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 16 

Abstract 17 

The motivation for the present work comes from the fact that a few recent publications 18 

describing separation flows report a Counter-gradient Diffusion Phenomenon (CDP) 19 

along the separating streamline. This CDP is related to i) a change of sign of the 20 

Reynolds shear stress near the separating point and ii) an opposite sign between the 21 

Reynolds shear stress and the mean shear rate, leading to a negative eddy-viscosity 22 

coefficient. Such CDP is only reported for configurations where the angle between the 23 

separating streamline and the main flow is large (referred to as Group 1), while no CDP 24 

was reported for low angle configurations (referred to as Group 2). All these flows were 25 

analyzed using Cartesian or curvilinear frame-axes. The aim of the present paper is to 26 

propose a more intuitive frame for analysis, namely the Serret-Frenet frame-axis based 27 

on the local flow direction, for which the CDP disappears for Group 1 flow 28 

configurations and which highly improves the characterization of the mixing layer. 29 

The recirculation zone occurring in the lateral branch of an open-channel bifurcation is 30 

chosen as a separating flow configuration belonging to Group 1 and measured using 31 

PIV. The characteristics of the mean flow and of the horizontal Reynolds stress are first 32 

analyzed using a Cartesian frame-axis, in order to retrieve the CDP, which extension is 33 

enhanced compared to the literature cases. Then the local Serret-Frenet frame-axis is 34 

introduced and used for a second analysis of the data. The flow characteristics at the 35 



interface between the main flow and the recirculation zone accurately match the 36 

characteristics of the well documented mixing layers available in the literature. 37 

Moreover, the eddy-viscosity concept nicely applies using this Serret-Frenet frame-axis. 38 

A simple geometrical analysis is finally performed in order to confirm that the negative 39 

eddy-viscosity coefficient obtained when using a Cartesian frame-axis is only due to a 40 

non-adequate frame of analysis. 41 

 42 

Introduction 43 

In the field or in laboratory conditions, a separating flow usually detaches from the 44 

adjacent wall as it reaches a geometrical singularity. A recirculation zone (also named 45 

separating bubble) occurs along this wall. The typical velocity magnitude in the 46 

recirculation region is at least one order of magnitude lower than within the main flow 47 

and adverse streamwise velocities are observed near the wall. Meanwhile, the main flow 48 

accelerates as the main flow section is reduced. Further downstream, the main flow 49 

reattaches to the wall and recovers. Li and Djilali [1995] recall that the main parameters 50 

governing the flow separation are the Reynolds number of the flow and the geometry 51 

itself.  52 

In natural streams, separation zones in open channels have significant implications in 53 

terms of sediment, gas or passive scalar (such as pollution or nutrients) exchanges 54 

between the main flow which conveys material from upstream regions and the 55 

recirculation zone where material is stored and is deposited if the density of the material 56 

exceeds that of water. Moreover, erosion may occur due to the acceleration of the main 57 

flow near the maximum separation width location. Separation zones are also privileged 58 

zones of fish and plant reproduction and development. Interactions between the main 59 

flow and the recirculation zone are thus of primary importance for bio-geo-chemical 60 

processes and stream restoration. 61 

In the literature, most attention was paid to the length of the recirculation as a function 62 

of the characteristics of the main flow (Froude and Reynolds number, water depth, 63 

discharge…) and of the geometry (angles, dimensions of the obstacle…). These studies 64 

were dedicated to sudden lateral expansions [Babarutsi et al. 1989, Chu et al. 2004, 65 

Riviere et al. 2011a], the lateral branch of 90° open-channel bifurcations [Kasthuri and 66 

Pundarikanthan 1987], the downstream branch of confluences [Best and Reid 1984, 67 

Gurram et al. 1997] or forward-facing [Sherry et al. 2010] and backward-facing steps 68 

[Adams and Johnston 1988]. 69 



Mixing layers in recirculating flows 70 

When zooming at the interface between the main flow and the recirculation zone, very 71 

high velocity gradients can be observed. In the upstream region, the separation zone can 72 

even be seen as a region of water almost at rest, entrained by the main flow. Large-scale 73 

coherent structures and high level turbulent intensities are present at the interface 74 

between the main flow and the recirculation zone, enhancing momentum and mass 75 

transfer. The transverse velocity gradient at the interface gives birth to a vertical mixing 76 

layer. A mixing layer is defined as “a turbulent flow that forms between two uniform, 77 

nearly parallel streams of different velocity” [Pope, 2000]. In the literature, most mixing 78 

layers have been studied in simple configurations such as: 79 

- straight channels [Wygnanski & Fiedler 1970; Bell & Mehta 1990; Uijttewaal & Booij 80 

2000; Loucks & Wallace 2012] or accelerated straight channels [Fieldler et al., 1991]. 81 

Such analysis was performed using a Cartesian frame-axis (x,y) with x the axis of the 82 

side walls and of the main flow and y the transverse direction.  83 

- curved channels [Margolis & Lumley, 1965; Gibson & Younis, 1983; Plesniak et al., 84 

1996] analyzed using a curvilinear frame-axis (r,) with r the local distance to the 85 

center of curvature and  the angle formed by the radius at the source and the local 86 

radius. 87 

A review of these mixing layer characteristics was proposed by Mignot et al. (2013) 88 

detailing the geometrical features and the mean and turbulent velocity distribution 89 

across the mixing layer. These studies revealed that the width of the mixing layer 90 

increases from up-to downstream and that the maximum of the Reynolds stress tensor 91 

components across the mixing layer occurs at its centerline. 92 

 93 

CDP phenomenon in mixing layers of separating flows 94 

Recent works were devoted to the analysis of the mixing layers in separating flows, 95 

assuming that the separating streamline is the centerline of the mixing layer. These 96 

works confirmed that a maximum transverse gradient of streamwise velocity and a 97 

maximum value of all components in the Reynolds stress tensor are measured along the 98 

separating streamline. 99 

The so-called “CDP phenomenon” was reported by some author in such separation 100 

flows. This phenomenon is based on the eddy viscosity concept, following the works of 101 

Joseph Boussinesq in 1877. It relates the Reynolds stress tensor to the mean rate of 102 

strain tensor and writes: 103 
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where k is the turbulent kinetic energy, C

T  is the so-called “turbulent viscosity” or 105 

“eddy viscosity” coefficient in a Cartesian frame-axis and Sij is the mean rate of strain 106 

tensor (with 'u u u   the instantaneous fluid velocity, where the over-bar denotes 107 

Reynolds-averaging - or time-averaging - and prime denotes fluctuation). In Eq. (1), C

T  108 

is hypothesized isotropic as it does not depend on i and j. Nevertheless, it is well known 109 

that this hypothesis of isotropy is not satisfied in many configurations [see Pope, 2000], 110 

such as in flows with significant streamline curvature due to “the subtle way curvature 111 

influences the mean flow” [Patel and Sotiropoulos, 1997]. We do not expect Eq. (1) to 112 

be valid in the present flow configuration and no discussion regarding the validity of the 113 

isotropic turbulent viscosity assumption is made here. 114 

In a 2D analysis, application of Eq. (1) to the non-diagonal term writes: 115 
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with x and y the streamwise and transverse axes respectively, u and v the instantaneous 117 

velocity components along x and y respectively and Sxy the mean shear rate. 118 

If, locally, the sign of the Reynolds shear stress ' 'u v  and of the mean shear rate Sxy are 119 

opposite, C

T  becomes negative at this location and the so-called CDP (for Counter-120 

gradient Diffusion Phenomenon, see Hattori and Nagano [2010]) takes place. The 121 

negative eddy viscosity coefficient (and thus the CDP) near the separating point was 122 

implied by Simoens et al. [2007] data in a flow separating over a square-shape obstacle, 123 

over a forward-facing step by Largeau and Moriniere [2007] and later by Sherry et al. 124 

[2010] and Ren and Wu [2011] and was computed using DNS by Hattori and Nagano 125 

[2010]. Further downstream, the Reynolds shear stress profiles become positive 126 

throughout the flow and the eddy viscosity coefficient becomes positive. Similarly, 127 

within the flow separating at the inner bank of a sharp bend, Blanckaert et al [2013] 128 

observed a similar CDP region by explicitly reporting an opposite sign between gradient 129 

of mean velocity and Reynolds shear stress in curvilinear frame-axis. These three 130 

configurations (sharp angle obstacle - forward facing step - and sharp bend) obviously 131 

experience the same phenomenon leading to CDP (which will be explained further 132 

below) and are referred to as “Group 1” in the present paper. Such CDP was also 133 



observed in turbulent scalar transport experiments where the gradient of mean 134 

concentration (or temperature) and the corresponding flux can be of same sign locally 135 

[see Paranthoen et al., 2004]. Separating flows downstream groynes and in the outlet 136 

branch of confluences and bifurcations (as in the present configuration) should be added 137 

to this list even though no evidence of the CDP in these geometries could be found in 138 

the literature. The specificity of these flows is that, at the separation point, the angle 139 

between the separating streamline (Ss) and the main axis (x) is large (this angle is noted 140 

, see Fig. 1).  141 

Oppositely, to the authors knowledge none of the experiments and calculations related 142 

to separating flows in downward-facing steps – downstream from hills – in wakes or in 143 

sudden lateral expansion reported this CDP phenomenon: In these studies referred to as 144 

“Group 2”, the Reynolds shear stress ' 'u v  and mean shear rate Sxy remain of same 145 

sign from the separation point towards downstream and C

T  thus remains positive. The 146 

recirculation length is equal to 6-8 times the expansion (or step) width, except in very 147 

shallow conditions [see Chu et al., 2004 or Adams and Johnston, 1988]. Due to such 148 

elongated shape, the direction of the separating streamline (ss) is quite parallel to the 149 

main axis (x) until approaching the reattachment point where the flow pattern becomes 150 

much more complex [see Riviere et al. 2011a].  151 

The difference between groups 1 and 2 can thus be explained based on geometrical 152 

aspects related to the magnitude of the  angle. 153 

 154 

Objectives 155 

In the present paper we aim at showing that mixing layers in Groups 1 and 2 are 156 

actually similar as long as a proper frame-axis is used for the data analysis. We propose 157 

a new methodology using the local frame-axis for the analysis of separating flows. Main 158 

advantages are thus that there is i) no change of sign of the Reynolds shear stress, ii) no 159 

CDP and iii) direct access to the mixing layer characteristics. A laboratory bifurcation 160 

flow (belonging to Group 1) is chosen for analysis. After describing the experimental 161 

set-up used to measure the bifurcation flow pattern, the local frame-axis is introduced. 162 

The mean and turbulent flow characteristics are then computed and the Reynolds shear 163 

stress obtained using the Cartesian and local frame-axis are compared in order to 164 

discuss the advantages of the local frame-axis. Last section is finally devoted to reveal 165 

that CDP is only related to geometrical features. 166 



 167 

Experimental set-up 168 

The open-channel bifurcation flow field is measured in the channel intersection facility 169 

at the Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA) at the University 170 

of Lyon (INSA-Lyon, France) sketched in Fig. 2 and adapted from [Riviere et al. 171 

2011b]. The facility consists of three horizontal glass channels of b=0.3m width each, 172 

Lu=2m length for the upstream branch and Lb=Ld=2.6m for both outlet branches. The 173 

channels intersect at 90° with the “upstream branch” along y axis, the “lateral branch” 174 

along x axis and the “downstream branch” along y axis, that is aligned with the 175 

upstream branch. The upstream branch is connected to a large storage tank. When 176 

leaving the upstream tank, the water passes through a honeycomb that stabilizes and 177 

straightens the flow. This ensures quasi-1D flows within the incoming channels, even 178 

though fully developed inflow conditions would require a considerably longer upstream 179 

channel. When reaching the bifurcation, the inflow separates, flows through each outlet 180 

branches and is collected by the outlet tanks. The three parameters which govern the 181 

flow configuration are: the upstream flow rate Qu=4 L/s and the water depth at the 182 

downstream end of the lateral (hb=12.0 cm) and downstream branches (hd=12.1 cm), 183 

which are controlled by sharp crested weirs (noted Cb and Cd in Fig. 2). In the inlet 184 

branch when approaching the bifurcation the water depth equals hu=12.1cm, leading to 185 

an upstream Reynolds number Ru=30000, based on the mean velocity and hydraulic 186 

diameter. Given the limited measured water depth decrease from the upstream (hu) to 187 

the lateral (hb) branch, leading to a water depth decrease of about 1mm over a length of 188 

2m in the lateral branch, water depth changes are assumed to be negligible. The lateral 189 

tank is connected to the downstream tank and the water is pumped from the downstream 190 

to the upstream tank. The upstream and lateral flow-rates are measured in the pumping 191 

loops using electromagnetic flow meters (+/- 0.05 L/s), see Fig. 2. The values of the 192 

discharges measured in the lateral and downstream branches are similar Qb= Qd=2 L/s 193 

(+/- 0.05 L/s).  194 

Velocity fields are measured using a horizontal 2D-PIV technique. A slide projector 195 

along with a diaphragm is used to create a collimated 5 mm thick light sheet at the 196 

measured elevation in the channel intersection. A 1280x960 pixel progressive CCD-197 

camera mounted with a 8 mm focal lens is connected to a PC computer through a 198 

Firewire acquisition card. It is placed at an elevation of about 1.5 m above the free 199 

surface. Polyamid particles (50 m diameter) are added to the water and act as tracers. 200 



Inserting the whole set-up in the dark finally permits to record the tracer motion at the 201 

lightened elevation at a fixed frame-rate of 30Hz during 133s with 8 bit grey-levels on a 202 

400mm x 300mm large window with a horizontal resolution of 0.5 mm per pixel. The 203 

PIV commercial software Davis (from Lavision) permits to correct the optical 204 

distortions, to subtract the background and to compute the velocity field. The final 205 

velocity uncertainty is estimated to 1.5 mm/s (0.1 * spatial resolution [0.5 mm/pixel] * 206 

acquisition frequency [30 Hz]). The PIV system provides the two horizontal velocity 207 

components u and v at each location of the measurement grid and at each time step with 208 

high spatial resolution without any intrusion. Erroneous vectors are detected by i) too 209 

weak correlation between two consecutive images, ii) presence of two or more peaks of 210 

correlations of similar correlation coefficients or iii) local velocity strongly differing 211 

from the neighboring locations of the grid and are not considered in the time-averaged 212 

statistics (mean velocity or any term of the Reynolds stress tensor) at this location. 213 

Two neighboring measurement zones are presented in the sequel, which frontier is 214 

located at x=400mm (see Fig. 3). The final data used in the following, is a grid of points 215 

within the bifurcation and the lateral branch composed each of 4000 sample long (133s) 216 

u (along x axis) and v (along y axis) velocity signals. Measurements were taken at 217 

elevations z=4cm and 9cm. Changes in the flow features are expected when 218 

approaching the bed, but limited differences were observed between data at both 219 

elevations, and only data at 9cm are presented herein.  220 

 221 

Mean flow 222 

The mean velocity field, averaged over 4000 samples is shown on Fig. 3. As described 223 

by Neary et al. [1999], as the main flow reaches the intersection, one part reaches the 224 

downstream branch and the other part is deflected towards the lateral branch. The flow 225 

in the lateral branch detaches at the upstream corner (x=300mm; y=0) and the lateral 226 

main flow is confined very near its left bank (y~300mm). A zoom in the recirculating 227 

region (in Fig. 3) reveals that its core takes place at x~650mm and y~150mm. In the 228 

region between the core and the right bank, the mean flow is oriented towards the 229 

intersection, with a velocity magnitude one order of magnitude lower than the velocity 230 

magnitude of the main flow. The so-called "separating streamline” is defined as the 231 

streamline starting at the upstream corner of the intersection (see Fig. 3). This 232 

streamline is constructed using the following steps: i) the local velocity is interpolated 233 

from the measured mean velocity field shown in Fig. 3 which permits to calculate the 234 



local flow direction, ii) a small displacement of about one millimeter is computed along 235 

this direction leading to a new location. Steps i) and ii) are then repeated until reaching 236 

the limit of the measured area. Locations computed at step ii) finally define the 237 

streamline. In the upstream portion of the separating streamline, a very intense velocity 238 

gradient occurs between the main and recirculation flow. Further downstream, the 239 

velocity gradient across the separating streamline appears to decrease. 240 

 241 

Eddy viscosity concept using a Cartesian frame-axis (x,y) 242 

In the sequel, most attention will be paid to the vicinity of the separating streamline. 243 

The distribution of mean shear rate 2 xyS u y v x      in the lateral branch is 244 

depicted in Fig. 4. 2Sxy is negative in the vicinity of the separating streamline in the 245 

upstream region and positive elsewhere. In the downstream region of the lateral branch, 246 

the maximum positive value of 2Sxy is measured close to the separating streamline. Fig. 247 

4 also shows the distribution of Cartesian horizontal Reynolds shear stress ' 'u v . This 248 

term is i) negative in the whole upstream region of the lateral branch (x<450mm), ii) 249 

positive in the downstream region (x>650mm) and iii) both negative (near the left bank) 250 

and positive (in the recirculation region) in the intermediate region. As discussed in the 251 

introduction, the negative horizontal Reynolds shear stress in the upstream region of the 252 

separation was reported in all Group 1 flow configurations. In the present Group 1 case, 253 

the particularly high angle  between the separating streamline and the main flow in the 254 

lateral branch (equal to 85.1° at the geometrical singularity: x=300mm & y=0mm) 255 

enhances the extension and magnitude of the negative Reynolds shear stress region. 256 

Fig. 4 thus confirms that the mean shear rate 2Sxy and Reynolds shear stress ' 'u v  have 257 

opposite sign and that the flow experiences consequently a CDP with negative eddy 258 

viscosity coefficient at two locations (shading in Fig. 4):  259 

- In the upstream region (x<600mm), near the separating streamline and on the 260 

left bank side. 261 

- Within the recirculation region at some non-analyzed locations. 262 

 263 

The CDP in the present configuration is finally similar to all observed CDP in the 264 

literature except it is certainly enhanced due to the high  angle. The application of the 265 

eddy viscosity concept in the Cartesian frame-axis (Eq. 2) is presented in Fig. 5. A best-266 

qualitative constant eddy-viscosity coefficient value 5 28.10 m /sC

T
  is chosen by 267 



comparing Figs. 5a and 5b. The poor shape agreement between ' 'u v  and 2 C

T xyS  in 268 

terms of signs and magnitudes in the vicinity of the separating streamline confirms the 269 

poor applicability of the eddy-viscosity concept in the present separating flow 270 

configuration except in the downstream region. 271 

Nevertheless, it should be noted that, while the CDP leads to a negative ' '.2M xyP u v S   272 

turbulent kinetic energy production locally (Durbin [1993] wrote that “The negative 273 

shear stress causes negative energy production in this region and this reduces the 274 

turbulent kinetic energy”), the sum of all turbulent production terms 275 

' 'i j i jP u u u x     remains positive (not shown here). 276 

 277 

Mixing layer analysis and eddy viscosity concept using a Serret-Frenet frame-axis 278 

Application of Serret-Frenet frame-axis 279 

Another approach for analyzing the separating flow is proposed using a so-called 2D 280 

Serret-Frenet (s, n) coordinate system (or local frame-axis) based on the direction of the 281 

mean velocity in each point. Fig. 6a shows i) the streamlines, ii) the so-called separating 282 

streamline, i.e. the streamline which initiates at the upstream corner and iii) the 283 

fieldlines which are perpendicular to the velocity field at each location. All fieldlines 284 

have an extremity at one of the banks and the other within the core of the recirculation.  285 

Here, the unit vector s is directed along the mean velocity (i.e. along the local 286 

streamline), n is perpendicular to s, directed along the fieldline towards the center of 287 

curvature of the streamlines (see Fig. 6b). When projecting the velocity field to the local 288 

axis system, it comes that 
2 2

su u v  and 0nu   but ' 0nu  . Moreover, a global 289 

curvilinear coordinate system based on the separating streamline is set so that (S, N) is 290 

the particular Serret-Frenet axis- system attached to the separating streamline (thick line 291 

in Fig. 6b), S denotes the distance from the upstream corner along the separating 292 

streamline and N denotes the distance from this streamline along any fieldline (with N = 293 

0 on the separating streamline). Fig. 6b shows that, when plotted in Cartesian frame, n 294 

and N axes are directed towards the core of the recirculation region. In Fig. 6b, seven 295 

fieldlines crossing the separating streamline at different S are depicted and are selected 296 

for presenting the data in the following figures. 297 

 298 

Mixing layer description using Serret-Frenet frame-axis 299 



As exposed above, in the 2D Serret-Frenet frame-axis, only one mean velocity 300 

component is not equal to zero, i.e. 
su . Fig. 7a presents profiles of streamwise velocity 301 

su  along the 7 selected fieldlines plotted in Fig. 6b. The streamwise velocity always 302 

decreases from the main flow towards the recirculation zone, that is for increasing N. 303 

Fig. 7b and 7c then show: 304 

- That the normal gradient of streamwise velocity (Fig. 7b) and the Reynolds 305 

shear stress (Fig. 7c) are mainly negative. It is important to note that the 306 

negative signs of velocity gradient (Fig. 7b) and of Reynolds shear stress (Fig. 307 

7c) are a consequence of the orientation of n towards the core of the 308 

recirculation region: if the orientation of n had been chosen in opposite direction 309 

(towards the left bank), both su n   and ' 's nu u  would have been positive. 310 

- That the absolute normal gradient of streamwise velocity and absolute Reynolds 311 

shear stress are maximum close to the separating streamline for all S and 312 

decrease on both sides. The small shift of maximum absolute of these two terms 313 

towards the recirculation zone (N>0) may be related to the shift of the mixing 314 

layer towards the slower flow (see Figs. 6 and 7 of van Prooijen and Uijttewaal 315 

[2002]) or due to 3D effects and was observed for instance in Fig. 4 in 316 

[Uijttewaal and Booij, 2000] or in Figs. 5 and 9 in [Gibson and Younis, 1983]. 317 

- And that the absolute gradient and absolute Reynolds shear stress are maximum 318 

very close to the separating corner (x~300mm and y~0) and slowly decrease 319 

towards downstream along S. 320 

To define the mixing-layer, let us introduce the outer velocities 11( ) ( , )U S u S N  and 321 

22( ) ( , )U S u S N  with N1<0 and N2>0, as the streamwise velocities located where 322 

su n   becomes negligible. Fig. 8a confirms that U2(S) is almost equal to zero while 323 

U1(S) remains quite constant at a magnitude of about 0.15 m.s
-1

. As a consequence, the 324 

velocity difference U(S)=U1(S)-U2(S) remains quite constant for all S (Fig. 8b). 325 

Following the approaches available in the literature, the width of the mixing layer (S) 326 

for all S is defined as: 327 

 328 
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 330 



Fig. 8c reveals that (S) increases for increasing S (in agreement with mixing layers in 331 

the literature as observed by Gibson and Younis [1983] or Bell and Mehta [1990]) and 332 

reaches a plateau for S>400mm as the separating streamline becomes parallel to x axis. 333 

Saturation of the mixing layer width might be due to the confinement and its interaction 334 

with the boundary layer on the lateral wall. 335 

 336 

Using the velocity scale U(S) and the spatial scale (S), Fig. 9 shows the non-337 

dimensional mean streamwise velocity profiles along the 7 fieldlines of Fig. 6b. It 338 

appears that for S>50mm, the velocity profiles become self-similar in the vicinity of the 339 

separating streamline (-0.5<N/<1.25). This behavior is in agreement with straight 340 

[Wygnanski & Fiedler, 1970] and curved [Gibson & Younis, 1983] mixing layers. 341 

 342 

Figs. 7, 8 and 9 thus confirm the fair agreement of the present mixing layer analyzed 343 

using a Serret-Frenet coordinate system with the more classical straight and curved 344 

mixing layers analyzed using Cartesian and curvilinear coordinate systems respectively 345 

in the literature. 346 

 347 

Eddy viscosity concept using a Serret-Frenet frame-axis  348 

It can be shown [see Mignot et al., 2013] that in the Serret-Frenet frame-axis, the 349 

Reynolds tensor writes:  350 
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And the mean rate of strain tensor writes:  352 
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Where Rs and Rn are the local radius of curvature of the streamlines and fieldlines, 354 

respectively. By analogy with the Eq. 2, we introduce the eddy-viscosity concept in the 355 

Serret-Frenet frame-axis using the non-diagonal terms of RSF and SSF (Eqs. 4-5) as: 356 
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s n T T sn

s

u u
u u S

n R
 

 
    

 
 (6) 357 

with SF

T  the eddy-viscosity coefficient in the Serret-Frenet frame-axis. 358 



 359 

Fig. 10a presents the distribution of the horizontal component of Reynolds shear stress 360 

in the Serret-Frenet frame-axis ' 's nu u  within the lateral branch of the bifurcation 361 

(with the same data as in Fig. 7c). Unlike the analysis using a Cartesian frame-axis (see 362 

previous sections and Fig. 5), no change of sign of ' 's nu u  is observed over the whole 363 

measured region. 364 

Fig. 10b shows the spatial evolution of 2n
T

SFS
sn

, where the value of the constant eddy-365 

viscosity coefficient 5 25.10 m /sSF

T
  is chosen by comparing Figs. 10a and 10b. The 366 

fair agreement between these two graphs confirms the high degree of application of the 367 

eddy-viscosity concept using the Serret-Frenet frame-axis. Most importantly, unlike the 368 

Cartesian frame-axis, no region of opposite signs between ' 's nu u  and 369 

 SF

T s s su n u R     - that is no CDP region - is observed along the separating 370 

streamline when using the Serret-Frenet frame-axis. However a limited region of 371 

positive, but limited,  SF

T s s su n u R     values takes place as the main flow rotates 372 

when entering the lateral branch (x~350mm and y~250mm), near the upstream top 373 

corner (x=y=300mm) of the intersection. The failure of applicability of Eq. (6) in this 374 

area may be related to the complex flow near the corner where a bow wave and a 375 

horseshoe vortex take place and thus where 3D aspects of the flow should not be 376 

negligible. Application of the eddy-viscosity concept in this area would then require 3D 377 

flow data, which is not available using the present 2D-PIV experimental approach. 378 

 379 

In order to analyze the spatial variations along S of the eddy-viscosity coefficient, SF

T  380 

was computed using two approaches along each of the seven fieldlines of Fig. 6b: 381 

- by directly applying Eq. (6):  Best Fit ' 'SF

T s n s s su u u n u R        using a least 382 

square fitting method over each fieldline in the vicinity of the mixing layer (for -383 

60mm <N<100mm). 384 

- by applying Prandtl mixing length model using the empirical relation between 385 

the mixing length and the mixing layer width initially introduced by Kuethe 386 

[1935] for a jet and summarized in Rodi [1993]: 387 

 
2SF

Prandtl 0.07T s s su n u R       where the absolute value in this expression 388 



is evaluated for each fieldline at the location of maximum streamwise velocity 389 

gradient su n  . 390 

Fig. 11 shows that these two eddy-viscosity coefficients tend to increase along S from 391 

the separation point towards downstream. Both estimates give quite similar results: 392 

about 2.10
-5

 to 6.10
-5

 m
2
/s, confirming the value SF

T =5.10
-5

 m
2
/s obtained as a 393 

qualitative constant determination over the whole region (Fig. 10). This validates the 394 

use of Prandtl mixing length theory for separating mixing layers even though the 395 

Prandtl mixing length estimated coefficient remains lower by 5% to 50% compared to 396 

the best-fit coefficient along the mixing layer. 397 

 398 

In order to calculate the error made when estimating the Reynolds shear stress, the 399 

eddy-viscosity concept (Eq. 6) is applied using these eddy-viscosity coefficients in Fig. 400 

12 along the seven fieldlines shown on Fig. 6b. Fig. 12 thus compares: 401 

- the measured Reynolds shear stress ' 's nu u , 402 

-  Best Fit

SF

T s s su n u R     ,  403 

-  Best Fit

SF

T su n     which is a simplified version of Eq. (6) considering only the term 404 

involving the streamwise velocity gradient and neglecting the radius of curvature. 405 

-  SF

PrandtlT s s su n u R     . 406 

This figure reveals that the eddy-viscosity concept (Eq. 6) considering the best-fit 407 

coefficient Best Fit

SF

T   along each fieldline (diamonds) fairly predicts the Reynolds shear 408 

stress. On the other hand, the simplified eddy-viscosity concept, considering Best Fit

SF

T   409 

(circles) leads to a very similar estimate of the Reynolds shear stress as Eq. (6). This 410 

confirms that the curvature effect can be neglected here with regards to the streamwise 411 

velocity gradient along N. Finally, the eddy-viscosity concept (Eq. 6) considering an 412 

eddy-viscosity coefficient obtained through the Prandtl mixing length approach SF

PrandtlT   413 

(full squares) results in a fair shape of the Reynolds shear stress but strongly 414 

underestimates its magnitude (as could be predicted from Fig. 11). 415 

 416 

Geometrical analysis 417 



In the previous sections, we showed that the eddy viscosity concept in the Cartesian 418 

frame-axis (Eq. 2) is not relevant as the eddy viscosity coefficient C

T  would 419 

dramatically vary from one location to another and would reach negative values in the 420 

near-separation region for Group 1 with high  values. Oppositely, we showed that the 421 

eddy viscosity concept in the Serret-Frenet frame-axis (Eq. 6) is relevant in the whole 422 

domain and leads to a quasi-constant eddy viscosity coefficient 5 25.10 m /sSF

T
  (see 423 

Fig. 10). This is coherent with Boussinesq’s idea that applies for uniform shear flows in 424 

the direction of maximum shear. The separating flow can thus be considered as an 425 

almost uniform shear flow in the local frame-axis, while it is not the case in the 426 

Cartesian frame axis. Once accepted that the eddy viscosity concept applies in the 427 

Serret-Frenet frame axis, occurrence of negative C

T  coefficients for high  values can 428 

be explained using geometrical considerations as exposed below and in the appendix.  429 

Consider the local Cartesian frame-axis (x,y) and the Serret-Frenet frame-axis (s,n) as 430 

depicted in Fig. 13. 431 

 432 

The projection of the Serret-Frenet axis (SF) in the Cartesian (C) axis writes: 433 

cos sin

sin cos

s x y

n x y

 

 

  


 

 (7) 434 

The rotation matrix SF

CP  that allows frame change from C to SF (and its counterpart 435 

C

SFP ) thus writes: 436 

cos sin

sin cos

SF

CP
 

 

 
  

 

 and cos sin

sin cos

C SF

SF CP P
 

 

 
   

 

-1  (8) 437 

As a consequence, the relationship between the components of the instantaneous 438 

velocity vector s nV ux vy u s u n     is straightforward: 439 

cos sin

sin cos

s sSF

C

n nC SF SF

u uu
P

u uv

 

 

      
       

      

 (9) 440 

Then, the Reynolds stress tensor 
SFR  (Eq. 4) and the mean rate of strain tensor 

SFS  (Eq. 441 

5) in the Serret-Frenet frame can be expressed as a function of the Reynolds stress 442 

tensor ' 'C i ju u R  and the mean rate of strain tensor   2C i j j iu x u x    S  in Cartesian 443 

frame as: 444 

C SF

SF SF C CP PR R  and C SF

SF SF C CP PS S  (10) 445 



As detailed in the appendix, i) applying Eq. (10) to 
xyR  (defined in Eq. 11) and 

xyS  446 

(defined in Eq. 12), ii) applying the eddy viscosity concept in the Cartesian frame-axis 447 

(Eq. 2) and iii) including the eddy viscosity concept in the Serret-Frenet frame-axis (Eq. 448 

6) finally leads to Eq. (15): 449 

  

 

2 2tan 2 ' ' 2

tan 2

SF s s
T n s

sC

T

s s s s

s n

u u
u u

n R

u u u u

n R s R

 





 
    

 


    
      

    

 (15) 450 

We have shown that SF

T remains positive except near the upstream top corner of the 451 

intersection where the 2D eddy-viscosity concept does not apply (see Fig. 10). The sign 452 

of C

T  thus depends on : 453 

 For low , tan(2) is small so that: i) the denominator is dominated by the first 454 

term (note that 
s su n u s     in the mixing layer, see Fig. 7a) and ii) as 455 

tangential and longitudinal velocity variances have similar orders of magnitude 456 

in the present data (not shown here) and in the literature (see for instance 457 

Gibson et al. [1983]’s data), the numerator is also dominated by the first term. 458 

As a consequence, 0C

T   and 
0

lim C SF

T T


 


 . 459 

 For  approaching /4, tan(2) becomes infinite and 
2 2

4

' '1
lim

2

C s n
T

s s

n

u u

u u

s R

 








 


 460 

However, 2 2' 's nu u  in the present experiment (not shown here) as in Cartesian 461 

frame-axis in the literature (see for instance Gibson et al. [1983] or Bell and Mehta 462 

[1990]’s data) so that the numerator is positive. Moreover, in the regions where 463 

~/4, especially near the separating streamline (100mm<S<300mm), the 464 

denominator is negative (not shown here) leading to a negative C

T  and thus to the 465 

CDP phenomenon. 466 

As a conclusion, when the flow is rotated by about 45° as regards to the main axis, C

T  467 

may take negative values while SF

T  remains positive. The apparent counter-gradient 468 

diffusion phenomenon is simply due to the fact that the eddy viscosity concept applies 469 

only in the direction of maximum shear, which is the flow direction (s). This fact also 470 

explains that, when using Serret-Frenet frame instead of Cartesian frame, better 471 

agreement is achieved between the present experimental velocity profiles or Reynolds 472 



stress profiles and classical mixing layer profiles. 473 

At last, for flows of Group 2, the direction of the separating streamline (S) is quite 474 

parallel to the main axis (x) until approaching the reattachment point where the flow 475 

pattern becomes much more complex [see Riviere et al. 2011]. As regards to the present 476 

analysis, since  remains low, C

T  remains positive, approaching SF

T . Therefore, no CDP 477 

is observed in such flows. 478 

 479 

Conclusion 480 

The present study aimed at proposing a methodology for the analysis of separating 481 

open-channel flows. Works from the literature reported that for configurations with 482 

large angles of separating streamline (referred to as “Group 1”), the analysis using a 483 

Cartesian frame-axis leads to a change of sign of the Reynolds shear stress along with a 484 

negative eddy viscosity coefficient. These results were retrieved in the lateral branch of 485 

the present open-channel bifurcation which may represent a bifurcation in a river 486 

network (in absence of sediments), an irrigation network, a sewer network or a 487 

crossroad during urban flooding. 488 

Moreover, we showed that such analysis in Cartesian frame-axis does not permit to 489 

draw conclusions of size, shape and turbulent characteristics of the mixing layer. 490 

Oppositely, we showed that using a so-called local “Serret-Frenet” frame-axis based on 491 

the direction of the local mean velocity, the mixing layer data become explicit. The 492 

shape, size and turbulent characteristics of the mixing layer are then similar to that of 493 

the literature. This approach applies to any separating flow including the lateral channel 494 

of open channel bifurcations of any angle and any channel width. 495 

Finally, the eddy viscosity concept nicely applies in the local frame-axis, given the high 496 

similarity between the Reynolds shear stress and the mean shear rate. Such local frame-497 

axis thus appears to be well-suited for characterizing the mixing layer of the separating 498 

flow.  499 

To conclude, we provide a generalization of the classical analysis of simple 2D mixing 500 

layers (either straight or curved) reported in most textbooks for more complex 2D 501 

mixing layers (among which the separating flows) using a simple and intuitive 502 

approach. The use of this approach should be generalized to all mixing layers as long as 503 

the main axis of the mixing layer deflects from the main direction of the axis system. 504 



The present results have major relevance to passive or reactive scalar (such as 505 

pollutants) exchanges between the main flow and the recirculation zone. Light 506 

suspended sediments or dilute suspensions that follow the carrier flow, may be trapped 507 

in the recirculation. Therefore, locally, very high sediment concentrations may appear 508 

leading to deposition or agglomeration. 509 
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Appendix 584 

This appendix details the steps from Eq. (11) to Eq. (16). Applying Eq. (11) to the non-585 

diagonal term of the Reynolds tensor in Cartesian frame reads: 586 

   
   2 2

sin 2
' ' ' ' cos 2 ' '

2
xy s n n su v u u u u


    R  (11) 587 

Now, applying Eq. 11 to the non-diagonal term of the mean shear rate in Cartesian 588 

frame leads to: 589 

   
1 1

sin 2 cos 2
2 2

s s s s
xy

n s

u u u uu v

x y s R n R
 

          
          

          

S  (12) 590 

Thus, applying the eddy viscosity concept in Cartesian frame-axis ( .2C

xy T xyR S  in Eq. 591 

2) using Eqs. 12 and 13 reads: 592 

       
   2 2

sin 2
sin 2 cos 2 ' ' cos 2 ' '

2

C s s s s
T s n n s

n s

u u u u
u u u u

s R n R


   

      
         

      

 (13) 593 



and including the eddy viscosity concept in Serret-Frenet frame-axis (Eq. 6) in the first 594 

Right Hand Side term of Eq. (14) gives: 595 

     
   2 2

sin 2
sin 2 cos 2 cos 2 ' '

2

C SFs s s s s s
T T n s

n s s

u u u u u u
u u

s R n R n R


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         
             
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 (14) 596 

that is 597 
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 

2 2tan 2 ' ' 2

tan 2

SF s s
T n s
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s s s s

s n

u u
u u
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u u u u
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
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. (15) 598 

599 



Fig. 1. Sketch of the separation zone for one case of each group: the upward facing-step for 600 

group 1 and the downward-facing step for group 2; “Ss” stands for the mean flow axis at the 601 

geometrical singularity. 602 

 603 

Fig. 2. Sketch of the experimental set-up and close– top photography view of the intersection 604 

zone, white dye has been injected in the main branch to visualize the mixing-layer (not used for 605 

quantitative data). 606 

 607 

Fig. 3. Time-averaged velocity field along with separation streamline (plain line). Right graph is 608 

a velocity magnification to unveil the recirculation region. 609 

 610 

Fig. 4. Distribution of mean shear rate (+) along with Reynolds shear stress (). The CDP zones 611 

are indicated by shading and the plain thick line is the separating streamline. 612 

 613 

Fig. 5. Application of eddy viscosity concept in Cartesian frame-axis. a: 2D distribution of 614 

horizontal Reynolds shear stress. b: 2D distribution of 2n
T

CS
xy

, with a constant eddy viscosity 615 

value: 
5 28.10 m /sC

T
 . The plain line is the separating streamline. 616 

 617 

Fig. 6. a: streamlines, separation streamline (thick line), and fieldlines (perpendicular to the 618 

flow). b: velocity field with the Serret-Frenet frame-axis, the separating streamline and 7 619 

fieldlines (plain grey lines) selected for analysis. 620 

 621 

Fig. 7. Profiles of mean streamwise velocity ( su , a), normal gradient of mean streamwise 622 

velocity ( su n  , b) and Reynolds shear stress ( ' 's nu u , c) along the 7 fieldlines of Fig. 6b. 623 

For sake of simplicity, orientation of the vertical axis was reversed. 624 

 625 

Fig. 8. a: outer velocities U1(S)(+) and U2(S) (o), b: velocity scale and c: mixing layer width. 626 

 627 

Fig. 9. Non-dimensional mean streamwise velocity profiles along the seven fieldlines of Fig. 6b. 628 

For sake of simplicity, orientation of the vertical axis was reversed. 629 

 630 

Fig. 10. Application of eddy viscosity concept in Serret-Frenet frame-axis a: 2D distribution of 631 

horizontal Reynolds shear stress. b: 2D distribution of 2n
T

SFS
sn

 with a constant eddy viscosity 632 

value: 
5 25.10 m /sSF

T
 . The white line is the separating streamline. 633 



 634 

Fig. 11. Evolution along S of eddy- viscosity coefficients Best Fit

SF

T   (o) and 
SF

PrandtlT 
 (+). 635 

 636 

Fig. 12. Reynolds shear stress ' 's nu u  (X) and application of Eq. (6) using: () 637 

 Best Fit

SF

T s s su n u R     , (o) the simplified version of Eq (6)  Best Fit

SF

T su n    , and (■) 638 

 SF

PrandtlT s s su n u R     .  639 

 640 

Fig. 13. Scheme of the Cartesian (x,y) and Serret-Frenet (s,n) frame-axes 641 

 642 


