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The choice of bandwidth is crucial to the kernel density estimation KDE. Various bandwidth selection methods for KDE least squares cross-validation LS CV and Kullback-Leibler cross-validation are proposed. We propose a method to select the optimal bandwidth for the KDE. The idea behind this method is to generalize the LS CV method, using the measure of β-divergence, and to see the importance of improving our method, we will compares these D β ( f h , f ) bandwidth selector with a normal reference(NR), the last squares cross-validation(LS CV), the Sheather and Jones (S J) method, and the generalized LS CV(LS CV g ) bandwidth selector, on simulated data. The use of the various practical bandwidth selectors is illustrated on a real data example.

Introduction

The problem of choosing the bandwidth (window width or smoothing parameter) h is importantly in statistical estimation of the kernel density estimation. A vast amount of literatures has been devoted in choosing practical optimal bandwidth for techniques built on kernel estimation et some comparative studies have been made to these methods.

Representative surveys of bandwidth selection techniques can be found in Bowman [START_REF] Bowman | A comparative study of some kernel-based nonparametric density estimators[END_REF], Jones et al. [START_REF] Jones | A brief survey of bandwidth selection for density estimation[END_REF], Loader [START_REF] Loader | Bandwidth selection: classical or plug-in??[END_REF],

Peter Hall [START_REF] Hall | Large sampie optimality of least squares cross-validation in density estirnation[END_REF] Scott [START_REF] Scott | Multivariate density estimation theory, practice, and visualization[END_REF],and Wand and Jones [START_REF] Wand | Kernel Smoothing[END_REF].

Least-squares cross-validation (LS CV) is Among the earliest bandwidth selectors, this method was suggested by Rudemo [START_REF] Rudemo | Empirical choice of histograms and kernel density estimators[END_REF] and Bowman [START_REF] Bowman | An alternative method of cross-validation for the smoothing of density estimates[END_REF], in the 80s ,it has been the method of reference, but in the early 90s, studies have shown that other methods performs better from the bias points of view and much better in reducing the variance. See Park and Turlach [START_REF] Park | Practical performance of several data driven bandwidth selectors[END_REF] for a detailed description.

Interesting comparative studies have been published. Bowman [START_REF] Bowman | An alternative method of cross-validation for the smoothing of density estimates[END_REF] compared two methods for selecting bandwidth,

The first is the Kullback-Leibler Cross-Validation and the second is that of Integrated Squared Error Cross-Validation.

Scott and Terrell [START_REF] Scott | Biased and unbiased cross-validation in density estimation[END_REF] compared the two methods by theoretical calculation of the noise in the cross-validation function and corresponding cross-validated smoothing parameters, by Monte Carlo simulation, and by example.

Sheather and Jones [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF] set up a plug-in type of three-step procedure. They choose to estimate R( f ) (the term unknown in AMIS E).

Jin Zhang [START_REF] Zhang | Generalized least squares cross-validation in kernel density estimation[END_REF]) have proposed a generalization the classical least squares cross-validation (LS CV) selector for its variability and under smoothing, He did a comparison of bandwidths for finite sample behavior.

For a more complete treatment, from a historical viewpoint, with complete references, and detailed discussion of variations that have been suggested, see Jones et al. [START_REF] Jones | On a class of kernel density estimate bandwidth selectors[END_REF] Quick access to implementation of most of the methods discussed here has been provided by park and Jones et al. [START_REF] Jones | A brief survey of bandwidth selection for density estimation[END_REF] .

The main purpose of this paper is to investigate the optimal bandwidth h β for minimizing criterion D β ( f n , f ) error.

We will see that D β ( f n , f ) generalize the Integrated Square Error (IS E) and Kullback-Leiber divergence (KL).

After having introduced the D β ( f n , f ) selection method we study the finite sample performances of various bandwidth selectors via a simulation study. We compare five procedures: the normal reference (NR) method, the last squares cross-validation (LS CV), the Sheather and Jones (S J) method, the generalized LS CV(LS CV g ) and criterion D β ( f n , f ) error.

This paper is organized as follows. Section 2 describes the classical methods for bandwidth selections. Section 3 presents the new method proposed for bandwidth selector, which generalizes and provides improved for the least squares cross-validation (LS CV). In Section 4 we present some simulation results for estimation and comparison of the various methods. Section 5 applies the methods to real data. Finally, the conclusion and perspective is presented in Section 6.

Classical Methods for Bandwidth Selection

Given an n-sample X 1 , X 2 , ..., X n of independent random variables and same unknown density f . Consider the Parzen-Rosenblatt kernel estimator of the density f given by:

f h (x) = 1 nh n i=1 K x -X i h (1) 
h > 0 where is the bandwidth and K. a density function defined on R called kernel.

To estimate f , choose the kernel K and h parameter. If the choice of the kernel is not a problem, it is not the case for the choice of the width of the window h which essentially depends on the size n of the sample. There are two methods of families: the family of cross-validation methods and the family of plug-in methods.

The decision of an optimal choice for the bandwidth suppose the specification of an error criterion that can be optimized. The criterion is to minimize the Mean Integrated Square Error (MIS E). In this case, [E. Parzen [START_REF] Parzen | On estimation of a probability density function and mode[END_REF].] there is obtained

MIS E( f h (x)) = E f h (x) -f (x) 2 dx = h 4 4 µ 2 (K) 2 f (x) 2 dx + R(K) nh + O h 5 + 1 n (2) 
where µ 2 (K) = x 2 K(x)dx is the variance of kernel K and R(g) = g 2 (x)dx for any function g.

The Asymptotics Mean Integrated Square Error (AMISE) is then of the form:

AMIS E( f h ) = h 4 4 µ 2 (K) 2 R( f ) + R(K) nh (3) 
To find the closed form expression for h AMIS E , begin by differentiating (3) to obtain

∂AMIS E ∂h = -(nh 2 ) -1 R(K) + h 3 µ 2 (K) 2 R( f )
Setting this equation equal to 0 and solving for h produces

h AMIS E = R(K) nµ 2 (K) 2 R( f ) 1/5 (4)
It is found that the optimal width of h AMIS E window depends on the unknown density f through the parameter R( f ), which has to be estimated before using h AMIS E .

A very natural way to get around the problem of not knowing f is to use a standard family of distributions to assign a value of the term R( f ) in expression (4). For example, assume that a density f belongs to the Gaussian family with mean µ and variance σ, then

R( f ) = f (x) 2 dx = σ -5 φ (x) 2 dx = 3 8 π -1 2σ -5 ≈ 0.212σ -5 (5) 
where φ(x) is the standard normal density. If one uses a Gaussian kernel, then

h NR = (4π) -1/10 3 8 π -1/2 -1/5 σn -1/5 = 4 3 1/5 σn -1/5 (6) 
If we want to make this estimate more insensitive to outliers, we have to use a more robust estimate for the scale parameter of the distribution. Let R be the sample interquartile, then one possible choice for h is

h NR = 1.06min σ, R (Φ(3/4)-Φ(1/4)) n -1/5 = 1.06min σ, R 1.349 n -1/5 ( 7 
)
where Φ is the standard normal distribution function. To see more detail (e.g., Silverman, [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]; Härdle [START_REF] Hrdle | Smoothing techniques with implementation in S[END_REF]; [START_REF] Scott | Multivariate density estimation theory, practice, and visualization[END_REF].

The LS CV, sometimes called an unbiased cross-validation was proposed by Rudemo [START_REF] Rudemo | Empirical choice of histograms and kernel density estimators[END_REF] and Bowman [START_REF] Bowman | An alternative method of cross-validation for the smoothing of density estimates[END_REF]. The criterion is to choose the bandwidth that minimizes an estimator of Integrated Square Error (IS E):

IS E = f 2 h (x)dx -2 f h (x) f (x)dx + f 2 (x)dx (8) 
The ideal choice of bandwidth is the one which minimizes:

L(h) = IS E - f 2 (x)dx = f 2 h (x)dx -2 f h (x) f (x)dx (9) 
The principle of the least squares cross-validation method is to find an estimate of L(h) from the data and minimize it over h. Consider the estimator

LS CV(h) = f 2 h (x)dx - 2 n n i=1 f h(i) (X i ) (10) 
with

f 2 h (x)dx = 1 n 2 h n i=1 n j=1 (k * k) X i -X j h and f h(i) (X i ) = 1 h(n -1) n j i K X i -X j h (11) 
where * represents the convolution.

Further discussion on this method can be found in Bowman [START_REF] Bowman | A comparative study of some kernel-based nonparametric density estimators[END_REF], and Hall and Marron [START_REF] Hall | Local minima in cross-validation functions[END_REF]. Under mild conditions, Hall [START_REF] Hall | Large sampie optimality of least squares cross-validation in density estirnation[END_REF] and Stone [START_REF] Stone | An asymptotically optimal window selection rule for kernel density esti-mates[END_REF] proved that h LS CV is asymptotically the best in the sense of minimizing MIS E( f h ).

Sheather and Jones (1991) introduced a reliable bandwidth selector h S J , which is a plug-in estimator of h AMIS E , the idea of Sheather and Jones is to estimate the quantity R( f ) by an estimator of E f (4) (X) , by remarking that

R( f ) = E f (4) (X) = f (4) (x) f (x)dx.
Jin Zhang [START_REF] Zhang | Generalized least squares cross-validation in kernel density estimation[END_REF] introduced a generalization of classical least squares cross-validation(LS CV), his method provides a significant improvement for (LS CV).

Used it as the case that K is the Gaussian kernel φ. According to Equation 10,

LS CV(h) = φ √ 2h (0) n - 2 n(n -1) i< j 2φ h (X i -X j ) + 1 n -1 φ √ 2h (X i -X j ) (12) 
Jin Zhang [START_REF] Zhang | Generalized least squares cross-validation in kernel density estimation[END_REF] is generalized LS CV by:

LS CV g (h) = φ √ 2h (0) n + 2 n(n -1) i< j 2 g(g -2) φ √ gh (X i -X j ) + 1 n - 1 g -2 φ √ 2h (X i -X j ) (13) 
g with a positive number.

The generalized LS CV bandwidth selector h LS CV g is defined as the minimize of LS CV g (h) over h

β-Divergence for Bandwidth Selection

The basic Beta-divergence was introduced by Basu et al. [START_REF] Basu | Robust and efficient estimation by minimising a density power divergence[END_REF] and Minami and Eguchi [START_REF] Minami | Robust blind source separation by Beta-divergence[END_REF].

The β-Divergence measure for bandwidth selection will be introduced in this section to improve the behavior of the choice for bandwidth.

D β ( f h , f (x)) = 1 β S f β h (x)dx - 1 β -1 S f β-1 h (x) f (x)dx + 1 β(β -1) S f β (x)dx in the case β = 2, 2D 2 ( f h , f (x)) = IS E( f h ) = S ( f h (x) -f (x)) 2 dx
So we can say that IS E is a special case of D β . Note, the optimal bandwidth that minimizes D β ( f n,h , f (x)) is equivalent to the bandwidth that minimizes the expected value of the quantity:

D β (h) = D β ( f h , f (x)) - 1 β(β -1) S f β (x)dx = 1 β S f β h (x)dx - 1 β -1 S f β-1 h (x) f (x)dx
The principle of the least squares cross-validation method is to find an estimate of D β (h) from the data and minimize it over h. Consider the estimator,

D β CV(h) = 1 β S f β h (x)dx - 1 n(β -1) n i=1 f β-1 h(i) (X i ) (14) with f β-1 h(i) (X i ) is defined in (11)
When we want to implement this technique on the computer, the computation of minimized D β CV(h) for a of bandwidths h may be based on the following algorithm:

Algorithm 1 algorithm for minimize D β CV(h)

1: for i = 1 to n do 2: c 1 = 1 nh β-1
3:

c 2 = 1 βhn β-1
4: 

c 3 = 1 (β-1)(n-1) β-
S um1 = S um1 + K X i -X j h 9: S um = c 2 * (S um1) β -c 3 * (S um1 -K (0)) β-1 10: end forD β CV(h) = c 1 * S um 11: end for h D β CV = arg min h D β CV(h)
Theorem 1. Let the following conditions on f be satisfied:

(F1) f is compactly supported on I.

(F2) f is four times continuously differentiable on I.

(F3) lim x-→+ inf I f (i) (x) = lim x-→-sup I f (i) (x) , 1 ≤ j ≤ 3. (F4) I f (2) (x) 2 f (x) β-2 dx < ∞.
As n -→ ∞, the window width h ED β that minimizes the mean β-divergence between a kernel estimator f h and density f satisfies

h β = h ED β =          K(t) 2 dt I f (x) β-1 dx t 2 K(t)dt 2 I f (x) β-2 f (2) (x) 2 dx          1/5 n -1/5 ( 15 
)
in the particular case

• β = 2 this case the Mean, integrated square error

h 2 = h MIS E( f h ) =          K(t) 2 dt t 2 K(t)dt 2 I f (2) (x) 2 dx          1/5
n -1/5 .

• β = 1 this case the Kullback-Libler,

h 1 = h E(KL) =          K(t) 2 dt I dx t 2 K(t)dt 2 I f (x) -1 f (2) (x) 2 dx          1/5 n -1/5
Theorem1 is derived from the following proposition by assuming (F4) and by balancing the first two terms in [START_REF] Parzen | On estimation of a probability density function and mode[END_REF].

Proposition 1. Under (F1) -(F3) we have ED β ( f h , f ) = h 4 8 I t 2 K(t)dt 2 f (x) β-2 f (2) (x) 2 dx + 1 2nh I (K(t)) 2 dt f (x) β-1 dx + O(n -1 + h 6 ) ( 16 
)
Choosing β: the β value that minimizes equation ( 16)

∂ED β ( f h , f ) ∂β = (β -2) h 4 8 I t 2 K(t)dt 2 f (x) β-3 f (2) (x) 2 dx + β -1 2nh I (K(t)) 2 dt f (x) β-2 dx + O(n -1 + h 6 ) we pose ∆ 1 = h 4 8 I t 2 K(t)dt 2 f (x) β-3 f (2) (x) 2 dx and ∆ 2 = 1 2nh I (K(t)) 2 dt f (x) β-2 dx ∂ED β ( f h , f ) ∂β = (β -2)∆ 1 + (β -1)∆ 2 = 0 β = 1 + ∆ 1 ∆ 1 + ∆ 2
we know that ∆ 1 ≥ 0 and ∆ 2 ≥ 0 This implies that:

1 < β < 2 4. Proof Proof. Proposition 1
With a random variable ξ = O p (1) whose expectation is 0 and variance 1, we can write f h (x) as (see [START_REF] Kanazawa | Hellinger distance and Kullback-Leibler loss for the kernel density estimator[END_REF])

f h (x) = f (x)          1 + h 2 2 f (2) (x) f (x) I t 2 K(t)dt + h 4 24 
f (4) (x) f (x) I t 4 K(t)dt + O(h 6 ) +        I K(t) 2 dt nh f (x)        1/2 ξ + O p (n -1/2 )          , (17) 
Where the O(h 6 ) terms depend upon x.

Using (1 + z) β = 1 + βz + β(β-1) 2 z 2 + O(z 3 ) f β h (x) = f β (x)[1 + β 1 2 h 2 f (2) (x) f (x) I t 2 K(t)dt + 1 24 h 4 f (4) (x) f (x) I t 4 K(t)dt + I K(t) 2 dt nh f (x) 1/2 ξ + β(β-1) 2 1 4 h 4 f (2) (x) 2 f (x) 2 I t 2 K(t)dt 2 + I K(t) 2 dt nh f (x) ξ 2 + O(h 6 ) + O p (n -1/2 )] ( 18 
)
f β-1 h (x) = f β-1 (x)[1 + (β -1) 1 2 h 2 f (2) (x) f (x) I t 2 K(t)dt + 1 24 h 4 f (4) (x) f (x) I t 4 K(t)dt + I K(t) 2 dt nh f (x) 1/2 ξ + (β-1)(β-2) 2 1 4 h 4 f (2) (x) 2 f (x) 2 I t 2 K(t)dt 2 + I K(t) 2 dt nh f (x) ξ 2 + O(h 6 ) + O p (n -1/2 )] (19) 
D β ( f h , f ) = f (x) β 1 β -1 β-1 + β-1 2 -β-2 2 1 4 h 4 f (2) (x) 2 f (x) 2 I t 2 K(t)dt 2 + I K(t) 2 dt nh f (x) ξ 2 + O(h 2 ) + O p (n -1/2 ) dx + 1 β(β-1) f (x) b dx (20) = 1 2 f (x) β 1 4 h 4 f (2) (x) 2 f (x) 2 I t 2 K(t)dt 2 + I K(t) 2 dt nh f (x) ξ 2 + O(h 2 ) + O p (n -1/2 ) dx (21) 
ED β ( f h , f ) = 1 2 E f (x) β 1 4 h 4 f (2) (x) 2 f (x) 2 I t 2 K(t)dt 2 + I K(t) 2 dt nh f (x) ξ 2 + O(h 2 ) + O p (n -1/2 ) dx = h 4 8 I t 2 K(t)dt 2 f (x) β-2 f (2) (x) 2 dx + 1 2nh I (K(t)) 2 dt f (x) β-1 E(ξ 2 )dx + O(n -1 + h 6 ) we know that E(ξ 2 ) = 1 ED β ( f h , f ) = h 4 8 I t 2 K(t)dt 2 f (x) β-2 f (2) (x) 2 dx + 1 2nh I (K(t)) 2 dt f (x) β-1 dx + O(n -1 + h 6 ) (22) 
as required.

Simulation

We approximate the true density f by a normal mixture.

f (x) = J j=1 ω j φ σ j (x -µ j ) ( 23 
)
where J is a positive integer. ω 1 , ..., ω J is a set of positive numbers that sum to one, and for each j, -∞ < µ j < ∞ and σ j > 0. The family of normal mixture densities used by (Marron and Wand [START_REF] Marron | Exact mean integrated squared error[END_REF]) is extremely rich, and, in fact, any density can be approximated arbitrarily well by a member of this family.

for f given by Equation 23, the MIS E in Equation ( 2) of the kernel density estimator in Equation ( 1) have explicit forms. In fact,

MIS E( f h (x)) = (2π 1/2 nh) -1 + w T {(1 -n -1 )Ω 2 -2Ω 1 + Ω 0 }w (24) 
(Marron and Wand [START_REF] Marron | Exact mean integrated squared error[END_REF]) where w = (ω 1 , ..., ω J ) and Ω a is the J × J matrix having ( j × j) entry equal to

φ ah 2 +σ 2 j +σ 2 j (µ j -µ j )
.

We consider the normal mixture in the case of J = 2 and ω 1 = ω 2 = 0.5, similar similation were performed by Jin

Zhang [START_REF] Zhang | Generalized least squares cross-validation in kernel density estimation[END_REF]. Therefore the true density is:

f (x) = 0.5φ(x) + 0.5φ σ (x -µ) (25) 
Based on 50, 200, 700 draws from f in the case where µ = 0, 1, 5 and σ = 1, 0.5, 0.1. Table 1 give the exhibits the simulated relative efficiency RE h = MIS E f h MIS E /MIS E f h of the kernel estimator, using bandwidths h NR , h LS CV , h S J , h LS CV 4 and h D β CV (with β = 1.1, 1.5, 4 and 4), it is lower wherever than 1, because the optimal bandwidth

h MIS E minimize MIS E. Each bandwidth, mean E h and mean relation error E| h/h MIS E -1| are obtained, these values are given by respectively Tables 2 and3.

1. It can be seen that when the density f is not very far from normal, such as that cases of (µ, σ) = (0, 1), (0, 0.5), [START_REF] Basu | Robust and efficient estimation by minimising a density power divergence[END_REF][START_REF] Basu | Robust and efficient estimation by minimising a density power divergence[END_REF] and (1, 0.5), bandwidth which are obtained by using NR criterion performs well. In other cases it usually has the smallest RE( h) and largest E( h),tending to over smooth its kernel density estimate the most.

2. From these tables it can be seen that bandwidth h LS CV which are obtained by using LS CV performs poorly if the true density is close to normal usually having the smallest RE( h) and E( h), then the kernel density estimator is undersmoothed. But in the contrary case, h LS CV can perform very well, and in many situations, in Table 2 it is seen that E( h LS CV ) is close to the optimal h MIS E , but the corresponding E( h LS CV / h MIS E -1) is large, which means that the bias of h LS CV is small but its variation is large.

3. The plug-in bandwidth h S J seen to be the best existing bandwidth selectors (as commented by Venables and Ripley [START_REF] Venables | Modern applied statistics with S 4th Edition[END_REF]). h S J among the best bandwidth selectors in most situations. However it behaves very poorly for small σ (the density curve is sharp), oversmoothing its kernel density curve by overestimating h MIS E .

4. As commented by J. Zhang [START_REF] Zhang | Generalized least squares cross-validation in kernel density estimation[END_REF], The generalized LS CV bandwidth h LS CV 4 seems to be bandwidth selectors that is always among the best for having large RE( h) and small E| h/h MIS E -1|. 

Examples

In this Section, we will provided two examples to evaluate performance of our method compared to several classical bandwidth selection methods for Gaussian kernel density. The two data sets in the examples have been analyzed by many authors ( Silverman [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] and J. Zhang [START_REF] Zhang | Generalized least squares cross-validation in kernel density estimation[END_REF]) to illustrate various kinds of methods in density estimation.

The first example comprises the lengths of 86 spells of psychiatric treatment undergone by control patients used as controls in a study of suicide risks reported by Copas and Fryer [START_REF] Copas | Density estimation and suicide risks in psychiatric treatment[END_REF]; Silverman [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. It seems that the density for the length of treatment is a unimodal curve heavily skewed to the right. it seems clear than the bandwidth h NR oversmooth her kernel density curve and underestimate the peak near 20.

The bandwidths were obtained by using the methods of S J, LS CV 4 and D 1.1 CV, are better because h S J , h LS CV 4 and h D 1.1 CV well balance the two situations and seem to capture the true shape of the data. In this example, h LS CV 4 = 27.57 and h D 1.1 CV = 24.25 are closer to h S J = 23.16.

The second comprises the lengths in minutes of 107 eruption lengths in minutes for the Old Faithful geyser in Yellowstone National Park, USA (source: Weisberg [START_REF] Weisberg | Applied linear regression[END_REF]; Silverman [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]).

Figure 2b plot the data points and the kernel density estimates for Old Faithful geyser data, we using bandwidths

h NR = 0.4331, h S J = 0.2250, h LS CV = 0.1030, h LS CV 4 = 0.1740 and h D 1.1 CV = 0.1480.
An important point to note that the density curve for eruption length is similar to bimodal normal density (normal mixture). As commented by Zing, the bandwidthS h NR is heavily over smoothes its kernel density curve, underestimating the two peaks of the curve but overestimating the valley between them. On the other hand, h LS CV seems to undersmooth the curve too much, overestimating the two peaks but underestimating for the valley.

However h S J , h LS CV 4 and h D 1.1 CV , especially the later, are proper bandwidths for their density estimates to be able to capture the feature of the true density curve.

Conclusions

The kernel estimator is the most used in density estimation. The main issue is bandwidth selection, which is a hot topic and is still frustrating statisticians. A various bandwidth selection strategies have been proposed such as normal reference h NR , unbiased cross-validation h LS CV , cross validation, Sheather-Jones method h S J and and most recently Zing proposed a bandwidth h LS CV g .

The normal reference bandwidth h NR method is limited the practical use, since they are restricted to situations where a pre-specified family of densities is correctly selected. The popularity of the LS CV method is due to the intuitive motivation and the fact that h LS CV is asymptotically optimal under low conditions. Bandwidth h S J seems to be the best existing bandwidth selector. Unfortunately, it also tends to oversmooth the density estimate when the true density curve is sharp.

We have attempted to evaluate choice the optimal bandwidth h LS CV , using β-divergence. Compared to traditional bandwidth selection methods designed for kernel density estimation, our proposed D β CV bandwidth selection method is always one of the best for having large RE h and small E| h/h MIS E -1|. Simulation studies showed that our proposed novel optimal bandwidth method designed for kernel density estimation significantly improves the classical h LS CV for its variability and undersmoothing, adapts to different situations, and outperforms other bandwidths. 

1

 1 

  for j = 1 to n do 8:

5 .Figure 2
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  Figure 2a plot the data points and the kernel density estimates for the suicide study data, when we using commonly used bandwidths h NR = 35.78, h S J = 23.16, h LS CV = 15.69, h LS CV 4 = 22.57 and h D 1.1 CV = 24.25.

Table 1 :

 1 RE h for normal mixture f (x) = 0.5φ(x) + 0.5φ σ (x -µ) LS CV 4 h D 1.1 CV h D 1.5 CV h D 1.8 CV h D 4 CV

	n	h NR	h LS CV	h S J h µ = 0 σ = 1				
	50	0.877	0.633	0.798	0.909	0.768	0.716	0.694	0.770
		0.928	0.730	0.867	0.944	0.978	0.944	0.924	0.833
		0.974	0.767	0.942	0.956	0.978	0.981	0.973	0.959
				µ = 0	σ = 0.5				
	50	0899	0.633	0.850	0.776	0.600	0.900	0.917	0.502
		0.948	0.644	0.895	0.908	0.884	0.987	0.949	0.709
		0.952	0.767	0.939	0.914	0.980	0.821	0.816	0.967
				µ = 0	σ = 0.1				
	50	0.562	0.781	0.779	0.748	0.700	0.618	0.573	0.670
		0.550	0.810	0.902	0.891	0.930	0.890	0.747	0.834
		0.535	0.872	0.966	0.957	0.993	0.977	0.963	0.920
				µ = 1	σ = 1				
	50	0.871	0.585	0.791	0.904	0.665	0.830	0.855	0.680
		0.955	0.699	0.905	0.949	0.928	0.989	0.992	0.892
		0.977	0.763	0.943	0.960	0.981	0.973	0.977	0.975
				µ = 1	σ = 0.5				
	50	0.855	0.562	0.856	0.806	0.749	0.751	0.906	0.439
		0.867	0.760	0.929	0.874	0.965	0.975	0.989	0.690
		0.823	0.831	0.955	0.922	0.942	0.923	0.720	0.902
				µ = 1	σ = .1				
	50	0.2370	0.781	0.439	0.755	0.544	0.606	0.531	0.528
		0.1010	0.810	0.419	0.904	0.756	0.834	0.717	0.716
		0.0503	0.912	0.557	0.949	0.968	0.980	0.921	0.899
				µ = 5	σ = 1				
	50	0.411	0.741	0.875	0.864	0.618	0.883	0.490	0.528
		0.285	0.861	0.947	0.948	0.852	0.981	0.688	0.716
		0.215	0.876	0.972	0.967	0.997	0.870	0.914	0.979
				µ = 5	σ = 0.5				
	50	0.2390	0.707	0.696	0.871	0.657	0.871	0.806	0.460
		0.1330	0.760	0.747	0.923	0.907	0.986	0.983	0.726
		0.0804	0.842	0.846	0.957	0.990	0.800	0.912	0.858
				µ = 5	σ = 0.1				
	50	0.1360	0.588	0.1760	0.791	0.630	0.563	0.693	0.640
		0.0523	0.458	0.0946	0.905	0.878	0.774	0.940	0.858
		0.0205	0.341	0.0665	0.969	0.968	0.955	0.989	0.980

Table 2 :

 2 E h for normal mixture f (x) = 0.5φ(x) + 0.5φ σ (x -µ) LS CV 4 h D 1.1 CV h D 1.5 CV h D 1.8 CV h D 4 CV h MIS E

	n	h NR	h LS CV	h S J	h µ = 0	σ = 1				
	50	0.455	0.480	0.452	0.516	0.323	0.330	0.379	0.360	0.520
		0.354	0.373	0.349	0.385	0.321	0.328	0.376	0.348	0.383
		0.283	0.288	0.282	0.301	0.308	0.309	0.307	0.308	0.293
					µ = 0	σ = 0.5				
	50	0.318	0.362	0.306	0.382	0.223	0.286	0.286	0.174	0.343
		0.250	0.262	0.231	0.266	0.193	0.280	0.285	0.168	0.248
		0.197	0.191	0.184	0.200	0.186	0.244	0.245	0.166	0.188
					µ = 0	σ = 0.1				
	50	0.1320	0.0897	0.0915	0.1040	0.510	0.0409	0.0356	0.0403	0.0752
		0.0887	0.0557	0.0572	0.0597	0.485	0.0377	0.0331	0.0400	0.0530
		0.0668	0.0406	0.0406	0.0422	0.421	0.0370	0.0329	0.0403	0.0398
					µ = 1	σ = 1				
	50	0.510	0.569	0.511	0.573	0.429	0.426	0.435	0.360	0.373
		0.403	0.418	0.403	0.440	0.395	0.423	0.429	0.359	0.265
		0.317	0.329	0.315	0.337	0.354	0.345	0.346	0.341	0.199
					µ = 1	σ = 0.5				
	50	0.409	0.395	0.366	0.446	0.326	0.342	0.283	0.155	0.373
		0.328	0.278	0.270	0.296	0.280	0.282	0.283	0.152	0.265
		0.256	0.197	0.203	0.212	0.233	0.239	0.281	0.151	0.199
					µ = 1	σ = .1				
	50	0.351	0.0877	0.1780	0.1030	0.0422	0.0451	0.0523	0.0413	0.0752
		0.280	0.0553	0.1050	0.0614	0.0380	0.0380	0.0401	0.0357	0.0530
		0.222	0.0408	0.0657	0.0426	0.0343	0.0314	0.0311	0.0309	0.0398
					µ = 5	σ = 1				
	50	1.300	0.636	0.753	0.742	0.420	0.475	0.315	0.308	0.608
		0.986	0.456	0.495	0.472	0.330	0.470	0.285	0.276	0.441
		0.770	0.342	0.361	0.261	0.275	0.336			
					µ = 5	σ = 0.5				
	50	1.260	0.407	0.590	0.448	0.310	0.295	0.251	0.217	0.369
		0.963	0.274	0.378	0.296	0.210	0.286	0.250	0.171	0.262
		0.750	0.201	0.255	0.210	0.209	0.270	0.244	0.146	0.197
					µ = 5	σ = 0.1				
	50	1.260	0.0871	0.523	0.1040	0.045	0.0415	0.0476	0.0497	0.0752
		0.956	0.0560	0.292	0.0603	0.040	0.0385	0.0427	0.0395	0.0530
		0.745	0.0406	0.172	0.0420	0.039	0.0339	0.0426	0.0387	0.0398

Table 3 :

 3 E| h/h MIS E -1| for normal mixture f (x) = 0.5φ(x) + 0.5φ σ (x -µ) LS CV 4 h D 1.1 CV h D 1.5 CV h D 1.8 CV h D 4 CV

	n	h NR	h LS CV	h S J h µ = 0 σ = 1				
	50	0.1350	0.1240	0.1640	0.0874	0.3790	0.3650	0.2710	0.328
		0.0785	0.0829	0.1050	0.0578	0.1620	0.1390	0.0177	0.145
		0.0396	0.0717	0.0572	0.0436	0.0509	0.0531	0.0486	0.052
				µ = 0	σ = 0.5				
	50	0.1370	0.1510	0.1670	0.1510	0.4560	0.179	0.166	0.342
		0.0655	0.1360	0.0882	0.1010	0.2490	0.135	0.150	0.264
		0.0559	0.0729	0.0537	0.0818	0.0104	0.299	0.300	0.188
				µ = 0	σ = 0.1				
	50	0.772	0.2530	0.3000	0.3990	0.4410	0.4980	0.562	0.463
		0.674	0.1210	0.1250	0.1520	0.2070	0.2870	0.378	0.244
		0.679	0.0772	0.0506	0.0726	0.585	0.0503	0.171	0.015
				µ = 1	σ = 1				
	50	0.1430	0.1040	0.1630	0.0748	0.398	0.2760	0.2610	0.387
		0.0774	0.0800	0.0931	0.0501	0.184	0.0249	0.0124	0.171
		0.0483	0.0626	0.0600	0.0361	0.037	0.0426	0.0416	0.0466
				µ = 1	σ = 0.5				
	50	0.172	0.1930	0.1400	0.2260	0.4560	0.3580	0.2420	0.584
		0.236	0.1530	0.0899	0.1460	0.121	0.0965	0.0668	0.415
		0.285	0.0989	0.0506	0.0794	0.169	0.2010	0.4100	0.223
				µ = 1	σ = .1				
	50	3.67	0.2620	1.380	0.3980	0.544	0.507	0.586	0.589
		4.29	0.1250	0.986	0.1720	0.353	0.300	0.413	0.416
		4.58	0.0838	0.652	0.0878	0.137	0.068	0.218	0.221
				µ = 5	σ = 1				
	50	1.14	0.1450	0.2390	0.2430	0.4580	0.2840	0.570	0.546
		1.23	0.0815	0.1210	0.0899	0.2530	0.0147	0.409	0.376
		1.29	0.0686	0.0745	0.0540	0.0203	0.2970	0.224	0.179
				µ = 5	σ = 0.5				
	50	2.40	0.1860	0.600	0.2510	0.4340	0.2660	0.3380	0.6033
		2.68	0.1180	0.444	0.1440	0.2020	0.0315	0.0673	0.440
		2.80	0.0743	0.296	0.0804	0.0597	0.3800	0.2390	0.237
				µ = 5	σ = 0.1				
	50	15.7	0.884	5.95	0.3980	0.4810	0.549	0.433	0.484
		17.1	1.021	4.51	0.1570	0.2630	0.359	0.194	0.267
		17.7	1.104	3.34	0.0656	0.0178	0.146	0.074	0.0573