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Feedback Autonomic Provisioning for
Guaranteeing Performance in MapReduce

Systems
M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, B. Robu

Abstract—Companies have a fast growing amounts of data to process and store, a data explosion is happening next to us. Currently
one of the most common approaches to treat these vast data quantities are based on the MapReduce parallel programming paradigm.
While its use is widespread in the industry, ensuring performance constraints, while at the same time minimizing costs, still provides
considerable challenges. We propose a coarse grained control theoretical approach, based on techniques that have already proved
their usefulness in the control community. We introduce the first algorithm to create dynamic models for Big Data MapReduce systems,
running a concurrent workload. Furthermore we identify two important control use cases: relaxed performance - minimal resource
and strict performance. For the first case we develop two feedback control mechanism. A classical feedback controller and an even-
based feedback, that minimises the number of cluster reconfigurations as well. Moreover, to address strict performance requirements a
feedforward predictive controller that efficiently suppresses the effects of large workload size variations is developed. All the controllers
are validated online in a benchmark running in a real 60 node MapReduce cluster, using a data intensive Business Intelligence
workload. Our experiments demonstrate the success of the control strategies employed in assuring service time constraints.

Index Terms—Control for computing systems, event based control, cloud computing, feedforward control, Big Data
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1 INTRODUCTION

1.1 Background and challenges

We are at the dawn of a data and computing revolution.
The amount of raw data produced by everything from
our mobile phones, tablets, computers to our smart
watches is increasing exponentially. As a result compa-
nies face novel and growing challenges in data storage
and analysis. The sheer amount of data available is
asking for a shift of perspective from the traditional
database approaches to platforms capable of handling
petabytes of unstructured information available for tasks
such personalized advertising, advanced data mining or
classification.

One of the most popular of such platforms is the
MapReduce framework which is one of the currently
most utilised programming paradigms in use for paral-
lel, distributed computations over large amounts of data.
MapReduce is backed by the largest BigData industry
leaders. For example, Google has more than 100 thou-
sand MapReduce jobs executed daily [1] , Yahoo has
more the 40 thousand computers running MapReduce
jobs, Linkedin evaluates more then 120 billion relation-
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ships per day [2] using MapReduce while, Facebooks
largest Hadoop MapReduce contains more than a 100
petabytes of data.

Nevertheless, while current commercial MapReduce
services such as Amazon EMR [3] and Microsoft HDIn-
sight [4] offer solutions for quick and cost-effective Big
Data processing they don’t provide any guarantees in
terms of application performance. Furthermore, while
some elasticity mechanism are given, they are not com-
pletely autonomous and several important scaling deci-
sions, such as selecting the different scaling thresholds,
are left up to the service user.

Before such autonomous control solutions can be syn-
thesised, performance models need to built that can
capture the dynamic behaviour of a MapReduce system.
These models can constitute the basis upon which an au-
tomatic controller can decide when and how to optimally
intervene in the system in order to keep the desired
Quality of Service (QoS). This QoS is formalised in the
cloud in the form of a Service Level Agreement (SLA),
which is a contract negotiated between the clients and
their service provider. An SLA can consists of multiple
Service Level Objectives (SLOs), such as the maximum
service time to be guaranteed by the provider for exam-
ple. SLAs are a relatively a fresh are of research in cloud
systems, for more details see [5], [6], [7].

Although current Big Data MapReduce solutions
do not provide guarantees in terms of performance
and/or dependability, we believe that more and more
customers will be interested on having such guarantees
and that those service providers that can provide them,
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will gain a competitive advantage, see European
Projects MyCloud [8], HARNESS [9].

But why is the performance modelling and control of
a MapReduce service such a challenge? If one desires to
run a MapReduce job at least three things need to be
supplied to the framework: the input data to be treated,
a Map function, and a Reduce function. However, the
Map and Reduce functions can be only treated as black
box models since they are entirely application-specific,
and we have no a priori knowledge of their behaviour.
Without some profiling, no assumptions can be made
regarding their runtime, resource usage or the amount
of output data produced. On top of this, many other
independent factors have been identified that influence
the performance of MapReduce jobs: CPU, input/output
and network skews [10], hardware and software failures
[11], Hadoop’s (Hadoop is the most used open source
implementation of MapReduce) node homogeneity as-
sumption not holding up [12], [13], and bursty work-
loads [14] and [15].

Moreover, when it comes to the cloud, resource provi-
sioning for deadline management is further made dif-
ficult because of the shared hardware resource archi-
tecture, where interference and concurrency issues may
arise frequently. Furthermore, as cloud providers desire
to maximise the resource utilisation of their clusters,
they have mechanisms for the dynamic reallocation of
unused resources which further adds to the variability
of system performance. So even with the same workload
and resource amount, an application performance may
vary depending on how noisy neighbouring applications
are. In the meantime, for most businesses of course,
missing deadlines, results in financial losses. In some
cases these costs can go up to 100.000$ per minute, as is
the case of an on-line brokerage industry [16].

As results lots of research is being done in the HPC,
Grid, Database communities on improving the perfor-
mance, dependability of complex computing systems
such as MapReduce. Extensive research has been con-
ducted already to improve upon MapReduce [17], [18],
[19] by changing the behaviour and algorithms of the
MapReduce framework itself. A key point to make here
is that, although these solutions improve upon how
MapReduce works, no performance guarantees are pro-
vided.

Furthermore, our work differentiates itself from these
in several other aspects. First of all, we present a novel
method that enables the simplified, automatic modelling
of complex distributed systems. We chose MapReduce
systems as our test case because it is a highly dynamic
system in both data quantity, richness and in terms of
its processing needs and it is one of the most popular
current architectures for distributed data processing.

As the same time one can notice that, due to the
unpredictability of new deployment environments, such
as the cloud, traditional adaptation approaches become
increasingly difficult to use. Therefore, more and more
attention is given to approaches used in different fields

for controlling complex systems. The most prominent of
these are the feedback control solutions coming from the
field of control theory [20], [21], [22], [23], [24], which has
been providing control solutions for physical systems for
several decades now. The advantages of control theory
are that it can provide a solid mathematical basis for
synthesizing feedback control loops, for handling safely
complexity and for having theoretically guaranteed re-
sults.

Our work is in line with these approaches as we de-
velop on-line feedback, feedforward control techniques
that don’t require complex tuning and that contrary
to existing heuristic approaches, can give theoretically
guaranteed performance. Moreover, our approach is
non-intrusive, it does not modify the framework. Which,
together with the generality of the developed techniques
presented in this paper, allows for the applicability of our
approach to a wide variety of cloud systems.

1.2 Scientific contributions
Taking all this into consideration, in this paper, we
propose a new approach to the performance modelling
and control of Big Data MapReduce cloud services. Our
contributions in this paper are the following:

• We provide the first algorithm for building dynamic
models for Big Data MapReduce systems

• We develop and implement multiple novel con-
trollers able to assure service time constraints for
a concurrent MapReduce workload in two different
industrial scenarios. In the first case the assurance
of relaxed performance constraints with minimal
resource usage is desired, while in the second one
strict performance constraints are given, allowing
for large resource consumption for short periods of
time.

1.3 Paper roadmap
The remainder of the paper is organized as follows.
Section 2 gives a brief overview of Big Data MapReduce.
Section 3 presents our contribution in constructing an
algorithm for building dynamic models for Big Data
MapReduce systems and its experimental validations. In
Section 4 the proposed control architecture is introduced.
Section 5 contains the description of two separate re-
laxed performance -minimal resource control laws and
their experimental validation. Section 6 contains the
description of the strict performance control law and its
experimental validation. The related work is described in
Section 7. Finally, Section 8 draws the conclusions and
presents our ideas for future work.

2 BACKGROUND

2.1 MapReduce Systems
The main objectives of Big Data Clouds are to cap-
ture, store, analyse and manipulate large and complex
amounts of data. MapReduce is one of the currently most



IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. ?, NO. ?, MAY 2015 3

used programming paradigms developed for parallel,
distributed computations over large amounts of data.
The initial implementation of MapReduce is based on a
master-slave architecture. The master contains a central
controller which is in charge of task scheduling, monitor-
ing and resource management. The slave nodes take care
of starting and monitoring local mapper and reducer
processes.

Concerning the performance modelling of MapReduce
jobs, the state of the art methods use mostly job level
profiling [25], [26], [27]. Moreover it is important to note
that current models predict only the steady state performance
of MapReduce jobs and do not capture system dynamics.
They also assume that a single job is running at one
time in a cluster, neglecting any workload fluctuations
and interferences. Meanwhile, a recent survey among
BigData solution providers (Teradata) and consumers
(Ebay, Facebook) reveals the unanimous response ”Real
Big Data clusters are never run in single-user mode -
they never run just one job at a time” [28]. Still, in the
case of cloud deployments, the resource usage being on
demand, resources are mostly provisioned per MapRe-
duce job execution at the moment. We believe that this
is changing, partly because of financial reasons. On one
hand, most cloud providers provide incentives for long
term reservation of nodes with pricing up 60% less than
on demand rates, which might be is very advantageous
for batch jobs. On the other hand in our experiments
we’ve observed that just by running multiple jobs on
the same cluster instead of separately, one can save up
to 66% of the deployment costs. Hence, to address these
issues, the performance model that we propose deals
with a concurrent workload of multiple jobs. Moreover,
our model captures the systems dynamic behaviour.

The most used open source implementation of the
MapReduce programming model is Hadoop. It is
composed of the Hadoop kernel, the Hadoop Dis-
tributed Filesystem (HDFS) and the MapReduce engine.
Hadoop’s HDFS and MapReduce components originally
derived from Google’s MapReduce and Google’s File
System initial papers [1]. HDFS provides the reliable
distributed storage for our data and the MapReduce en-
gine gives the framework with which we can efficiently
analyse this data, see [29].

2.2 Experimental MapReduce Endvironment

All the experiments in this paper were conducted on-
line, in Grid5000, on a single cluster of 60 nodes. The
60 node infrastructure was chosen for practical reasons,
as we don’t yet have access to a larger cluster size.
However, all algorithms presented scale well, and can be
applied to any cluster size, with only the re-identification
of the equation parameters as described in Section 3.5.

Grid5000 is a French nation-wide cluster infrastructure
made up of a 5000 CPUs, developed to aid parallel
computing research. It provides a scientific tool for
running large scale distributed experiments, see [30].

Each node from the cluster used for our experiments
has a quad-core Intel CPU of 2.53GHz, an internal RAM
memory of 15GB, 298GB disk space and the connection
between the nodes is assured with an Infiniband 20G
network.

For our experiments we use the open source MapRe-
duce implementation framework Apache Hadoop v1.1.2
[31] and the high level MRBS benchmarking suite. A data
intensive BI workload is selected as our workload. The
BI benchmark consists of a decision support system for
a wholesale supplier. Each client interaction emulates a
typical business oriented query run over a large amount
of data (10GB in our case). To generate the client interac-
tions Apache Hive is deployed on top of Hadoop. This
converts SQL like queries to a series of MapReduce jobs.
All the nodes is the cluster were on the same switch to
minimize network skews.

The MapReduce Benchmark Suite [11] (MRBS) is a
performance and dependability benchmark suite for
MapReduce systems. MRBS can emulate several types of
workloads and inject different fault types into a MapRe-
duce system. The workloads emulated by MRBS are
designed to cover five application domains: recommen-
dation systems, business intelligence (BI), bioinformat-
ics, text processing and data mining. These workloads
were selected to represent a range of loads, from the
compute-intensive (e.g. recommendation systems) to the
data-intensive (e.g. business intelligence - BI) workload.
One of the strong suites of MRBS is to emulate client
interactions (CIs), which may consist of one or more
MapReduce jobs. These jobs are the examples of what
may be a typical client interaction within a real deploy-
ment of a MapReduce system.

A simplified version of our experimental setup is
sketched in Figure 1. We measure from the cluster the
service time 1 and the number of clients and we use the
number of nodes in the cluster to ensure the service time
deadlines, regardless the changes in the number of the
clients.

Fig. 1. Intuitive view of the experimental setup

The control is implemented in Matlab and all the mea-
surements are made online, in real time. Although Mat-
lab already provides an array of general controllers, all
the controllers presented here were implemented from

1. By service time we mean the time it takes for a client interaction to
execute. In computer science this is also known as response time. We
did not use this term since in the control theory community ”response
time” means something completely different.
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scratch, and were specifically designed for our set-up.
Where we exploited Matlab’s powerful tools were the
initial simulations and during the model identification
phase. All our actuators and sensors are implemented
in Linux Bash scripts. For a more detailed version of
our experimental setup one can check Figure 2.

Fig. 2. Detailed view of the experimental setup

The procedure of an experiment run is the following.
At the beginning of the experiment two SSH tunnels
are created from the local computer: one to the Hadoop
Master node and the other one to the node running
MRBS. These tunnels are used on one hand to send
control commands to a remote Linux Bash script that
can remove and add nodes to the Hadoop cluster. One
the other hand they are used to periodically retrieve
the runtime performance metrics (e.g. service time) from
our custom monitoring script that is running besides the
JobTracker and which periodically processes Hadoop’s
logs files. Since the service time information of the
different jobs can be found on the master node, slave
level monitoring is not required. Our choice for Matlab
for our control environment is motivated by the fact that
it provides significant tools for the fast implementation
and testing of different controller architectures.

3 MAPREDUCE PERFORMANCE MODEL

3.1 Choosing the model inputs/outputs

The choice of control inputs out of Hadoop’s many pa-
rameters (more than 170) is also not straightforward. As
we set out for our model to be implementation agnostic,
we take into consideration only those parameters that
have a high influence regardless of the MapReduce
version used. Two such factors that have been identified
having among the highest influence are the number of
Mappers and the number of Reducers available to the
system, see [32]. As these parameters are fixed per node
level we chose the number of nodes to be our control
input since it effects both.

Our control output is the service time, defined as the
average time (y) needed the to process a request in cer-
tain time window. Low client service time is a desirable
as it reflects a reactive system.

y[s] = avg(y1, y2, ..., yN ) (1)

The average y is calculated at every 30 seconds, using a
sliding window with period T = 15 minutes.

3.2 Analysing system behaviour
Let us now present the behaviour of the system for a
variation in the number of nodes (Fig. 3) and in the
number of clients sending requests to the MapReduce
service (Fig. 4). Each figure presents the results after a
warm-up phase of 20 minutes, after which the system
stabilizes.

The first experiment presents the results when the
number of nodes increases from 4 to 36. The number
of concurrent clients is fixed to 10 during the whole ex-
periment and 4 more nodes are added every 10 minutes,
see Fig. 3.(b). The multiple horizontal lines in Fig. 3.(a)
constitute the runtime of the different client interactions.
It can be seen that the overall behaviour of MapReduce is
non-linear since the proportional increase in the number
of nodes is not proportional to the reduction of response
time and the increase in throughput (see Figure 3 below).
In the second experiment we analyse the behaviour of
the MapReduce system for a fixed number of nodes (20
in our case) and for an increasing number of clients. The
number of clients is increased by 5 every 10 minutes
from 5 clients to 40, see Fig. 4.(b). We can see in Fig-
ure 4.(a) that the behaviour is also non-linear.

Although the system is non-linear we can linearise
around an operating point defined by a baseline number
of nodes and clients. The methodology for choosing
these points is the following. After the client decides on
the number of nodes he desires to have serving request
(usually based on financial constraints since the client
rents the nodes from the service provider) our algorithm
gradually increases the number of clients it accepts, until
the throughput of the cluster is maximized 2 (this is
important for both environmental and financial reasons).
This point of full utilization will be the set-point for
linearisation. More details on this issue are found in Sec-
tion 3.5 where a general algorithm for building dynamic
performance BigData models is given.

For this specific case, we find this point from the
previous experiments in Figure 3.(b) and Figure 4.(b).
As it can be seen, the set-point for our linearisation is
characterized by 20 nodes and 10 clients.

3.3 Capturing system dynamics
One of the important challenges in current MapReduce
deployments is assuring certain service time thresholds

2. Throughput is measured as the number of client connection
demands per second and it has an inverse relation with service time

Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara


Portable de Sara
communication channels

Portable de Sara
are periodically retrieved

Portable de Sara
tools

Portable de Sara
monitoring



IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. ?, NO. ?, MAY 2015 5

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

Se
rv

ic
e 

tim
e 

(s
)

Time (min)

(a) Service time

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

Th
ro

ug
hp

ut

Time (min)

(b) Throughput

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

#N
od

es

Time (min)

(c) Nodes

Fig. 3. Effects of nodes variation, #Clients=10

for jobs. Therefore, our control objective is selected as
keeping the average service time below a given threshold
for jobs that finished in a the last time window. This time
window is introduced only to assign a measurable dy-
namics to the system. The definition of the time window
length is not straightforward. The bigger the window is,
the more we loose system dynamics, while the smaller
it is the bigger the noise will be in the measurements.

In our case the window size is tuned off-line. To
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choose the windows size we start with a small value and
increase it gradually until we reach the desired signal
variance and the curves smoothen out. Below this size
the output measurement may be influenced by the noise
that arises from the natural variance of the jobs. From
a control perspective, if the window is bigger than this
size then the controller reacts slower and if it is smaller
it will react to noise.
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3.4 Proposed model structure
The high complexity of a MapReduce system and the
continuous changes in its behaviour, because of software
upgrades and improvements, prompted us to avoid the
use of white-box modelling and to opt for a technique
which is agnostic to these. This leads us to a grey-box or
black-box modelling technique. The line between these
two techniques is not well defined, but we consider our
model a grey-box model since the structure of the model
was defined based on our observations of linearity re-
gions in system functioning.
We propose a dynamic model that predicts MapReduce
cluster performance, in our case average service time,
based on the number of nodes and the number of clients.
To the best of our knowledge this is the first dynamic
performance model for MapReduce systems.

yC

+ +u(k) y(k)

d(k)

ZMR

Nodes Model

Clients Model

MapReduce model

Service Time

#Clients

#Nodes

  

 
 

yN

Fig. 5. MapReduce control theoretical model.

The structure of our model can be seen in Figure 5.
Our control input u(k) is the number of nodes in the
cluster while the changes in clients d(k) is considered
as a measurable disturbance. Our output y(k) is the
average service time of a job in the k

th time interval.
The complete list of modelling notations used to define
the model structure is given in Table 1

y Average client request service time.
yN Nodes model - captures the effect of node variations on

service time.
ai, bj Parameters of the nodes model
yC Clients model - captures the effect of client variations

on service time.
cp, dr Parameters of the clients model
u Number of processing nodes in cluster
d Number of clients
⌧ The time delay after which the effect of an input change

is visible on the output.

TABLE 1
Definition of modelling notations.

As in the operating region our system is linear we
can apply the principle of superposition to calculate the
output:

yk = yCk · dk + yNk · uk (2)

where yNk is the discrete time model between service
time and the number of nodes and yCk is the discrete

time model between service time and the number of
clients.

3.5 Identifying model parameters

The identification procedure is fairly simple and can
be easily automated. Its methodology is summarized in
Figure 6.

Fig. 6. General identification procedure

The identification algorithm is chosen from the wide
literature of identification algorithms (see [33] for a
review) used in control theory. In our case we chose
the prediction error estimation algorithm from [34]. This
method is a classical method in control theory and has
the advantage that it puts an emphasis on the model
accuracy in predicting the next observation rather then
on its difference from a corresponding statistical model,
as it is the case for least square and maximum likeli-
hood identification methods. The method first provides
a continuous time model which is further on discretized
using Tustin bilinear transformation.

After the choice of the algorithm, the user should
provide the excitation for the system (the MapReduce
system in our case) and the measurements of system’s
response to this excitation. The most simple excitation
has the shape of a step, where the excitation signal has
a single step increase and then it remains constant for
the rest of the experiment.

After providing the excitation and the system’s re-
sponse as the input values of the identification algo-
rithm, the user gets the parameters of the mathematical
model of the system as the algorithm output.

As our system has large time constants (>300s as it
can be seen form Figures 3 or 4) we determine that a
sampling period of 30 seconds is sufficient. The reason-
ing behind this is based on Shannon’s law and general
practice guidelines, see [20] for example.

3.5.1 System identification without disturbance

For the system without disturbance the identification is
done by analysing the system behaviour from Figure 3.
Furthermore, a step in the number of nodes is used to
identify the model between the service time and the
number of nodes. The identified discrete time transfer
function of the system without disturbances will be of
the following form :

yN (k) =
nNX

i=1

ai · yN (k�i) +
mNX

j=0

bj · u(k�⌧N�j) (3)
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where the coefficients ai and bj along with the deadtime
⌧N are to be found by the identification algorithm.
Furthermore, yN models the effect of nodes changes on
service time and u is the number of nodes.

3.5.2 Disturbance model identification

For the changes in the number of clients the system
behaviour is presented in Figure 4. Again a step increase
in the number of clients will be used to identify the
model between the service time and the number of
clients. The model has the following form :

yC (k) =
nCX

p=1

cp · yC (k�p) +
mMX

r=0

dr · d(k�⌧C�r) (4)

where the coefficients cp and dr along with the dead-
time ⌧C are to be found by the identification algorithm.
Furthermore, yC models the effect of client changes on
service time and d is the number of nodes.

The given equations can be applied to other systems
straight forward, with the re-identification of the equa-
tion parameters. The models identified are valid for a
client mix where the variance in the mean response time
of the clients requests is 25%. In our case we have 5
different requests running. Moreover contrary to existing
solutions that build a model for each job, our model covers
an infinite set of jobs, the only condition being that their
response time variance is within the specified limit.

The numerical values of the coefficients are given
further on in Section 5.

3.6 General algorithm for building dynamic perfor-
mance models of Big Data systems
A typical system design time question that might arise
is that, given an expected number of clients, what is the
minimal amount of resources the system needs, so that
all the requests have their necessary resources and there-
fore run as fast as possible? Based on our experiences
with modelling MapReduce systems, we propose the
following general algorithm, that answers the previous
question, and which can be used to find the linearisation
point around which a dynamic model can be identified:

1) Select the initially expected average workload
amount to be served based on financial constraints.

2) Increase the cluster size until system throughput
starts to saturate.

3) Set this point of saturation defined by
(#resources,#clients) as your set point for
linearisation. Here the system is fully utilised.
Adding more clients would decrease performance,
adding more resources would not improve
performance.

4) Identify a dynamic performance model around this
operation point using the identification procedure
presented in Section 3.5.

Once the parameters of the models have been found
the controller can use the model to predict how system

service is impacted by client variations and use this
prediction to decide when and how to intervene to keep
the desired SLA.

The main advantage of this algorithm is that we will
have a model of our system at the edge of full utilisation,
which is where we normally want our steady state of the
system to be, to minimise costs. The model can predict
what happens when more clients arrive at full utilisation
and can help a controller decide upon the number of
resources to add to reach once again full utilisation and
keep the desired performance levels.

However, the model is valid only around the operating
point. As a consequence, if we model our system using
10 clients and 20 nodes and then test our system with
100 clients and 200 nodes the model might loose validity,
depending on system linearity. However, this can be
easily addressed by re-triggering an automatic identifi-
cation procedure when we leave the operating region.
Moreover, the complexity of the parameter identification
algorithm remains unchanged, as the identification al-
gorithm itself works independently from actual value of
the number of clients or cluster size. It focuses on the
capturing the effect of client or node changes and not
the values themselves.

4 CONTROL

4.1 Control motivation
Before presenting the control architecture let us see what
happens when we have no automatic control but only
a sudden step increase in the number of clients (see
Figure 7). Such a bursty increase in the number of clients
occurs frequently in practice, see [35] who analyse a
10 month log production of Yahoo’s supercomputing
cluster. We call this experiment an open loop experiment
since the feedback loop from the output to the input does
not exist in this case.
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Fig. 7. Baseline experiment - no control, #Nodes=20

In our case we can see that, when 100% more clients
are added, the systems service time quickly exceeds
the reference threshold defined in the Service Level
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Agreement (SLA). This behaviour is not desirable since
it automatically implies losses.

4.2 Control architecture

When it comes to control the MapReduce system we
can distinguish two separate cases. First, we have the
relaxed performance - minimal resources case where the
service provider needs to keep the system service time
below the reference threshold defined in the SLA but also
wants to minimize the number of resources it utilizes (in
this case the number of system nodes), to reduce cost.
Therefore, if this is specified in the SLA, the client accepts
that for a small amount of time the service time could
exceed the reference threshold. The second case is the
strict performance one, when the service provider has a
very strict demand from the client in keeping the service
time below the reference defined in the SLA all the
time. This can be the case for online brokerage industry
where the service unavailability costs about 6.48 million
dollars per hour [16]. Since the number of clients trying
to use the service is unpredictable, the service provider
is accepting a considerable increase in the number of the
system nodes (therefore a increase in the utilization cost)
in order to respect the SLA and face the client increase.
The complete schema of our control architecture, which
comes to address these two challenges, is presented in
Figure 8. The variables used in the figure are defined
in Table 2. As in Figure 5, we consider the MapReduce
system having two inputs: the control input u(k) which
is the number of nodes in the cluster and the exogenous
input d(k) which is number of clients to connect to the
system, and one output which is the service time y(k).

ZMR
yr(k) ufb(k)

uff(k)

u(k)e(k)

d(k)

y(k)+ + -

ZFF

PI controller

Feed-forward controller

MapReduce System

Service time#nodes

#clients

y(k)

Reference
service time

ZPI
-

Fig. 8. MapReduce Control architecture

yr Reference average service time set in the SLA.
ufb Control input of the PI controller.
uff Control feedforward controller.
e Error input to the feedback control.
d Disturbance input - number of clients running jobs.
ZMR Discrete time MapReduce system model.
ZPI Discrete time PI feedback controller.
ZFF Discrete time feedforward controller.
Kp,Ki Feedback control tuning parameters.
elim Event threshold, when actuation is necessary.
Tact Time elapsed since the last actuation.

TABLE 2
Definition of control variables.

Our answer to the challenges of the first use case is
the PI feedback controller ZPI . When we have strict
SLA constraints we add the feedforward controller ZFF .
The size of the workload in this case it is assimilated
as an exogenous disturbance input. However as we can
accurately measure it on-line the feedforward controller
can use this information in order to assure a faster
controller response. It does this by counteracting the
disturbance before its effects can be measured on the
output. This type of control architectures have well
proven their efficiency in the different domains, from the
early 1900’s, and in the following we demonstrate that
they can be successfully applied to this type of systems
as well.
In the next sections we discuss these different control
strategies in detail.

5 MODEL VALIDATION

The identification procedure from Section 3.5 is used for
finding ZMR, the model of the MapReduce System. As
ZMR is composed of two discrete transfer functions yN

and yC (see equation (2)), the prediction error algorithm
is implemented for finding these functions.

5.1 System identification without disturbance
The identified model for the node changes can be seen
in Figure 9.

0 5 10 15 20 25 30 35 40
140

150

160

170

180

Se
rv

ic
e 

tim
e 

(s
)

Step response

 

 
Real system
Identified system

0 5 10 15 20 25 30 35 40
10

15

20

25

#N
od

es

Time (min)

Fig. 9. Identification of the undisturbed system. It predicts
the effect of nodes changes on job runtime. #Clients=10

A step in the number of nodes is used to identify
the model between the service time and the number
of nodes. As it can be seen, the model found by the
algorithm captures well the system dynamics with a fit
level of 86.53%.

Four our case, the form of equation (3) and the values
of the coefficients ai and bj , are given in equation (5). As
it can be seen, the identified deadtime ⌧N = 5.

yN (k) = 0.919 ·yN (k�1)�0.179 ·u(k�5)�0.179 ·u(k�6) (5)
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5.2 Disturbance model identification
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Fig. 10. Identification of the disturbance model. It cap-
tures the effect of the changes in the number of clients on
job runtime. #Nodes=20

Figure 10 shows the step responses for the identified
and measured systems, in the case of changes in the
number of clients. As we can see, the identified model
also follows closely the measurements taken from the
real system, presenting a 87.94% fit. With the the coef-
ficients cp and dr found by the algorithm, equation (4)
becomes (6), which is the discrete time transfer function
of the disturbance model:

yC (k) = 0.7915·yC (k�1)+1.0716·d(k�8)+1.0716·d(k�9) (6)

It can be seen that for this model, the deadtime is
different than the previous one. Here ⌧C = 7.

We can see that both of identified discrete time transfer
functions are stable, first-order systems with their poles
inside the unit circle. Therefore the open loop system is
inherently stable.

6 RELAXED PERFORMANCE - MINIMAL RE-
SOURCE CONTROL

It is well proven in the control theory literature, see for
example [36], that in cases such as ours, where we have
a first order model structure with an actuation delay a
Proportional Integrator (PI) feedback controller is suffi-
cient to control the system, even if in reality the system
itself has a more complex dynamics and it is only the
general tendency of the system that is captured by the
first order model. Furthermore, a PI feedback controller
has also well-proven disturbance rejection properties for
unmeasured and unmodelled disturbances. Therefore,
since our system is exactly a first order with deadtime
(see equation (3)), a PI controller is employed. .

6.1 PI Feedback Control
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Fig. 11. Closed loop experiments - Feedback Control

In the first case we consider a simplified version of the
control architecture from Figure 8, where it is only the PI
feedback controller that is running and the feedforward
controller is not active (ZFF = 0). The standard equation
of a sampled time PI controller is very well known in the
control theory literature and is given in equation (7):

ufb(k) = ufb(k � 1) + (Kp +Ki)e(k) +Kie(k � 1) (7)

The controllers parameters are determined to assure
closed loop stability and 0% overshoot (in control theory
we talk of overshoot when the system output exceeds
its target before stabilizing on a reference value). As
we would like to avoid a highly aggressive controller
the controllers response to the disturbance is somewhat
slow. The reason behind this is the minimization of the
number of changes in the number of nodes, because
of financial and energetic constraints. Based on these
requirements we mathematically computed the value of
Kp = 0.0012372 and Ki = 0.25584 for our controller.

The results are given in Figure 11 which shows our
controllers response to a 50% change in the number of
clients. We can see that as the controller is determined to
have a slow settling time, the SLA threshold is breached
for a short amount of time but the controller will always
take the service time our reference value. The controller
steadily increases the number of nodes until service time
recovers. It can also be seen that the number of notes to
be added to the system to keep the SLA is recomputed
at each sampling interval (see the 3rd plot) and therefore
is changing frequently (see the 2nd plot). The control
automatically computes the number of nodes to add at
each time, this number is not necessarily the same. Since
for the user this is not the best situation a new algorithm
that reduces to the minimum these changes while also
keeping the SLA is given in Section 6.2 below.

6.2 Event based PI control - Minimizing the number
of actuations

The field of control in Big Data cloud environments
brings us specific control constraints. Namely the adding
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and removing of resources takes considerable time and
has energetic and financial cost. We therefore want to
avoid as much as possible such quick changes in the
control signal. One approach to minimize the number
of actuations can be found in the event-based control
theory.

Event-based controllers have emerged recently as a
viable alternative to periodic controllers when it comes
to handling constraints on the number of actuations,
limited communication or computation bandwidth, con-
straints on power consumption, etc [37], [38]. The basic
idea behind the theory is that we don’t need to calculate
a new control value with every new measurement but
instead the control is calculated only when the system
output changes more than a certain threshold, since the
last actuation. This concept is illustrated in Figure 12
where a simple example is shown to clarify the difference
between the control instants of time-based and event-
based controllers. For a more detailed view of event-
based control theory see [39], [37], [38].

q0

q1

q2

q3

t0

q4

t1 t2 t3 t4 t5

t10t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t11

Time

S
ys

te
m

 o
ut

pu
t

S
ys

te
m

 o
ut

pu
t

Fig. 12. Difference between time based and event-based
control instants.

Figure 12 shows us that while the control instants of
time-based control follow a fixed time period ti+1�ti for
the event-based case the control is calculated only when
the system output changes more than a fixed threshold
value elim.The Y axis in this simple case can be any
feedback signal used for control purposes.

For the case of controlling cloud resources we see
the main advantage of using event based controllers in
minimizing the number of actuations. This minimization
can be done using the extra tuning parameter introduced
by the event based controller namely the error threshold
limit elim. This value can be used to minimize the
actuation count while still retaining acceptable perfor-
mance. The PI control architecture using the event-based
approach can be seen in Figure 13.

ZMR
yr(k) upi(k)e(k) y(k)+

PI controller MapReduce System

Service time#nodes

y(k)

Reference
service time

ZPI
-

Event-based
algorithm

Fig. 13. Event-based PI feedback Control Architecture

We can see that it is that the event-based module
functions as a switch in the system that when activated
allows for a new control value to be calculated. In the
case of our implementation the event-based algorithm is
the following: a new control value is calculated only if
the difference between the current error and last error
value for which control was calculated is greater than
this threshold elim. The detailed description of the struc-
ture for the event based PI controller is in [40]. Starting
from their results, we use an exponential forgetting fac-
tor to limit the impact of the integrator component, after
periods of long steady state, on the control signal. Finally
our event-based PI controller developed is governed by
equation (8):

upi = up + ui

up = Kp · e
ui = ui�1 +Ki · f(e, elim, Tact);

(8)

where e is the error function and elim is the event
threshold. As soon as the error becomes larger that this
threshold, the control value is updated. up and ui are
respectively the proportional and integral terms of the
control. Kp and Ki are respectively the proportional and
integral coefficient of the PI controller. f is a function that
gathers a forgetting strategy that the event-based imple-
mentation requires (see [40] for further informations). Fi-
nally, Tact denotes the time elapsed since the last update
of the control value. The control parameters for the event
based PI are the same as the ones calculated for the fixed
sampled PI controller. The parameter elim is found after
tuning as the maximum value for which performance is
still acceptable. The results of implementing the Event
Based PI controller on the same system as previously
described are given in Figure 14.

We see that the event based PI controller also manages
to keep the service time below the threshold in the
presence of perturbation as the classical PI controller.
One can also see that, when comparing Figure 11 with
Figure 14, the control to be applied is computed only
several times and the number of switches in the nodes
number is therefore drastically diminished as well. We
have reduced by half the changes in system nodes (4
changes with the event based controller compared to 8
without). Although the performance is just a bit worse
its benefits are that it brings less energetic cost for the
cloud provider and less financial cost for the user.
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Control

7 STRICT PERFORMANCE - FEEDFORWARD
CONTROL

To satisfy strict performance constraints a fast feedfor-
ward controller is designed to pro-actively reject the dis-
turbance before its effect is observed on the output. The
disturbance represents a change in number of concurrent
clients. The effectiveness of the feedforward controller
depends entirely on the accuracy of the identified model.
The purpose of this controller is to create a control signal
that, once it has passed through the plant, it cancels out
the effect of the disturbance. Most importantly, it does
this at the same time the disturbance’s effect presents
itself. If the model is 100% accurate the net effect on the
service time should be zero, but because of the inherent
model uncertainties this is never the case in practice. Our
controller is determined using the standard feedforward
formula

Zff (z) = �ZN (z)�1
ZC(z)

where Zff is the discrete time feedforward controller
and ZN , ZC are the discrete time models from Figure 5.
The equation of the computed feedforward controller is
given in equation (9):

uff (k) = 0.791 ·uff (k�1)+5.97 ·d(k�2)�5.486 ·d(k�3) (9)

The effect of adding the feedforward control to the
already existent feedback controller can be seen in Fig-
ure 15. One can observe that although so far we’ve tested
our controllers with a jump of 50% more clients, here
we test our control with worst conditions, a jump of
100% more clients, to highlight the effectiveness of feed-
forward control in comparison to just feedback control.
While the feedback control shortly breached the SLO
even with a 50% increase, by adding the feedforward
component we can see that the controller response is
increased and manages to keep the response time be-
low the SLA threshold all the time even if we double
the current workload. Furthermore, the feedback term
compensates for all the model uncertainties that were
not considered when calculating the feedforward and
assures that the steady state error converges to 0. This
comes though with a cost, the increase in the number
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Fig. 15. Closed loop experiments - Feedback and Feed-
forward Control

of nodes that are utilized. The number of nodes to be
added is also recomputed at each sampling interval and
therefore it is not plotted again.

8 RELATED WORK

In this section we overview the different approaches
to model and control the performance of MapReduce
systems.

8.1 Mapreduce performance modelling
Many studies have been already performed on how
to model the performance the MapReduce framework.
These can be grouped together into the following cate-
gories. Analytical or first principle models are detailed
MapReduce models that capture the inner workings of
the different phases of a classical Hadoop MapReduce
job execution flow, see [41], [42], [43]. Vianna et al. [44]
propose a hierarchical model that combines a precedence
graph with a queueing network to model the intra-job
synchronisation constraints. Some as Jockey [45] use a
simulator that captures the complex interdependencies
of a job and makes use of previous runtime statistics
to predict job runtime. On the opposite side there are
the regression and black box models. These are coarse
grained models that don’t try to capture the specificities
of the MapReduce framework but instead build upon job
profiling, namely predicting the response time of future
jobs based on past experience or exploratory runs. In the
latter case the model parameters are generally found by
running the job on smaller set of the input data and us-
ing regression techniques to identify model parameters.
The differences between these regressive approaches lies
mostly in the components used to set up the regressive
model. Some authors develop statistical models made
of several performance invariants such as the average,
maximum and minimum run times of the different job
cycles [26], [25]. Because as most MapReduce jobs are
batch jobs that are run frequently, some propose building
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a profile database [26] to predict job runtime. Others em-
ploy a static linear model that captures the relationship
between job runtime, input data size and the resources
allocated for the job [27]. Furthermore there are those
who analyse long term traces to classify jobs into several
runtime categories, for example from a 10-months logs of
Yahoo’s M45 supercomputing clusters running MapRe-
duce. They use two separate algorithms for the predic-
tion of service completion times: a distance-weighted av-
erage algorithm and a locally-weighted linear regression
method. The linear regression based method was proven
to scale better for varying input sizes, see Kavulya [35].
Primary Component Analysis has been also used to de-
termine the MapReduce/Hadoop components that have
the biggest influence on performance of MapReduce jobs
[32]. This approach mixes the non-application specific
Hadoop configuration parameters with the statistical
averages collected from the traces of previous job runs.
They find that as different applications have varying
CPU, network bandwidth, data storage requirements the
use clustering analysis is advised to group jobs and build
a separate model for every group to achieve better model
performances.
However all the presented models are job level models
and therefore cannot capture the effects of workload
variations in a MapReduce cluster. Furthermore all these
models are static models and don’t capture the dynamics
of a MapReduce system, namely what happens during
a workload change until the system reaches it’s new
steady state. Meanwhile the many year of experience in
building control systems for physical systems has shown
that capturing the dynamics of the system is crucial to
know when and how to control.

8.2 Improving the MapReduce Framework

There exist many attempts to improve upon MapReduce
performance either through framework modifications or
by optimizing the framework parameters. Sailfish [46]
is a new MapReduce framework that by aggregating
intermediate data improves performance by batching
disk I/O. Hadoop++ [47] improves job performance
for analytical queries using a new non-invasive index-
ing technique. Yarn [48] brings several performance
improvements while supporting additional processing
models. However non of these framework provides any
control mechanism than can guarantee performance in
face of a varying workload. Furthermore with the advent
of cloud solution, there are many projects on improving
MapReduce performance in the cloud. Spark [19] for
example generalises the MapReduce model and can
deal with new workload such as streaming, iterative
algorithms and interactive queries. Although it is not yet
as mature as Hadoop it has been shown to outperform
Hadoop by a couple of orders of magnitude in many
cases. AsterixDB [17] is a new Big Data Management
System that stores, indexes and manges semi-structured
data. Because of its knowledge of data partitioning and

indexing it can avoid to always scan data to precess
queries. Stratosphere [18] further extends the MapRe-
duce model allowing for more operators then just map
and reduce and does much better on iterative algorithms
then traditional Hadoop. Furthermore, due the general-
ity of the algorithms developed in this paper, they can
be applied to any of the previously listed frameworks to
guarantee performance requirements.

8.3 Guaranteeing MapReduce Performance
By guaranteeing MapReduce performance we think of
the on-line adaptation of frameworks resources or any
of its parameters to achieve the required job dead-
lines. For example SteamEngine [49] introduces an on-
line performance and energy optimization algorithm for
MapReduce applications running on virtualised clusters,
such as Amazon EC2. It makes us of both off-line and
on-line job profiling to predict the finish time of jobs.
The performance optimization is done by regularly pre-
dicting the job finish time and using a simple heuristics
to control the amount of resources available for tasks.
Namely, if the predicted finish time, at any time of the
job life-cycle, is more than the expected finish time than
the algorithm increases the amount of resources (adds
more nodes) through cluster scaling. The cluster scaling
optimization is done only in the map phase, and the
earlier it’s done the better is the improvement. Verma
[50] proposes ARIA an automatic resource inference and
allocation engine for MapReduce. ARIA can at run time
allocate the appropriate resources (slots) to a job so that
the jobs meats its time constraints. Jockey [45] monitors
job performance and dynamically adjusts its resources
to maximise economic utility, while minimising its im-
pact on the rest of the cluster. While all the previous
approaches propose fine grained job level performance
control at a scheduler level, we propose to add course
grained control by controlling the average performance
of a group of jobs in the cluster. Furthermore while these
methods require modifying the schedulers and algo-
rithms deployed by the MapReduce cluster our control
architecture is non-invasive, can be used with in parallel
with any of the previous listed scheduling algorithms.
Moreover our algorithm can be easily automated to
be used by an average user with their distribution,
without an in depth knowledge of the inner workings
of the MapReduce framework. While the fine grained
scheduling techniques optimise the resource usage of
the current resources, our course grained technique can
handle workload spikes and fluctuations.

9 CONCLUSIONS AND FUTURE WORK

This paper presents the design, implementation and
evaluation of the first algorithm for creating dynamic
performance models for Big Data MapReduce system.
Moreover we identify two major performance constraint
use cases: relaxed-minimal resource and strict perfor-
mance constraints. For the first case we develop and
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implement a PI feedback control mechanism. To further
minimize the number of control actuations, an event-
based feedback controller is introduced as well. With the
latter the changes in the number of nodes is diminished
considerably, while the performance is kept on almost
the same level. For the second case we develop and
implement a feedforward controller that efficiently sup-
presses the effects of large workload size variations. All
the control algorithms are validated online on a real 60
node MapReduce cluster, running a data intensive Busi-
ness Intelligence workload. Our experiments show that
the controllers are successful in keeping the performance
constraints set in the service level agreement.
Further investigations are necessary in some areas and
are studied now, such as:

1) implementing the control framework in an on-line
cloud such as Amazon EC2.

2) improve upon the strict performance constrained
control with event-based techniques.

3) develop an on-line identification mechanism
4) add other metrics to our model such as throughput,

availability, reliability.
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[47] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a
cheetah (without it even noticing),” Proc. VLDB Endow., vol. 3,
no. 1-2, pp. 515–529, Sep. 2010.

[48] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of the
4th Annual Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1–5:16.

[49] M. Cardosa, P. Narang, A. Chandra, H. Pucha, and A. Singh,
“STEAMEngine: Driving MapReduce provisioning in the cloud,”
in 18th International Conference on High Performance Computing
(HiPC), Bengalore, India, 18-21 Dec. 2011, pp. 1–10.

[50] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic
resource inference and allocation for mapreduce environments,”
in Proceedings of the 8th ACM international conference on Autonomic

computing, ser. ICAC ’11. New York, NY, USA: ACM, 2011, pp.
235–244.

Mihaly Berekmeri received his PhD in Automat-
ics from the University of Grenoble, France in
2015. He is member of the SYSCO and LIRIS
reseach groups at Gipsa-Lab and INSA-Lyon.
His research focuses on the development of
control theoretical tools for Big Data, distributed
computing systems and cloud services.

Damian Serrano is a post-doctoral researcher
in the IRISA research group, part of the Univer-
sity of Rennes 1, France. He received his PhD
degree in computer science from the Universi-
dad Politecnica de Madrid in 2010. He spent
two years as a post-doctoral researcher in the
SARDES project, part of Inria and LIG. His
research focuses in designing and developing
cloud services that are able to provide Quality-
of-Service (QoS) guarantees.

Sara Bouchenak is Professor in Computer Sci-
ence at INSA-Lyon. She is a member of ACM,
IEEE, and EuroSys; she was an officer of the
French chapter of ACM-SIGOPS. She was a
visiting professor at Universidad Politecnica de
Madrid, Spain, in 2009/2010, and an associate
researcher at EPFL, Switzerland, in 2003. She
received her PhD in computer science from
Grenoble Institute of Technology in 2001. She is
a member of the LIRIS research group, where
she conducts research on highly-available, de-

pendable and manageable distributed computer systems.

Nicolas Marchand is a researcher at CNRS,
France since 2002. Head of Control Systems
Department, Deputy director of GIPSA-lab since
2011. Prior to this he spent two years as Assis-
tant professor at the University Paris-Sud Orsay
(2000) and one year as researcher (ATER) at
the technological university institute of Villeur-
banne(1999), France. He received his PhD in
control from the Grenoble Institute of Technology
in 1999. His research interests focus on the
control of computing systems and control and

stabilization of biomimetic robots.

Bogdan Robu is a Professor at the University
of Grenoble, France and a researcher in the
GIPSA-lab laboratory in Grenoble since 2012.
Prior to this he had a one year teaching posi-
tion at Toulouse University, France. His research
interests focus on the control of computing sys-
tems in general,with more focus on Cloud Con-
trol and Transactional Memory control, robust
control and PDE modeling. He received his PhD
in control from the Toulouse University in 2010.


