2π when absolute jumps
between consecutive elements of a phase vector are
greater than or equal to the default jump tolerance
of π radians [26]. This is being done for phase delay
and IF determination by all the methods available in
literature.

As is well-known that the tangent is a surjective
(many-to-one mapping) function. The domain, range
and period of tan(x) are {x|x 6= π

2 + nπ,∀n ∈ Z}, all
real numbers R = (−∞,∞) and π, respectively. The
inverse tangent is the multivalued function. The do-
main of tan−1(x) is all real numbers, R, and range is
(−π

2 ,
π
2 ). If z = x + jy, then the range of tan−1(y/x)

is (−π, π], sign of x and y is used to determine the
specific quadrant.

In order to obtain the IF positive for all the time, we
consider the discrete signal processing which is the only
practical way to process data by a processor. The dis-
crete time version of the equations (3), (4), (5) and (6)
are

z[n] = x[n] + jx̂[n] = a[n]ejφ[n], (7a)

a[n] =
[
x2[n] + x̂2[n]

]1/2 ≥ 0, (7b)

φ[n] = tan−1 (x̂[n]/x[n]) , (7c)

x̂[n] = x[n] ∗
(

1− cos(πn)

πn

)
, (7d)

and ω[n] =
(
φ[n]− φ[n− 1]

)
, (7e)

respectively.
By considering the phase unwrapping fact and mul-

tivalued nature of the inverse tangent function, we re-
define the IF ω[n], defined in (7e) as a discrete version
of (6), as

ω[n] =

{(
φ[n]− φ[n− 1]

)
if difference is ≥ 0,(

φ[n]− φ[n− 1]
)

+ π otherwise,

(8)
which makes the IF positive for all time n. This
small but extremely important fact has been illusive
for many decades. The efforts and understating of
any method, which uses the IF, would improve sig-
nificantly by using this definition. The mathemati-
cal validity of this solution can easily be seen by the
fact that φ[n] = tan−1 (x̂[n]/x[n]) and φ[n] + knπ =
tan−1 (x̂[n]/x[n]) ,∀k, n ∈ Z (due to periodicity of tan-
gent function, i.e. tan(φ[n]) = tan(φ[n]+knπ)). In so-
lution (8), we have taken k = 0 if

(
φ[n]−φ[n−1]

)
≥ 0,

otherwise k = 1, thus we can write ω[n] =
(
φ[n]−φ[n−

1]
)

+ kπ.
A dual to IF (8), the group delay (GD) is defined

as the negative frequency derivative of the phase in
the Fourier domain. It measures the relative delay of
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different frequencies from the input to the output in a
system. Thus, similar to (8), we can modify the GD
definition to make it always positive and valid for all
signals.

A MATLAB implementation code of the proposed
method is outlined in Algorithm 1. In order to avoid
unnecessary variations in the IF, before evaluating the
IF, the mean and dominating low frequency component
like trend present in the signal can be removed. These
can be easily removed by any zero-phase low pass fil-
tering operation [13]. Moreover, depending upon the
requirements, signal can be decomposed into a set of
desired frequency bands.

RESULTS AND DISCUSSION

In this section, we consider number of examples that
are mostly discussed in literature to validate the effi-
cacy of method under study.

Example 1: Here, we consider three nonstation-
ary signals (a) linear chirp (unit amplitude and [1000–
2000] Hz), (b) frequency modulated (FM) sinusoid
(unit amplitude, carrier fc = 780 Hz and frequency
deviation 200 Hz) and (c) mixture of a linear chirp
and frequency modulated (FM) signals, i.e sum of sig-
nals of cases (a) and (b). Figure 1 (top to bottom)
shows the time-frequency-energy (TFE) estimates of
these three nonstationary signals [(a), (b) and (c)] ob-
tained by using the proposed method without decom-
position. We observe that the frequencies in case (c),
Figure 1 (bottom one), are average frequencies of the
first two cases (a) and (b). Figure 2 shows the IF es-
timates of nonstationary signal, which is sum of linear
chirp and FM signals i.e. case (c), by this proposed
method without decomposition: (top figure) with (7e)
and (bottom figure) with (8). This, clearly, demon-
strate that the proposed modified definition of the IF
is able to obtain correct values of frequencies at all
times. Figure 3 shows the TFE estimates of nonsta-
tionary signal, case (c), by this proposed method with
decomposition: (top figure) into 2 bands of [0–1000,
1000–4000] Hz and (bottom figure) into 100 bands of
equal frequencies. The proposed method is, clearly,
able to track TFE distribution present in all these sig-
nals.

Example 2: We obtain a nonstationary signal by

Algorithm 1: A MATLAB implementation code
of the proposed method to estimate amplitude and
frequency of data x. Here, Fs is the sampling fre-
quency.

z=hilbert(x);ampltd=abs(z);phi=unwrap(angle(z));
diffPhase=diff(phi);index=find(diffPhase<0);
diffPhase(index)=diffPhase(index)+pi;
frequency=[diffPhase;diffPhase(end)]*(Fs/(2*pi));
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Figure 1: The TFE analysis of nonstationary signals by this proposed
method without decomposition: (top) linear chirp, (middle) frequency
modulated signal and (bottom) sum of linear chirp and FM signals.

adding five linear chirps of frequencies [500–1500] Hz,
[1000–2000] Hz, [1500–2500] Hz, [2000–3000] Hz and
[2500–3500] Hz. Figure 4 shows the TFE analysis
of this nonstationary signal, which is sum of five lin-
ear chirp signals, by this proposed method: (top fig-
ure) without decomposition that presents average fre-
quencies [1500–2500] Hz, which are average of fre-
quencies present in five chirp signals; (middle figure)
with decomposition into 10 bands and (bottom figure)
with decomposition into 20 bands of equal frequencies.
These two (middle and bottom one) figures clearly re-
veal the five chirp signals present in the signal under
analysis.

Example 3: In Figure 5, we present the TFE anal-
ysis of a nonstationary signal, which is sum of a lin-
ear chirp signal [500-1500] Hz ([0–1] s chirp signal and
[1–1.5] s no signal) and its delayed version ([0–0.5] s
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Figure 2: The instantaneous frequency (IF) estimate of nonstationary
signal, which is sum of linear chirp and FM signals, by this proposed
method without decomposition: (top) with (7e) and (bottom) with (8).
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Figure 3: The TFE analysis of nonstationary signal, which is sum of
linear chirp and FM signals, by this proposed method with decompo-
sition: (top) into 2 bands of [0–1000, 1000–4000] Hz and (bottom) into
100 bands of equal frequencies.

no signal and [0.5–1.5] s same chirp signal), by this
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Figure 4: The TFE analysis of a nonstationary signal, which is sum of
five linear chirp signals, by this proposed method: (top) without de-
composition, (middle) with decomposition into 10 bands and (bottom)
with decomposition into 20 bands of equal frequencies.

proposed method. The top figure is obtained without
decomposition that has three parts: (1) [0–0.5] s chirp
signal frequencies, (2) [0.5–1] s average of overlapped
chip signals frequencies and (3) [1–1.5] s chirp signal
frequencies of delayed version. The bottom figure is
obtained by decomposition of signal into 10 bands of
equal frequencies, which clearly reveals that the signal
under study is sum of a chirp signal and its delayed
version.

Example 4: The unit sample sequence (delta func-
tion) is defined as x[n] = δ[n − n0] = 1 at n = n0

and zero otherwise. Using the discrete-time Fourier
transform (DTFT) X(ω) =

∑∞
n=−∞ x[n] exp(−jωn),

one can obtain the DTFT of unit sample sequence as
X(ω) = exp(−jωn0)⇒ |X(ω)| = 1. Using the inverse
DTFT (IDTFT), x[n] = 1

2π

∫ π
−πX(ω) exp(jωn) dω,

one can represent the unit sample sequence as x[n] =
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Figure 5: The TFE analysis of a nonstationary signal, which is sum of
a linear chirp signal and its delayed version, by this proposed method:
(top) without decomposition, and (bottom) with decomposition into
10 bands of equal frequencies.

1
2π

∫ π
−π exp(jω(n−n0)) dω. This representation demon-

strate that it is a superposition of equal ampli-
tude sinusoidal functions of all frequencies [0–π).
The Nyquist frequency (Fs/2) is the highest fre-
quency that can be present at a given sampling rate,
Fs, in a discrete-time signal. The analytic rep-
resentation of this signal is given by [13] z[n] =
sin(π(n−n0))+j[1−cos(π(n−n0))]

π(n−n0) = a[n] exp(jφ[n]), where

a[n] =
∣∣∣ sin(π

2
(n−n0))

π
2

(n−n0))

∣∣∣, and φ[n] = π
2 (n − n0). Thus,

frequency ω[n] = φ[n + 1] − φ[n] = π
2 , which corre-

sponds to half of the Nyquist frequency, i.e. Fs/4.
Figure 6 shows the TFE estimates of this signal (with
n0 = 1999, Fs = 1000 Hz and length N = 4000) us-
ing the EMD (top figure) and proposed method with-
out decomposition (bottom figure). We again observe
that the frequency present in this TFE plot is a aver-
age frequency (because delta function contains equal
amplitude sinusoids of all frequencies 0 to Fs/2). This
example also demonstrate that the TFE plot, obtained
by the Hilbert spectrum, is not limited by uncertainty
principle and signal can be highly concentrated in time
and frequency plane. However, it is to be noted that
this TFE plot is not providing the true frequencies of
delta function.

Discussion: In order to explain a average frequency
effect in Figure 1, Figure 4, Figure 5 and Figure 6,
let us consider a sum of sinusoids of equal ampli-
tudes x(t) =

∑N
k=1A cos(ω0kt). Its analytic repre-
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Figure 6: The TFE analysis of unit sample sequence δ[n− n0] (with,
n0 = 1999, sampling frequency Fs = 1000 Hz, length N = 4000)
by ensemble EMD (EEMD) (top) and this proposed method without
decomposition (bottom).

sentation is given by z(t) =
∑N

k=1A exp(jω0kt) =
A sin(ω0

N
2
t)

sin(ω0t/2) exp(jω0
N+1

2 t) = a(t) exp(jφ(t)) which im-

plies phase φ(t) = (ω0
N+1

2 t) and hence IF f(t) =
1

2πω0
N+1

2 . This is what we observe in these figures
(especially Figure 6 bottom one). Here, it is to be
noted that if amplitudes of constituent sinusoids are
not equal, then resultant IF would not be a constant
(average) frequency but it would be a variable one.

Example 5: Figure 7 shows the TFE analysis of a
white Gaussian noise (with zero mean, unit variance,
10240 samples and sampling frequency Fs = 100 Hz)
obtained from the EMD (top one) and this proposed
method without decomposition (bottom one), which
shows that the energy is randomly distributed across
all the frequency range.

Example 6: An Earthquake time series signal is
a nonlinear and nonstationary data. The Elcentro
Earthquake data (sampled at Fs = 50Hz) has been
taken from [27] and is shown in Figure 8 (top one). The
critical frequency range that matter in the structural
design is less than 10Hz, and the Fourier based power
spectral density (PSD), Figure 8 (bottom one), show
that almost all the energy in this data is within 10Hz.
The TFE distributions by the (a) continuous wavelet
transform (CWT) (b) EMD and (c) FDM methods are
shown in Figure 9. The TFE distributions by the pro-
posed method (a) without decomposition (b) with de-
composition to four bands [0–5, 5–10, 10–20, 20–25]
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Figure 7: The TFE analysis of the Gaussian white noise with zero
mean and unit variance (with sampling frequency Fs = 1000 Hz, length
N = 10240) by the EMD (top figure) and this proposed method with-
out decomposition (bottom figure).

Hz and (c) with decomposition to 25 bands of 1 Hz
are shown in Figure 10. These TFE distribution indi-
cate that the maximum energy concentration is around
1.7Hz and 2 second. The TFE plot provide details of
how the different waves arrive from the epical center
to the recording station, e.g. the compression waves
of small amplitude but higher frequency range of 10 to
20Hz, the shear and surface waves of strongest ampli-
tude and lower frequency range of below 5Hz which
does most of the damage, and other body shear waves
which are present over the full duration of the data
span.

Discussion: It is clear from the above examples
that different methods are producing the different TFE
distributions of a signal. So, before concluding any-
thing one needs to be careful while doing the analysis.
For example, frequencies present in the Fourier spec-
trum is telling that these frequencies are present all
the time in a signal under analysis, which may not be
true. Consider another example, Figure 6 (bottom), of
unit sample sequence which is telling that this signal
is concentrated in time (which is true) and also con-
centrated in frequency (which is not true). If this were
true, then we could transmit delta function in almost
zero time with zero bandwidth through any system or
channel. Thus, we conclude that the TFE representa-
tion depends on the number of bands in which data has
been divided. In order to further illustrate this point
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Figure 8: The Elcentro Earthquake May 18, 1940 North-South Compo-
nent data (top), Fourier based power spectral density (PSD) (bottom).

we divided the same data, which is used for Figure 6,
by zero-phase filtering into five and ten bands to ob-
tain top and bottom figures in Figure 11, respectively,
which reveal many those frequencies of data which are
not present in Figure 6.

From the Figures (1, 4, 5, 6 and 11), it is clear that
the proposed method using the Hilbert spectrum pro-
duces average frequencies and good time resolution if
envelope of signal is smooth. However, if envelope of a
signal is fluctuating randomly or rapidly, e.g. consider
the case of Gaussian white noise and Earthquake time
series, the TFE plot has good time and frequency reso-
lution as shown in Figure 7 and Figure 10 (top one). It
is also clear, form Figures (3, 4, 5, 6 and 11), that as the
signal is decomposed to more number of narrow bands,
true frequencies present in the signal under analysis are
revealed, frequency resolution is also increasing while
the time resolution is reducing marginally.

CONCLUSION

The instantaneous frequency (IF) is an important
parameter for the analysis of nonstationary signals
and nonlinear systems. It is the basis of the time-
frequency-energy (TFE) analysis of a signal. The IF
is the time derivative of the instantaneous phase (IP)
and, originally, it is well-defined only when this deriva-
tive is positive. That is, the IF is valid only for mono-
component signals. If time derivative of IP is negative,
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Figure 9: The TFE plot of the Elcentro Earthquake data (top to
bottom) using the: (a) CWT (b) EMD and (c) FDM.

i.e. the IF is negative, then it does not provide any
physical significance. This study proposes a mathe-
matical solution and eliminate this problem by modi-
fying the present definition of IF. This is achieved by
using the property of the multivalued inverse tangent
function.

The fundamental and important conceptual innova-
tion of the this study is the extension of the present
definition of IF by redefining it such that it is always
positive. This redefined IF is valid for all types of
signals such as monocomponent and multicomponent,
narrowband and wideband, stationary and nonstation-
ary, linear and nonlinear signals. The understating of
the time-frequency-energy representation, by all the
methods which are using the IF, would improve signif-
icantly by using this definition.

Simulations and numerical results demonstrated the
validity, efficacy and superiority of the proposed IF

Time (s)

F
re

q
u

e
n

c
y
 (

H
z
)

Time−Frequency−Energy plot

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time (s)
F

re
q

u
e

n
c
y
 (

H
z
)

Time−Frequency−Energy plot

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time (s)

F
re

q
u

e
n

c
y
 (

H
z
)

Time−Frequency−Energy plot

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Figure 10: The TFE plot of the Elcentro Earthquake data (top to
bottom) using the: (a) proposed method without decomposition and
(b) proposed method with decomposition into four bands [0–5, 5–10,
10–20, 20–25] Hz and (c) decomposition into 25 bands of 1 Hz each.

for the TFE analysis of a signal as compared to other
existing methods available in the literature.
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