N

N
N

HAL

open science

I-RRT-C: Interactive Motion Planning with Contact

Nassime Michel Blin, Michel Taix, Philippe Fillatreau, Jean-Yves Fourquet

» To cite this version:

Nassime Michel Blin, Michel Taix, Philippe Fillatreau, Jean-Yves Fourquet. I-RRT-C: Interactive Mo-
tion Planning with Contact. 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Oct 2016, Daejeon, South Korea. pp.1000 - 1006, 10.1109/IR0S.2016.7759625 . hal-01297010

HAL Id: hal-01297010
https://hal.science/hal-01297010

Submitted on 1 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01297010
https://hal.archives-ouvertes.fr

Interactive Motion Planning with Contact

Nassime Blin' , Michel Taix? , Philippe Fillatreau® and Jean-Yves Fourquet?

Abstract— This work deals with planning processes for the
assistance to manipulation in order to simulate industrial
tasks such as assembly, maintenance or disassembly in Virtual
Reality. This paper presents a novel interactive path planning
algorithm with contact based on an RRT-Connect approach.

First, we propose a real-time interactive planner where both
a computer and a human operator can simultaneously search
the workspace therefore largely speeding up the process. An
authority sharing parameter can control the autonomy of the
computer.

Then we present a novel contact space algorithm able of
sampling on the surface of obstacles. This method helps finding
paths in cluttered environments or solving specific contact
tasks such as insertion or sliding operations. We finish by
presenting the results of our interactive path planner with
contact through two examples showing significant improvement
over usual methods in both free and contact space.

I. INTRODUCTION

Our goal is to plan a motion for an industrial part which
will be called object in the rest of this paper. Using widely
known motion planners we can find a solution to theses
problems.

Probabilistic planners such as RRT can be very slow to
solve problems in difficult spaces such as cluttered or narrow
passages. Therefore, we can use the help of a human operator
to solve the planning problem faster. Often humans can find
a path very fast or see that a passage is impossible almost
instantaneously. On the opposite a human alone may look
a long time for a path in an impossible passage because
the navigation on the six dimensional space (position and
orientation) is difficult. This is why we believe that combin-
ing both the computational power of an automatic planner
and the capacity of a human operator can be rewarding for
planning the motion of an object.

Some industrial need surfaces of obstacles to be fully used
and for planning processes in opposition to standard motion
planning where avoiding obstacles is the objective. Assembly
itself means getting objects to touch each other. Industrial
examples may be sliding operations or insertion scenarios
[1], [2], [3]. We believe that in theses cases, contact planning
would require less nodes and time to find a solution path.

This paper is organized as follows : in section I a survey
of motion planners related to our work is presented. Section
IT introduces our interactive algorithm. A novel contact
algorithm is then presented in Section III. Section IV is

LCNRS, LAAS, 7, avenue du colonel Roche, F31400 Toulouse, France
Univ. Féd. de Toulouse, INP-ENIT Université Fédérale de Toulouse, France
2CNRS, LAAS, 7, avenue du colonel Roche, F31400 Toulouse, France
Univ. Féd. de Toulouse, UPS, LAAS, F 31400 Toulouse, France
3INP-ENIT Université Fédérale de Toulouse, France

dedicated to results presentation and analysis. At last, section
V presents future work and conclusion.

A. Path Planning

Among all different types of motion planners, we will here
discuss only sampling based algorithms. These algorithms
rely on the fact that they have probabilistic completeness.
The two most used methods are the Probabilistic Roadmap
Method (PRM) [4] and the Rapidly-exploring Random Tree
algorithm (RRT) [5]. They have been extensively studied [6]
and an excellent survey is available [7]. There exist real-time
algorithms such as [8] but they are not interactive because
tree expansion is not controlled by an operator. We focused
our work on RRT because it is a faster solution than PRM,
growing faster in constrained environments.

B. Interactive Planning

Here is presented a survey of interactive motion planning
algorithms that share path finding between an algorithm and
a human operator.

In [9] the authors present a method for cooperation be-
tween human and automatic motion planner. Forces of haptic
device can guide and improve the interaction between them
[10]. In other works, the user interaction can be made by a
haptically controlled object to modify or define critical object
configurations [11].

Ladeveze introduced an interactive planner [12]. A linear
interpolation between the current configuration and the goal
configuration generates an attraction force guiding a user
through a haptic device.

Flavigné [13] introduced the Interactive RRT (IRRT). Its
goal is to move an object in free space. This solution lets an
operator control the sampling process using a haptic arm.

More recently, Cailhol [14] implemented an original multi-
layered interactive solution. In two steps, he finds a topologic
path in the environment and then finds a precise path using
geometric information to control an object. Both of theses
phases are controlled according to semantic information.

C. Contact Planning

Classically, the goal of motion planning is to move an
object in the free space Cy... of a workspace trying to
avoid obstacles. Our goal is to plan motion at the surface
of obstacles.

Redon [15] published a solution to locally plan on contact.
When an in-contact configuration is found, the next generated
node is projected on a set of valid variations. This set satisfies
all global non collision constraints. The main drawback of
this method is that it is not global and its goal is not to plan
in contact but rather to get out of it after the first iteration.

Rodriguez [16] uses obstacle based information to gener-
ate configurations parallel to obstacles. This helps expanding
PRM graphs in cluttered environments in a much better way
than a standard PRM. Though this solution plans parallel to
obstacles, it still cannot plan in contact.

Yu Yan [17] proposed a very efficient contact planning
solution using a retraction technique. That is, an operator
with a device draws a path allowed to have colliding parts.
This path is then locally retracted to the surface in a post
treatment to generate contact paths.

D. Contribution

To the best of our knowledge, there exist no interactive
algorithm capable of searching the whole workspace and able
to plan directly on surfaces. Therefore we have implemented
a RRT interactive in contact algorithm. Our contribution is
twofold: an in-contact solution without any post treatment
coupled with an interactive algorithm greatly speeding up
motion planning processes.

II. INTERACTIVE MOTION PLANNING

This section describes our interactive algorithm and it
implementation details. We will show how can a usual RRT
be used with the help of an operator.

A. The computer loop

The computer loop is a classic RRT-connect algorithm
implemented in Hpp framework [18]. At each iteration, the
algorithm tries to extend the roadmap in direction of a
new random configuration. If the edge between the new
configuration and the closest node of the roadmap lies in
the free space, the new node is then added to the roadmap.

B. The human loop

Our solution uses an interactive device : a six degrees of
freedom mouse.

The human loop consists in a moving object controlled
by the mouse. The configuration ggeyice i the geometric
center of the object’s root body. This value is defined by the
operator. Both the edges and the nodes of the roadmap can
be displayed in a viewer, see figure 1. In this example, only
operator configurations are displayed.

£
‘ *,
5

v

Fig. 1: Moving object and roadmap visualization

C. Interactive real-time motion planning

The presented solution lets an RRT-connect algorithm
work with an operator using an interactive device through
the visualization of the roadmap.

The interactivity factor « lets the user define the authority
sharing between the operator and the computer. It represents
the probability to have a computer authority. If @ = 1 this
means the planner is fully automatic whereas if a = 0 it
is fully manual. Thanks to this factor, we can avoid the
following problematic cases : an algorithm spending all its
time searching in uninteresting places or an operator trying
to pass through an impossible passage.

Algorithm 1 Interactive Planning

Require: W, T, o, Qdevice
1: loop

2: a4 rand(0,1)

3: if a > « then

4 qeurrent < Gdevice

5: T < Add_Tree(qeyrrent)

6: else

7: Qeurrent < Random_Shooter()
8: T« Add—Tree(Q(:uTrent)

9: end if

10: end loop

The algorithm 1 presents our interactive path planner. It
uses as an input the workspace W, the tree T, the variable
« and the configuration qgeyice-

Line 2 a random number a between 0 and 1 is picked.
Depending on the value of a, this means the tree is extended
sometimes in a random direction and sometimes in the
direction pointed by the human operator in the workspace.

If a > « line 4, the extension is chosen in direction of
the user defined configuration qge.;ce given by the interactive
device. We set the variable Geyrrent t0 €qual @aeyice-

Line 5 the tree is extended in the direction of qcyrrent.
This is done by getting the nearest node ¢neqr tO Geyrrent i
the tree T'. The qpear tO Qeurrent path is discretely validated
as collision-free. Whenever an obstacle is met along this
path, we name @, the last valid configuration, add it to
the roadmap and the gneqr tO Qpew path is also added as a
valid edge to the roadmap.

Line 7 in case a < «, we set Qeyrrent 1O equal a
configuration obtained with a random shooter and add it to
the tree T’

III. CONTACT PLANNING

We will present in this section our novel in contact motion
planner capable of sampling at the surface of obstacles.
The overall behavior is first explained before presenting
our sampling method. Then we give an example of contact
sampling. Last we introduce our interactive motion planner
in contact which is our main contribution.

A. Nearest Obstacle

We have models of both the environment and the object
describing their geometry. A user moves the object in the
workspace using an interactive device and whenever he
approaches an obstacle sufficiently, the planner switches in
contact mode at the surface of this obstacle. Moving the
object away from the obstacle ends contact mode.

Using a collision detection library, we can measure the
obstacle-object distance for every obstacle. The closest ob-
stacle is then defined as the contact obstacle.

B. Stay in Contact

Starting contact mode, the planner samples on a local
tangent plane to the nearest obstacle.

For each of these samples, the actual orientation of the
object is chosen by the operator and kept constant during
contact allowing only translations. New configurations are
randomly chosen along the tangent plane. The object is then
able to slide on the obstacles to enhance sampling in specific
environments.

When the object switch to contact mode, a predefined
number of contact samples are added to the tree. We chose
this behavior because we want to multiply contact configura-
tions to search more interesting space. Also, as the space may
be cluttered, the probability to sample a node in collision is
high leading to more rejected in-collision nodes. We are then
tempted to sample a high amount of nodes on the surface.

The algorithm quits contact mode after sampling the
predefined number of nodes; then the position of the operator
is checked. If he hasn’t moved or if he stayed close to an
obstacle, the algorithm enters back to contact mode.

C. Contact Algorithm Overview

The algorithm 2 presents our novel in-contact algorithm.

It uses as an input the contact point on the obstacle P,,
the nearest point of the object P,,, the configuration qgeyice
which is the geometric center of the object’s root body and
the variable N describing the number of contact samples
each time entering contact mode. This configuration is driven
by a human operator who is able to see all the scene.

Algorithm 2 Contact Sampling

Require: Po; Pn7 N7 Qdevice
1: (8, R) + Find_Local Frame(P,, Py, Gdevice)
2: for i < N do
3 Qeurrent < Contact_Shooter(R, d)
4: T < Add_tree(qeurrent)
5: end for

Line 1, a call to Find_Local_Frame function returns the
distance to contact and R the rotation matrix that is the
transformation from the local to the global frame.

The function first finds the normal vector to the obstacle

_ PP,
"= 1P, ~P,]

The configuration given by the operator is the geometric
center of the root body with P, the 3D point attached to it.

Therefore, P. = qgevice- We project the vector P, to P, on
n and compute & the projected distance to contact:

d=n'"(P,— P:)n

Pn
o ——Pc

" s

M

Fig. 2: 2D Projection example

We then find a rotation matrix between the world frame
and the frame attached to P,.. Using n and Gram-Schmidt
process [19] we can generate a local frame of three orthonor-
malized vectors (2,5, n). These vectors give R the rotation
matrix from the local to world frame.

R = GramSchmidt(n)

Line 2 starts an iteration of N contact samples. They
are computed line 3 calling the function Contact_Shooter().
Instead of randomly shooting every six dimensions like a
random shooter would do, we position the rotation to follow
the operator’s order. Finally we randomly shoot the two last
free dimensions and return the values in geyrrent-

The position coordinates t of qcyrrent are rotated using
R and translated using J to stay on the contact plan. This
transformation keeps shooting configurations on the plane II
passing through P, and perpendicular to n inside the bounds
of the workspace.

Jeurrent = Rt + 6
Line 4, the result is added to the tree for expansion.

D. Interactive Motion Planning with Contact

The real interest of our work and our main contribution
is when both previous methods are used simultaneously. We
can benefit both from an automated planner searching the
whole space and the operator seeking to guide or slide the
object.

We will show how contact samples can be generated
on obstacle surfaces when an operator approaches them.
We decided to let the operator define with his interactive
device which surfaces should be sampled because he has
the industrial knowledge. On the opposite, we chose to let
the computer sample on surfaces because it is very difficult
for an operator to be precise. This behavior allows the
operator to decide manually when to start and end contact
mode and on which surface. Previous contact algorithms
(see section I) had costly contact solutions, opposite to
our method who can generate many contact samples
quickly. Algorithm 3 presents the two methods combined.

For each sample, a random number a defines who holds
authority. If a < «, authority is given to the computer
and a random configuration is shot. If @ > «, authority is
given to the operator. In this case, a distance test defines if
contact mode should be enabled. If the test fails the new
configuration is the one given by the interactive device ; if
the test succeeds it means that the operator is very close to
an obstacle, N contact samples are generated on its surface.

Line 2, we cycle through all elements in the workspace
using Find _Nearest_Obstacle() function to measure the dis-
tance between them and the object. This function returns the
pair of nearest points : P, the nearest point on an obstacle
to P,, the nearest point on the object.

Line 3, a random number between 0 and 1 is shot. If a > «
line 4, control is given to the operator. Otherwise, line 11,
the computer works alone.

Let d be a fixed threshold, line 5. If the distance between
the object and the obstacle is higher than this parameter, the
node Geyrrent added to the tree is set to gdevice, line 6.

If the distance is lower or equal to d, the planner switches
to contact mode, line 9. The function ContactSampling()
which is algorithm 2 is called.

Algorithm 3 Interactive RRT with Contact

Require: W, T, N, qievice, @, d
1: loop

2. (P,, P,) = Find_Nearest_Obstacle(qgevice)
3: a <« rand(0, 1)
4 if a > o then
5 if | P, — P,| > d then
6: Geurrent < Qdevice
7 T« AddfTree(qcurrent)
8 else
9: ContactSampling(Py, Py, N, qdcvice)
10: end if
11: else
12: Qeurrent < Random_Shooter()
13: T < Add_Tree(qcurrent)
14: end if
15: end loop
E. Example

Here is described an example of our interactive motion
planner on a surface. We have a white L shaped object that
has to slide on a plane. Both nodes and edges are displayed.

The o parameter describing the authority sharing between
the random shooter and the operator shooter is set to 1. This
means that the only samples kept in the roadmap will be
non colliding user defined configurations and valid contact
configurations when in contact mode. This helps observing
the behavior of our contact sampler on its own without the
help of an standard RRT. When entering contact mode, the
number NN of configurations to be shot before switching back
to normal mode is fixed to 10 for the rest of the paper.

We can see figure 3 two steps of motion planning with
different orientations. Starting in position (1), we move the

(1)

(4)

[

Fig. 3: Contact example

object to the contact and stay a while in this position to
sample a lot of nodes all aligned (2). Please note that the
nodes display the position of P,.. Step (3) gets out of the
contact, rotate the object (4) and get back to contact. A new
set of points with the different orientation are generated (5).
We have implemented a novel motion planner capable of
generating configurations at the surface of obstacles with
the help of an operator. Our choice was to let the operator
impose the orientation because this can be important in
some industrial cases such as insertion but there may be
other strategies. We illustrate in the following section the
usefulness of our contact algorithm with two examples.

IV. IMPLEMENTATION AND RESULTS

The following section describes the performances of our
algorithms and their implementation details. In the following
examples only edges of the roadmap will be displayed for
clearer visualization.

Part A givess important elements regarding implementa-
tion. Part B shows the usefulness of our interactive planner
with an illustrating example. Last, in part C, we test both our
interactive and contact planner in a cluttered environment.

A. Implementation details

The interactive device is a 6D mouse from Immersion,
model 3DConnexion. All experiments are performed with
Hpp [18] framework developed primarily by the Gepetto
team LAAS-CNRS, the collision detection library is Fcl [20],
the geometric models are all described using URDF (Unified
Robot Description Format) and the 6D mouse driver is our
own. Our computer has an Intel®Xeon®CPU E3-1240 v3
@ 3.40GHz processor with 16 GB RAM and runs under
Ubuntu 14.04.

A particular attention was given to separate work on two
different threads. The goal is to let the standard motion
planning process alone on its thread and therefore on its
processor. All treatments regarding the operator are treated
separately on a different thread. As no parallelization of
motion planning is implemented we can easily compare our
solution with a standard, single processor motion planning
implementation.

Treatments regarding the operator are done in the operator
thread. They are: moving the object, reading the interactive
device data and integrating positions. The same goes for
cycling through obstacles to find the nearest one to the object.
Again, computing R the rotation matrix and é the object to
contact vector is done on the operator thread. Visualization
of the scene is a separate process.

The overhead slowing the planner thread is during con-
tact mode because each new configuration is rotated by
R and translated by . This means that for every contact
configuration the computational overhead is one 3x3 matrix
multiplication with a vector and three additions as well as
changing the value of qcyyrent and some test instructions.

B. Maze Example : interactive algorithm

This example shows the be-
havior of algorithm 1. A maze
has to be crossed by a non con-
vex 3D object that is small com-
pared to the dimensions of the
walls, see figure 4. No samples
can be shot beyond the walls
height to forbid shortcuts.

In figure 5 a standalone RRT-
connect solves the problem in
3 minutes with 3690 nodes and
7378 edges with o = 0.5. Figure
6 shows the result of the same
problem solved with the help of a user which has much
better results, solving the problem in one minute with 1453
nodes and 2904 edges.

Fig. 4: Maze Object.

AL

Fig. 5: RRT-connect

Fig. 6: Interactive

C. Cluttered Environment : contact algorithm

This section presents a cluttered environment that is hard
to solve using simple RRT method. We will show that
our interactive planner outperforms it radically. Using our
contact method (algorithm 3), we are able to improve the
efficiency planning processes. We then discuss the influence
of authority sharing.

1) Environment: In this experiment, the object is a non-
convex L-shape. The environment figure 7 consists of two
blue planes forming a cluttered space as the object can rotate
only in a few directions. Two red planes form an even more
cluttered space where the object can freely rotate only around
one axis. Small rotations around other axis, though, are still
possible before getting in collision.

Fig. 7: Cluttered Space

S

Fig. 8: Narrow passage, side Fig. 9: Narrow passage, up

Fig. 10: Simple RRT

Fig. 11: Interactive

All passages to get inside the red area are blocked with
turquoise bars except in a narrow passage shown figures 8
and 9. The distance between the two first walls is 1.2 meter
while the distance between the two next walls is 0.75 meter.
The length of the object is 1.6 meter, its height 0.8 meter
and its width 0.4 meter. This means that the object can pass
through the narrow passage with only small variations around
roll and pitch axis.

The goal configuration is at a corner of the red area behind
an oblique bar therefore the object will have to slide in order
to reach the goal.

2) Free space tests: The first experiment shown figure 10
is a simple RRT. It lasted for 2h45 minutes before finding a
solution. Were added 27 600 nodes and 55 198 edges to the

Fig. 12: Contact o = 0.8

roadmap . In industrial cases, this time length is not realistic
and unacceptable.

The second experiment figure 11 is held with the help of
an experienced user 6D mouse with our interactive algorithm
1. Cooperation factor « is set to 0.5. This experiments lasts
for 3 minutes with a roadmap holding 3424 nodes and 6846
edges. As expected, the help of an operator radically changed
the speed of the process. Rapidly, when samples lay in an
interesting space, random samples also tend to be generated
in this space, we can see that the amount of nodes sampled
is very small in comparison to the RRT method.

3) Contact tests: The performance of our contact algo-
rithm 2 is tested with a series of experiments by changing
the value of a. Figures 12, 13 and 14 show three results with
different values of a.

Whenever the operator approaches the object to an obsta-
cle, samples are generated along a tangent plane to it. The
tree grows fast on surfaces. To get inside the red area near the
goal configuration, the object should slide along one plane
but this requires freezing some degrees of freedom. While
this can be a challenge for a random shooter, our in-contact
shooter solves the problem much quicker when we want to
stay in contact with the obstacle.

D. Results

The following table presents the results of experiments in
the cluttered environment. RRT standalone planner is clearly
much slower than any other solution. Comparing interactive
mode without contact (algorithm 1) to interactive and contact
sampling (algorithm 2), with the same value of o (=0.5), the
time and number of nodes decreases significantly.

It is necessary to analyze the contact algorithm according
to alpha parameter. With a control sharing factor a getting
smaller, the algorithm keeps growing in performance until
a minimal point is reached with o = 0.08. This means that
92% of the time is given to the operator. The fact is that
this time is not completely given to the operator because
when the user move the objet close to contact, the contact
mode (Contact Sampling) automatically expands nodes on
the surface. We have three operating modes:

« one mode by user when objet is far from obstacle,

Fig. 13: Contact o = 0.2

“\///”
Fig. 14: Contact a = 0.05

e one by algorithm to explore region randomly,

e one by user to guide exploration of contact region

The parameter v must be very small because otherwise
too much nodes and edges are added by the computer in
uninteresting space. Values of « smaller than 0.08 loose
the benefit from random sampling and the obtained results
get less competitive. Either way, our in contact algorithm is
always much faster, requiring much less nodes and edges
than the interactive planner without any contact sampling.

Scenario Time Nodes Edges
RRT, a =1 2h45m || 27 600 || 55 198
Interactive, o« = 0.5 3m 3424 6 846
Contact, @« = 0.8 40s 1729 3454
Contact, « = 0.5 31s 1314 2 626
Contact, « = 0.2 21s 715 1428
Contact, a = 0.1 22s 679 1 356
Contact, = 0.08 15s 538 1074
Contact, a = 0.05 24s 547 1092
Contact, o« = 0.04 21s 602 1202
Contact, a = 0.02 31s 658 1314
Contact, « = 0.01 25s 768 1534
Contact, « = 0 47s 894 1 786

TABLE I: Cluttered environment results

V. CONCLUSION

Our interactive contact algorithm make a step forward in
assembly path planning. It is a twofold contribution that helps
solving cluttered situations where objects need to slide on
each other by keeping contact. Some cluttered environments
or insertion cases could benefit from this novel algorithm.
We have shown the influence of authority sharing on the
results of path planning.

The main drawback of our method is that contact sampling
cannot follow multiple contact but stays only on one plane at
a time. So far we imposed the contact sampling orientation
to be chosen by the user but another strategy could be
implemented for different test cases.

Future work would be to implement an algorithm capable
of following iteratively many different planes and enabling

change of orientation. We would also like to integrate the
user in a Virtual Reality platform with a haptic arm to
get force feedback to simplify the work of an operator in
complex 3D environments.

[1]

[2]

[3]

[4]

[6]
[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

R. Tacob, D. Popescu, and P. Mitrouchev, “Assembly/disassembly anal-
ysis and modeling techniques: A review,” Strojniski vestnik-Journal of
Mechanical Engineering, vol. 58, no. 11, pp. 653-664, 2012.

M. Bordegoni, U. Cugini, P. Belluco, and M. Aliverti, “Evaluation
of a haptic-based interaction system for virtual manual assembly,” in
Virtual and Mixed Reality. Springer, 2009, pp. 303-312.

L. Tching, G. Dumont, and J. Perret, “Interactive simulation of cad
models assemblies using virtual constraint guidance,” International
Journal on Interactive Design and Manufacturing (IJIDeM), vol. 4,
no. 2, pp. 95-102, 2010.

L. E. Kavraki, P. gvestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” Robotics and Automation, IEEE Transactions on, vol. 12,
no. 4, pp. 566-580, 1996.

J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995-1001.

S. M. LaValle, Planning algorithms. Cambridge Univ. press, 2006.

D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic
foundations of probabilistic roadmap planning,” The International
Journal of Robotics Research, vol. 25, no. 7, pp. 627-643, 2006.

K. Naderi, J. Rajamiki, and P. Himildinen, “Rt-rrt: a real-time path
planning algorithm based on rrt,” in Proceedings of the 8th ACM
SIGGRAPH Conf. on Motion in Games. ACM, 2015, pp. 113-118.

O. B. Bayazit, G. Song, and N. M. Amato, “Enhancing randomized
motion planners: Exploring with haptic hints,” Autonomous Robots,
vol. 10, no. 2, pp. 163-174, 2001.

J. Rosell, C. Vazquez, A. Pérez, and P. Ifiiguez, “Motion planning for
haptic guidance,” Journal of Intelligent and Robotic Systems, vol. 53,
no. 3, pp. 223-245, 2008.

X. He and Y. Chen, “Haptic-aided robot path planning based on vir-
tual tele-operation,” Robotics and computer-integrated manufacturing,
vol. 25, no. 4, pp. 792-803, 2009.

N. Ladeveze, J. Y. Fourquet, B. Puel, and M. Taix, “Haptic assembly
and disassembly task assistance using interactive path planning,” in
Virtual Reality Conf., 2009. VR 2009. IEEE. IEEE, 2009, pp. 19-25.
D. Flavigné, M. Tai, and E. Ferré, “Interactive motion planning for
assembly tasks,” in Robot and Human Interactive Communication,
2009. RO-MAN 2009. The 18th IEEE International Symposium on.
IEEE, 2009, pp. 430-435.

S. Cailhol, P. Fillatreau, J.-Y. Fourquet, and Y. Zhao, “A hierarchic
approach for path planning in virtual reality,” International Journal
on Interactive Design and Manufacturing (IJIDeM), vol. 9, no. 4, pp.
291-302, 2015.

S. Redon and M. C. Lin, “Practical local planning in the contact
space,” in Robotics and Automation, 2005. ICRA 2005. Proc. of the
2005 IEEE Int. Conf. on. 1EEE, 2005, pp. 4200-4205.

S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-
based rapidly-exploring random tree,” in Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on. IEEE, 2006, pp. 895-900.

Y. Yan, E. Poirson, and F. Bennis, “Integrating user to minimize as-
sembly path planning time in plm,” in Product Lifecycle Management
for Society. Springer, 2013, pp. 471-480.

F. Lamiraux and J. Mirabel, “Hpp: a new software framework for
manipulation planning,” 2015.

E. Schmidt, “Uber die auflosung linearer gleichungen mit unendlich
vielen unbekannten,” Rendiconti del Circolo Matematico di Palermo
(1884-1940), vol. 25, no. 1, pp. 53-77, 1908.

J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on. 1EEE, 2012, pp. 3859-3866.

