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Abstract

The choice of bandwidth is crucial to the kernel density estimation KDE. Various bandwidth selection methods for
KDE least squares cross-validation LS CV and Kullback-Leibler cross-validation are proposed. We propose a method
to select the optimal bandwidth for the KDE. The idea behind this method is to generalize the LS CV method, using
the measure of β-divergence, and to see the importance of improving our method, we will compares these Dβ( f̂h, f )
bandwidth selector with a normal reference(NR), the last squares cross-validation(LS CV), the Sheather and Jones
(S J) method, and the generalized LS CV(LS CVg) bandwidth selector, on simulated data. The use of the various
practical bandwidth selectors is illustrated on a real data example.
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AMS Subject Classification : 62G07, 94A17 .

1. Introduction1

The problem of choosing the bandwidth (window width or smoothing parameter) h is importantly in statistical es-2

timation of the kernel density estimation. A vast amount of literatures has been devoted in choosing practical optimal3

bandwidth for techniques built on kernel estimation et some comparative studies have been made to these methods.4

Representative surveys of bandwidth selection techniques can be found in Bowman[3], Jones et al.[9], Loader[12],5

Peter Hall [5] Scott[18],and Wand and Jones[24].6

Least-squares cross-validation (LS CV) is Among the earliest bandwidth selectors, this method was suggested by7

Rudemo [17] and Bowman [2], in the 80s ,it has been the method of reference, but in the early 90s, studies have8

shown that other methods performs better from the bias points of view and much better in reducing the variance. See9

Park and Turlach [15] for a detailed description.10

Interesting comparative studies have been published. Bowman[2] compared two methods for selecting bandwidth,11

The first is the Kullback-Leibler Cross-Validation and the second is that of Integrated Squared Error Cross-Validation.12

Scott and Terrell [19] compared the two methods by theoretical calculation of the noise in the cross-validation func-13

tion and corresponding cross-validated smoothing parameters, by Monte Carlo simulation, and by example.14

Sheather and Jones [20] set up a plug-in type of three-step procedure. They choose to estimate R( f
′′

) (the term un-15

known in AMIS E).16

Jin Zhang [26]) have proposed a generalization the classical least squares cross-validation (LS CV) selector for its17

variability and under smoothing, He did a comparison of bandwidths for finite sample behavior.18

For a more complete treatment, from a historical viewpoint, with complete references, and detailed discussion of19

variations that have been suggested, see Jones et al. [10] Quick access to implementation of most of the methods20

discussed here has been provided by park and Jones et al. [9] .21
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The main purpose of this paper is to investigate the optimal bandwidth hβ for minimizing criterionDβ( f̂n, f ) error.23

We will see thatDβ( f̂n, f ) generalize the Integrated Square Error (IS E) and Kullback-Leiber divergence (KL).24

After having introduced theDβ( f̂n, f ) selection method we study the finite sample performances of various bandwidth25

selectors via a simulation study. We compare five procedures: the normal reference (NR) method, the last squares26

cross-validation (LS CV), the Sheather and Jones (S J) method, the generalized LS CV(LS CVg) and criterionDβ( f̂n, f )27

error.28

This paper is organized as follows. Section 2 describes the classical methods for bandwidth selections. Section 329

presents the new method proposed for bandwidth selector, which generalizes and provides improved for the least30

squares cross-validation (LS CV). In Section 4 we present some simulation results for estimation and comparison of31

the various methods. Section 5 applies the methods to real data. Finally, the conclusion and perspective is presented32

in Section 6.33

2. Classical Methods for Bandwidth Selection34

Given an n-sample X1, X2, ..., Xn of independent random variables and same unknown density f . Consider the35

Parzen-Rosenblatt kernel estimator of the density f given by:36

f̂h(x) =
1

nh

n∑
i=1

K

( x − Xi

h

)
(1)

h > 0 where is the bandwidth and K . a density function defined on R called kernel.37

To estimate f , choose the kernel K and h parameter. If the choice of the kernel is not a problem, it is not the case for38

the choice of the width of the window h which essentially depends on the size n of the sample. There are two methods39

of families: the family of cross-validation methods and the family of plug-in methods.40

The decision of an optimal choice for the bandwidth suppose the specification of an error criterion that can be opti-41

mized. The criterion is to minimize the Mean Integrated Square Error (MIS E). In this case, [E. Parzen [16].] there is42

obtained43

MIS E( f̂h(x)) =

∫
E

[
f̂h(x) − f (x)

]2
dx =

h4

4
µ2(K)2

∫ (
f
′′

(x)
)2

dx +
R(K)

nh
+ O

(
h5 +

1
n

)
(2)

where µ2(K) =
∫

x2K(x)dx is the variance of kernel K and R(g) =
∫

g2(x)dx for any function g.44

The Asymptotics Mean Integrated Square Error (AMISE) is then of the form:45

AMIS E( f̂h) =
h4

4
µ2(K)2R( f

′′

) +
R(K)

nh
(3)

To find the closed form expression for hAMIS E , begin by differentiating (3) to obtain

∂AMIS E
∂h

= −(nh2)−1R(K) + h3µ2(K)2R( f
′′

)

Setting this equation equal to 0 and solving for h produces46

hAMIS E =

[
R(K)

nµ2(K)2R( f ′′ )

]1/5

(4)

It is found that the optimal width of hAMIS E window depends on the unknown density f through the parameter47

R( f
′′

), which has to be estimated before using hAMIS E .48

49
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A very natural way to get around the problem of not knowing f
′′

is to use a standard family of distributions to50

assign a value of the term R( f
′′

) in expression (4). For example, assume that a density f belongs to the Gaussian family51

with mean µ and variance σ, then52

R( f
′′

) =

∫ (
f
′′

(x)
)2

dx = σ−5
∫ (
φ
′′

(x)
)2

dx

= 3
8π
−12σ−5 ≈ 0.212σ−5 (5)

where φ(x) is the standard normal density. If one uses a Gaussian kernel, then53

hNR = (4π)−1/10
(

3
8π
−1/2

)−1/5
σn−1/5

=
(

4
3

)1/5
σn−1/5 (6)

If we want to make this estimate more insensitive to outliers, we have to use a more robust estimate for the scale54

parameter of the distribution. Let R̂ be the sample interquartile, then one possible choice for h is55

hNR = 1.06min
(
σ̂, R̂

(Φ(3/4)−Φ(1/4))

)
n−1/5

= 1.06min
(
σ̂, R̂

1.349

)
n−1/5 (7)

where Φ is the standard normal distribution function. To see more detail (e.g., Silverman, [21]; Härdle[8]; Scott,56

1992).57

The LS CV , sometimes called an unbiased cross-validation was proposed by Rudemo [17] and Bowman [2]. The58

criterion is to choose the bandwidth that minimizes an estimator of Integrated Square Error (IS E):59

IS E =

∫
f̂ 2
h (x)dx − 2

∫
f̂h(x) f (x)dx +

∫
f 2(x)dx (8)

The ideal choice of bandwidth is the one which minimizes:60

L(h) = IS E −
∫

f 2(x)dx =

∫
f̂ 2
h (x)dx − 2

∫
f̂h(x) f (x)dx (9)

The principle of the least squares cross-validation method is to find an estimate of L(h) from the data and minimize61

it over h. Consider the estimator62

LS CV(h) =

∫
f̂ 2
h (x)dx −

2
n

n∑
i=1

f̂h(i)(Xi) (10)

with ∫
f̂ 2
h (x)dx =

1
n2h

n∑
i=1

n∑
j=1

(k ∗ k)
(

Xi − X j

h

)
and63

f̂h(i)(Xi) =
1

h(n − 1)

n∑
j,i

K

(
Xi − X j

h

)
(11)

where ∗ represents the convolution.64

Further discussion on this method can be found in Bowman [3], and Hall and Marron [7]. Under mild conditions, Hall65

[5] and Stone [22] proved that hLS CV is asymptotically the best in the sense of minimizing MIS E( f̂h).66

67
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Sheather and Jones (1991) introduced a reliable bandwidth selector ĥS J , which is a plug-in estimator of hAMIS E ,68

the idea of Sheather and Jones is to estimate the quantity R( f
′′

) by an estimator of E
(

f (4)(X)
)
, by remarking that69

R( f
′′

) = E
(

f (4)(X)
)

=
∫

f (4)(x) f (x)dx.70

71

Jin Zhang [26] introduced a generalization of classical least squares cross-validation(LS CV), his method provides72

a significant improvement for (LS CV).73

Used it as the case that K is the Gaussian kernel φ. According to Equation 10,74

LS CV(h) =
φ√2h(0)

n
−

2
n(n − 1)

∑
i< j

[
2φh(Xi − X j) +

(
1
n
− 1

)
φ√2h(Xi − X j)

]
(12)

Jin Zhang [26] is generalized LS CV by:75

LS CVg(h) =
φ√2h(0)

n
+

2
n(n − 1)

∑
i< j

[
2

g(g − 2)
φ√gh(Xi − X j) +

(
1
n
−

1
g − 2

)
φ√2h(Xi − X j)

]
(13)

g with a positive number.76

The generalized LS CV bandwidth selector hLS CVg is defined as the minimize of LS CVg(h) over h77

3. β-Divergence for Bandwidth Selection78

The basic Beta-divergence was introduced by Basu et al. [1] and Minami and Eguchi [14].79

The β-Divergence measure for bandwidth selection will be introduced in this section to improve the behavior of80

the choice for bandwidth.81

Dβ( f̂h, f (x)) =
1
β

∫
S

f̂ βh (x)dx −
1

β − 1

∫
S

f̂ β−1
h (x) f (x)dx +

1
β(β − 1)

∫
S

f β(x)dx

in the case β = 2,82

2D2( f̂h, f (x)) = IS E( f̂h) =

∫
S

( f̂h(x) − f (x))2dx

So we can say that IS E is a special case ofDβ.
Note, the optimal bandwidth that minimizesDβ( f̂n,h, f (x)) is equivalent to the bandwidth that minimizes the expected
value of the quantity:

Dβ(h) = Dβ( f̂h, f (x)) −
1

β(β − 1)

∫
S

f β(x)dx =
1
β

∫
S

f̂ βh (x)dx −
1

β − 1

∫
S

f̂ β−1
h (x) f (x)dx

The principle of the least squares cross-validation method is to find an estimate ofDβ(h) from the data and minimize83

it over h. Consider the estimator,84

DβCV(h) =
1
β

∫
S

f̂ βh (x)dx −
1

n(β − 1)

n∑
i=1

f̂ β−1
h(i) (Xi) (14)

with f̂ β−1
h(i) (Xi) is defined in (11)85

When we want to implement this technique on the computer, the computation of minimized DβCV(h) for a of band-86

widths h may be based on the following algorithm:87

88
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Algorithm 1 algorithm for minimizeDβCV(h)
1: for i = 1 to n do
2: c1 = 1

nhβ−1

3: c2 = 1
βhnβ−1

4: c3 = 1
(β−1)(n−1)β−1

5: S um = 0
6: S um1 = 0
7: for j = 1 to n do
8: S um1 = S um1 +K

( Xi−X j

h

)
9: S um = c2 ∗ (S um1)β − c3 ∗ (S um1 − K (0))β−1

10: end forDβCV(h) = c1 ∗ S um
11: end for

hDβCV = arg min
h

(
DβCV(h)

)

Theorem 1. Let the following conditions on f be satisfied:89

(F1) f is compactly supported on I.90

(F2) f is four times continuously differentiable on I.91

(F3) lim
x−→+ inf I

f (i)(x) = lim
x−→− sup I

f (i)(x) , 1 ≤ j ≤ 3.92

(F4)
∫

I f (2)(x)2 f (x)β−2dx < ∞.93

As n −→ ∞, the window width hEDβ
that minimizes the mean β-divergence between a kernel estimator f̂h and density94

f satisfies95

hβ = hEDβ
=


∫
K(t)2dt

∫
I f (x)β−1dx[∫

t2K(t)dt
]2 ∫

I f (x)β−2 f (2)(x)2dx


1/5

n−1/5 (15)

in the particular case96

• β = 2 this case the Mean, integrated square error

h2 = hMIS E( f̂h) =


∫
K(t)2dt[∫

t2K(t)dt
]2 ∫

I f (2)(x)2dx


1/5

n−1/5.

• β = 1 this case the Kullback-Libler,

h1 = hE(KL) =


∫
K(t)2dt

∫
I dx[∫

t2K(t)dt
]2 ∫

I f (x)−1 f (2)(x)2dx


1/5

n−1/5

Theorem1 is derived from the following proposition by assuming (F4) and by balancing the first two terms in (16).97

Proposition 1. Under (F1) − (F3) we have98

EDβ( f̂h, f ) =
h4

8

{∫
I
t2K(t)dt

}2 ∫
f (x)β−2 f (2)(x)2dx +

1
2nh

∫
I
(K(t))2 dt

∫
f (x)β−1dx + O(n−1 + h6) (16)
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Choosing β: the β value that minimizes equation (16)99

∂EDβ( f̂h, f )
∂β

= (β − 2)
h4

8

{∫
I
t2K(t)dt

}2 ∫
f (x)β−3 f (2)(x)2dx +

β − 1
2nh

∫
I
(K(t))2 dt

∫
f (x)β−2dx + O(n−1 + h6)

we pose ∆1 = h4

8

{∫
I t2K(t)dt

}2 ∫
f (x)β−3 f (2)(x)2dx and ∆2 = 1

2nh

∫
I
(K(t))2 dt

∫
f (x)β−2dx100

∂EDβ( f̂h, f )
∂β

= (β − 2)∆1 + (β − 1)∆2 = 0
101

β = 1 +
∆1

∆1 + ∆2

we know that ∆1 ≥ 0 and ∆2 ≥ 0 This implies that:

1 < β < 2

4. Proof102

Proof. Proposition 1103

With a random variable ξ = Op(1) whose expectation is 0 and variance 1, we can write f̂h(x) as (see [11])104

f̂h(x) = f (x)

1 +
h2

2
f (2)(x)
f (x)

∫
I
t2K(t)dt +

h4

24
f (4)(x)
f (x)

∫
I
t4K(t)dt + O(h6) +


∫

I K(t)2dt

nh f (x)


1/2

ξ + Op(n−1/2)

 , (17)

Where the O(h6) terms depend upon x. Using (1 + z)β = 1 + βz +
β(β−1)

2 z2 + O(z3)105

f̂ βh (x) = f β(x)[1 + β

(
1
2 h2 f (2)(x)

f (x)

∫
I t2K(t)dt + 1

24 h4 f (4)(x)
f (x)

∫
I t4K(t)dt +

{ ∫
I K(t)2dt
nh f (x)

}1/2
ξ

)
+
β(β−1)

2

[
1
4 h4 f (2)(x)2

f (x)2

(∫
I t2K(t)dt

)2
+

∫
I K(t)2dt
nh f (x) ξ

2
]

+ O(h6) + Op(n−1/2)] (18)

f̂ β−1
h (x) = f β−1(x)[1 + (β − 1)

(
1
2 h2 f (2)(x)

f (x)

∫
I t2K(t)dt + 1

24 h4 f (4)(x)
f (x)

∫
I t4K(t)dt +

{ ∫
I K(t)2dt
nh f (x)

}1/2
ξ

)
+

(β−1)(β−2)
2

[
1
4 h4 f (2)(x)2

f (x)2

(∫
I t2K(t)dt

)2
+

∫
I K(t)2dt
nh f (x) ξ

2
]

+ O(h6) + Op(n−1/2)] (19)

Dβ( f̂h, f ) =
∫

f (x)β
[

1
β
− 1

β−1 +
(
β−1

2 −
β−2

2

) [
1
4 h4 f (2)(x)2

f (x)2

(∫
I t2K(t)dt

)2
+

∫
I K(t)2dt
nh f (x) ξ

2
]

+ O(h2) + Op(n−1/2)
]

dx

+ 1
β(β−1)

∫
f (x)bdx (20)

= 1
2

∫
f (x)β

[
1
4 h4 f (2)(x)2

f (x)2

(∫
I t2K(t)dt

)2
+

∫
I K(t)2dt
nh f (x) ξ

2 + O(h2) + Op(n−1/2)
]

dx (21)

EDβ( f̂h, f ) = 1
2E

∫
f (x)β

[
1
4 h4 f (2)(x)2

f (x)2

(∫
I t2K(t)dt

)2
+

∫
I K(t)2dt
nh f (x) ξ

2 + O(h2) + Op(n−1/2)
]

dx

= h4

8

{∫
I t2K(t)dt

}2 ∫
f (x)β−2 f (2)(x)2dx + 1

2nh

∫
I
(K(t))2 dt

∫
f (x)β−1E(ξ2)dx + O(n−1 + h6)

we know that E(ξ2) = 1106

EDβ( f̂h, f ) =
h4

8

{∫
I
t2K(t)dt

}2 ∫
f (x)β−2 f (2)(x)2dx +

1
2nh

∫
I
(K(t))2 dt

∫
f (x)β−1dx + O(n−1 + h6) (22)

as required.107
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5. Simulation108

We approximate the true density f by a normal mixture.109

f (x) =

J∑
j=1

ω jφσ j (x − µ j) (23)

where J is a positive integer. ω1, ..., ωJ is a set of positive numbers that sum to one, and for each j, −∞ < µ j < ∞ and110

σ j > 0. The family of normal mixture densities used by (Marron and Wand [13]) is extremely rich, and, in fact, any111

density can be approximated arbitrarily well by a member of this family.112

for f given by Equation 23, the MIS E in Equation (2 ) of the kernel density estimator in Equation (1) have explicit113

forms. In fact,114

MIS E( f̂h(x)) = (2π1/2nh)−1 + wT {(1 − n−1)Ω2 − 2Ω1 + Ω0}w (24)

(Marron and Wand [13]) where w = (ω1, ..., ωJ) and Ωa is the J × J matrix having ( j × j) entry equal to

φ√
ah2+σ2

j +σ
2
j′
(µ j − µ j′ )

.115

We consider the normal mixture in the case of J = 2 and ω1 = ω2 = 0.5, similar similation were performed by Jin116

Zhang [26]. Therefore the true density is:117

f (x) = 0.5φ(x) + 0.5φσ(x − µ) (25)

Based on 50, 200, 700 draws from f in the case where µ = 0, 1, 5 and σ = 1, 0.5, 0.1. Table 1 give the exhibits118

the simulated relative efficiency RE
(̂
h
)

= MIS E
(

f̂̂hMIS E

)
/MIS E

(
f̂̂h
)

of the kernel estimator, using bandwidths ĥNR,119

ĥLS CV , ĥS J , ĥLS CV4 and ĥDβCV (with β = 1.1, 1.5, 4 and 4), it is lower wherever than 1, because the optimal bandwidth120

hMIS E minimize MIS E. Each bandwidth, mean E
(̂
h
)

and mean relation error E |̂h/hMIS E − 1| are obtained, these121

values are given by respectively Tables 2 and 3.122

123

1. It can be seen that when the density f is not very far from normal, such as that cases of (µ, σ) = (0, 1), (0, 0.5), (1, 1)124

and (1, 0.5), bandwidth which are obtained by using NR criterion performs well. In other cases it usually has125

the smallest RE(̂h) and largest E(̂h),tending to over smooth its kernel density estimate the most.126

2. From these tables it can be seen that bandwidth ĥLS CV which are obtained by using LS CV performs poorly if127

the true density is close to normal usually having the smallest RE(̂h) and E(̂h), then the kernel density estimator128

is undersmoothed. But in the contrary case, ĥLS CV can perform very well, and in many situations, in Table 2 it129

is seen that E(̂hLS CV ) is close to the optimal ĥMIS E , but the corresponding E(̂hLS CV /̂hMIS E − 1) is large, which130

means that the bias of ĥLS CV is small but its variation is large.131

3. The plug-in bandwidth ĥS J seen to be the best existing bandwidth selectors (as commented by Venables and132

Ripley [23]). ĥS J among the best bandwidth selectors in most situations. However it behaves very poorly for133

small σ (the density curve is sharp), oversmoothing its kernel density curve by overestimating ĥMIS E .134

4. As commented by J. Zhang [26], The generalized LS CV bandwidth ĥLS CV4 seems to be bandwidth selectors135

that is always among the best for having large RE(̂h) and small E |̂h/hMIS E − 1|.136

5. The proposed bandwidth selector method (̂hDβCV ) completely dominate the selection methods Bandwidth as n137

increases, otherwise ĥDβCV (with β = 1.1, 1.5, 1.8 and 4) are with ĥLS CV4 bandwidths selectors that are always138

among the best. for having large RE(̂hDβCV ) and small E |̂hDβCV/hMIS E − 1| for most cases. They significantly139

improve the classical ĥLS CV . Indeed Figue1 shows that the increase in n causes a value of RE(̂hDβCV ) close to 1140

7



and greater than RE(̂hLS CV )141

Figure 2 show that for theDβCV , this bias does not have a serious effect on the efficiency of the method, since142

the RE(̂hDβCV ) is relatively close to 1. We can conclude from Figure 2 our practical selection proceduresDβCV143

have a performance close to the one for the LS CV4 bandwidth selector (since the ratios are relatively close to144

1).145

8



Figure 1: RE(̂h) using bandwidths ĥLS CV , ĥLS CV4 and ĥDβCV with β = 1.1, 1.5, 1.8, 4

9



Figure 2: Kernel density estimates with different bandwidths. NR, S J, LS CV , LS CV4,D1.1CV

6. Examples146

In this Section, we will provided two examples to evaluate performance of our method compared to several clas-147

sical bandwidth selection methods for Gaussian kernel density. The two data sets in the examples have been analyzed148

by many authors ( Silverman [21] and J. Zhang [26]) to illustrate various kinds of methods in density estimation.149

150

The first example comprises the lengths of 86 spells of psychiatric treatment undergone by control patients used151

as controls in a study of suicide risks reported by Copas and Fryer [4]; Silverman [21].152

Figure 2a plot the data points and the kernel density estimates for the suicide study data, when we using commonly153

used bandwidths ĥNR = 35.78, ĥS J = 23.16, ĥLS CV = 15.69, ĥLS CV4 = 22.57 and hD1.1CV = 24.25.154

It seems that the density for the length of treatment is a unimodal curve heavily skewed to the right. it seems clear155

than the bandwidth hNR oversmooth her kernel density curve and underestimate the peak near 20.156

The bandwidths were obtained by using the methods of S J, LS CV4 and D1.1CV , are better because ĥS J , ĥLS CV4 and157

ĥD1.1CV well balance the two situations and seem to capture the true shape of the data. In this example, ĥLS CV4 = 27.57158

and ĥD1.1CV = 24.25 are closer to ĥS J = 23.16.159

160

The second comprises the lengths in minutes of 107 eruption lengths in minutes for the Old Faithful geyser in161

Yellowstone National Park, USA (source: Weisberg [25]; Silverman [21]).162

Figure 2b plot the data points and the kernel density estimates for Old Faithful geyser data, we using bandwidths163

ĥNR = 0.4331, ĥS J = 0.2250, ĥLS CV = 0.1030, ĥLS CV4 = 0.1740 and ĥD1.1CV = 0.1480.164

An important point to note that the density curve for eruption length is similar to bimodal normal density (normal165

mixture). As commented by Zing, the bandwidthS ĥNR is heavily over smoothes its kernel density curve, underesti-166

mating the two peaks of the curve but overestimating the valley between them. On the other hand, ĥLS CV seems to167

undersmooth the curve too much, overestimating the two peaks but underestimating for the valley.168

However ĥS J , ĥLS CV4 and ĥD1.1CV , especially the later, are proper bandwidths for their density estimates to be able to169

capture the feature of the true density curve.170
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7. Conclusions171

The kernel estimator is the most used in density estimation. The main issue is bandwidth selection, which is a hot172

topic and is still frustrating statisticians. A various bandwidth selection strategies have been proposed such as normal173

reference ĥNR , unbiased cross-validation ĥLS CV , cross validation, Sheather-Jones method ĥS J and and most recently174

Zing proposed a bandwidth ĥLS CVg .175

The normal reference bandwidth ĥNR method is limited the practical use, since they are restricted to situations where176

a pre-specified family of densities is correctly selected. The popularity of the LS CV method is due to the intuitive177

motivation and the fact that ĥLS CV is asymptotically optimal under low conditions. Bandwidth ĥS J seems to be the178

best existing bandwidth selector. Unfortunately, it also tends to oversmooth the density estimate when the true density179

curve is sharp.180

We have attempted to evaluate choice the optimal bandwidth ĥLS CV , using β-divergence. Compared to traditional181

bandwidth selection methods designed for kernel density estimation, our proposedDβCV bandwidth selection method182

is always one of the best for having large RE
(̂
h
)

and small E |̂h/hMIS E−1|. Simulation studies showed that our proposed183

novel optimal bandwidth method designed for kernel density estimation significantly improves the classical ĥLS CV for184

its variability and undersmoothing, adapts to different situations, and outperforms other bandwidths.185

References186

[1] Basu, A.; Harris, I.R.; Hjort, N.; Jones, M. (1998), Robust and efficient estimation by minimising a density power divergence. Biometrika , 85,187

549–559.188

[2] Bowman, A. W. (1984), An alternative method of cross-validation for the smoothing of density estimates, Biometrika 71, 353–360.189

[3] Bowman, A. W. (1985), A comparative study of some kernel-based nonparametric density estimators, Journal of Statistical Com- putation and190

Simulation, 21, 3-4, 313–327.191

[4] Copas, J. P. and M. J. Fryer (1980), Density estimation and suicide risks in psychiatric treatment, Journal of the Royal Statistical Society,192

Series B 143, 167–176.193

[5] Hall, P. (1983). Large sampie optimality of least squares cross-validation in density estirnation, Ann. Statist., 11, 1156–1174.194

[6] Hall, P. (1985). Asymptotic theory of minimum integrated square error for multivariate density estimation. In Multivariate Analysis - VI, ed.195

P.R. Krishnaiah, Elsevier Science, Amsterdam, 289–309.196

[7] Hall, P. and J. S. Marron (1991), Local minima in cross-validation functions, Journal of the Royal Statistical Society, Series B 53, 245–252.197

[8] Hrdle, W. (1991), Smoothing techniques with implementation in S, Springer-Verlag, New York.198

[9] Jones,M. C., Marron, J. S., and Sheather, S. J. (1996), A brief survey of bandwidth selection for density estimation, Journal of the American199

Statistical Association, 91, 433, 401–407,.200

[10] Jones, M. C. and R. F. Kappenman (1991), On a class of kernel density estimate bandwidth selectors, Scandinavian Journal of Statistics 19,201

337?349.202

[11] Kanazawa, Y. (1993), Hellinger distance and Kullback-Leibler loss for the kernel density estimator. Statistics and Probability Letters 18203

315–321204

[12] Loader, C. R. (1999), ?Bandwidth selection: classical or plug-in?? The Annals of Statistics, 27, 2, 415–438, .205

[13] Marron, J. S. and M. P. Wand (1992), Exact mean integrated squared error, Annals of Statistics 20, 712–736.206

[14] Minami, M.; Eguchi, S. Robust blind source separation by Beta-divergence. Neural Comput. 2002, 13, 1859–1886.207

[15] Park, B, U., Turlach, B, S. (1992) Practical performance of several data driven bandwidth selectors, Computational Statistics,7, 251–270208

[16] Parzen, E. (1962), On estimation of a probability density function and mode, Annals of Mathematical Statistics 33, 1065–1076.209

[17] Rudemo, M. (1982), Empirical choice of histograms and kernel density estimators, Scandinavia Journal of Statistics 9, 65–78.210

[18] Scott, W. D (1992), Multivariate density estimation theory, practice, and visualization, Wiley, New York.211

[19] Scott, D. W. and Terrell, G. R. (1987), Biased and unbiased cross-validation in density estimation, Journal of the American Statistical212

Association 82, 1131–1146.213

[20] Sheather, S. J. and Jones, M. C. (1991), A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal214

Statistical Society series B 53, 683–690.215

[21] Silverman, B. W. (1986), Density estimation for statistics and data analysis, Chapman and Hall, London.216

[22] Stone, C. J. (1984), An asymptotically optimal window selection rule for kernel density esti- mates, Annals of Statistics, 12, 1285–1297.217

[23] Venables, W. N. and B. D. Ripley (2002), Modern applied statistics with S 4th Edition, Springer, New York.218

[24] Wand, M. P. and M. C. Jones (1995), Kernel Smoothing, Chapman and Hall, London, UK.219

[25] Weisberg, S. (1980), Applied linear regression, Wiley, New York.220

[26] Zhang, J. (2015), Generalized least squares cross-validation in kernel density estimation,Statistica Neerlandica, 69, 3, 315–328.221

11



Table 1: RE
(̂
h
)

for normal mixture f (x) = 0.5φ(x) + 0.5φσ(x − µ)

n ĥNR ĥLS CV ĥS J ĥLS CV4 ĥD1.1CV ĥD1.5CV ĥD1.8CV ĥD4CV

µ = 0 σ = 1

50 0.877 0.633 0.798 0.909 0.768 0.716 0.694 0.770

200 0.928 0.730 0.867 0.944 0.978 0.944 0.924 0.833

700 0.974 0.767 0.942 0.956 0.978 0.981 0.973 0.959

µ = 0 σ = 0.5

50 0899 0.633 0.850 0.776 0.600 0.900 0.917 0.502

200 0.948 0.644 0.895 0.908 0.884 0.987 0.949 0.709

700 0.952 0.767 0.939 0.914 0.980 0.821 0.816 0.967

µ = 0 σ = 0.1

50 0.562 0.781 0.779 0.748 0.700 0.618 0.573 0.670

200 0.550 0.810 0.902 0.891 0.930 0.890 0.747 0.834

700 0.535 0.872 0.966 0.957 0.993 0.977 0.963 0.920

µ = 1 σ = 1

50 0.871 0.585 0.791 0.904 0.665 0.830 0.855 0.680

200 0.955 0.699 0.905 0.949 0.928 0.989 0.992 0.892

700 0.977 0.763 0.943 0.960 0.981 0.973 0.977 0.975

µ = 1 σ = 0.5

50 0.855 0.562 0.856 0.806 0.749 0.751 0.906 0.439

200 0.867 0.760 0.929 0.874 0.965 0.975 0.989 0.690

700 0.823 0.831 0.955 0.922 0.942 0.923 0.720 0.902

µ = 1 σ = .1

50 0.2370 0.781 0.439 0.755 0.544 0.606 0.531 0.528

200 0.1010 0.810 0.419 0.904 0.756 0.834 0.717 0.716

700 0.0503 0.912 0.557 0.949 0.968 0.980 0.921 0.899

µ = 5 σ = 1

50 0.411 0.741 0.875 0.864 0.618 0.883 0.490 0.528

200 0.285 0.861 0.947 0.948 0.852 0.981 0.688 0.716

700 0.215 0.876 0.972 0.967 0.997 0.870 0.914 0.979

µ = 5 σ = 0.5

50 0.2390 0.707 0.696 0.871 0.657 0.871 0.806 0.460

200 0.1330 0.760 0.747 0.923 0.907 0.986 0.983 0.726

700 0.0804 0.842 0.846 0.957 0.990 0.800 0.912 0.858

µ = 5 σ = 0.1

50 0.1360 0.588 0.1760 0.791 0.630 0.563 0.693 0.640

200 0.0523 0.458 0.0946 0.905 0.878 0.774 0.940 0.858

700 0.0205 0.341 0.0665 0.969 0.968 0.955 0.989 0.980

12



Table 2: E
(̂
h
)

for normal mixture f (x) = 0.5φ(x) + 0.5φσ(x − µ)

n ĥNR ĥLS CV ĥS J ĥLS CV4 ĥD1.1CV ĥD1.5CV ĥD1.8CV ĥD4CV hMIS E

µ = 0 σ = 1

50 0.455 0.480 0.452 0.516 0.323 0.330 0.379 0.360 0.520

200 0.354 0.373 0.349 0.385 0.321 0.328 0.376 0.348 0.383

700 0.283 0.288 0.282 0.301 0.308 0.309 0.307 0.308 0.293

µ = 0 σ = 0.5

50 0.318 0.362 0.306 0.382 0.223 0.286 0.286 0.174 0.343

200 0.250 0.262 0.231 0.266 0.193 0.280 0.285 0.168 0.248

700 0.197 0.191 0.184 0.200 0.186 0.244 0.245 0.166 0.188

µ = 0 σ = 0.1

50 0.1320 0.0897 0.0915 0.1040 0.510 0.0409 0.0356 0.0403 0.0752

200 0.0887 0.0557 0.0572 0.0597 0.485 0.0377 0.0331 0.0400 0.0530

700 0.0668 0.0406 0.0406 0.0422 0.421 0.0370 0.0329 0.0403 0.0398

µ = 1 σ = 1

50 0.510 0.569 0.511 0.573 0.429 0.426 0.435 0.360 0.373

200 0.403 0.418 0.403 0.440 0.395 0.423 0.429 0.359 0.265

700 0.317 0.329 0.315 0.337 0.354 0.345 0.346 0.341 0.199

µ = 1 σ = 0.5

50 0.409 0.395 0.366 0.446 0.326 0.342 0.283 0.155 0.373

200 0.328 0.278 0.270 0.296 0.280 0.282 0.283 0.152 0.265

700 0.256 0.197 0.203 0.212 0.233 0.239 0.281 0.151 0.199

µ = 1 σ = .1

50 0.351 0.0877 0.1780 0.1030 0.0422 0.0451 0.0523 0.0413 0.0752

200 0.280 0.0553 0.1050 0.0614 0.0380 0.0380 0.0401 0.0357 0.0530

700 0.222 0.0408 0.0657 0.0426 0.0343 0.0314 0.0311 0.0309 0.0398

µ = 5 σ = 1

50 1.300 0.636 0.753 0.742 0.420 0.475 0.315 0.308 0.608

200 0.986 0.456 0.495 0.472 0.330 0.470 0.285 0.276 0.441

700 0.770 0.342 0.361 0.261 0.275 0.336

µ = 5 σ = 0.5

50 1.260 0.407 0.590 0.448 0.310 0.295 0.251 0.217 0.369

200 0.963 0.274 0.378 0.296 0.210 0.286 0.250 0.171 0.262

700 0.750 0.201 0.255 0.210 0.209 0.270 0.244 0.146 0.197

µ = 5 σ = 0.1

50 1.260 0.0871 0.523 0.1040 0.045 0.0415 0.0476 0.0497 0.0752

200 0.956 0.0560 0.292 0.0603 0.040 0.0385 0.0427 0.0395 0.0530

700 0.745 0.0406 0.172 0.0420 0.039 0.0339 0.0426 0.0387 0.0398
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Table 3: E |̂h/hMIS E − 1| for normal mixture f (x) = 0.5φ(x) + 0.5φσ(x − µ)
n ĥNR ĥLS CV ĥS J ĥLS CV4 ĥD1.1CV ĥD1.5CV ĥD1.8CV ĥD4CV

µ = 0 σ = 1

50 0.1350 0.1240 0.1640 0.0874 0.3790 0.3650 0.2710 0.328

200 0.0785 0.0829 0.1050 0.0578 0.1620 0.1390 0.0177 0.145

700 0.0396 0.0717 0.0572 0.0436 0.0509 0.0531 0.0486 0.052

µ = 0 σ = 0.5

50 0.1370 0.1510 0.1670 0.1510 0.4560 0.179 0.166 0.342

200 0.0655 0.1360 0.0882 0.1010 0.2490 0.135 0.150 0.264

700 0.0559 0.0729 0.0537 0.0818 0.0104 0.299 0.300 0.188

µ = 0 σ = 0.1

50 0.772 0.2530 0.3000 0.3990 0.4410 0.4980 0.562 0.463

200 0.674 0.1210 0.1250 0.1520 0.2070 0.2870 0.378 0.244

700 0.679 0.0772 0.0506 0.0726 0.585 0.0503 0.171 0.015

µ = 1 σ = 1

50 0.1430 0.1040 0.1630 0.0748 0.398 0.2760 0.2610 0.387

200 0.0774 0.0800 0.0931 0.0501 0.184 0.0249 0.0124 0.171

700 0.0483 0.0626 0.0600 0.0361 0.037 0.0426 0.0416 0.0466

µ = 1 σ = 0.5

50 0.172 0.1930 0.1400 0.2260 0.4560 0.3580 0.2420 0.584

200 0.236 0.1530 0.0899 0.1460 0.121 0.0965 0.0668 0.415

700 0.285 0.0989 0.0506 0.0794 0.169 0.2010 0.4100 0.223

µ = 1 σ = .1

50 3.67 0.2620 1.380 0.3980 0.544 0.507 0.586 0.589

200 4.29 0.1250 0.986 0.1720 0.353 0.300 0.413 0.416

700 4.58 0.0838 0.652 0.0878 0.137 0.068 0.218 0.221

µ = 5 σ = 1

50 1.14 0.1450 0.2390 0.2430 0.4580 0.2840 0.570 0.546

200 1.23 0.0815 0.1210 0.0899 0.2530 0.0147 0.409 0.376

700 1.29 0.0686 0.0745 0.0540 0.0203 0.2970 0.224 0.179

µ = 5 σ = 0.5

50 2.40 0.1860 0.600 0.2510 0.4340 0.2660 0.3380 0.6033

200 2.68 0.1180 0.444 0.1440 0.2020 0.0315 0.0673 0.440

700 2.80 0.0743 0.296 0.0804 0.0597 0.3800 0.2390 0.237

µ = 5 σ = 0.1

50 15.7 0.884 5.95 0.3980 0.4810 0.549 0.433 0.484

200 17.1 1.021 4.51 0.1570 0.2630 0.359 0.194 0.267

700 17.7 1.104 3.34 0.0656 0.0178 0.146 0.074 0.0573
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