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Numerical Algorithm for Computing Acoustic
and Vortical Spatial Instability Waves

Roberto Sabatini∗ and Christophe Bailly†

École Centrale de Lyon, 69134 Ecully, France

Local linear stability is often invoked in computational aeroacoustics to predict Mach wave radiation or to prescribe inflow conditions in
order to drive turbulent transition in large-eddy simulations. In this work, the governing equations are reformulated for the nonoscillatory part
of eigenfunctions. Boundary conditions can thus be explicitly enforced and, moreover, the numerical cost is drastically reduced regardless of the
method chosen to solve this problem. An efficient method based on a matrix formulation is proposed in this study. One single, small

collocation domain is used, even for computing the stability of supersonic flows. Vortical and acoustic instability waves of supersonic plane jets are
briefly revisited to demonstrate the efficiency of this new approach.

Nomenclature

b⋆ = half-width of the jet (reference scale)
cj = jet exit sound speed
c∞ = uniform sound speed in the ambient stream
k = kr � iki; complex wave number
Mj = jet Mach number; 1∕cj
Mr = ρ

1∕2
∞ jvφMjj; relative Mach number in the ambient stream

Ms = Mjj1 − vφj; relative Mach number in the jet
pj = jet exit pressure 1∕�γM2

j �
�p = mean pressure
p̂ 0 = amplitude of pressure fluctuations, where p 0�x; y; t�

is equal to p̂ 0�y�ei�kx−ωt�
T⋆
j = jet exit temperature (reference scale)

T∞ = uniform temperature in the ambient stream
t = time
u⋆j = jet exit velocity (reference scale)
u∞ = uniform velocity in the ambient stream
�u = mean longitudinal velocity
vφ = ω∕kr; phase velocity of the instability wave in the

mean flow direction
γ = ratio of specific heats
δθ = momentum thickness
ρ⋆j = jet exit density (reference scale)
ρ∞ = uniform density in the ambient stream
�ρ = mean density
ω = angular frequency

Subscripts

r, i = real and imaginary parts of a complex number

Superscript

* = dimensional variable

I. Introduction

T HE linear stability theory is widely used in computational
aeroacoustics. To name a few examples, Mach wave radiation

can be accurately described from small flow perturbations growing in
space [1,2], as shown in the reviews by Tam [3] and Morris [4]
and investigated by Oertel et al. [5]. Linear parabolized stability
equations requires an initialization often provided by a local solution
[6]. Generation of unsteady inflow conditions built on instability
waves can be used to drive the transition toward turbulence in large-
eddy simulation, as performed by Keiderling et al. [7].
There are basically two main classes of numerical methods [4] to

solve the associated eigenvalue problem for a given base flow: the so-
called shooting solution and the solution of a global matrix eigenval-
ue formulation. For supersonic jet flows, and in the framework of a
spatial analysis (which is considered in what follows), a two-domain
shooting method is commonly preferred [8–13]. The numerical
algorithm including radiation boundary conditions appears to be
easier to implement and generally provides the most accurate results.
In the present study, equations governing the local stability prob-

lem are reformulated to remove the oscillatory part of the eigen-
functions. This leads to a less demanding numerical problem to solve;
moreover, acoustic radiation conditions for Mach waves can be
explicitly taken into account. The paper is organized as follows. The
stability problem is briefly expressed in Sec. II, and some results are
recalled for completeness. The numerical procedure is explained in
Sec. III. Amatrix formulation is proposed in this study, involving one
single, small collocation domain. The case of a supersonic plane jet is
briefly examined as an illustration in Sec. IV. The efficiency of the
numerical algorithm is discussed in Sec. V, and concluding remarks
are finally given.

II. Linear Stability Analysis

The inviscid linear stability problem governed by the linearized
compressible Euler equations in a two-dimensional Cartesian coordi-
nate system �x; y� is considered. The free shear flow is represented
by the superposition of a known parallel base flow �ρ � �ρ�y�,
�u � �u�y�ex, �p � 1∕�γM2

j � and a small perturbation �ρ 0; u 0; p 0�,
where �ρ; u; p� are the density, the velocity, and the pressure. Note
that all the variables are nondimensionalized using the nominal jet
parameters, namely, the half-width b⋆, the velocity u⋆j , and the
density ρ⋆j . Thanks to the homogeneity in the base flow direction x

and in time of the resulting partial differential system, all the physical
quantities are sought in the form of normal modes

q 0�x; y; t� � Refq̂ 0�y�ei�kx−ωt�g (1)

where the wave number k and the angular frequency ω are generally
taken as complex.With some mathematical manipulations, the Euler
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partial differential system can be reduced to a single equation for the
pressure amplitude p̂ 0, known as the generalized or compressible
Rayleigh equation [14]

F�p̂ 0� ≡ d2p̂ 0

dy2
−

�

1

�ρ

d�ρ

dy
� 2k

k �u − ω

d �u

dy

�

dp̂ 0

dy

− �k2 −M2
j �ρ�k �u − ω�2�p̂ 0

� 0 (2)

where theMach number of the jet is denoted byMj. Spatially growing
perturbations are considered here. Disturbances are therefore period-
ic in time with ω > 0 real and positive, and one seeks the complex
eigenvalues k � kr � iki and the corresponding eigenfunctions p̂ 0.
Thus, according to expression (1), a mode is unstable if ki < 0. The
appropriate boundary conditions are obtained by solving the limiting
form of Rayleigh’s equation (2) as y→ �∞:

d2p̂ 0

dy2
− β2p̂ 0 � 0 β �

�����������������������������������������������

k2 −M2
jρ∞�ku∞ − ω�2

q

(3)

where ρ∞ and u∞ are the density and velocity of the uniform
freestream. The branches of the complex eigenvalue β are selected to
satisfy the causality principle and to ensure that the disturbance field
decreases as y → �∞. Consequently, the asymptotic behavior of the
pressure p̂ 0 is given by p̂ 0 ∝ e∓βy as y → �∞, with the choice
arg�β� ∈� − π∕2; π∕2�. This ensures that the disturbance field decays
to infinity [4].
Only the discrete part of the eigenvalue spectrum is considered in

this work [15]. This spectrum consists of two families of waves
[16,17]. The first one is the continuation of Kelvin–Helmholtz (KH)
instability waves or vortical modes into the compressible regime.
The second one is associated with acoustic modes, [16,18,19], which
are obviously removed in the classical incompressible form of
Rayleigh’s equation. Acoustic perturbations are observed when
Ms ≡Mjj1 − vφj > 1, where vφ � ω∕kr is the phase velocity in the
x direction. Following the terminology introduced by Tam and Hu,
[16], these so-called supersonic acoustic modes are also the most
unstablewaves at high enoughMach numbers [17]. Both vortical and
acoustic modes may radiate in the far field when their phase velocity
is supersonic relative to the freestream. For a free jet with u∞ � 0
for simplicity, this condition is satisfied when Mr ≡ jvφ∕c∞j �
jρ1∕2∞ Mjvφj > 1, and it corresponds to the conical domain bounded
by the two dashed lines in Fig. 1. The radiation directivity can be
determined by examining the expression of the eigenfunction of the
pressure for y → �∞:

p 0�x; y; t� ∝ e−kix−βryei�krx−βiy−ωt� (4)

It can thus be observed that aMach wave radiation is generated in the
angular direction θ � atan�−βi∕kr� with respect to the downstream
direction [3], as shown in Fig. 2. Vortical and acoustic modes have

also beenvisualized experimentally, as shown, for instance, byOertel
et al. [20,21] for the case of hot supersonic jets and, more recently, by
numerical simulations.
As an illustration, whichwill also be helpful for interpreting results

presented later, the vortex-sheet model of a plane jet is briefly
recalled. The base flow is given by

�

�u�y� � 1; �ρ�y� � 1 if y ∈� − 1; 1�
�u�y� � 0; �ρ�y� � ρ∞ otherwise

(5)

Symmetric and antisymmetric modes about the jet axis are solutions
of the inviscid stability problem, and the two dispersion relations
Ds�Mj;ω; k� and Da�Mj;ω; k� can be analytically derived. The
mathematical resolution is provided in Appendix A. The spectrum of
the symmetric dispersion relation is shown in Fig. 3 for the case of an
isothermal supersonic jet with ω � 0.5, ρ∞ � 1, and Mj � 3. This
spectrum is symmetric about the kr axis since the problem admits
complex conjugate eigenvalues. The Kelvin–Helmholtz mode as
well as the first acoustic supersonic mode are unstable, whereas the
other higher acoustic modes are neutral perturbations. The dashed
line indicates that the phase velocity is sonic outside of the jet, and
modes on the left on this line are thus radiating modes. The dashed–
dotted line represents the relation kr � ωMj∕�Mj − 1�, and super-
sonic acoustic modes can only exist on the right of this line. This
criterion allows us to separate the continuation of the Kelvin–
Helmholtz mode in a compressible regime from acoustic modes in
this case. The eigenfunction p̂ 0 can also be analytically determined. It
is given by

p̂ 0�y� �
�

cosh�β1y� y ∈�0; 1�
cosh�β1�eβ�1−y� y ∈�1;�∞� (6)

where

β1 �
�����������������������������������

k2 −M2
j �k − ω�2

q

β �
�����������������������������

k2 −M2
jρ∞ω

2
q

Fig. 1 Dispersion relation in the �ω;kr� plane.

Fig. 2 Sketch of Mach wave fronts radiated by a sinuous instability
wave; see Eq. (4).

Fig. 3 Symmetric modes of the vortex-sheet model where ω � 0.5,
ρ∞ � 1, and Mj � 3: Kelvin–Helmholtz symmetric mode (�),
first acoustic mode (♦), higher acoustic modes (▪), kr � Mjω∕�Mj − 1�

(– – –), and kr � ρ
1∕2
∞ Mjω (– – –).
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This oscillating function p̂ is plotted in Fig. 4. It has a very large
support, with a transverse distance of about 150 times the jet width.
This is due to the fact that, for radiating modes, the term e−βy decays
slowly in the freestream, unlike nonradiating unstable modes.

III. Solution Technique

Apart from a small number of particular cases, generalized
Rayleigh equation (2) must be solved numerically. Early calculations
on the stability of parallel flows have been made through shooting
methods, whereas, in recent years, matrix methods [22] have also
been successfully applied to hydrodynamic stability problems.
Shooting methods are best suited to obtain a single eigenvalue of the
spectrum, and they require an initial guess. On the contrary, matrix
methods can provide an approximation to all the eigenvalues without
an initial guess. In this case, a numerical scheme allows us to trans-
form the Rayleigh equation into an algebraic polynomial eigenvalue
problem [15,23–26]. As a discretization procedure, the pseudospec-
tral collocation method is often employed. The unknown function p̂ 0

is approximated by a linear combination of (N � 2) known, but
arbitrarily chosen, basis functions ϕi�y�:

p̂ 0�y� ≈ p̂ 0
N�2�y� ≡

X

N�2

i�1

aiϕi�y�

The (N � 2) unknown coefficients ai are calculated by requiring that
F�p̂ 0

N�2� vanishes atN collocation points yn,F �p̂ 0
N�2�yn�� � 0, and

by imposing the two boundary conditions associatedwith Eq. (2). For
the given ω andMj, this leads to an algebraic polynomial eigenvalue
problem

�A0 � kA1 � k2A2 � k3A3�a � 0 a � �a1; · · · ; aN�2�T (7)

where A0, A1, A2, and A3 are �N � 2� × �N � 2� matrices. A
complete review of different approaches to compute the eigenvalues
of Eq. (7) can be found in thework byBridges andMorris [27]. Using
the companion matrix method [23,27], Eq. (7) is easily transformed
in a 3�N � 2� × 3�N � 2� linear eigenvalue problem of the form
Pa � kQa, which can be solved through a standardQZ algorithm.
In this work, we are interested in the computation of the spatial

modes of a supersonic jet. As the Mach number increases, the
eigenfunctions p̂ 0 become more and more oscillating with a larger
support than in the incompressible case, as illustratedwith the vortex-
sheet model in Fig. 4. Therefore, the number of collocation points
needed to accurately resolve these modes rapidly grows as the Mach
number exceeds the value of aboutMj � 2. In other words, comput-
ing the spatial modes �ω; k; p̂ 0� through the aforementioned proce-
dure turns out to be very expensive forMj ≥ 2. Besides, when using
the collocation method, it is generally difficult to enforce the
boundary conditions p̂ 0�y� ∝ e∓βy as y→ �∞ so that, in practice,
one often imposes the condition that the derivative dp̂ 0∕dy vanishes
at infinity.

To overcome these problems, a new formulation of the generalized
Rayleigh equation is proposed. As a starting point, it is observed that
the eigenfunctions p̂ 0 deviate significantly from their asymptotic
behavior e∓βy only in the inner region of the jet. Furthermore, due to
the symmetry of a jet about the axis y � 0, the generalized Rayleigh
equation admits symmetric and antisymmetric modes, so that it can
be solved in the reduced interval 0 ≤ y ≤ ∞ by enforcing appropriate
boundary conditions at y � 0. Let us define a new function ~p
such that

p̂ 0�y� � ~p�y�e−βy (8)

This function ~pvaries only in the inner part of the jet and rapidly tends
to a constant value outside this region. By substituting Eq. (8) into
Eq. (2), it is straightforward to find the differential equation that ~p�y�
must be satisfied:

d2 ~p�y�
dy2

�g1�y; �u; �ρ;Mj;k;ω�
d ~p�y�
dy

�g2�y; �u; �ρ;Mj;k;ω� ~p�y�� 0

(9)

where

(

g1�y; �u; �ρ;Mj;k;ω��− 1
�ρ
d�ρ
dy
− 2k

k �u−ω
d �u
dy
−2β

g2�y; �u; �ρ;Mj;k;ω�� β
�

1
�ρ
d�ρ
dy
� 2k

k �u−ω
d �u
dy

�

�β2−k2�M2
j �ρ�k �u−ω�2

Equation (9) is to be solved with the following boundary condition
for y→ ∞:

lim
y→∞

d ~p�y�
dy

� 0 (10)

completed by

dp̂ 0�y�
dy

�

�

�

�

y�0

� d ~p�y�
dy

�

�

�

�

y�0

− β ~p�y � 0� � 0 (11)

for symmetric modes, and by

p̂ 0�y � 0� � ~p�y � 0� � 0 (12)

for antisymmetric modes. Aswill be shown later, the discretization of
this problem remarkably reduces the number of collocation points
needed to accurately resolve the eigenfunctions ~p�y� and simplifies
the application of boundary conditions.
In the present study, the linear stability problem is solved in a finite

domain 0 ≤ y ≤ y∞, where y∞ is taken large enough to consider ~p
constant. In addition, the function ~p is expanded as a sumofLagrange
polynomials based on the Gauss–Lobatto points. A transformation
from the computational domain −1 ≤ ξ ≤ 1 to the physical domain
0 ≤ y ≤ y∞ is thus introduced through the following mapping:

y � L1�1� ξ�
L2 − ξ

(13)

where the two stretching coefficients L1 and L2 are given by [26]

L1 �
yly∞

y∞ − 2yl
L2 � 1� 2L1

y∞

This coordinate transformation clusters grid points near the boundary
y � 0 and distributes half of them in the interval 0 ≤ y ≤ yl. In the
computational domain,

~p�ξ� ≈ ~p�N�2��ξ� �
X

N�2

i�1

aiLi�ξ�

Fig. 4 Analytical eigenfunction [Eq. (6)] of the symmetric Kelvin–
Helmholtz mode for the case where ω � 0.5, ρ∞ � 1, andMj � 3.
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where the basis functions Li and the collocation points ξn are de-
fined as

Li�ξ� �
Y

n�1
n≠i

N�2
ξ − ξn

ξi − ξn
ξn � cos

	

π�n − 1�
N � 1




for 1 ≤ i, n ≤ N � 2. One has Li�ξn� � δin, and the pseudospectral
coefficients ai coincide with the values of the unknown function ~p
at the collocation points ai � ~pN�2�ξi� � ~pi. The derivative of
~pN�2�ξ� at the collocation points can be expressed directly as a linear
combination of the values ~pi:

d ~pN�2�ξ�
dξ

�

�

�

�

ξ�ξn

�
X

N�2

i�1

~pi

dLi�ξ�
dξ

�

�

�

�

ξ�ξn

�
X

N�2

i�1

Dni ~pi

for n � 1; : : : ; N � 2, where the terms Dni are the elements of
the differentiation matrix D. Its expression [28] is provided in
Appendix B. The higher derivatives with respect to the variable ξ at
the collocation points are given by Dl ~p, where l is the order of
derivation and ~p � � ~p1; : : : ; ~pN�2�T .
Generalized Rayleigh equation (2) exhibits a singularity at the

locations y � yc such that k �u�yc� − ω � 0. The collocation method
is particularly sensitive to their proximity to the computational
domain. The closer the singularities are, the slower the convergence
will be, and for critical points on the real axis, the numerical approx-
imation does not hold anymore. In the context of the spatial stability
analysis of this work, the singularity yc inhibits the computation of
neutral and damped modes. As proposed by Boyd [29] and Gill and
Sneddon [30], a mapping in the complex plane can be introduced to
bypass the singularities. The new contour must pass below the real
axis when d �u�y�∕dy is positive and above the real axis when
d �u�y�∕dy is negative [4,29,30]. In this work, the following mapping
is chosen

z � y� iδ�1 − ξ2� (14)

where δ is a real factor controlling the distance from the real axis. In
practice, one could choose δ so that the distance of the new contour
from the critical point is sufficient to guarantee the convergence of the
algorithm, but it is also necessary to pay attention to other singular-
ities eventually induced by the base flow. For example, in the case of
the jet velocity profile [Eq. (16)], which will be used in the next
section, the function tanh��1∕z − z�∕4δθ�, and thus the differential
equation, have poles at points z such that cosh��1∕z − z�∕4δθ� � 0;
that is

1

4δθ

	

1

z
− z




� �i

	

π

2
�mπ




m � 0; 1; 2; : : :

This limits the choice of the suitable parameter δ. This function is also
contained in the derivative d �u∕dz, which takes large values near the
poles. Figure 5 illustrates the integration path for L1 � 3, L2 �
1.001, δ � 0.3, and δθ � 0.125. Several numerical calculations of
neutral and damped modes reveal that δ ∈ �0.2; 0.3� is a good
compromise here.
Equation (9) can be recast in the form of a nonlinear eigenvalue

problem

�m0 � km1 � k2m2 � k3m3 � βkm4 � βm5� ~p � 0

where the operators mi for i � 1; : : : ; 6 are given in Appendix C.
This differential equation is transformed into an algebraic problemby
replacing the derivatives of ~p with the differentiation matrices [28]
with respect to the variable z (refer to Appendix B) and the func-
tions �u and �ρ with diagonal matrices for which the terms re-
presents their values at the collocation points. One finally finds
M�k;ω;Mj� ~p � 0, with

M�k;ω;Mj� �
X

3

i�0

kiMi�ω;Mj� � βkM4�ω;Mj�

� βM5�ω;Mj� (15)

The matrices M0;M1; · · · ;M5 are provided in Appendix C.
Boundary conditions are enforced by replacing the first and last lines
of the system with Eq. (10), (11), or (12). The present eigenvalue
problem is nonlinear and nonpolynomial in k, which does not allow
theuseof a linearized form[4,15,23–26].An iterative proceduremust be
used. Here, the new formulation of the generalized Rayleigh equation
[Eq. (15)] is solved through the method of successive linearization
proposed by Ruhe [31]. Starting with an approximation k�0� of k, a
correction h�0� to k�0� is sought to satisfy M�k�0� � h�0�� ~p � 0. By
using Taylor’s formula, one can write

M�k�0� � h�0�� ~p ≃ �M�k�0�� � h�0�M 0�k�0��� ~p

where the symbol 0 indicates the derivativewith respect to k. Finally, the
expression

�M�k�0�� � h�0�M 0�k�0��� ~p � 0

represents a generalized linear eigenvalue problem in the unknown h�0�

and can be solved through a standard QZ algorithm. Due to the
truncation of the series, the correction h�0� is, however, not exact, and a
sequence is then built where h�n� is chosen as the absolutely smallest
eigenvalue. The convergence is quadratic and, at the end, for a relative
error less than ϵ � 10−6, the initial nonlinear system M�k� ~p � 0
becomes equivalent to the following linear eigenvalue problem:

M�k�n�� ~p � −h�n�M 0�k�n�� ~p

Thus, the sought eigenfunction corresponds to the one associated with
the absolutely smallest eigenvalue h�n�. In summary, for ω and Mj,
application of this algorithm allows us to find only one eigenval-
ue k: the closest to a certain initial guess. Equation (9) could be solved
using other numerical approaches, and this point is discussed in Sec. V.

IV. Numerical Results

A. Spatial Stability of the Bickley Jet

The numerical approach presented in the previous section is first
applied to an academic incompressible case, and our numerical
results are compared to the calculations by Betchov and Criminale
[32]. The velocity profile of the Bickley jet, �u�y� � 1∕cosh2�y�, has
two critical points yc � �cosh−1�

��������

3∕2
p

� corresponding to the two
inflexion points. Consequently, two neutral modes can be found: the
symmetric mode �ω; k� � �2∕3; 1�, and the antisymmetric mode

Fig. 5 Integration path: poles of the velocity profile [Eq. (16)] with
δθ � 0.125 (○), example of eigenvalue path across the real axis (�), and
integration contour [Eq. (14)] (— ).
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�ω; k� � �4∕3; 2�. The present calculations are obtained with N �
200 collocation points; andwith the parametersL1 � 6,L2 � 1.001,
and δ � 1 for the contour [Eq. (14)]. Our results, as well as those of
Betchov and Criminale [32], are listed in Tables 1 and 2.
The relative error is always less than or equal to 10−6. The

eigenvalues have also been calculated without using the complex
mapping (δ � 0). For frequenciesωmuch lower than the neutral one,
the relative error has been found to be lower than 10−6. In this case,
the singularities are sufficiently far from the real axis so that one
can solve the problem without using a complex transformation.
Nevertheless, a complexmapping is required for angular frequencies
near the neutral one, for computing the neutral and damped modes.

B. Compressible Two-Dimensional Jet

In the present section, a more realistic jet velocity profile with a
finite shear layer thickness is considered to demonstrate the
capability of the numerical method to solve the generalized Rayleigh
equation. The velocity profile is given by

�u�y� � 1

2

�

1� tanh

�

1

4δθ

	

1

y
− y


��

y ∈ �0;∞� (16)

where all the variables are still dimensionless. In particular, the
momentum thickness δθ

δθ �
Z

∞

0

�u�y��1 − �u�y�� dy

is normalized by the half-width of the jet, defined as the distance from
the axis at which the velocity �u is equal to the half of the speed on the
axis. The vortex-sheet model [Eq. (5)] is recovered as δθ goes to zero.
The density profile is calculatedwith theCrocco–Busemann relation:

1

�ρ�y� � T∞ − �T∞ − 1� �u�y� �M2
j

γ − 1

2
�1 − �u�y�� �u�y�

where γ and T∞ represent, respectively, the ratio of specific heats and
the ratio between the ambient temperature and the nominal jet
temperature.
As mentioned in Sec. II, only the discrete part of the spectrum is

considered in this analysis. Compressibility and shear layer thickness
effects are studied by varying theMach numberMj and the parameter
δθ. Except where indicated, the results presented below are obtained
with N � 200 collocation points, L1 ∈ �3; 6�, and L2 � 1.001. This
choice allows us to cluster half of the grid points in the interior region
of the jet: more precisely, in the interval 0 < y < 3b. The stability
algorithm has been implemented in MATLAB, and the CPU time
required for calculating an eigenmode is typically lower than O�1s�
on a desktop computer. To localize the eigenvalues k, and thus obtain
an approximation k�0� of k, the analytic results found for a top-hat jet
have been used as ω tends to zero; see Appendix A.

1. Kelvin–Helmholtz Modes

The dispersion relations for the symmetric and antisymmetric
Kelvin–Helmholtz modes calculated for different Mach numbers,
with δθ � 0.125 and T∞ � 1, are shown in Fig. 6. In either case, as
Mj increases, both the maximum growth rate and the unstable
frequency range decrease, whereas the location of the peak growth
rate shifts to lower pulsations. Compressibility thus results in a
stabilizing effect. The largest growth rate is found for the symmetric
mode for Mj � 0, whereas for supersonic Mach numbers, the anti-
symmetric mode dominates. Corresponding phase velocities are
plotted in Fig. 7. In the case of the symmetric mode forMj � 2 and
Mj � 3, the phase speed vφ is always supersonic outside the jet

region,which is greater that 1∕�Mjρ
1∕2
∞ � � 1∕2 and 1∕3 respectively,

and this mode is thus radiating. The angle of radiation of the maxi-
mum growth rate mode is about θ � 43.4 deg for Mj � 2 and
θ � 65.2 deg forMj � 3. The antisymmetric mode is also radiating,
but only for angular frequencies ω > 0.584 for Mj � 2 and ω >

0.0195 for Mj � 3. In either case, the angle of radiation of the
maximum growth rate mode is about θ � 35 deg.

It should be noted that, as ki goes to zero, one has

β ≃ kr

���������������

1 −M2
r

q

� iki
���������������

1 −M2
r

p

As a result, when the amplified mode becomes damped, βr remains
positive for a nonradiatingmode. However, for a radiatingmodewith

Mr > 1, βr ≃ −ki∕
���������������

M2
r − 1

p

and the sign of βr is changed with that
of ki. This is indicated by gray lines in Figs. 6 and 7.
The shear layer thickness effects on the symmetric mode for the

case of T∞ � 1 and Mj � 2 are shown in Fig. 8. The presence of a
shear layer of finite thickness has a stabilizing effect. Moreover, as δθ
increases (that is, for thicker and thicker shear layers), both the

Table 1 Incompressible stability of the Bickley jet:
wave number k as a function of the frequency ω for the

antisymmetric mode

ω k [32] k present Error

0.1 0.270462 − 0.206506i 0.270462 − 0.206510i ≈10−6

0.8 1.449709 − 0.134110i 1.449709 − 0.134109i <10−6

1.2 1.871369 − 0.029338i 1.871369 − 0.029340i ≈10−6

1.�3 2.000000 − 0.000000i 2.000000 − 0.000000i <10−6

Table 2 Incompressible stability of the Bicklet jet:
wave number k as a function of the frequency ω for the

symmetric mode

ω k [32] k present Error

0.2 0.241420 − 0.043023i 0.241420 − 0.043023i <10−6

0.6 0.901124 − 0.026220i 0.901124 − 0.026220i <10−6

0.�6 1.000000 − 0.000000i 1.000000 − 0.000000i <10−6

Fig. 6 Dispersion relations of the symmetric (left) and antisymmetric (right) Kelvin–Helmholtz modes for δθ � 0.125 and T∞ � 1; see expression (16):
Mj � 0 (dotted lines),Mj � 1 (dashed–dotted lines),Mj � 2 (dashed lines), andMj � 3 (solid lines).
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maximum growth rate and the unstable frequency range diminish,
and the location of the peak growth rate shifts to lower frequencies. In
this case, the relative Mach number Mr is always supersonic, and it
decreases as δθ is reduced. The angle of radiation of themost unstable
mode decreases with the shear layer thickness, from θ � 43.6 deg
for δθ � 1∕8 to θ � 31.3 deg for δθ � 1∕32.

2. Compressible Modes

As theMach number increases, the generalized Rayleigh equation
is transformed into a wave equation and multiple modes are then
found. Figure 9 illustrates the dispersion relations for the first sym-
metric acoustic mode for different Mach numbers, with δθ � 0.125
and T∞ � 1. As can be observed, the most unstable mode frequency
is shifted to lower values as theMach number is increased. However,
unlike the Kelvin–Helmholtz waves, the maximum growth rate
initially increases with Mj and reaches its maximum value around
Mj � 3. It then decreases for higher Mach numbers. The phase
velocity is also shown in Fig. 9. As expected, the relative Mach
numberMs is always supersonic, which confirm that thesemodes are

supersonic acoustic modes. AtMj � 2, vφ is subsonic relative to the
freestream for all frequencies under study, which means that the first
acoustic mode does not radiate in the far field. On the contrary, for
higher Mach numbers, the first acoustic mode becomes supersonic
relative to the free stream for some threshold frequency. ForMj � 3,
Mj � 4, and Mj � 8, these angular frequencies are about
ω � 0.445, 0.2, and 0.04, respectively. They are always higher
than their corresponding, most unstable, mode frequencies.
The dispersion relations and radiation angles for all found unstable

modes are shown in Fig. 10 for the casewhereMj � 3, T∞ � 1, and
δθ � 0.125. The Kelvin–Helmholtz symmetric mode is by far the
most stable, whereas the Kelvin–Helmholtz antisymmetric mode and
the first acoustic symmetric mode exhibit the highest amplification
factors, namely, −ki � 0.1675 and 0.1557, respectively. For higher
Mach numbers, the amplification factor of the second acoustic mode
also appears. As illustration for Mj � 8, T∞ � 1, and δθ � 0.125,
it is found that −ki � 0.05, −ki � 0.0452, and −ki � 0.0462
for the Kelvin–Helmholtz antisymmetric mode and the first and
second acoustic modes, respectively. Regarding the directivity,

Fig. 7 Phase speed of the symmetric (left) and antisymmetric (right) Kelvin–Helmholtz modes; refer to caption of Fig. 6.

Fig. 8 Shear layer thickness effects on the symmetric Kelvin–Helmholtz mode for T∞ � 1 andMj � 2: δθ � 1∕8 (solid lines), δθ � 1∕16 (dashed lines),
δθ � 1∕24 (dashed–dotted lines), and δθ � 1∕32 (dotted lines).

Fig. 9 Mach number effect on the first acoustic mode for δθ � 0.125 andT∞ � 1:Mj � 2 (dotted lines),Mj � 3 (dashed–dotted lines),Mj � 4 (dashed
lines), andMj � 8 (solid lines).
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the Kelvin–Helmholtz mode radiates in the far field with an angle θ
higher than the acoustic one.
Finally, an example of dispersion relations for modes with a

negative phase speed vφ is shown in Fig. 11 for the case where
δθ � 0.125,Mj � 2, and T∞ � 0.5. These waves are unstable only
for angular frequencies higher than a certain threshold value ωa

(corresponding to the point of discontinuity of the first derivative) and
exhibit a minimum slightly to the right of the sonic line kr∕ω �
−ρ

1∕2
∞ Mj. To the left of this minimum and for ω > ωa, the group

velocities are negative. The corresponding waves thus propagate
upstream [4,16].

C. Comparison with the Linearized Euler Equations

In this section, results provided by the instability theory are
compared to a numerical solution of the two-dimensional linearized
Euler equations as illustration. The mean velocity profile [Eq. (16)]
is excited by an harmonic point source p 0

s � exp�−bs�x2 � y2��
cos�ωst�, where bs � 8 log 2. The computation is performed over
15 periods of the source. A snapshot of the fluctuating pressure field
is shown in Fig. 12 at this time. The numerical parameters for the
considered isothermal jet are T∞ � 1, Mj � 2, δθ � 0.125, and
ωs � 0.14π. Since the source is located on the jet axis, only
symmetric modes can be excited. The linear stability theory predicts
amplification rates of ki ≃ −0.083 and ki ≃ −0.05, respectively, for
the first acoustic andKelvin–Helmholtzmodes. The acousticmode is
thus the most amplified instability wave, but only the Kelvin–
Helmholtzmode radiates in the far field, with an angle θ ≃ 43 deg as
indicated by the arrow in Fig. 12. The spatial frequency of
the Kelvin–Helmholtz mode is kr ≃ 0.65 and corresponds to a
wavelength of about 9.7 in the x direction, whereas for the acoustic
mode, we find kr ≃ 1.7, which corresponds to a wavelength of about
3.7.Wave fronts in the far field associatedwith theKelvin–Helmholtz
mode can be easily identified in Fig. 12. To visualize the presence of
the twomodes, pressure profiles are plotted in Fig. 13, and the profile

corresponding to the radiated pressure is multiplied by a factor of 60
in this representation. Inside the jet, the pressure is dominated by the
nonradiating acoustic mode with a wavelength of 3.8, and outside of
the jet, the radiated pressure induced by the Kelvin–Helmholtz wave

Fig. 10 Comparison between Kelvin–Helmholtz and acoustic modes for Mj � 3, T∞ � 1, and δθ � 0.125: Kelvin–Helmholtz symmetric mode (solid
lines), Kelvin–Helmholtz antisymmetric mode (dashed lines), first acoustic mode (dashed–dotted lines), and second acoustic mode (dotted lines).

Fig. 11 Symmetricmodeswithnegative phase speed for δθ � 0.125,Mj � 2, andT∞ � 0.5: firstmode (solid lines), secondmode (dashed lines), sonic line
ω∕kr � −c∞ (dotted lines).

Fig. 13 Profile of the pressure field provided by the linearized Euler
equations for y � 0 in a solid line and for y � 5.7 in a dashed line.

Fig. 12 Snapshot of the pressure field provided by the linearized Euler
equations for Mj � 2, δθ � 0.125, and T∞ � 1. Positive and negative

isocontours from 0.1 to 102.4 with a geometric progression of ratio 2.
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has a longitudinal wavelength of about 10.2. These values are in
agreement with the numerical simulation.

V. Efficiency of the Numerical Algorithm

The new formulation [Eq. (9)] of the generalized Rayleigh equa-
tion proposed in the present paper remarkably simplifies the stability
analysis of high-speed jets. The eigenfunction displayed in Fig. 14,
which is relative to the radiating Kelvin–Helmholtz symmetric mode
for δθ � 1∕8, T∞ � 1,Mj � 3, and ω � 0.2, is a good illustration.
The support of p̂ 0 is very large, 0 ≤ y ≤ 1000, whereas ~p is nearly
constant for y > 2, since p̂ 0 rapidly tends to its asymptotic form just
outside the jet flow region. The importance of the change of variable
is clearly demonstrated in this case. A rough estimate of the computa-
tional cost required to directly solve the generalized Rayleigh
equation through a collocation scheme can be obtained by consid-
ering that pseudospectral methods require π points per wavelength
[33] for bounded problems. Note that this value is rather optimistic
for an unbounded problem. According to expression (4), the
eigenfunction p̂ 0 oscillateswith awavelength of about 2π∕βi ≃ 11.5.
Following Boyd [34], the parameter L1 for the mapping [Eq. (13)]
must be of the same order ofmagnitude of the scale of variation of the
solution. Thus, by choosing L1 � 10 and y∞ � 1000, the number of
grid nodes required to have at least π points per wavelength in the
whole domain ranges between 2000 and 2500. This value can be
compared to the 200 collocation points used in the previous section.
Due to the presence of the term β, the nonlinear eigenvalue

problem [Eq. (15)] is not polynomial, since it includes not only

integer powers of k but also terms as β �
�����������������������������

k2 −M2
jρ∞ω

2
q

. Classic

eigenvalue solvers, such as the companion matrix method, cannot be
used unless the problem is incompressible, and then β � k in this
simple case. In general, an iterative procedure is required. In the
present study, the method of successive linearizations proposed by
Ruhe [31] has been chosen because of its simplicity and ease of

implementation. However, it is worth emphasizing that the need for
an iterative method is not a real difficulty. More sophisticated
methods such as Arnoldi-type methods or rational Krylov methods
[35] can indeed be invoked to find a larger number of eigenvalues.
Moreover, the matrix approach offers an easy way to find initial
guesses for the targeted eigenvalues. By approximating β by its
Laurent series,

β �
�����������������������������

k2 −M2
jρ∞ω

2
q

≃ −iMjω
�������

ρ∞
p � i

2Mjω
�������

ρ∞
p k2

for the Kelvin–Helmholtz mode; by noting that k goes to zero as ω
goes to zero, Eq. (15) is approximated by a polynomial eigenvalue
problem [36]

M�k� ≃ M0 − iMjω
�������

ρ∞
p

M5 �
	

M1 − iMjω
�������

ρ∞
p

M4




k

�
	

M2 �
iM5

2Mjω
�������

ρ∞
p




k2 �
	

M3 �
iM4

2Mjω
�������

ρ∞
p




k3 (17)

which can be solved through the methods proposed by Bridges and
Morris [27]. In the sameway, the term β can be approximated by k as
ω goes to zero for the acoustic modes, which leads to the following
polynomial eigenvalue problem:

M�k� ≃ M0 � �M1 �M5�k� �M2 �M4�k2 �M3k
3 (18)

To illustrate this point, these polynomial approximations [Eqs. (17)
and (18)] are solved using the companion matrix method [23]. This
computed value, denoted by ~k, is compared to the numerical value
provided by the exact formulation in Tables 3 and 4. The numerical
parameters are still N � 200, L1 ∈ �3; 6�, and L2 � 1.001.

Fig. 14 Kelvin–Helmholtz symmetric mode: eigenfunctions ~p and p̂ 0 for δθ � 1∕8, T∞ � 1, Mj � 3, and ω � 0.2.

Table 3 Profile [Eq. (16)] with δθ � 1∕8, T∞ � 1,Mj � 3, and ω � 0.05a

Mode ~k k Relative error

Symmetric K–H 0.054780 − 0.003164i 0.054869 − 0.003245i ≈10−3

Antisymmetric K–H 0.128259 − 0.114961i 0.130621 − 0.108123i ≈10−2

aComparison between the polynomial approximation [Eq. (17)] and the exact formulation, yielding ~k

and k, respectively.

Table 4 Profile [Eq. (16)] with δθ � 1∕8, T∞ � 1,Mj � 3, and ω � 0.05a

Mode ~k k Relative error

Symmetric K–H 0.066031 − 0.025155i 0.054869 − 0.003245i ≈10−1

Antisymmetric K–H 0.119737 − 0.120958i 0.130621 − 0.108123i ≈10−1

First acoustic 0.712629 − 0.002273i 0.710246 − 0.002324i ≈10−3

Second acoustic 1.352355 − 0.000912i 1.351185 − 0.000921i ≈10−3

aComparison between the polynomial approximation [Eq. (18)] and the exact formulation, yielding ~k

and k, respectively.
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A final remark concerns the shooting method. As outlined by
Morris [4], this method is often more accurate than a global matrix
method, and it is as fast as the algorithm presented in this work.
However, numerical results are strongly dependent on the initial
guess value. This approach could nevertheless be implemented to
solve the new formulation [Eq. (9)] instead of a direct computation of
the generalized Rayleigh equation [Eq. (2)]. As in the case of global
matrix methods, this would simplify the numerical resolution.

VI. Conclusions

A reformulation of the generalized Rayleigh equation is proposed
in this study to efficiently compute the spatial stability of high-speed
flows characterized by radiating Kelvin–Helmholtz and supersonic
acoustic modes. The oscillating part of eigenfunctions is removed
through a change of variable, which allows a reduced computational
domain to be considered. Radiation boundary conditions are also
explicitly enforced. To demonstrate the numerical robustness of this
approach, the stability of a two-dimensional supersonic jet has been
revisited for high Mach numbers, and numerical aspects are finally
discussed.

Appendix A: Top-Hat Velocity Profile

An analytical solution can be derived for a vortex-sheet model.
Consider a two-dimensional jet defined by the following top-hat
velocity profile:

�

�u�y� � 1; �ρ�y� � 1 if y ∈� − 1; 1�
�u�y� � 0; �ρ�y� � ρ∞ otherwise

where all the variables are made dimensionless by the half-width,
nominal velocity, and density of the jet. The expression of the
pressure takes the simple form for y ≥ 0:

p̂ 0�y� � p̂ 0
1�y� � Aeβ1y � Be−β1y

y ∈ �0; 1� p̂ 0�y� � p̂ 0
2�y� � Ce−β2y y ∈�1;�∞�

where the wave numbers β1 and β2 are given by

β1 �
�����������������������������������

k2 −M2
j �k − ω�2

q

β2 � β �
�����������������������������

k2 −M2
jρ∞ω

2
q

To determine a dispersion relation, one must impose a boundary
condition at y � 0 to select a symmetric (dp̂ 0∕dy � 0) or an
antisymmetric mode (p̂ 0 � 0). Furthermore, the continuity of the
pressure ��p̂ 0�� � 0 and of the vertical displacement ���dp̂ 0∕dy�∕�ρ∕
�k �u − ω�2�� � 0 must be imposed across the vortex sheet at y � 1.
Two additional conditions are then obtained:

Aeβ1 � Be−β1 � Ce−β2
Aβ1e

β1 − Bβ1e
−β1

�k − ω�2 � −
Cβ2e

−β2

ρ2ω
2

After some algebra to eliminate the amplitudes A, B, and C, the
following dispersion relations can be derived for symmetric and
antisymmetric modes:

8

>

>

<

>

>

:

Ds�ω; k� �
β1 sinh�β1�
�k − ω�2 � β2 cosh�β1�

ρ∞ω
2

� 0

Da�ω; k� �
β1 cosh�β1�
�k − ω�2 � β2 sinh�β1�

ρ∞ω
2

� 0

These equations can be solved numerically for given ω and Mj.
Finally, note that, unlike the Kelvin–Helmholtz modes, the real part
of the acoustic modes does not vanish asω tends to zero [17]. Indeed,
for ω � 0, the dispersion relation reduces to

(

cosh�β1� � cosh
�

k
���������������

1 −M2
j

q �

� 0

sinh�β1� � sinh
�

k
���������������

1 −M2
j

q �

� 0

for symmetric and antisymmetric modes, respectively. The jet Mach
number Mj is necessarily supersonic for acoustic modes, and the
corresponding wave numbers may be written as

8

<

:

ks � π�2nπ

2
���������

M2
j
−1

p n � 0; 1; · · ·

ka � nπ
���������

M2
j
−1

p n � 1; 2; · · ·

The present vortex-sheet model slightly underestimates these values
of the wave number for a finite thickness shear layer.

Appendix B: Differentiation Matrices

It is straightforward to show (seeMason andHandscomb [28]) that
the differentiation matrix D ≡Dξ with respect to the variable ξ

introduced in Sec. III

Dni �
dLi�ξ�
dξ

�

�

�

�

ξ�ξn

is given by

D
ξ
11 �−D�N�2��N�2� �

2�N�1�2�1

6

D
ξ
nn �−

ξn

2�1−ξ2n�
n≠ 1;n≠N�2

D
ξ
ni �

cn

ci

�−1�n�i

ξn− ξi
c1 � cN�2 � 2;cl � 1�l≠ 1; l≠N�2� n≠ i

The interval −1 ≤ ξ ≤ 1 is transformed into the computational
domain through the complex mapping

z � L1�1� ξ�
L2 − ξ

� iδ�1 − ξ2�

with

L1 �
yly∞

y∞ − 2yl
L2 � 1� 2L1

y∞

The differentiation matrices Dz
1 and Dz

2 for the first and second
derivatives with respect to the variable z are thus given by (in a
MATLAB-like notation)

Dz
1 � diag

	 �L2 − ξ�2
L1L2 � L1 − 2iδξ�L2 − ξ�2




Dξ Dz
2 � Dz2

1

Appendix C: Formulation of the Eigenvalue Problem

Equation (9) can be rewritten as follows:

�m0 � km1 � k2m2 � k3m3 � βkm4 � βm5� ~p � 0

with
9



m0 � −ω
d2

dz2
� ω

�ρ

d�ρ

dz

d

dz
�M2

jω
3

	

1

T∞

− �ρ




m1 � �u
d2

dz2
−

	

�u

�ρ

d�ρ

dz
� 2

d �u

dz




d

dz
�M2

jω
2

	

−
1

T∞

�u� 3�ρ �u




m2 � −3M2
jω�ρ �u2

m3 � M2
j �ρ �u

3

m4 � −2 �u
d

dz
� �u

�ρ

d�ρ

dz
� 2

d �u

dz

m5 � 2ω
d

dz
−
ω

�ρ

d�ρ

dz

This differential equation is transformed into a nonlinear eigenvalue
problem by replacing the derivatives of p with the differentiation
matrices and the functions �u and �ρ with diagonal matrices for which
the terms represents their values at the collocation points. One finds

M�k;ω;Mj� ~p �
	

X

3

i�0

kiMi�ω;Mj� � βkM4�ω;Mj�

� βM5�ω;Mj�



~p � 0

with

M0 � −ωDz
2 � ω diag

	

1

�ρ

d�ρ

dz




Dz
1 �M2

jω
3 diag

	

1

T∞

− �ρ




M1 � diag� �u�Dz
2 − diag

	

�u

�ρ

d�ρ

dz
� 2

d �u

dz




Dz
1

�M2
jω

2diag

	

−
1

T∞

�u� 3�ρ �u




M2 � −3M2
jωdiag��ρ �u2�

M3 � M2
jdiag��ρ �u3�

M4 � −2 diag� �u�Dz
1 � diag

	

�u

�ρ

d�ρ

dz
� 2

d �u

dz




M5 � 2ωDz
1 − ω diag

	

1

�ρ

d�ρ

dz
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