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A simplified fluid-structure model for arterial flow.

Application to retinal hemodynamics.1

Matteo Aletti, Jean-Frédéric Gerbeau, Damiano Lombardi

Inria Paris & Sorbonne Universités UPMC Univ Paris 6, France

Abstract

We propose a simplified fluid-structure interaction model for applications in
hemodynamics. This work focuses on simulating the blood flow in arteries,
but it could be useful in other situations where the wall displacement is
small. As in other approaches presented in the literature, our simplified
model mainly consists of a fluid problem on a fixed domain, with Robin-like
boundary conditions and a first order transpiration. Its main novelty is
the presence of fibers in the solid. As an interesting numerical side effect,
the presence of fibers makes the model less sensitive than others to strong
variations or inaccuracies in the curvatures of the wall. An application to
retinal hemodynamics is investigated.

Keywords:
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1. Introduction

Fluid-structure interaction plays an important role in the cardiovascular
system. In many situations, complex nonlinear models that include large
displacements and deformations have to be considered. This is, for exam-
ple, the case for valve simulation [1, 2, 3, 4] or in the aorta [5, 6, 7]. It is
well-known that these simulations are very demanding, and in spite of the
progress achieved in recent years ([8, 9, 10] to name but a few), they remain
challenging and the subject of active research.

1A final version of this manuscript can be found in Computer Methods in Applied
Mechanics and Engineering (2016)
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In this paper, we consider those situations where it is assumed that the
problem under study can be addressed using simplified approaches. The
idea is to radically simplify the solid model in order to replace the full fluid-
structure problem by a fluid problem with non-standard boundary conditions
at the fluid-structure interface. Various approaches have been recently pro-
posed in this direction [11, 12, 13, 14].

In [12], F. Nobile and C. Vergara started from a Koiter linear shell model
and neglected the flexural terms. After discretization, the resulting fluid-
structure equations are reduced to a fluid problem with Robin boundary
conditions. In this approach, the fluid domain was moving. In [14], O. Piron-
neau further simplified this approach by fixing the fluid domain, introducing
a zero order transpiration boundary condition, and by assuming that the
curvature of the artery was constant. More precisely, whatever the geometry
of the vessel is, the stiffness term is always computed as if the vessel were a
cylinder. With these simplifications, the authors were able to perform a com-
prehensive mathematical analysis of the problem [15]. In [11], A. Figueroa
et al. also assumed that the computational domain was fixed and used a
zero order transpiration boundary condition. The structural model was de-
rived assuming homogeneity throughout the thickness. Compared to the two
previous approaches, this one requires adding new degrees of freedom to the
fluid problem. This drawback is, however, counterbalanced by the fact that
the resulting model is more stable on real geometries featuring variations of
curvature, according to [13] where an extensive comparison was proposed.

The main focus of the present study is the simulation of the autoregulation
of blood flow in the retinal arteries. This phenomenon is very important since
defective autoregulation may play a role in many retinal diseases, including
glaucoma which is the second leading cause of blindness worldwide [16]. Au-
toregulation consists of an active change of the artery diameter in response
to a change in the mean perfusion pressure. This is clearly a fluid-structure
interaction problem, but it is typically a case in which a full structural model
does not seem necessary, at least to render the basic phenomenon, which is a
slight contraction of the vessel wall. The application of the model proposed
in this article to the autoregulation of blood flow is presented in more detail
in [17].

In our approach, we choose to keep the computational domain fixed, as
in [11], and we adopt transpiration boundary conditions. Nevertheless, the
phenomenon of autoregulation cannot be addressed with the zero order tran-
spiration formula usually adopted in the literature. Our model will therefore
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be based on first order transpiration. For the structure, we will start from a
Koiter shell model without flexural terms as in [12]. But, as noted in [13],
this leads to a simplified model that may be unstable in real geometries due
to inaccuracies in the curvature obtained from medical images. Even when
the curvatures are computed accurately, this model, called inertial-algebraic,
may be inaccurate in geometries with a locally flat fluid-structure interface.
Note that the model proposed in [14] does not suffer from this problem since
it assumes everywhere a cylinder-like geometry in the terms involving the
curvature. In our model, we will show that the introduction of fibers allows
us to overcome this problem thanks to the presence of a surface Laplace
operator.

In summary, the main features of our simplified fluid-structure model are
the following: it mainly consists of a fluid problem on a fixed domain, with
Robin-like boundary conditions, which makes it insensitive to the added-mass
effect; it takes into account in a simplified manner the presence of fibers in
the solid; it is less sensitive than others to strong variations or inaccuracies
in the curvatures and, as a consequence, it remains robust in the presence of
flat regions in the surface.

The structure of the article is as follows: in Section 2 the structure model
is proposed; in Section 3 the fluid model and the coupling are presented;
Section 4 deals with numerical discretization issues and Section 5 contains
numerical illustrations, including an initial simulation in a retinal arteries
network.

2. Structure model

In this section, a simplified structure model is introduced to describe the
dynamics of the wall. Similarly to other studies presented in the literature,
the starting point is the Koiter thin shell model (see [12, 14]). The resulting
model aims to render the motion of a thin shell with one or several fiber
layers. When the kinematics of the fibers is considered, it is relevant to keep
second order terms in their deformation because they have an important role
in the stability of the model (the gradient terms in equation (5) below). As
a consequence, to be consistent with the approximation made for the fibers,
second order terms will also be kept in the shell model. This leads to the
inclusion of non-linear terms in the shell model.
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2.1. Notation

Let Γ be the reference position of the structure and a smooth mapping φ
defining its position: φ : ω ⊂ R2 → Γ ⊂ R3, φ = φ(ξ1, ξ2), ∀(ξ1, ξ2) ∈ ω. Let
(a1,a2) be the local covariant basis given by aα = ∂αφ = ∂φ

∂ξα
, α = 1, 2.

In what follows, Greek letters for the indices take values in {1, 2} and latin
letters in {1, 2, 3}. The normal unit vector is defined as a3 = a1×a2

|a1×a2| . Let
A and B be the matrix representations of the first and second fundamental
forms associated with the reference configuration Γ and let S = A−1B be the
representation of the shape operator. The entries ofA andB are respectively
given by aαβ = aβα = aα · aβ and bαβ = bβα = a3 · ∂αaβ. The entries of
A−1 are denoted by aαβ, thus aασaσβ = δαβ. Given a tensor M = (mσβ),
the entries of A−1M are denoted by mα

β = aασmσβ. The surface covariant
derivative of a vector field q : ω → R3 is denoted by

qα||β = ∂βqα − Γσαβqσ − bαβq3 and q3||β = ∂βq3 + bσβqσ, (1)

where Γσαβ are the Christoffel symbols. The covariant gradient of a scalar
field q : ω → R is denoted by ∇cq = (∂αq)α=1,2. In what follows, we denote
by 〈u, v〉 the standard L2(Ω) inner product and by 〈u, v〉ω the L2(Γ)-scalar
product

∫
w
uv
√
a dξ where a = det(A).

2.2. Nonlinear Koiter shell model

The equations for the Koiter shell model are introduced following [18].
The hypotheses are the following:

• the displacement of the structure is parallel to the normal of the refer-
ence configuration;

• the bending terms are negligible;

• the material is linear, isotropic and homogeneous.

As a consequence of these assumptions, only the membrane part of the Koiter
model is considered, the shell deformation is described by the change of
metric tensor G and the stress is linear in the deformation. The tensor G
is a function of the displacement field η and reads:

gαβ =
1

2
(ηα||β + ηβ||α) + aijηi||αηj||β,

4



with a3β = aα3 = 0, a33 = 1. The constitutive law for the stress-strain rela-
tionships is expressed by means of the elastic tensor E , whose contravariant
components read:

Eαβστ =
4λsµs

λs + 2µs
aαβaστ + 2µsaασaβτ + 2µsaατaβσ,

where λs, µs are the Lamé coefficients of the structure.
The equilibrium configuration for the shell (see [18] for an extensive dis-

cussion) is the stationary point of the energy functional:

ψκ(η) =
1

2

∫
ω

Eαβστgστ (η)gαβ(η) hκ
√
a dξ −

∫
ω

f · η hκ
√
a dξ,

where hκ is the Koiter shell thickness and f are the external forces.
Given a test field χ, defined in a suitable functional space (according to

the boundary conditions of the structure), the equilibrium equations in weak
form are obtained by:

Ψκ(η,χ) := 〈δηψκ(η),χ〉ω = 0, (2)

where δη denotes the Fréchet derivative with respect to η.
The form Ψκ is specialised for the present case according to the assump-

tions. By using the hypothesis of a pure normal displacement, i.e. η = ηn,
and Eq.(1), the covariant components of the change of metric tensorG reduce
to:

gαβ = −bαβη +
1

2
aστbσαbτβη

2 +
1

2
∂αη∂βη.

After some algebra (see the details of the computation in Appendix A), the
form reads:

Ψκ(η, χ) :=
2E

1− ν2

∫
ω

(
c1η − 3c2η

2 + 2c3η
3
)
χ− 2∇χT (C1η + C2η

2)∇η+

−∇Tη [(C1 + 2C2η)χ]∇η +
1

2

(
∇ηTA−1∇η

)
∇TχA−1∇η hκ

√
a dξ−∫

ω

fn · χ hκ
√
a dξ, (3)

where E is the Young modulus of the material, ν the Poisson coefficient, the
constant tensors (Cj) and the coefficients (ck) are expressed as a function
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of the mean and Gauss curvatures (respectively ρ1 and ρ2) and the Poisson
ratio as follows:

c1 = 4ρ2
1 − 2(1− ν)ρ2, (4)

c2 = 4ρ3
1 + (ν − 3)ρ1ρ2,

c3 = 4ρ4
1 − 4ρ2

1ρ2 +
1

2
(1 + ν)ρ2

2,

C1 =

[
νρ1I +

1

2
(1− ν)S

]
A−1,

C2 =

[
νρ2

1I +
1

2
(1− ν)S2

]
A−1.

Several remarks are in order. First in the work presented in [12, 14] only
the linear term in (3) is kept (the one multiplied by c1). In this case, the shell
behaves like a linear spring, whose stiffness constant depends upon the local
curvatures. The non-linearities introduce two contributions: a non-linear
spring and a non-linear membrane part.

2.3. Fiber layer

In this section, the equations for a generic fiber layer are detailed. The
main hypotheses are the following:

• the energy of the shell and of the fiber layer sum up;

• from a kinematical point of view, the fibers are perfectly attached to
the shell;

• the fiber is characterized by an affine stress-strain constitutive law.

The second hypothesis implies that the deformation of the fibers equals the
deformation of the underlying shell structure in the direction of the fibers.

Let w ∈ Tx(Γ) be a unitary vector belonging to the tangent space of Γ
defined in the point x ∈ Γ. The deformation of the fiber in the w direction
can thus be written as:

ε1D = wTGw = −d1η +
d2

2
η2 +

1

2
∇ηTPw∇η, (5)

where the scalar coefficients dj and the projector Pw are defined as d1 =
wTBw, d2 = wTBSw, Pw = w ⊗ w. Note that the dj may be negative ,
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for instance on a cylinder with outward normal. A constitutive stress-strain
relationship for the fibers is assumed of the form:

σ1D = k0 + k1ε1D,

so that k0 represents the pre-stress of the fiber and k1 is the linear elastic
coefficient.

Let %w be the fraction of the total number of fibers aligned with the
direction w and hf the thickness of the fibers layer. The elastic energy of
the fibers aligned in the direction w is expressed in the form:

ψw(η) =
1

2

∫
ω

%w [k0 + k1ε1D(η)] ε1D(η) hf
√
a dξ +

∫
ω

rw hf
√
a dξ,

where rw represents the potential energy of a force acting on the fibers aligned
with the direction w.

The equilibrium equations are introduced in weak form, as the scalar
product of the Fréchet derivative of the energy with a test function:

Ψw(η, χ) =

∫
ω

%w∇χT
[
k0 + k1

(
−d1 +

d2

2
η2

)
+
k1

4
W

]
Pw∇η+

%w

[
k0 (−d1 + d2η) + k1

(
−d2

1η −
3d1d2

2
η2 +

d2
2

2
η3

)
+
k1

2
(−d1 + d2η)W

]
χ+

(δηrw)χ hf
√
a dξ, (6)

where W =
(
∇ηTPw∇η

)
. Remark that the contribution of the first line is of

the membrane type, whereas the second line contains algebraic terms in the
test function and hence it renders a non-linear spring-like behavior.

When η = 0, the reference configuration is the equilibrium configuration
only if the stress exerted by the fibers due to their pre-stress is balanced by
the underlying shell. This, in weak form, can be written as:∫

ω

(−%wk0d1 + δηrw)χ hf
√
a dξ = 0,

that holds for arbitrary test functions χ, hence

rw = %wk0d1η.
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To conclude this section, let us remark that, in general, the fibers are
not parallel to only one direction. Consider two linearly independent unitary
vectors w,v ∈ Tx(Γ) and the associated fiber densities %w, %v defined in each
point of Γ. In such a case we can simply sum the two associated energies ψw

and ψv.

2.4. Equations for the structure dynamics

The equations for the structure dynamics are obtained by adding the
inertia terms to the elastic contributions highlighted in the previous sections.
In particular the dynamics equations in weak form can be written as:∫

ω

ρshs(∂2
ttη)χ

√
a dξ + Ψκ(η, χ) + Ψw(η, χ) + Ψv(η, χ) = 0,

where Ψκ, defined in Eq.(3), represents the contribution of the shell and
Ψw,Ψv, defined in Eq.(6), represent the contribution of the fibers aligned in
the directions w and v respectively. The total thickness of the structure is
denoted by hs and its density is denoted by ρs.

In the following, for the sake of simplicity, the overall contribution of the
structure will be denoted as:

Ψs = Ψκ + Ψw + Ψv. (7)

3. Fluid-structure coupling

The fluid is governed by the incompressible Navier-Stokes equations:

ρf (∂tu+ u · ∇u) = ∇ · σf in Ωt

∇ · u = 0 in Ωt

where u is the velocity, ρf is the fluid density and σf = µf (∇u+(∇u)T )−pI
is the fluid stress tensor, where µf is the dynamic viscosity and p is the
pressure. The domain Ωt is, in general, time-dependent, since the wall is an
elastic structure which is moving because of the interactions with the fluid.
We denote by Ω a fixed reference domain. We normalize both the equations
for the structure and the fluid by ρf and we introduce the kinematic viscosity

νf = µf

ρf
. The quantities E, k0, k1, f

s, ρs and p are also divided by ρf , but for
the sake of simplicity their notation is not changed.

The boundary ∂Ωt is subdivided into two subsets Γt, the interface between
the fluid and the structure, and Σt, representing the artificial boundaries of
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the domain where inlet and outlet boundary conditions are enforced on the
normal component of the stress tensor.

Two conditions have to be satisfied on the fluid-structure interface Γt: the
continuity of the velocity and the stress. Since the structure displacement is
assumed to be parallel to the normal direction, it holds, for x ∈ Γ, u(I−n⊗
n)|x+η(x)n(x) = 0 and u · n|x+η(x)n(x) = ∂tη. The continuity of the normal
component of the normal stress gives σfnn|x+η(x)n(x) = −f s−pref , where pref

denotes a given external pressure acting on the structure.
As stated in the introduction, the aim of the present work is to set up

a simplified fluid-structure interaction model, that can provide solutions at
a moderate computational cost. To this end, the structure equations are
treated as a boundary condition for the fluid problem and the problem is
discretized on a fixed mesh. In order to render the motion of the wall, a
transpiration approach is adopted. A zero-th order transpiration was inves-
tigated in [14, 19, 15], and proves to be satisfactory to study the propagation
of pressure waves. However, in view of the application that motivated this
work [17] (hemodynamic autoregulation), it is important to compute the flow
variation induced by the wall dynamics. Thus, a first order transpiration con-
dition is considered.

We denote by y ∈ Γt a point on the actual boundary and by x ∈ Γ the
corresponding point on the reference configuration. The mapping y = Φ(x)
is written as y = y(x) = η(x)+x. The displacement is assumed to be given
by η(x) = η(x)n(x), where n(x) is the outward normal to the reference
domain at the point x. An additional assumption is made: the normal is
supposed to remain the same during the evolution, that is n(x) = n(y). This
assumption, which was also used in [12, 14], can be obtained by assuming
small deformations since the difference |n(x)− n(y)| is of order one in ∇η.
The first order transpiration conditions are obtained through a first order
Taylor expansion around the reference configuration η = 0:

u(y) = u(x) +∇u(x)(y − x) +O(||y − x||2),

u(y) = u(x) + (η∇un)(x) +O(η2), (8)

where the gradient is taken with respect to the x coordinate. The tangential
component of the velocity is computed by multiplying Eq.(8) by (I−n⊗n):

(I − n⊗ n)u(y) = (I − n⊗ n)(u(x) + η∇u(x)n(x)) +O(η2).
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Using the no-slip boundary conditions and neglecting the high-order terms:

(I − n⊗ n)u(x) = −η(I − n⊗ n)(∇u(x)n(x)) on Γ.

From Eq.(8), the normal component of the velocity can be written as

n⊗ nu(y) = n⊗ n(u(x) + η∇u(x)n(x)) +O(η2).

Neglecting high order terms, the continuity of the normal velocity gives:

∂tη = u · n+ η∇un · n.

We make the additional simplifying assumption that the viscous part of
σfnn|x+η(x)n(x) is negligible compared to the pressure, i.e, σfnn|x+η(x)n(x) =
−p|x+η(x)n(x). Then, the value of σfnn|x+η(x)n(x) is approximated by using a
first order Taylor expansion on p

σfnn|x+η(x)n(x) = −p− η∇p · n

The equations for the coupled system are written in weak form, on a fixed
reference frame. Let v, q, χ,w be test functions defined in suitable functional
spaces according to the boundary conditions of the problem. In particular
let (u,v) ∈ V ⊂ H2(Ω), let (p, q) ∈ M ⊂ H1(Ω) and (η, χ) ∈ H1(Γ),
w ∈ H1(T(Γ)). Then:



〈∂tu,v〉+ c(u;u,v) + a(u,v) + b(p,v) = 0 in Ω, t > 0

〈∇ · u, q〉 = 0 in Ω, t > 0

ρshs〈∂2
ttη, χ〉ω + Ψs(η, χ) + 〈pref , χ〉ω = 〈p+ η∇p · n, χ〉ω on Γ

〈∂tη, χ〉ω = 〈u · n+ η∇un · n, χ〉ω on Γ

〈(I − n⊗ n)(u+ η∇un),w〉ω = 0 on Γ.

(9)
The forms a, b, c read:

a : V × V → R, a(u,v) = νf (∇u+∇uT ,∇v)Ω ∀(u,v) ∈ V × V
b : M × V → R, b(p,v) = −(p,∇ · v)Ω ∀(p,v) ∈M × V
c(w) : V × V → R, c(w;u,v) = (w · ∇u,v)Ω ∀(u,v) ∈ V × V
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4. Numerical discretization

4.1. Time discretization

The approximation of the generic quantity f at time tk = k∆t is denoted
by fk. The following notation is introduced: ∇nf = ∇f ·n,∇nnf = ∇fn·n,
fn = f · n.

An implicit-explicit time discretization is adopted in order to avoid the
resolution of non-linear problems. As regards the tangential velocity bound-
ary condition, the Taylor contribution accounting for the motion of the wall
is taken at the current time step:

〈(I − n⊗ n)uk+1,w〉ω = −〈ηk(I − n⊗ n)∇ukn,w〉ω on Γ. (10)

The normal component of the velocity, which is directly related to the wall
displacement η is discretized by adopting a similar strategy:

〈ηk+1, χ〉ω = 〈(1 + ∆t∇nnuk)ηk, χ〉ω + ∆t〈uk+1
n , χ〉ω. (11)

The structure equation is discretized as follows:

ρshs〈
ηk+1 − 2ηk + ηk−1

∆t2
, χ〉ω+Ψs(ηk+1,k, χ)+〈pref , χ〉ω = 〈pk+1+ηk∇npk, χ〉ω,

(12)
where Ψs is the energy of the structure defined in Eq. (7). The non-linear
terms in Ψs are treated in a semi-implicit way detailed in Appendix B (from
equations (B.1) to (B.3)). After linearization Ψs is replaced by the sum of a
bilinear form of ηk+1 and χ and a linear functional of χ. In order to eliminate
the current displacement from the the bilinear form, every istance of ηk+1 is
replaced by Eq.(11) to obtain:

Ψs(ηk+1,k, χ) = Φk+1(uk+1
n , χ) + φk(χ). (13)

The bilinear form Ψs(ηk+1,k, χ) is now divided into two contributions: the first
one Φk+1(uk+1

n , χ) is a bilinear form that depends on the current velocity and
the second one φk(χ) is a linear functional of χ where old quantities appear
as parameters (see Eq. (B.4) for detailed expressions). By injecting
Eq.(13) into Eq.(12) and by collecting all the force terms in one functional,
the following is obtained:

ρshs

∆t
〈uk+1
n , χ〉ω + Φk+1(uk+1

n , χ)− 〈pk+1, χ〉ω = F(χ; ηk, pk, ukn). (14)

11



The details of the expression for F are reported in Eq. (B.5). Remark that
the left-hand side is now made up of the unknowns of the fluid problem,
and the right-hand side is computed by using the values of the variables
at the previous time step. In this way, the motion of the structure has
been implicitly embedded as a boundary condition for the fluid problem. In
addition, as the acceleration of the structure is treated implicitly, possible
numerical instabilities due to the added-mass effect [20] are avoided.

The linear part of the Navier-Stokes equations is discretized by an implicit
Euler scheme, and the convective term in a semi-implicit way: c(uk;uk+1,v) =
〈uk · ∇uk+1,v〉.

Some comments on the stability of the scheme are in order. In the work
by Nobile and Vergara [12], stability was proven for a similar model where
the fluid problem was solved on a moving domain and a linear Koiter model
was embedded into the fluid boundary conditions. In the work by Pironneau
[14] a complete mathematical analysis of a similar method was done on a
fixed domain where the coupling was defined by a zero order transpiration.
The proof of stability of the formulation proposed in the present work seems
to be more complicated because of the first order transpiration that results
in a non-linear mixed boundary condition on the surface Γ for the continuous
problem.

4.2. Application of the boundary conditions

Eq.(9) is discretized using P1-P1 finite elements with an SUPG stabi-
lization. In this section, several remarks on the imposition of the boundary
conditions for the system are presented.

The boundary conditions are separated into a tangential boundary con-
dition of Dirichlet type for the velocity and a generalised Robin boundary
condition in the normal direction. In order to impose the conditions via pe-
nalization and to avoid cancellation errors, a unique vector-type boundary
condition is written. Let z = w+ χn be a test function , with w ·n = 0. It
holds:

−〈pk+1n, z〉ω + `(uk+1, z) = R(z),

where ` is a bilinear form and R is a linear functional, deduced from Eq.(14)
and Eq.(10) (see Appendix B).

The implementation of this boundary condition has to be done carefully
when working with real geometries. In particular, we observed that with
normals constant per element, spurious contributions could appear on the
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tangential velocity (see Remark below). It is therefore desirable to reinter-
polate the normals on the P1 finite elements nodes.

Remark 1. Let us explain the trouble that may come from a piecewise-P0
approximation of the normal when a penalization method on the weak form is
adopted. Consider, for instance, the case of a Dirichlet boundary condition
u = (I − n ⊗ n)g, where g is a generic vector defined on Γ. When this
condition is imposed via penalization the weak formulation reads:∫

Γ

(u− Tg) ·w ≈ 0

where T = (I−n⊗n) is the projector in the tangent space, and “≈ 0” means
“of the order of the inverse of the penalization parameter”. If a piecewise-
P0 approximation to the normal field is used, the projector operator T el

is defined element-wise and is discontinuous. The k-th component of this
equation is written by introducing the basis functions used to discretize the
problem, namely ϕ, providing:∫

Γ

(uk,iϕi − (T elkrgr)iϕi)wk,jϕj ≈ 0,

where (T elk,jgj)i =
∫

Γ
T elk,rgrφi. This equation leads to uk,i ≈ (T elk,rgr)i, and

hence it does not guarantee that nels n
el
k uk,i ≈ 0, for s = 1, 2, 3. On the other

hand, if the piecewise-P1 normal and the corresponding operator T are used,
the quantity Tg is computed for each node and the following identity holds:∫

Γ

(uk,iϕi − Tkr,igr,iϕi)ϕj ≈ 0, l = 1...3

which leads to uk,i ≈ Tkr,igr,i. The velocity satisfies the condition nsnkuk,i =
0, for s = 1, 2, 3. This is particularly relevant for the accuracy in the compu-
tation of the normal component of the velocity and thus of the displacement
field. ♦

5. Numerical testcases

In this section, three numerical experiments are presented where the dif-
ferent features of the proposed method are tested.

In the first test case, a pressure wave in a circular cylinder is simulated, in
a similar setting to that in [12]. In the second numerical experiment, a similar
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Koiter layer Fibers Layer
E[dyn/cm2] hκ[cm] k0[dyn/cm2] hf [cm]

Without fibers 7.5 · 105 0.1 0 0
With fibers 3.75 · 105 0.1 2.78 · 105 0.1

Table 1: Structure parameters for the two simulations.

problem is solved in a different geometry, characterized by the presence of
a flat region. Finally, the proposed method is applied to an image-based
geometry describing a part of the retinal arteriolar network.

5.1. Pressure wave in a cylinder

In this test case, the Stokes equations are solved in a cylindrical domain
(L = 6cm, R = 0.5cm). Two different configurations are compared, one
with fibers and one without. The parameters are reported in Tab.1. The
values for the Young modulus and for the fibers pre-stress are chosen such
that, after linearization, the spring coefficient ( hkE

(1−νs2)R2 +
hfk0%w
R2 ) coincides

for the two configurations. The remaining structure parameters are: ρs = 1
g/cm3, hs = hκ + hf and νs = 0.5. For the sake of simplicity, we set k1 = 0.
Fibers are assumed to be aligned with the principal directions of curvature: w
is the circumferential direction and v the longitudinal direction. The fibers’
fraction is chosen such that fibers are mostly aligned with the circumferential
direction (%w = 0.9,%v = 0.1).

For such a simple geometry, the fibers’ directions and curvatures are
known analytically. However, in view of applying the method to realistic
geometries, where this information is in general not available, we assume
that the directions and the curvatures are unknown, and we estimate them
numerically from the computational mesh.

Fig.1 presents curvature estimations. On the left, the Gaussian curvature
(analytically equal to zero) and the mean curvature (analytically equal to
one) are plotted against the longitudinal coordinate of the cylinder. Notice
the presence of numerical oscillations in the computation of the curvature.
This problem may have negative effects on other simplified FSI models, as
observed in [13]. In the proposed model, it is partially overcome by the
addition of the fiber layer as shown below. In the right panel of Fig.1, the
estimated principal curvature directions are shown.

The fluid parameters are: ρf = 1 g/cm3 and µf = 0.035 cm 2/s. The
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Figure 1: On the left panel the mean (brown) and the Gaussian (blue) curvature estimated
from the computational mesh are compared to the exact values: one and zero, respectively.
On the right panel the principal directions of curvature are depicted: red arrows represent
the local direction of maximum curvature, the blue ones refer to the minimum. On the
surface the mean curvature is displayed.

boundary conditions at the inlet and at the outlet are σ(u, p)n = −p̄n. A
pressure equal to zero is assigned at the outlet (p̄ = 0) and at the inlet

p̄ =

{
5000 dyn/cm2 t ≤ 0.005s

0 t > 0.005s.

In Figures 2 and 3 the displacement is shown against the longitudinal
coordinate, for two different time instants: t = 0.004 and t = 0.012, re-
spectively. First, there is a difference between the non-linear model and
its linear version, both with and without the fiber layer. The pressure wave
amplitude is lower for the non-linear model, and the wave velocity is higher.
This results from the fact that the non-linear model is characterized by a
greater stiffness (due to the non-linear spring contribution).

By comparing the models with and without fibers, it is interesting to no-
tice the regularizing effect of the fibers. The difference in the peak amplitude
and in the wave velocity is due to the difference in inertia and stiffness.

5.2. Pressure wave in a flat cylinder

The effect of adding a fiber layer to the structure model is even more
visible in presence of flat regions in the surface. In realistic geometries, a
locally flat region may occur for several reasons including a lack of precision
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Figure 2: Displacement in the longitudinal direction for different structure parameters (see
Table 1) for t = 0.004. Red lines refer to the case without fibers, while black ones to the
case with fibers. Solid lines refer to the full model and dashed lines to the corresponding
linear version.
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Figure 3: Displacement in the longitudinal direction for different structure parameters (see
Table 1) for t = 0.012. Red lines refer to the case without fibers, while black ones to the
case with fibers. Solid lines refer to the full model and dashed lines to the corresponding
linear version.

Figure 4: The domain of the second test case. One side of the cylinder is flat, i.e. all the
curvatures vanish.
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Figure 5: Displacement in the flat region. Comparison between the model with fibers
(black dashed line linear, black solid line full-model) and the model without (red solid
line).

in the segmentation process. This is why the fluid-structure interaction in a
flattened cylinder (see Figure 4) is investigated.

For this geometrical setting the inertial-algebraic model proposed in [12]
cannot be used. The main reason is that this model reduces to a structure
that behaves pointwise like a spring, whose stiffness constant depends on
the curvatures. When both the curvatures vanish, the spring coefficient is
zero. Therefore, the displacement becomes very large, leading to unphysical
solutions. Adding the non-linear part of the Koiter shell model mitigates this
behavior.

In Fig.5 the displacement is shown in the longitudinal direction in the
center of the flat region for t = 0.012. Notice that, in the flat region, the
structure without fibers is characterized by a significantly large displacement.
This is due to the fact that, in this region, the structure behaves like a
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Figure 6: Displacement in the rounded region. Comparison between the model with fibers
(black dashed line linear, black solid line full-model) and the model without (red solid
line).

membrane, whose stiffness is low. In Fig.6 the same curves are reported for
the displacement in the non-flat region. In this portion, the behavior of the
structure is similar to that found in the first test case.
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6. Application

In the last test case the model is applied to a realistic geometry. The net-
work represents the inferior temporal arteriole network in the human retina.
The original image was taken in the Drive dataset [21]. The vasculature has
been segmented by applying the imaging methods presented in [22, 23]. The
2D data have then been expanded into a 3D-network by assuming a circular
section and projecting the results onto a sphere representing the eye. The
typical diameter of this network varies between 70µm and 160µm.

Several physical parameters appear in the equations of the structure and
in that of the fluid. The parameters are chosen to be comparable to those
found in [16, 24, 25] and they are a realistic and representative set of pa-
rameters for retinal arterioles. The parameters used for the arteriole wall are
ρs = 1g/cm3, E = 0.05MPa, ν = 0.5, hκ = 5µm, hf = 20µm, k0 = 0.4MPa,
k1 = 0,%w = %v = 0.5. For the sake of simplicity, the blood is assumed to
be Newtonian, even if for this kind of vessel a non-Newtonian model would
be more appropriate. We used ρf = 1g/cm3, µf = 0.03cPa. Autoregulation
is not included in this test. The reader interested in test cases including
autoregulation is referred to [17]

Pressure conditions are applied at the inlet:

Pin(t)[mmHg] =

{
25.12 sin(πt/0.25) + 45 t ∈ [0, 0.25]

45 t ∈ [0.25, 0.8].

The mean value over time of the incoming pressure is 50mmHg. At the outlets
of the domain, the downstream circulation is connected to a venous pressure
of 20mmHg via Windkessel compartments. More precisely, we use an RCR
model where the parameters are Rprox = 6. 108Pa s cm−3, Rdist = 6.109 Pa s
cm−3 and the capacitance is 1.67 10−8 cm3s−1 Pa−1. On the lateral surface
an external pressure, modeling the intra-ocular pressure, of 15mmHg is also
imposed.

The displacement of the arterial wall is shown in Fig.7 at the systolic
peak and in Fig.8 at the end of the diastolic phase. The fact that the
displacement is smaller towards the end of the networkis mainly due to two
reasons: the pressure at the end of the the network is significantly lower (the
pressure drop is between 5 and 10 mmHg) and the diameter of the vessels
is smaller. Indeed, the spring contribution to the structure is characterized
by a coefficient that, at the first order approximation in η, depends on the
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Figure 7: Displacement field on the retinal vasculature during the systolic peak.
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Figure 8: Displacement field on the retinal vasculature at the end of diastolic phase.
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Point 1
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Point 4
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Point 5

Figure 9: Left-hand side: the values of the displacement (solid lines, [cm], left axis) and
pressure (dashed lines, [Pa], right axis) over time for six different points on the network.
Right-hand side: the network of arterioles.

inverse of the vessel radius squared (as in the Laplace law). This can be
quantitavely observed in Fig. 9 by comparing Point 2 and Point 6 (orange
and black curves) or by comparing Point 3 and Point 4. In these two cases,
we observe similar pressure curves (dashed lines) and different displacement
(solid lines).

In the same figure we also observe the propagation of the pressure wave
through the vessel network: by comparing Point 1 with Point 5 (red and
green curves) we see that the position of the pressure (and displacement)
peak is delayed in Point 5 with respect to Point 1. On the other hand the
amplitude of the wave is reduced, which is compatible with the fact that no
pulsation is observed at the capillary level.

From a practical viewpoint, it is interesting to note that these fluid-
structure results have been obtained at a computational cost similar to a
fluid problem. It would be interesting to compare the results with those pro-
vided by more complex approaches, as was done in [13] for other simplified
models. This will be the object of future work.
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Appendix A. Derivation of the nonlinear elastic energy

In this Appendix, the expression of the elastic energy for the non-linear
Koiter model is derived, when the simplifying hypotheses for the problem
(see Section 2.2) are taken into account.

We refer to Section 2.1 for the differential geometry notation.
The expression of the energy functional, when f = 0,

ψκ(η) =
1

2

∫
ω

Eαβστgστ (η)gαβ(η) hκ
√
a dξ,

is written in terms of the elasticity tensor defined on the surface and of the
change of metric tensor. The elasticity tensor, Eαβστ , depends on the Lamé
coefficients λs and µs and on inverse of the first fundamental form,A−1, of the
surface. In order to simplify the calculations the term Eαβστgστ (η)gαβ(η) hκ
is split into two different contributions:

Eαβστgστ (η)gαβ(η) =
4λsµs

λs + 2µs
aαβaστgστ (η)gαβ(η)︸ ︷︷ ︸

I

+ 2µsaασaβτgστ (η)gαβ(η) + 2µsaατaβσgστ (η)gαβ(η)︸ ︷︷ ︸
II

.

In the following the dependence ofG on η is dropped for sake of compactness
in the notation. Since A,B,G are symmetric, the two contributions can be
further simplified and written in a more compact form as functions of the
tensor A−1G:

I =
4λsµs

λs + 2µs
(aαβgαβ)2 =

4λsµs

λs + 2µs
( tr(A−1G))2 (A.1)

II = 4µsaασgστa
τβgβα = 4µs tr((A−1G)2). (A.2)

By injecting Eq.(A.1) and (A.2) into the expression of the energy functional,
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the following is obtained:

ψκ(η) =
1

4

∫
Γ

hκEαβστgστgαβ
√
a dξ

=
1

4

∫
Γ

hκ
[

4λsµs

λs + 2µs
tr(A−1G)2 + 4µs tr((A−1G)2)

]√
a dξ

=
1

4

∫
Γ

hκ
[

2Eν

1− ν2
tr(A−1G)2 +

2E

1 + ν
tr((A−1G)2)

]√
a dξ

=
1

2

∫
Γ

hκE

1− ν2

[
ν tr(A−1G)2 + (1− ν) tr((A−1G)2)

]√
a dξ,

(A.3)

where the relationships between the Lamè coefficients µs, λs and the Young
modulus and the Poisson ratio are used, namely:

λs =
Eν

(1 + ν)(1− 2ν)
, µs =

E

2(1 + ν)
.

The expression of the change of metric tensor is rewritten, by considering that
the displacement field is, by hypothesis, aligned with the outward normal:

gαβ = −bαβη +
1

2
sταbτβη

2 +
1

2
∂αη∂βη,

where sτα denotes the components of the matrix representation of S.
In order to expand the terms in Eq.(A.3) in terms of η, we write the

components of the tensor A−1G

gδβ = (A−1G)δβ = aδαgαβ = −aδαbαβη +
1

2
aδαaστbσαbτβη

2 +
1

2
aδα∂αη∂βη.

By introducing the notation ∂α = aασ∂σ, gδβ it simplifies to

gδβ = −sδβη +
1

2
sδσsσβη

2 +
1

2
∂δη∂βη.

After some algebraic calculations the quantities tr(A−1G) and tr((A−1G)2)
can be written in terms of traces of powers of S, which are, in turn, directly
related to the curvatures of the surfaces.

It holds:

tr(A−1G) = − tr(S)η +
1

2
tr(S2)η2 +

1

2
∇ηTA−1∇η

tr((A−1G)2) = tr(S2)η2 − tr(S3)η3 − η∇ηTSA−1∇η

+
1

4
η4 tr(S4) +

1

2
η2∇ηS2A−1∇η +

1

4
(∇ηTA−1∇η)2.

(A.4)
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The traces of powers of S can be written in terms of the curvatures as:

tr(S) = λ1 + λ2 = 2ρ1

tr(S2) = λ2
1 + λ2

2 = 4ρ2
1 − 2ρ2

tr(S3) = λ3
1 + λ3

2 = 8ρ3
1 − 6ρ1ρ2

tr(S4) = λ4
1 + λ4

2 = 16ρ4
1 + 2ρ2

2 − 16ρ2
1ρ2,

where ρ1 is the mean curvature 1/2(λ1 +λ2) and ρ2 is the Gaussian curvature
λ1λ2.

By using Eq.(A.4) we derive the final expression for the elastic energy
functional

ψκ(η) =
1

4

∫
ω

hκEαβστgστgαβ
√
a dξ

=
1

2

∫
ω

hκE

(1− ν2)

[
ν tr(A−1G)2 + (1− ν) tr((A−1G)2)

]√
a dξ

=
1

2

∫
ω

hκE

(1− ν2)

[
c1η

2 − 2c2η
3 + c3η

4 +
1

4
((∇η)TA−1∇η)2+

− 2νρ1η(∇η)TA−1∇η + ν(2ρ2
1 − ρ2)η2(∇η)TA−1∇η+

− (1− ν)η(∇η)TSA−1∇η +
1

2
(1− ν)η2(∇η)TS2A−1∇η

]√
a dξ,

where the coefficients cj depend on the Poisson ratio and on the curvatures
(they are reported in Eq.(4)).

In order to compute the form Ψκ in Eq.(2), the first variation with respect
to η of the energy functional has to be computed and tested, to get the weak
form, against a function χ belonging to a suitable functional space. The
procedure to derive the first variation (Fréchet derivative) involves several
integrations by parts on the surface that produce extra terms involving the
curvatures. These terms, however, disappear when the first variation is tested
against the function χ. The final result is reported in Eq.(3).

Appendix B. Details on the time discretization of the boundary
condition

The nonlinear form Ψs(η, χ) depends on the forms associated to the non-
linear Koiter shell and the fibers (see Eq.(7)). For the sake of simplicity, we
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consider only fibers in the w direction.

Ψs(η, χ) =
2E

1− ν2

∫
ω

(
c1η − 3c2η

2 + 2c3η
3
)
χ− 2∇χT (C1η + C2η

2)∇η+(B.1)

−∇Tη [(C1 + 2C2η)χ]∇η +
1

2

(
∇ηTA−1∇η

)
∇TχA−1∇η hκ

√
a dξ−∫

ω

fn · χ hκ
√
a dξ +

∫
ω

%w∇χT
[
k0 + k1

(
−d1 +

d2

2
η2

)
+
k1

4
W

]
Pw∇η+

%w

[
k0d2η + k1

(
−d2

1η −
3d1d2

2
η2 +

d2
2

2
η3

)
+
k1

2
(−d1 + d2η)W

]
χ hf
√
a dξ.

We use a semi-implicit approach to discretize this form in time. The scheme
is the following

Ψs(ηk+1, χ; ηk) =
2E

1− ν2

∫
ω

(
c1 − 3c2η

k + 2c3η
k2
)
ηk+1χ− 2∇χT (C1η

k + C2η
k2

)∇ηk+1+

−∇Tηk
[(
C1 + 2C2η

k+1
)
χ
]
∇ηk +

1

2

(
∇ηkTA−1∇ηk

)
∇TχA−1∇ηk+1 hκ

√
a dξ−

∫
ω

fk+1
n · χ hκ

√
a dξ +

∫
ω

%w∇χT
[
k0 + k1

(
−d1 +

d2

2
ηk

2
)

+
k1

4
W k

]
Pw∇ηk+1+

%w

[
k0d2η

k+1 + k1

(
−d2

1 −
3d1d2

2
ηk +

d2
2

2
ηk

2
)
ηk+1 +

k1

2
(−d1 + d2η

k+1)W k

]
χ hf
√
a dξ.

This form is linear with respect to χ and affine with respect to ηk+1. The
coefficients of the form depend on the current displacement ηk. It is useful
to split the form into two sub-contributions in order to highlight the bilinear
part

Ψs(ηk+1, χ; ηk) = B(ηk+1, χ; ηk) + G(χ; ηk). (B.2)
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The bilinear form B(ηk+1, χ; ηk) has the following expression:

B(ηk+1, χ; ηk) =
2E

1− ν2

∫
ω

(
c1 − 3c2η

k + 2c3η
k2 − 2(∇TηkC2∇ηk)

)
ηk+1χ

− 2∇χT (C1η
k + C2η

k2
)∇ηk+1 +

1

2

(
∇ηkTA−1∇ηk

)
∇TχA−1∇ηk+1 hκ

√
a dξ+

+

∫
ω

%w∇χT
[
k0 + k1

(
−d1 +

d2

2
ηk

2
)

+
k1

4
W k

]
Pw∇ηk+1+

%w

[
k0d2 + k1

(
−d2

1 −
3d1d2

2
ηk +

d2
2

2
ηk

2
)

+
k1

2
d2W

k

]
ηk+1χ hf

√
a dξ.

On the other hand, the functional G(χ; ηk) has the form

G(χ; ηk) = − 2E

1− ν2

∫
ω

(∇TηkC1∇ηk)χ hκ
√
a dξ− (B.3)∫

ω

fk+1
n · χ hκ

√
a dξ −

∫
ω

%w
k1

2
d1W

kχ hf
√
a dξ.

We use the strong formulation of Eq.(11),

ηk+1 = (1 + ∆t∇nnu
k)ηk + ∆tuk+1

n ,

to replace ηk+1 in Eq.(B.2) obtaining:

Ψs(ηk+1, χ; ηk) = ∆tB(uk+1
n , χ; ηk) +B((1 + ∆t∇nnu

k)ηk, χ; ηk) +G(χ; ηk),

which is in the same form as Eq.(13). We, finally, define:

Φk+1(uk+1
n , χ) = ∆tB(uk+1

n , χ; ηk)

φk(χ) = B((1 + ∆t∇nnu
k)ηk, χ; ηk) + G(χ; ηk).

(B.4)

The expression for F in equation (14) is obtained by combining Eq.(B.4) and
Eq.(12).

F = 〈ηk∇np
k − pref − ρshs

∆t2
((∆t∇nnu

k − 1)ηk + ηk−1), χ〉ω − φk(χ). (B.5)
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On the interface surface Γ those two boundary conditions (Eq.(10), Eq.(14))
hold:{

〈(I − n⊗ n)uk+1,w〉ω = −〈ηk(I − n⊗ n)∇ukn,w〉ω
ρshs

∆t
〈uk+1
n , χ〉ω + Φk+1(uk+1

n , χ)− 〈pk+1, χ〉ω = F(χ; ηk, pk, ukn).

Let z : Γ 7→ R3 be a vector-valued function of H1(Γ), such that z ·n = χ and
(I−n⊗n)z = w. We also recall that w ·n = 0. By introducing the notation
T = (I−n⊗n) and by reorganizing the terms ρshs

∆t
〈uk+1
n , χ〉ω+Φk+1(uk+1

n , χ)
we get{

〈Tuk+1,w〉ω = −〈ηkT∇ukn,w〉ω
〈αkuk+1

n , χ〉ω + Φ̃k+1(uk+1
n , χ)− 〈pk+1, χ〉ω = F(χ; ηk, pk, ukn),

where

αk =
ρshs

∆t
+

2E∆thκ
1− ν2

(c1 − 3c2η
k + 2c3η

k2 − 2(∇TηkC2∇ηk)

+%whf

[
k0d2 + k1

(
−d2

1 −
3d1d2

2
ηk +

d2
2

2
ηk

2
)

+
k1

2
d2W

k

]
and

Φ̃k+1 =
2E∆t

1− ν2

∫
ω

−2∇χT (C1η
k + C2η

k2
)∇uk+1

n +
1

2

(
∇ηkTA−1∇ηk

)
∇TχA−1∇uk+1

n hκ
√
a dξ+

+

∫
ω

%w∆t∇χT
[
k0 + k1

(
−d1 +

d2

2
ηk

2
)

+
k1

4
W k

]
Pw∇uk+1

n hf
√
a dξ.

Finally, we replace w by Tz and χ by z · n, we multiply the equation for
the tangential component by αk and we sum the result

〈αkuk+1, z〉ω + Φ̃k+1(uk+1
n , z · n)︸ ︷︷ ︸

`(uk+1,z)

−〈pk+1, z·n〉ω = F(z · n; ηk, pk, ukn)− 〈ηkT∇ukn,Tz〉ω︸ ︷︷ ︸
R(z)

.
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