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Introduction

In the field or in laboratory conditions, a separating flow usually detaches from the adjacent wall as it reaches a geometrical singularity. A recirculation zone (also named separating bubble) occurs along this wall. The typical velocity magnitude in the recirculation region is at least one order of magnitude lower than within the main flow and adverse streamwise velocities are observed near the wall. Meanwhile, the main flow accelerates as the main flow section is reduced. Further downstream, the main flow reattaches to the wall and recovers. [START_REF] Li | On the scaling of separation bubbles[END_REF] recall that the main parameters governing the flow separation are the Reynolds number of the flow and the geometry itself.

In natural streams, separation zones in open channels have significant implications in terms of sediment, gas or passive scalar (such as pollution or nutrients) exchanges between the main flow which conveys material from upstream regions and the recirculation zone where material is stored and is deposited if the density of the material exceeds that of water. Moreover, erosion may occur due to the acceleration of the main flow near the maximum separation width location. Separation zones are also privileged zones of fish and plant reproduction and development. Interactions between the main flow and the recirculation zone are thus of primary importance for bio-geo-chemical processes and stream restoration.

In the literature, most attention was paid to the length of the recirculation as a function of the characteristics of the main flow (Froude and Reynolds number, water depth, discharge…) and of the geometry (angles, dimensions of the obstacle…). These studies were dedicated to sudden lateral expansions [START_REF] Babarutsi | Experimental investigation of shallow recirculating flows[END_REF][START_REF] Chu | Friction and confinement effects on a shallow recirculating flow[END_REF], Riviere et al. 2011a], the lateral branch of 90° open-channel bifurcations [START_REF] Kasthuri | Discussion of 'separation zone at open channel junction[END_REF], the downstream branch of confluences [START_REF] Best | Separation zone at open-channel junctions[END_REF]Reid 1984, Gurram et al. 1997] or forward-facing [START_REF] Sherry | An experimental investigation of the recirculation zone formed downstream of a forward facing step[END_REF]] and backward-facing steps [START_REF] Adams | Effects of the separating shear layer on the reattachment flow structure. Part 2: Reattachment length and wall shear stress[END_REF].

Mixing layers in recirculating flows

When zooming at the interface between the main flow and the recirculation zone, very high velocity gradients can be observed. In the upstream region, the separation zone can even be seen as a region of water almost at rest, entrained by the main flow. Large-scale coherent structures and high level turbulent intensities are present at the interface between the main flow and the recirculation zone, enhancing momentum and mass transfer. The transverse velocity gradient at the interface gives birth to a vertical mixing layer. A mixing layer is defined as "a turbulent flow that forms between two uniform, nearly parallel streams of different velocity" [START_REF] Pope | Turbulent Flows[END_REF]. In the literature, most mixing layers have been studied in simple configurations such as:

-straight channels [START_REF] Wygnanski | The two-dimensional mixing region[END_REF][START_REF] Bell | Development of a two-stream mixing layer from tripped and untripped boundary layers[END_REF][START_REF] Uijttewaal | Effects of shallowness on the development of freesurface mixing layers[END_REF][START_REF] Loucks | Velocity and velocity gradient based properties of a turbulent plane mixing layer[END_REF] or accelerated straight channels [Fieldler et al., 1991].

Such analysis was performed using a Cartesian frame-axis (x,y) with x the axis of the side walls and of the main flow and y the transverse direction.

-curved channels [START_REF] Margolis | Curved turbulent mixing layer[END_REF][START_REF] Gibson | Turbulence measurements in a developing mixing layer with mild destabilizing curvature[END_REF][START_REF] Plesniak | Curved two-stream turbulent mixing layers revisited[END_REF] analyzed using a curvilinear frame-axis (r,) with r the local distance to the center of curvature and  the angle formed by the radius at the source and the local radius.

A review of these mixing layer characteristics was proposed by [START_REF] Mignot | Mixing layer in open-channel junction flows[END_REF] detailing the geometrical features and the mean and turbulent velocity distribution across the mixing layer. These studies revealed that the width of the mixing layer increases from up-to downstream and that the maximum of the Reynolds stress tensor components across the mixing layer occurs at its centerline.

CDP phenomenon in mixing layers of separating flows

Recent works were devoted to the analysis of the mixing layers in separating flows, assuming that the separating streamline is the centerline of the mixing layer. These works confirmed that a maximum transverse gradient of streamwise velocity and a maximum value of all components in the Reynolds stress tensor are measured along the separating streamline.

The so-called "CDP phenomenon" was reported by some author in such separation flows. This phenomenon is based on the eddy viscosity concept, following the works of Joseph Boussinesq in 1877. It relates the Reynolds stress tensor to the mean rate of strain tensor and writes: 2 ' ' 2 3
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where k is the turbulent kinetic energy, C T  is the so-called "turbulent viscosity" or "eddy viscosity" coefficient in a Cartesian frame-axis and S ij is the mean rate of strain tensor (with ' u u u  the instantaneous fluid velocity, where the over-bar denotes Reynolds-averaging -or time-averaging -and prime denotes fluctuation). In Eq. ( 1), C T  is hypothesized isotropic as it does not depend on i and j. Nevertheless, it is well known that this hypothesis of isotropy is not satisfied in many configurations [see [START_REF] Pope | Turbulent Flows[END_REF],

such as in flows with significant streamline curvature due to "the subtle way curvature influences the mean flow" [START_REF] Patel | Longitudinal curvature effects in turbulent boundary layers[END_REF]. We do not expect Eq. ( 1) to be valid in the present flow configuration and no discussion regarding the validity of the isotropic turbulent viscosity assumption is made here.

In a 2D analysis, application of Eq. ( 1) to the non-diagonal term writes:
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with x and y the streamwise and transverse axes respectively, u and v the instantaneous velocity components along x and y respectively and S xy the mean shear rate.  becomes negative at this location and the so-called CDP (for Counter- gradient Diffusion Phenomenon, see [START_REF] Hattori | Investigation of turbulent boundary layer over forwardfacing step via direct numerical simulation[END_REF]) takes place. The negative eddy viscosity coefficient (and thus the CDP) near the separating point was implied by [START_REF] Simoens | The flow across a street canyon of variable width -Part 1: Kinematic description[END_REF] data in a flow separating over a square-shape obstacle, over a forward-facing step by [START_REF] Largeau | Wall pressure fluctuations and topology in separated flows over a forward-facing step[END_REF] and later by Sherry et al.

[2010] and [START_REF] Ren | Turbulent boundary layers over smooth and rough forward-facing steps[END_REF] and was computed using DNS by [START_REF] Hattori | Investigation of turbulent boundary layer over forwardfacing step via direct numerical simulation[END_REF]. Further downstream, the Reynolds shear stress profiles become positive throughout the flow and the eddy viscosity coefficient becomes positive. Similarly, within the flow separating at the inner bank of a sharp bend, [START_REF] Blanckaert | Near-bank processes in curved open-channel reaches: flow separation at the convex inner bank and reversed secondary flow at the concave outer bank[END_REF] observed a similar CDP region by explicitly reporting an opposite sign between gradient of mean velocity and Reynolds shear stress in curvilinear frame-axis. These three configurations (sharp angle obstacle -forward facing step -and sharp bend) obviously experience the same phenomenon leading to CDP (which will be explained further below) and are referred to as "Group 1" in the present paper. Such CDP was also observed in turbulent scalar transport experiments where the gradient of mean concentration (or temperature) and the corresponding flux can be of same sign locally [see [START_REF] Paranthoen | Counter gradient diffusion vs "counter diffusion" temperature profile?[END_REF]. Separating flows downstream groynes and in the outlet branch of confluences and bifurcations (as in the present configuration) should be added to this list even though no evidence of the CDP in these geometries could be found in the literature. The specificity of these flows is that, at the separation point, the angle between the separating streamline (Ss) and the main axis (x) is large (this angle is noted , see Fig. 1).

Oppositely, to the authors knowledge none of the experiments and calculations related to separating flows in downward-facing steps -downstream from hills -in wakes or in sudden lateral expansion reported this CDP phenomenon: In these studies referred to as "Group 2", the Reynolds shear stress '' uv  and mean shear rate S xy remain of same sign from the separation point towards downstream and C T  thus remains positive. The recirculation length is equal to 6-8 times the expansion (or step) width, except in very shallow conditions [see Chu et al., 2004 or Adams and[START_REF] Adams | Effects of the separating shear layer on the reattachment flow structure. Part 2: Reattachment length and wall shear stress[END_REF]. Due to such elongated shape, the direction of the separating streamline (s s ) is quite parallel to the main axis (x) until approaching the reattachment point where the flow pattern becomes much more complex [see Riviere et al. 2011a].

The difference between groups 1 and 2 can thus be explained based on geometrical aspects related to the magnitude of the  angle.

Objectives

In the present paper we aim at showing that mixing layers in Groups 1 and 2 are actually similar as long as a proper frame-axis is used for the data analysis. We propose a new methodology using the local frame-axis for the analysis of separating flows. Main advantages are thus that there is i) no change of sign of the Reynolds shear stress, ii) no CDP and iii) direct access to the mixing layer characteristics. A laboratory bifurcation flow (belonging to Group 1) is chosen for analysis. After describing the experimental set-up used to measure the bifurcation flow pattern, the local frame-axis is introduced.

The mean and turbulent flow characteristics are then computed and the Reynolds shear stress obtained using the Cartesian and local frame-axis are compared in order to discuss the advantages of the local frame-axis. Last section is finally devoted to reveal that CDP is only related to geometrical features.

Experimental set-up

The open-channel bifurcation flow field is measured in the channel intersection facility at the Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA) at the University of Lyon (INSA-Lyon, France) sketched in Fig. 2 and adapted from [Riviere et al. 2011b]. The facility consists of three horizontal glass channels of b=0.3m width each, L u =2m length for the upstream branch and L b =L d =2.6m for both outlet branches. The channels intersect at 90° with the "upstream branch" along y axis, the "lateral branch" along x axis and the "downstream branch" along y axis, that is aligned with the upstream branch. The upstream branch is connected to a large storage tank. When leaving the upstream tank, the water passes through a honeycomb that stabilizes and straightens the flow. This ensures quasi-1D flows within the incoming channels, even though fully developed inflow conditions would require a considerably longer upstream channel. When reaching the bifurcation, the inflow separates, flows through each outlet Two neighboring measurement zones are presented in the sequel, which frontier is located at x=400mm (see Fig. 3). The final data used in the following, is a grid of points within the bifurcation and the lateral branch composed each of 4000 sample long (133s) u (along x axis) and v (along y axis) velocity signals. Measurements were taken at elevations z=4cm and 9cm. Changes in the flow features are expected when approaching the bed, but limited differences were observed between data at both elevations, and only data at 9cm are presented herein.

Mean flow

The mean velocity field, averaged over 4000 samples is shown on Fig. 3. As described by [START_REF] Neary | Three-dimensional numerical model of lateral-intake inflows[END_REF], as the main flow reaches the intersection, one part reaches the downstream branch and the other part is deflected towards the lateral branch. The flow in the lateral branch detaches at the upstream corner (x=300mm; y=0) and the lateral main flow is confined very near its left bank (y~300mm). A zoom in the recirculating region (in Fig. 3) reveals that its core takes place at x~650mm and y~150mm. In the region between the core and the right bank, the mean flow is oriented towards the intersection, with a velocity magnitude one order of magnitude lower than the velocity magnitude of the main flow. The so-called "separating streamline" is defined as the streamline starting at the upstream corner of the intersection (see Fig. 3). This streamline is constructed using the following steps: i) the local velocity is interpolated from the measured mean velocity field shown in Fig. 3 which permits to calculate the local flow direction, ii) a small displacement of about one millimeter is computed along this direction leading to a new location. Steps i) and ii) are then repeated until reaching the limit of the measured area. Locations computed at step ii) finally define the streamline. In the upstream portion of the separating streamline, a very intense velocity gradient occurs between the main and recirculation flow. Further downstream, the velocity gradient across the separating streamline appears to decrease.

Eddy viscosity concept using a Cartesian frame-axis (x,y)

In the sequel, most attention will be paid to the vicinity of the separating streamline.

The distribution of mean shear rate 2 xy S u y v x       in the lateral branch is depicted in Fig. 4. 2S xy is negative in the vicinity of the separating streamline in the upstream region and positive elsewhere. In the downstream region of the lateral branch, the maximum positive value of 2S xy is measured close to the separating streamline. Nevertheless, it should be noted that, while the CDP leads to a negative ' '.2

M xy P u v S 
turbulent kinetic energy production locally [START_REF] Durbin | A Reynolds stress model for near wall turbulence[END_REF] wrote that "The negative shear stress causes negative energy production in this region and this reduces the turbulent kinetic energy"), the sum of all turbulent production terms '' i j i j P u u u x     remains positive (not shown here).

Mixing layer analysis and eddy viscosity concept using a Serret-Frenet frame-axis

Application of Serret-Frenet frame-axis

Another approach for analyzing the separating flow is proposed using a so-called 2D

Serret-Frenet (s, n) coordinate system (or local frame-axis) based on the direction of the mean velocity in each point. Fig. 6a shows i) the streamlines, ii) the so-called separating streamline, i.e. the streamline which initiates at the upstream corner and iii) the fieldlines which are perpendicular to the velocity field at each location. All fieldlines

have an extremity at one of the banks and the other within the core of the recirculation.

Here, the unit vector s is directed along the mean velocity (i.e. along the local streamline), n is perpendicular to s, directed along the fieldline towards the center of curvature of the streamlines (see Fig. 6b). When projecting the velocity field to the local axis system, it comes that 22 s u u v

 and 0 n u  but '0 n u  . Moreover, a global curvilinear coordinate system based on the separating streamline is set so that (S, N) is the particular Serret-Frenet axis-system attached to the separating streamline (thick line in Fig. 6b), S denotes the distance from the upstream corner along the separating streamline and N denotes the distance from this streamline along any fieldline (with N = 0 on the separating streamline). Fig. 6b shows that, when plotted in Cartesian frame, n

and N axes are directed towards the core of the recirculation region. In Fig. 6b, seven fieldlines crossing the separating streamline at different S are depicted and are selected for presenting the data in the following figures.

Mixing layer description using Serret-Frenet frame-axis

As exposed above, in the 2D Serret-Frenet frame-axis, only one mean velocity component is not equal to zero, i.e. s u . Fig. 7a presents profiles of streamwise velocity s u along the 7 selected fieldlines plotted in Fig. 6b. The streamwise velocity always decreases from the main flow towards the recirculation zone, that is for increasing N. -That the normal gradient of streamwise velocity (Fig. 7b) and the Reynolds shear stress (Fig. 7c) are mainly negative. It is important to note that the negative signs of velocity gradient (Fig. 7b) and of Reynolds shear stress (Fig. 7c) are a consequence of the orientation of n towards the core of the recirculation region: if the orientation of n had been chosen in opposite direction (towards the left bank), both s un  and '' sn uu  would have been positive.

-That the absolute normal gradient of streamwise velocity and absolute Reynolds shear stress are maximum close to the separating streamline for all S and decrease on both sides. The small shift of maximum absolute of these two terms towards the recirculation zone (N>0) may be related to the shift of the mixing layer towards the slower flow (see Figs. 6 and 7 of van Prooijen and Uijttewaal [2002]) or due to 3D effects and was observed for instance in Fig. 4 in [START_REF] Uijttewaal | Effects of shallowness on the development of freesurface mixing layers[END_REF] or in Figs. 5 and9 in [START_REF] Gibson | Turbulence measurements in a developing mixing layer with mild destabilizing curvature[END_REF]].

-And that the absolute gradient and absolute Reynolds shear stress are maximum very close to the separating corner (x~300mm and y~0) and slowly decrease towards downstream along S.

To define the mixing-layer, let us introduce the outer velocities Following the approaches available in the literature, the width of the mixing layer (S) for all S is defined as:

max () () s US S un    
(3) Fig. 8c reveals that (S) increases for increasing S (in agreement with mixing layers in the literature as observed by [START_REF] Gibson | Turbulence measurements in a developing mixing layer with mild destabilizing curvature[END_REF] or [START_REF] Bell | Development of a two-stream mixing layer from tripped and untripped boundary layers[END_REF]) and reaches a plateau for S>400mm as the separating streamline becomes parallel to x axis. Saturation of the mixing layer width might be due to the confinement and its interaction with the boundary layer on the lateral wall.

Using the velocity scale U(S) and the spatial scale (S), Fig. 9 shows the nondimensional mean streamwise velocity profiles along the 7 fieldlines of Fig. 6b. It appears that for S>50mm, the velocity profiles become self-similar in the vicinity of the separating streamline (-0.5<N/<1.25). This behavior is in agreement with straight [START_REF] Wygnanski | The two-dimensional mixing region[END_REF] and curved [START_REF] Gibson | Turbulence measurements in a developing mixing layer with mild destabilizing curvature[END_REF]] mixing layers. Figs. 7, 8 and 9 thus confirm the fair agreement of the present mixing layer analyzed using a Serret-Frenet coordinate system with the more classical straight and curved mixing layers analyzed using Cartesian and curvilinear coordinate systems respectively in the literature.

Eddy viscosity concept using a Serret-Frenet frame-axis

It can be shown [see [START_REF] Mignot | Mixing layer in open-channel junction flows[END_REF] that in the Serret-Frenet frame-axis, the Reynolds tensor writes:

2 2 ' ' ' ' ' ' s s n SF s n n u u u u u u              R (4)
And the mean rate of strain tensor writes:
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)
Where R s and R n are the local radius of curvature of the streamlines and fieldlines, respectively. By analogy with the Eq. 2, we introduce the eddy-viscosity concept in the Serret-Frenet frame-axis using the non-diagonal terms of R SF and S SF (Eqs. 4-5) as:

' ' .2 SF SF ss s n T T sn s uu u u S nR           (6)
with SF T  the eddy-viscosity coefficient in the Serret-Frenet frame-axis. 6) in this area may be related to the complex flow near the corner where a bow wave and a horseshoe vortex take place and thus where 3D aspects of the flow should not be negligible. Application of the eddy-viscosity concept in this area would then require 3D flow data, which is not available using the present 2D-PIV experimental approach.

In order to analyze the spatial variations along S of the eddy-viscosity coefficient, SF T  was computed using two approaches along each of the seven fieldlines of Fig. 6b: -by directly applying Eq. ( 6):

  Best Fit '' SF T s n s s s u u u n u R        using a least
square fitting method over each fieldline in the vicinity of the mixing layer (for -60mm <N<100mm).

-by applying Prandtl mixing length model using the empirical relation between the mixing length and the mixing layer width initially introduced by Kuethe

[1935] for a jet and summarized in [START_REF] Rodi | Turbulence models and their application in Hydraulics -A state of the art review[END_REF]:

  2 SF Prandtl 0.07 T s s s u n u R      
where the absolute value in this expression is evaluated for each fieldline at the location of maximum streamwise velocity gradient s un  .

Fig. 11 shows that these two eddy-viscosity coefficients tend to increase along S from the separation point towards downstream. Both estimates give quite similar results: about 2.10 -5 to 6.10 -5 m 2 /s, confirming the value SF T  =5.10 -5 m 2 /s obtained as a qualitative constant determination over the whole region (Fig. 10). This validates the use of Prandtl mixing length theory for separating mixing layers even though the Prandtl mixing length estimated coefficient remains lower by 5% to 50% compared to the best-fit coefficient along the mixing layer.

In order to calculate the error made when estimating the Reynolds shear stress, the eddy-viscosity concept (Eq. 6) is applied using these eddy-viscosity coefficients in Fig.

12 along the seven fieldlines shown on Fig. 6b. Fig. 12 thus compares:

-the measured Reynolds shear stress ''

sn uu  , -   Best Fit SF T s s s u n u R      , -   Best Fit SF Ts un  
 which is a simplified version of Eq. ( 6) considering only the term involving the streamwise velocity gradient and neglecting the radius of curvature.

-

  SF Prandtl T s s s u n u R      .
This figure reveals that the eddy-viscosity concept (Eq. 6) considering the best-fit (circles) leads to a very similar estimate of the Reynolds shear stress as Eq. ( 6). This confirms that the curvature effect can be neglected here with regards to the streamwise velocity gradient along N. Finally, the eddy-viscosity concept (Eq. 6) considering an eddy-viscosity coefficient obtained through the Prandtl mixing length approach SF Prandtl T   (full squares) results in a fair shape of the Reynolds shear stress but strongly underestimates its magnitude (as could be predicted from Fig. 11).

Geometrical analysis

In the previous sections, we showed that the eddy viscosity concept in the Cartesian frame-axis (Eq. 2) is not relevant as the eddy viscosity coefficient C T  would dramatically vary from one location to another and would reach negative values in the near-separation region for Group 1 with high  values. Oppositely, we showed that the eddy viscosity concept in the Serret-Frenet frame-axis (Eq. 6) is relevant in the whole domain and leads to a quasi-constant eddy viscosity coefficient 

             -1 (8) 
As a consequence, the relationship between the components of the instantaneous velocity vector (defined in Eq. 12), ii) applying the eddy viscosity concept in the Cartesian frame-axis (Eq. 2) and iii) including the eddy viscosity concept in the Serret-Frenet frame-axis (Eq. 6) finally leads to Eq. ( 15): in the present experiment (not shown here) as in Cartesian frame-axis in the literature (see for instance [START_REF] Gibson | Turbulence measurements in a developing mixing layer with mild destabilizing curvature[END_REF] or [START_REF] Bell | Development of a two-stream mixing layer from tripped and untripped boundary layers[END_REF]'s data) so that the numerator is positive. Moreover, in the regions where ~/4, especially near the separating streamline (100mm<S<300mm), the denominator is negative (not shown here) leading to a negative C T  and thus to the CDP phenomenon.

sn V ux v y u s u n     is straightforward: cos sin sin cos s s SF C n n C SF SF u u u P u u v                                ( 
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As a conclusion, when the flow is rotated by about 45° as regards to the main axis, C T  may take negative values while SF T  remains positive. The apparent counter-gradient diffusion phenomenon is simply due to the fact that the eddy viscosity concept applies only in the direction of maximum shear, which is the flow direction (s). This fact also explains that, when using Serret-Frenet frame instead of Cartesian frame, better agreement is achieved between the present experimental velocity profiles or Reynolds stress profiles and classical mixing layer profiles.

At last, for flows of Group 2, the direction of the separating streamline (S) is quite parallel to the main axis (x) until approaching the reattachment point where the flow pattern becomes much more complex [see [START_REF] Riviere | Experimental characterization of flow reattachment downstream open channel expansions[END_REF]. As regards to the present analysis, since  remains low, C T  remains positive, approaching SF T  . Therefore, no CDP is observed in such flows.

Conclusion

The present study aimed at proposing a methodology for the analysis of separating open-channel flows. Works from the literature reported that for configurations with large angles of separating streamline (referred to as "Group 1"), the analysis using a

Cartesian frame-axis leads to a change of sign of the Reynolds shear stress along with a negative eddy viscosity coefficient. These results were retrieved in the lateral branch of the present open-channel bifurcation which may represent a bifurcation in a river network (in absence of sediments), an irrigation network, a sewer network or a crossroad during urban flooding.

Moreover, we showed that such analysis in Cartesian frame-axis does not permit to draw conclusions of size, shape and turbulent characteristics of the mixing layer.

Oppositely, we showed that using a so-called local "Serret-Frenet" frame-axis based on the direction of the local mean velocity, the mixing layer data become explicit. The shape, size and turbulent characteristics of the mixing layer are then similar to that of the literature. This approach applies to any separating flow including the lateral channel of open channel bifurcations of any angle and any channel width.

Finally, the eddy viscosity concept nicely applies in the local frame-axis, given the high similarity between the Reynolds shear stress and the mean shear rate. Such local frameaxis thus appears to be well-suited for characterizing the mixing layer of the separating flow.

To conclude, we provide a generalization of the classical analysis of simple 2D mixing layers (either straight or curved) reported in most textbooks for more complex 2D mixing layers (among which the separating flows) using a simple and intuitive approach. The use of this approach should be generalized to all mixing layers as long as the main axis of the mixing layer deflects from the main direction of the axis system.

The present results have major relevance to passive or reactive scalar (such as pollutants) exchanges between the main flow and the recirculation zone. Light suspended sediments or dilute suspensions that follow the carrier flow, may be trapped in the recirculation. Therefore, locally, very high sediment concentrations may appear leading to deposition or agglomeration.

sin 2 ' ' ' ' cos 2 ' ' 2

xy s n n s u v u u u u        R (11) 
Now, applying Eq. 11 to the non-diagonal term of the mean shear rate in Cartesian frame leads to:

    11 sin 2 cos 2 22 s s s s xy ns u u u u uv x y s R n R                                  S (12)
Thus, applying the eddy viscosity concept in Cartesian frame-axis ( .2

C xy T xy   RS in Eq.
2) using Eqs. 12 and 13 reads:

            2 2 sin 2 sin 2 cos 2 ' ' cos 2 ' ' 2 C s s s s T s n n s n s u u u u u u u u s R n R                                      (13) 
and including the eddy viscosity concept in Serret-Frenet frame-axis (Eq. 6) in the first Right Hand Side term of Eq. ( 14) gives: 

        
u s R n R n R                                                 (14) that is       2 2 tan 2 ' ' 2 tan 2 SF s s T n s s C T s s s s s n uu uu nR u u u u n R s R                                      . ( 15 
)
Fig. 1. Sketch of the separation zone for one case of each group: the upward facing-step for group 1 and the downward-facing step for group 2; "Ss" stands for the mean flow axis at the geometrical singularity. For sake of simplicity, orientation of the vertical axis was reversed. For sake of simplicity, orientation of the vertical axis was reversed. 

  branches and is collected by the outlet tanks. The three parameters which govern the flow configuration are: the upstream flow rate Q u =4 L/s and the water depth at the downstream end of the lateral (h b =12.0 cm) and downstream branches (h d =12.1 cm), which are controlled by sharp crested weirs (noted C b and C d in Fig.2). In the inlet branch when approaching the bifurcation the water depth equals h u =12.1cm, leading to an upstream Reynolds number R u =30000, based on the mean velocity and hydraulic diameter. Given the limited measured water depth decrease from the upstream (h u ) to the lateral (h b ) branch, leading to a water depth decrease of about 1mm over a length of 2m in the lateral branch, water depth changes are assumed to be negligible. The lateral tank is connected to the downstream tank and the water is pumped from the downstream to the upstream tank. The upstream and lateral flow-rates are measured in the pumping loops using electromagnetic flow meters (+/-0.05 L/s), see Fig.2. The values of the discharges measured in the lateral and downstream branches are similarQ b = Q d =2 L/s (+/-0.05 L/s).Velocity fields are measured using a horizontal 2D-PIV technique. A slide projector along with a diaphragm is used to create a collimated 5 mm thick light sheet at the measured elevation in the channel intersection. A 1280x960 pixel progressive CCDcamera mounted with a 8 mm focal lens is connected to a PC computer through a Firewire acquisition card. It is placed at an elevation of about 1.5 m above the free surface. Polyamid particles (50 m diameter) are added to the water and act as tracers.Inserting the whole set-up in the dark finally permits to record the tracer motion at the lightened elevation at a fixed frame-rate of 30Hz during 133s with 8 bit grey-levels on a 400mm x 300mm large window with a horizontal resolution of 0.5 mm per pixel. The PIV commercial software Davis (from Lavision) permits to correct the optical distortions, to subtract the background and to compute the velocity field. The final velocity uncertainty is estimated to 1.5 mm/s (0.1 * spatial resolution [0.5 mm/pixel] * acquisition frequency [30 Hz]). The PIV system provides the two horizontal velocity components u and v at each location of the measurement grid and at each time step with high spatial resolution without any intrusion. Erroneous vectors are detected by i) too weak correlation between two consecutive images, ii) presence of two or more peaks of correlations of similar correlation coefficients or iii) local velocity strongly differing from the neighboring locations of the grid and are not considered in the time-averaged statistics (mean velocity or any term of the Reynolds stress tensor) at this location.

  Fig. 4 thus confirms that the mean shear rate 2S xy and Reynolds shear stress '' uv  have opposite sign and that the flow experiences consequently a CDP with negative eddy viscosity coefficient at two locations (shading in Fig. 4): -In the upstream region (x<600mm), near the separating streamline and on the left bank side.-Within the recirculation region at some non-analyzed locations.

Fig. 7b and

  Fig. 7b and 7c then show:

  and N 2 >0, as the streamwise velocities located where s un  becomes negligible. Fig.8aconfirms that U2(S) is almost equal to zero while U1(S) remains quite constant at a magnitude of about 0.15 m.s -1 . As a consequence, the velocity difference U(S)=U1(S)-U2(S) remains quite constant for all S (Fig.8b).

Fig. 10a presents

  Fig. 10a presents the distribution of the horizontal component of Reynolds shear stress in the Serret-Frenet frame-axis '' sn uu  within the lateral branch of the bifurcation(with the same data as in Fig.7c). Unlike the analysis using a Cartesian frame-axis (see previous sections and Fig.5), no change of sign of '' sn uu  is observed over the whole

  (diamonds) fairly predicts the Reynolds shear stress. On the other hand, the simplified eddy-viscosity concept,

  Fig.10). This is coherent with Boussinesq's idea that applies for uniform shear flows in the direction of maximum shear. The separating flow can thus be considered as an almost uniform shear flow in the local frame-axis, while it is not the case in the Cartesian frame axis. Once accepted that the eddy viscosity concept applies in the Serret-Frenet frame axis, occurrence of negative C T  coefficients for high  values can be explained using geometrical considerations as exposed below and in the appendix.Consider the local Cartesian frame-axis (x,y) and the Serret-Frenet frame-axis (s,n) as depicted in Fig.13.

  the appendix, i) applying Eq. (10) to xy R (defined in Eq. 11) and xy S

  15) We have shown that SF T  remains positive except near the upstream top corner of the intersection where the 2D eddy-viscosity concept does not apply (see Fig. 10). The sign of C T  thus depends on : For low , tan(2) is small so that: i) the denominator is dominated by the first term the mixing layer, see Fig.7a) and ii) as tangential and longitudinal velocity variances have similar orders of magnitude in the present data (not shown here) and in the literature (see for instance[START_REF] Gibson | Turbulence measurements in a developing mixing layer with mild destabilizing curvature[END_REF]'s data), the numerator is also dominated by the first term.

Fig. 2 .

 2 Fig. 2. Sketch of the experimental set-up and close-top photography view of the intersection zone, white dye has been injected in the main branch to visualize the mixing-layer (not used for quantitative data).

Fig. 3 .

 3 Fig. 3. Time-averaged velocity field along with separation streamline (plain line). Right graph is a velocity magnification to unveil the recirculation region.

Fig. 4 .

 4 Fig. 4. Distribution of mean shear rate (+) along with Reynolds shear stress (). The CDP zones are indicated by shading and the plain thick line is the separating streamline.

Fig. 5 ..

 5 Fig. 5. Application of eddy viscosity concept in Cartesian frame-axis. a: 2D distribution of horizontal Reynolds shear stress. b: 2D distribution of 2n T C S xy , with a constant eddy viscosity value:

Fig. 6

 6 Fig. 6. a: streamlines, separation streamline (thick line), and fieldlines (perpendicular to the flow). b: velocity field with the Serret-Frenet frame-axis, the separating streamline and 7 fieldlines (plain grey lines) selected for analysis.Fig. 7. Profiles of mean streamwise velocity ( s u , a), normal gradient of mean streamwise

Fig. 8

 8 Fig. 8. a: outer velocities U1(S)(+) and U2(S) (o), b: velocity scale and c: mixing layer width.

Fig. 9 .

 9 Fig. 9. Non-dimensional mean streamwise velocity profiles along the seven fieldlines of Fig. 6b.

Fig. 10 ..

 10 Fig. 10. Application of eddy viscosity concept in Serret-Frenet frame-axis a: 2D distribution of horizontal Reynolds shear stress. b: 2D distribution of 2n

Fig

  Fig. 11. Evolution along S of eddy-viscosity coefficients

FigFig. 13 .

 13 Fig. 12. Reynolds shear stress
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This appendix details the steps from Eq. (11) to Eq. ( 16). Applying Eq. ( 11) to the nondiagonal term of the Reynolds tensor in Cartesian frame reads:        