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(Received 24 July 2013; accepted 22 January 2014; published online 10 February 2014)

We analyse the anisotropy present at different scales in rotating homogeneous turbu-
lence. The Zeman wavenumber k! [O. Zeman, “A note on the spectra and decay of
rotating homogeneous turbulence,” Phys. Fluids 6, 3221 (1994)] was introduced to
quantify the effect of nonlinearity compared to the Coriolis force, and was proposed
as a threshold to separate the anisotropic subrange, at scales k ≪ k! (largest scales),
from the isotropic subrange at k ≫ k!. We study the nature of anisotropy and the role
of the Zeman wavenumber using high resolution direct numerical simulations of freely
decaying rotating turbulence, for various initial Rossby numbers. The anisotropy is
analysed scale-by-scale by considering the angle-dependent energy spectrum, which
characterizes directional anisotropy as a tendency to selectively accumulate energy
towards the transverse waveplane k∥ = 0. This ring-to-ring anisotropy is shown to de-
velop in a non-monotonic way from small to large wavenumbers, first increasing, then
decreasing. The Zeman wavenumber appears to be a suitable scale for estimating the
separation between anisotropic and isotropic ranges. Consistently, when k! is larger
than the dissipative wavenumber cut-off, even the smallest scales are significantly
anisotropic. This situation occurs eventually in our simulations of freely decaying
turbulence, and is also observed in recent experimental results. Our investigation of
anisotropy is completed by analyzing the angle-dependent nonlinear energy transfer
and separate poloidal and toroidal energy spectra. The excess of poloidal energy in
the equatorial plane k∥ = 0 is linked with more energetic vertical motion. C⃝ 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4864099]

I. INTRODUCTION

In astrophysical, geophysical, and engineering flows, turbulence can be strongly affected by
solid-body rotation, which often interacts with other effects arising from the presence of density
variations or of solid boundaries. Here, we consider the idealized case of unbounded rotating
turbulence in absence of additional distortion or forcing.

From several previous studies of this academic case, it appears that anisotropy is an essential
feature of rotating flows, although it can be very different from turbulent shear flows anisotropy,
which is due to anisotropic production by mean velocity gradients. The mechanism of anisotropy
creation in rotating turbulence is more subtle, and has been discussed by several authors,1–3 with
sometimes diverging viewpoints.

We focus in the present work on the question as to whether the anisotropy of rotating turbulence
is present at all scales, and on means of its characterization. A first simple dimensional analysis
suggests to delineate the range of anisotropic scales using a single threshold wavenumber based on
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system vorticity 2! and on kinetic energy dissipation rate ε:

k! =
(

!3

ε

)1/2

, (1)

as proposed by Zeman.4 The corresponding threshold length scale would then be ∼k−1
! . Similar

proposals can be made for shear flows5 and for stably stratified flows.6

On the one hand, this dimensional analysis suggests that isotropy in rotating turbulence is
restored for wavenumbers larger than k!. On the other hand, there is no obvious supporting phe-
nomenology for this separation, because of the peculiar features of unforced rotating turbulence: no
direct production of energy by the Coriolis force; poor relevance of conventional anisotropy indi-
cators such as one-point statistics — e.g., the deviatoric part of the Reynolds stress tensor — very
specific role of the anisotropic dispersive inertial waves.7 We recall that the introduction by Zeman4

of a threshold wavenumber k! — or similarly of a lengthscale in physical space — concerned a
particular context: even if decaying rotating turbulence was addressed, some scaling equations came
from the study of turbulence in the core of trailing vortices (contrails), with an adapted Lagrangian
approach in the downstream direction. This led to a Zeman cut-off wavenumber based on ! instead
of 2! in Eq. (1), but later usage varies among authors,3, 8 and we choose the first option, in absence
of further decisive criterion.

The relevance of k! seems to be ascertained in recent forced Direct Numerical Simulations
(DNS) of rotating turbulence of Mininni et al.:8 isotropy is clearly shown to be restored for k > k!.
This phenomenon is valid when k! is in the inertial range, so the return to isotropy is not merely
due to a viscous effect. A possible interference in these simulations is that anisotropy was the largest
at the forcing (small) wavenumber, without possibility in such DNS to disentangle deterministic
helical (ABC) forcing from anisotropic forcing.

Accordingly, and in spite of the advantage of forcing in terms of Reynolds number, we avoid
the interference of artificial forcing anisotropy with the “natural” anisotropy, and we focus on high
resolution DNS of decaying rotating turbulence, initiated with exactly isotropic initial data. A survey
of a few previous experimental, numerical, and theoretical studies in this context is given as follows.

The experimental approach by Jacquin et al.9 showed that the anisotropy reflected in the
Reynolds stress tensor is weak, in contrast with the anisotropy quantified by integral length scales
with axial separation. This supports a detailed analysis of anisotropy for two-point statistics with
spatial separation,10 or equivalently in Fourier space for all components and all wave vectors (see
Sagaut and Cambon11 and references therein). In addition, both a macro-Rossby number and a
micro-Rossby number are shown to be relevant, defined as

RoL = u′

2!L
and Roω = ω′

2!
, (2)

respectively. L is the integral length scale, u′ the rms velocity, and ω′ the rms vorticity. The value
RoL = 1 is obtained when the integral length scale matches the Zeman scale l! =

(
ϵ/!3

)1/2

suggested by a balance between inertia and Coriolis force. Thus, the macro-Rossby number is also
equivalent to RoL = (l!/(2L))2/3. The micro-Rossby number Roω was confirmed by Cambon et al.1

to characterize an additional structural transition related to polarization anisotropy (see below) when
crossing the unit value. Smaller scales dynamics is compared to Coriolis effects in Roω. Overall,
both Rossby numbers in Eq. (2) help picture the action of rotation on large and small scales.

The role of the Zeman wavenumber, as a threshold above which small scale isotropy is restored,
is not easy to understand because the anisotropy of rotating turbulence is both complex and subtle
in freely decaying rotating turbulence with initial isotropic conditions. On the one hand, there is no
simultaneous production of energy and of anisotropy at the largest scales, because the Coriolis force
produces no energy, and the rise of anisotropy is a nonlinear effect, in contrast with a flow in the
presence of a mean shear.
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We propose to characterize the anisotropy with spectra of two-point correlation functions, in
Fourier space, with two objectives:

(1) To evaluate the anisotropic properties of the flow when separating axial and transverse contri-
butions — of the wave vector for kinetic energy density spectrum, of the two-point separation
vector for the second-order structure function — with respect to the rotation axis, and we also
consider intermediate directions. Thus, the first relevant statistical quantity to be investigated
is the angle-dependent energy spectrum. It is also the counterpart of the second-order structure
function when considering velocity increments along different separation directions.

(2) To introduce a finer characterization of the structure of rotating turbulence via quantities that
can be related to the directional variability of the flow for different velocity components, i.e.,
the axial/transverse gradients anisotropy. The relevant two-point quantity is the polarization
anisotropy, which is easily computed only in Fourier space, as shown in Sec. III A.

Briefly speaking, the directional anisotropy of item 1 is identified on the angle-dependent
energy spectrum. It reflects a trend towards two-dimensionalisation, with a pile-up of energy in the
waveplane normal to the rotation axis, in the plane k∥ = 0. The polarization anisotropy of item 2
tells how the energy is distributed in terms of poloidal and toroidal velocity components, for any
direction of the wave vector. When restricted to the exact two-dimensional manifold k∥ = 0, toroidal
energy is associated with axial vortices and transverse velocity, or “vortical” structures, whereas
poloidal energy is associated with axial velocity, or “jetal” structures. Both anisotropies are required
to describe the quasi-two-dimensional three-component state (2D-3C), which is more complex than
the classical 2D-2C state of purely horizontal 2D flow. A synthetic model is introduced for explaining
this kind of anisotropy. One thus understands clearly that polarization anisotropy, as a difference
of toroidal and poloidal contributions, is useful for refining the analysis of the structure of rotating
turbulence.

The most recent very high resolution DNS8 confirm the role of the Zeman k! wavenumber,
but only a short Coriolis subrange appears with small scale separations and only one value is given
to the rotation rate. Moreover, these are helically forced simulations, with a forcing term which
is anisotropic at large scales and competes with the “natural” anisotropy created by Coriolis force
at large scales. Therefore, to complete this analysis, we analyse results of new DNS of unforced
rotating turbulence for four rotation rates, aiming at a resolution large enough to be able to locate
clearly the Zeman wavenumber within the inertial range of turbulence, and obtain a separation of
the large scales and dissipative ones.

Our numerical investigation is also very closely related to the recent Gyroflow experiments,10 in
which a measure of the complete anisotropic energy transfer is done. Thanks to improvements of the
experimental set-up to remove most of the global inertial modes in the tank, the experimental context
can be considered to be very close to the numerical one. In addition, with refined particle image
velocimetry (PIV) techniques, the authors can separate the Zeman and dissipative scales, although
the latter cannot be resolved experimentally. In the following, we start by shortly presenting the
equations and numerical technique in Sec. II. In Sec. III we discuss the results, considering the three
aspects of anisotropy: directional (Sec. III A) and polarization (Sec. III D) for two-point velocity
spectra, and the energy transfers (Sec. III E) as third-order statistics relevant for the dynamics.
Conclusions are given in Sec. IV.

II. GOVERNING EQUATION AND NUMERICAL SET-UP

We consider the equation of fluid motion for the velocity field u, i.e., the Navier-Stokes equation
in the rotating frame:

(
∂

∂t
− ν∇2

)
u(x, t) + ∇ p + (2! + ω) × u = 0, (3)

where ω = ∇ × u is the fluctuating vorticity, p represents the total pressure modified by the cen-
trifugal term, and divided by the mass density, and ν is the kinematic viscosity. The system rotation
! is imposed, without lack of generality, to be in the vertical direction: ! = (0, 0,!) with ! the
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TABLE I. Recap of the parameters used in the simulations. Turbulence characteristics at the final time tf: u′ rms of velocity,
L integral length scale, ε dissipation, η = (ν3/ε)1/4 Kolmogorov length scale, and k! Zeman wavenumber. N is the number
of grid points in each direction of the Cartesian coordinate and in every simulation, the kinematic viscosity is ν = 1/9000,
close to Kaneda’s group data.14 The initial eddy turnover times are τ 0 ≃ 0.76 and τ ′

0 ≃ 1.77.

Run N tf 2! u′ L ReL RoL Roω ε k! kmaxη

A0 1024 τ 0 0 0.38 0.46 1590.8 ∞ ∞ 0.14 0 0.6
A1 1024 τ 0 12.57 0.41 0.52 1903.7 0.06 2.25 0.089 52.82 0.68
A2 1024 τ 0 6.28 0.39 0.52 1817.1 0.12 5.16 0.116 16.37 0.63
A3 1024 τ 0 3.14 0.39 0.49 1701.3 0.25 11.03 0.132 5.41 0.61
A4 1024 τ 0 1.57 0.38 0.47 1630.0 0.51 22.43 0.137 1.88 0.61
B1 2048 1.93τ ′

0 21.7 0.53 1.10 5204.3 0.022 0.55 0.016 282.54 2.89
B2 2048 1.93τ ′

0 5.42 0.46 1.15 4777.79 0.074 2.88 0.027 27.15 2.58

angular velocity. The fluid is considered to be incompressible, with divergence free velocity field
∇ · u = 0.

Assuming periodic boundary conditions in the three directions of space, we solve numerically
Eq. (3) by a pseudo-spectral method in a three-dimensional box of size 2π , using a parallel code
and fast Fourier transforms12 with a resolution up to 20483 collocation points. The pressure is
solved by the Poisson equation obtained by taking the divergence of Eq. (3), consistently with the
nondivergence of velocity. This is done algebraically in discretized Fourier space. Full dealiasing
of the nonlinear term is done by spherical 2/3 truncation rule13 for resolution N3 = 10243 points,
yielding a maximal resolved wavenumber kmax = 341( = 2N/3), or by the phase-shifting method13

at resolution 20483, yielding kmax = 965
(
= 2

√
2N/3

)
.

In addition to an isotropic simulation, we have performed simulations at six rotation rates, thus
at different final Rossby numbers ranging from 0.02 to 0.5, at the two different resolutions 10243

and 20483 points. A velocity field of fully developed homogeneous isotropic turbulence is used as
initial conditions to the rotating runs, with two different choices:! at 20483 resolution, the velocity field comes from data from Kaneda’s research group14

with the following characteristics: u′
0 ≃ 0.57, L0 ≃ 1.01, ε0 ≃ 0.0832, and eddy turnover time

τ ′
0 ≃ 1.77;! at 10243 resolution, the velocity field comes from our own simulation of homogeneous isotropic

turbulence with u′
0 ≃ 0.51, L0 ≃ 0.39, ε0 ≃ 0.35, and eddy turnover time τ 0 ≃ 0.76;

where u′ is the rms velocity, ε = ν⟨ui, jui, j⟩ the dissipation rate. We define the integral length scale
L =

∫ ∞
0 Rii (r )/Rii (0)dr where Rij(r) = ⟨ui(x)uj(x + r)⟩ is the two-point velocity correlation tensor.

Table I provides the parameters at the last time tf of our simulations. In order to characterize
the global evolution of turbulence, we provide the time evolution of Reynolds number ReL in
Figure 1(a); of the integral length L in Figure 1(d); of the macro Rossby number RoL in Figure 1(b);
of the micro Rossby number Roω in Figure 1(c); of the dissipation in Figure 2(a); and of the Zeman
scale k! in Figure 2(b).

We observe that in freely decaying turbulence, the Reynolds number ReL is roughly constant
after a short transient period. Accordingly, to compensate for the loss of energy, the integral length
L increases in time. The macro-Rossby number RoL and micro-Rossby number Roω have similar
evolutions, although different magnitudes: they both decrease in time. The dissipation ε also de-
creases in time, the consequence being that Zeman’s scale k! increases in time. Note that, between
the different runs, increasing the rotation rate globally produces reduced dissipation ε and larger
Zeman’s scale k!.

III. ANISOTROPIC “2D-3C” STRUCTURE VERSUS UNIVERSAL 3D ISOTROPIC
TURBULENCE

We now present the modal decomposition of velocity which is easily done in spectral space,
followed first by a discussion of the spherically averaged spectra, then by the analysis of the
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FIG. 1. For the different simulations, time evolution of: (a) Reynolds number ReL based on integral length L; (b) macro-
Rossby number RoL; (c) micro-Rossby number Roω; and (d) integral length scale L. The non-dimensional time is t* = t/τ 0
where τ 0 is the initial eddy time turnover. The legend of colored and dotted lines in (a), same for (b)–(d).
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FIG. 2. For each simulation, time evolution of: (a) dissipation ε and (b) Zeman scale k!. The legend of colored and dotted
lines in (a), same for (b).
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direction-dependent spectra in the axisymmetric anisotropic description, finishing with the discussion
of polarization anisotropy.

A. Spectral equations and poloidal-toroidal decomposition

From a theoretical viewpoint, it is important to note that the pseudo-spectral technique allows
to obtain the fluctuating velocity field either in discretized physical space or in discretized Fourier
space. Because neither the nonlinear term, here taken as the Lamb vector in Eq. (3), nor the Coriolis
terms are divergence free, the gradient of pressure compensates to return the velocity field to
solenoidal space. This corresponds to a simple geometrical projection when considering the 3D
Fourier transform of Eq. (3):

(
∂

∂t
+ νk2

)
û(k, t) = −P(k) · ̂((2! + ω) × u). (4)

The “overhat” denotes the 3D Fourier transformed spectral coefficient (possibly in the sense of
distributions if the velocity field is a random variable). The solenoidal projection is ensured by the
algebraic projector

[P(k)]i j = δi j − ki k j

k2
, (5)

in which the second term k ⊗ k/k2 reflects contributions from pressure fluctuations. Accordingly,
explicit pressure fluctuations are solved and removed from consideration, leaving linear and nonlinear
contributions in the momentum equation:

(
∂

∂t
+ νk2

)
û(k, t) +

(
2!

k∥

k

)
k
k

× û = −P ̂(ω × u). (6)

Linear terms are gathered in the left-hand-side. The solenoidal projection of the Coriolis force
exhibits system rotation modulated by an angle-dependent parameter k∥/k, corresponding to the
dispersion frequency of inertial waves 2!k∥/k. Note also that the Coriolis force disappears upon
taking the inner product of Eq. (4) by the complex conjugate of the velocity in Fourier space û∗.
This shows that the Coriolis force produces no energy at any scale.

Instead of using the solenoidal projector (5), one can use a two-component form of û in
order to satisfy the incompressibility condition, since the velocity vector û(k) in Fourier space is
perpendicular to k from the solenoidal property of the velocity vector in physical space: ∇ · u =
0 ⇒ k · û = 0. The three-component physical space velocity vector can therefore be represented by
a two-component vector in the dual Fourier space and in the plane orthogonal to k:

û(k, t) = u(1)(k, t)e(1)(k) + u(2)(k, t)e(2)(k). (7)

This simplification introduces the Craya frame of Refs. 11,15 shown in Figure 3. u(1) and u(2) are the
toroidal and poloidal velocity components along the first two vectors of the zonal-meridional-radial
orthonormal frame (e(1), e(2), e(3) = k/k) related to the system of polar-spherical coordinates in
Figure 3.

Classically, to measure the energy scale by scale — or for each wave number k in Fourier space
— one uses averages of kinetic energy E(k) over spheres Sk of radius k and thus averages out the
anisotropic contents of the energy distribution:

E(k, t) =
∑

k∈Sk

|û(k, t)|2. (8)

In the discrete analysis of DNS data, the spherical shell is Sk = {k − +k
2 < |k| < k + +k

2 }, where
+k specifies the wavenumber increment in Fourier space.
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(a) (b)

FIG. 3. (a) Craya frame and (b) diagram of angular spectral energy E(k, Oi).

B. Spherically averaged spectra

In Figure 4, we plot the kinetic energy spectra E(k, t = tf) at final time tf for the different rotating
cases, along with the initial spectrum for Figure 4(a), and with the initial and final spectra of the
non-rotating case in Figure 4(b). We observe especially in Figure 4(a) with a large inertial range
that, when the Rossby number decreases (higher rotation case), the energy spectrum is modified: the
energy is higher at large scale (low wave number k) and smaller at small scale (high wave number
k) exhibiting a modified dynamics of rotating turbulence. In the absence of energy production, the
cascade is only quantified by a spectral energy transfer which drains energy from largest scales
to smallest ones in order to feed the dissipation sink, hence a flux of energy strictly bounded by
the amplitude of dissipation. Therefore, the strong reduction of the dissipation in the presence of
rotation (see Table I) imposes a similar reduction of the interscale energy flux and therefore yields
a steeper slope — less energy drain at small wavenumber, less energy sink at large wavenumber
— with respect to the classical k−5/3 Kolmogorov scaling of homogeneous isotropic turbulence, as
also observed in other DNS.16 In recent experiments, the spectral slope is observed to be between
−3 and −2,17 but it is computed from transverse velocity components so that the energy spectrum
is given in terms of k⊥, whereas our Figure 4 presents spherically averaged spectra E(k). From
phenomenological arguments, Zhou18 proposed the scaling E ∼

√
!εk−2, slightly different from

E ∼ k−11/5 proposed by Zeman.4 A theoretical approach of large Reynolds number, vanishing Rossby
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FIG. 4. Spectra of kinetic energy at t = tf for different Rossby numbers RoL and different resolutions: (a) 20483 and
(b) 10243.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  156.18.40.173 On: Fri, 08 Apr 2016
08:46:00



025104-8 Delache, Cambon, and Godeferd Phys. Fluids 26, 025104 (2014)

number, turbulence, including full axisymmetric anisotropy, yields E ∼ k−3,19 steeper than what we
obtain in the current simulations. However, we observe no obvious trace of the Zeman wavenumber
on the different kinetic energy spectra, for both resolutions at all rotating rates.

C. Investigation of directional anisotropy

In the case of rotating turbulence with axisymmetric statistics about the rotating axis, the
distribution of energy is not equi-distributed over the spherical shell of radius k in contrast to
isotropic turbulence. We characterize this non-equi-distribution of kinetic energy by introducing the
angular dependence of the kinetic energy spectrum E(k, Oi ), as proposed in previous studies.11, 20, 21

In the discrete case, we decompose the sphere Sk into several rings Oi (six rings i = 1. . . 6 in our
simulations, as shown in Figure 3(b)):

E(k, Oi ) = 1
mi

k

∑

k∈Oi

(
|u(1)(k)|2 + |u(2)(k)|2

)
= E (1)(k, Oi ) + E (2)(k, Oi ), (9)

where E (1)(k, Oi ) and E (2)(k, Oi ) are the toroidal and poloidal contributions to E(k, Oi ) which
gives the shell-to-shell and ring-to-ring dependence of energy spectrum. The weight mi

k =
(π/2)(2(θi − θi+1))−1((sin(θi ) − sin(θi+1))−1 is the normalisation term of the statistics, and the dis-
cretized angles are θ i = (π /2)((i − 1)/6). The choice of six rings (i = 1, 2, . . . , 6) to decompose

the spherical shell Sk =
6⋃

i=1
Oi is a compromise between the number of shells and the number of

rings in each shell to ensure sufficient statistical sampling within the rings. We consider only a
half-shell because of the Hermitian symmetry û(−k) = û∗(k). As a result, it is finally consistent to
E(k, t) =

∑
i=1,6 mi

kE(k, Oi ). Figures 5, 6(a), and 6(b) show the kinetic energy spectra at different
angles E(k, Oi ) for the different Rossby numbers RoL, therefore at different Zeman wavenumbers
k!, and for the two resolutions. Enstrophy visualizations are shown in Figures 6(c) and 6(d). We
notice that at high Rossby number (Figure 6(c)), the structures are close to the ones in isotropic
turbulence whereas at low Rossby number (Figure 6(d)), they are axially oriented (we will rediscuss
this visualization in Sec. III D 2).

In the isotropic case or at the largest Rossby number (low rotation rate case), we observe in
Figures 5(a) and 5(b) that the angular spectra E(k, Oi) in all the rings collapse at all scale, except
at the largest ones, where statistical sampling is very coarse and explains the departure. Since the
Zeman wavenumber k! (shown by a vertical line in Figure 5(b)) is smaller than all the turbulent
structures in the flow, rotation has no significant effect on the dynamics.

At increasingly low values of the Rossby number (higher rotation rate cases), in Figures 5(c),
5(d), and 6(a), an increasingly wide range of large scales exhibits a marked anisotropy in which
energy concentrates on the equatorial ring O6. The concerned range of wave numbers extends to the
Zeman scale, i.e., for k ≤ k!.

For wavenumbers above the Zeman wavenumber, i.e., k ≥ k!, the spectra recover an isotropic
distribution, such that all angle-dependent energy spectra collapse again. Below, that is at very large
scales, isotropy seems to be partially restored as well, although statistical inaccuracies hide this in
the 10243 runs, but it seems to be the case in the 20483 runs. Whether this is due to large-scale
cut-off by the box size is yet to be determined. Finally, at very high rotation rate (very low Rossby
number cases), in Figures 5(e) and 6(b), every scale exhibits anisotropic characteristics, down to the
dissipative ones. Therefore, even at these quite large values of the Reynolds number, the turbulent
structures may remain anisotropic, even the smallest ones, provided the Rossby number is small
enough.

This concentration of energy on equatorial ring was already observed in DNS of rotating
turbulence1 and in a statistical model of inertial wave turbulence.19 In all these results, the anisotropy
is non-monotonic in terms of k. Its consistency with experimental results10, 22 is discussed in Cam-
bon et al.23 In terms of spectral scaling, discussed above for E(k), the wave turbulence model
spectral scaling E ∼ k−3 comes from the average over angle-dependent spectra in which a k−2

scaling is found for the most energetic spectrum. It corresponds to the equatorial O6 spectrum in

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  156.18.40.173 On: Fri, 08 Apr 2016
08:46:00



025104-9 Delache, Cambon, and Godeferd Phys. Fluids 26, 025104 (2014)

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

O1
O2
O3
O4
O5
O6

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

O1
O2
O3
O4
O5
O6

1e-05

0.0001

0.001

0.0001

0.01

0.1

1

1 10 100 1000

O1
O2
O3
O4
O5
O6

1e-05

0.001

0.01

0.1

1

1 10 100 1000

O1
O2
O3
O4
O5
O6

1e-05

0.0001

0.001

0.01

1 10 100 1000

0.1

1

O1
O2
O3
O4
O5
O6

kk

E(
k
,O

i)
E(

k
,O

i)
E(

k
,O

i)

(a) RoL = ∞

(b) RoL = 0. )c(15 RoL = 0.25

(d) RoL = 0.12 (e) RoL = 0.06

FIG. 5. Total angular spectral energy E(k, Oi ) at t = tf for different Rossby numbers RoL and Zeman wavenumbers k!

(vertical lines) at resolution 10243: (a) Run A0, RoL = ∞; (b) Run A1, RoL = 0.51; (c) Run A2, RoL = 0.25; (d) Run A3, RoL

= 0.12; and (e) Run A4, RoL = 0.06.

Figures 5 and 6. The k−2 scaling is approximately recovered for the O6 spectrum of the lower
Rossby number simulation of Figure 6(b). We underline that the k−3 classical scaling for E(k) in
2D turbulence, in which the enstrophy is the relevant prefactor, is of a different nature from our
spherically averaged angle-dependent.

The concentration in Fourier space of the energy towards the “equatorial ring” O6 therefore
reflects a trend towards two-dimensionalization, because k∥ ≃ 0 corresponds in physical space to
structures with less variability in the axial direction. When time evolves, it means that the statistics
corresponding to variability ∂/∂z decrease along the axis, which we call a quasi-2D tendency. Exact
concentration on k∥ = 0, as a Dirac distribution, is never achieved in previous studies, and would
characterize Taylor columns.24, 25
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FIG. 6. Total angular spectral energy E(k, Oi ) at t = tf for different Rossby number RoL at resolution 20483: (a) for Run
A5 at RoL = 0.074 and (b) for Run A6, RoL = 0.022. Visualisation with vapor (thanks to NCAR software), of the enstrophy
⟨ω2⟩ distribution of the computational box (total vertical extent but only a 5122 subdomain horizontally is shown): (c) RoL

= 0.074 and (d) RoL = 0.022.

As discussed hereinabove, the Zeman wavenumber k! plays an important role for delineating
the range of wavenumbers for which structures are closer to 2D from the range of wavenumbers over
which the structures are mostly 3D. For wavenumbers smaller than k!, the distribution of energy
is strongly anisotropic and structured in agreement with the quasi-2D concept. The domain [1, k!]
is clearly a domain of increased anisotropy, domain which increases as RoL decreases, whereas the
distribution of energy becomes again isotropic if k is larger than k!. When k! is larger than the
largest wavenumbers in the flow, the structures at all scales may be significantly anisotropic.

In order to provide a quantitative scale-by-scale measure of the intensity of anisotropy, we
introduce the anisotropy factor

a(k) = E(k, O6) − E(k, O1)
E(k, O6) + E(k, O1)

. (10)
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FIG. 7. Scale-by-scale anisotropy factor a(k) for each Rossby number: (a) 10243 DNS and (b) 20483 DNS.

In Figure 7, we plot this factor for both resolutions. In the case of DNS with 10243 points, Figure 7(a)
shows that a(k) < 0 for k < ∼5, even in the isotropic case. This is due to a lack of statistical sampling
in the largest scales, with only a few very large structures inherited from the initial conditions.
When k > 5, a(k) ≃ 0 in the isotropic case, logically, and the anisotropy factor becomes positive
for the rotating cases. The maximum of anisotropy a(k) appears at a given wave number kaniso

max ,
that depends on the value of the Rossby number. For 20483 DNS, Figure 7(b) shows that a(k) > 0
at all scales, since sampling is much better in the large scales. This also means that energy is not
equipartitioned, and is concentrated at the equator. The curve at RoL = 0.074 shows a strong, rather
abrupt, reduction of a(k) at small scales, although positive anisotropy is still present. The curve at
RoL = 0.022 exhibits maximal anisotropy in a wide range of scales down to the smallest ones.

The wavenumber of maximum anisotropy kaniso
max along with the Zeman wavenumber k! are

plotted against Rossby number in Figure 8 with a logarithmic scale. The figure shows a power-law
scaling k! ∼ (RoL )−1.6 for all simulations at both resolutions. kaniso

max is however more sensitive to the
resolution, and no particular scaling can be found from our few points on this graph. There does not
seem to be a clear relationship between kaniso

max and k!, with kaniso
max depending on both ReL and RoL

whereas k! depends mostly on RoL. In their experiments, Cortet and Moisy3 measured the two lengths
equivalent to k! and kaniso

max , namely, l! and raniso, respectively, and found raniso ≃ max(l!, 2η)
where η is the Kolmogorov scale. We do not observe this relationship in our simulations, but the
experimental and numerical Rossby and Reynolds numbers are different.
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FIG. 8. For each simulation, we plot the following in terms of the Rossby number RoL: green circles: Zeman wavenumber
k!; red triangles: wavenumber of maximum anisotropy in the angular spectra kaniso

max . Open symbols correspond to 20483

simulations, filled symbols to 10243 ones. A power-law (RoL)−1.6 is also proposed for the dependence of k!.
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In this work, we study the quasi 2D structure of the flow by examining its state at final time t
= tf. However, we stress that it is the result of a dynamical phenomenon in freely decaying rotating
turbulence started with initial isotropic turbulence. Indeed, when turbulence decays, the dissipation
rate ε decreases and the Rossby number RoL as well. A consequence, from its definition (1), is that
the Zeman wavenumber k! increases when RoL decreases and ε decreases. This dependence raises
two remarks:

! First, the anisotropic wavenumber range [1, k!] correspondingly expands in time and eventually
becomes the whole spectral domain. In the mean time, the anisotropy growth is expected to
increase as RoL decreases. A means of compensating this would be to maintain a constant
dissipation ε, or to force turbulence as done by Mininni et al.8 Nevertheless, the choice of
a forcing method is in competition with the anisotropic characteristic of rotating turbulence
whereas this anisotropic characteristic is free to develop in freely decaying turbulence. In both
the forced or unforced cases and for all the initial conditions considered in the above-mentioned
literature, the Zeman wavenumber appears to be a good indicator marking the scale at which
isotropic distribution begins to be restored.! Second, because k! is defined in terms of ε and !, its scaling relies on the scaling of the
dissipation rate, or more precisely on the scaling of a related lengthscale L. We recall the
relationship with the Rossby number proposed in Sec. I: RoL = (l!/(2L))2/3 which sug-
gests that k! = 1/ l! ∼

(
RoL

)−3/2
/L . Since we observe in Figure 8 a rather clear powerlaw

k! ∼
(
RoL

)−1.6 which differs from −1.5, we conclude that the length scale L is altered by
rotation and is thus also a function of the Rossby number.

D. Investigating the polarization anisotropy

1. Definition and simple model for polarization anisotropy

In Figures 5 and 6, we observed in Sec. III C that the kinetic energy is concentrated in the
equatorial ring O6 for wavenumbers smaller than the Zeman wavenumber k!, and tends to be
equi-distributed for larger wavenumbers. This effect is enhanced when the Rossby number is small.
In addition to this directional anisotropy quantified by energy difference between different rings,
another anisotropy can be evidenced from the distribution of the velocity components within a given
ring. This second kind of anisotropy is called polarization, by analogy with electromagnetic waves
polarization, since they also involve an exactly transverse wave field with respect to the direction
of the wave vector k, as the spectral velocity vector û is. The polarization anisotropy is precisely
defined as the difference in statistics between the two components u(1) and u(2) at a given k, in the
plane normal to k. If the energy is concentrated towards the equatorial ring — the quasi-2D state —
u(1) is close to a purely horizontal flow, and u(2) is close to a purely axial flow. The whole anisotropy
therefore characterizes a trend towards a 2D-3C — two-dimensional, three-component — structure.

In order to quantify polarization anisotropy in our simulations, we have computed the toroidal
u(1) and poloidal u(2) velocity components, and their respective angular distributed power spectra
E (1)(k, Oi ) and E (2)(k, Oi ) defined in Eq. (9). The sum of the two yields the kinetic energy spectra.
For a complete statistical spectral characterization, one would also require a cross-spectrum linked to
⟨u(2)*u(1)⟩, but this term is of negligible amplitude near the 2D manifold k∥ = 0 in rotating turbulence.
Dynamical equations can be obtained for the polarization spectrum, or for the toroidal and poloidal
power spectra,1, 11, 20 briefly presented in the Appendix.

To illustrate the physical meaning of polarization, we introduce a polarized synthetic field,
following Rogallo’s method,26 but restricted to a strong directional anisotropy given by spectral con-
tributions in the equatorial band O6 and to low wave numbers such that 7 ≤ k ≤ 9 (the wavevectors
matching these conditions in a 2563 cartesian grid are used). The resulting incompressible velocity
field model is

v(x) =
∑

k∈O6, 7≤k≤9

√
e(k)eiβ [

cos(α)e(1)(k) + sin(α)e(2)(k)
]

eik·x + c.c., (11)
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(a) (b)

(c) (d)

FIG. 9. Two “polarized” synthetic fields defined by Eq. (11), with the same energy accumulated in the equatorial spectral
plane (shaded ring on the spheres that depict the same spectral sphere and coordinate system as in Fig. 3(a)) but with two
different polarization ratios E (2)(k, Oi )/E (1)(k, Oi ), depicted by red arrows that show the possible corresponding orienta-
tions of the Fourier vectors û. Top figures (a) and (b): for E (2)(k, Oi )/E (1)(k, Oi ) = 1/3; bottom figures (c) and (d) for
E (2)(k, Oi )/E (1)(k, Oi ) = 3. (a) and (c) The vorticity distribution; (b) and (d) 300 randomly picked streamlines.

where c.c. is complex conjugate, e(k) ≃ 0.2 is the energy of each wavenumber, β is a random phase
uniformly distributed in [0, 2π ] (at each k), and α is an angle chosen for the orientation of the
spectral wavevector û. By imposing the ratio of poloidal to toroidal energy E (2)(k, O6)/E (1)(k, O6),
one also imposes the wavevector orientation and thus the ratio between the poloidal and toroidal
components u(2) and u(1). Geometrically, there are four possibilities for the angle α (red arrows
plotted in Figure 9), so that one out of four is randomly chosen for each wavevector involved in the
sum in Eq. (11). We plot in Figure 9 the vorticity field and 300 random streamlines in our synthetic
model of polarized velocity field for two ratios:

! E (2)(k, O6)/E (1)(k, O6) = 1/3, so that β ∈ {π
6 ,−π

6 , 5π
6 ,− 5π

6 }: the horizontal velocity compo-
nent is more important than the vertical one.! E (2)(k, O6)/E (1)(k, O6) = 3, so that β ∈ {π

3 ,−π
3 , 2π

3 ,− 2π
3 }: the horizontal velocity component

is less important than the vertical one.

Comparing Figures 9(a) and 9(c) for the vorticity surfaces, it follows that the vorticity fields
exhibit very similar features in both cases, with the same amplitude and same vertically oriented
structures. But by comparing Figures 9(b) and 9(d), one is able to tell one case from the other, since
the streamlines are clearly different: for the poloidally polarized case E (2)(k, O6)/E (1)(k, O6) = 3 of
Figure 9(d), the streamlines are loosely helical and strongly aligned with the vertical direction (“jetal”
eddies); whereas for the toroidally polarized case E (2)(k, O6)/E (1)(k, O6) = 1/3, the streamlines
swirl more horizontally (“vortical” eddies).
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FIG. 10. Ratio of poloidal to toroidal energy E (2)(k, Oi )/E (1)(k, Oi ) for different angular sectors at time t = tf and for
different Rossby numbers RoL at fixed resolution 20483: (a) Isotropic initialisation (RoL = ∞); (b) Run B2, RoL = 0.074;
and (c) Run B1, RoL = 0.022.

2. Polarization in DNS fields

We plot in Figure 10 the ratio E (2)(k, Oi )/E (1)(k, Oi ) for different angular sectors (rings) in the
isotropic case (initial condition) and for two Rossby numbers RoL = 0.074 and RoL = 0.022 at
t = tf. The ratio E (2)(k, Oi )/E (1)(k, Oi ) depends on both the angle (ring) and on the scale (spectral
shell). In isotropic turbulence in Figure 10(a), we observe that E (2)(k, Oi )/E (1)(k, Oi ) collapses to
unity for all the rings, so that the toroidal and poloidal velocity components u(1) and u(2) have the
same magnitude on average. In addition, one recovers that all rings have the same contribution to
energy, and that the two components of velocity are statistically equivalent in each ring. Overall, one
concludes that the polarization and directional anisotropies are zero, as expected. Not only isotropic
turbulence permits to test this, but the curves in Figure 10(a) provide an estimate of the wiggles
expected in the plots due to limited statistical sampling, with very few spectral points contained in
the largest scales.

In contrast with isotropic turbulence, for the rotating case at RoL = 0.074 presented in
Figure 10(b), the magnitude of the poloidal/toroidal energy ratio is significantly different from
unity, especially for the equatorial ring O6: poloidal energy is larger than toroidal energy in the
large scales at wavenumbers smaller than the Zeman scale. The anisotropy at these scales is reversed
when considering the rings farther from the equator. When considering smaller scales, the anisotropy
monotonically decreases in all the rings, with values matching unity only in the smallest scales. We
therefore note that, in the small scales corresponding to wavenumbers above the Zeman scale, where
turbulence is supposed to be isotropic from the point of view of directional anisotropy, there still
remains a hint of polarization anisotropy. This is not due to a numerical artifact, from comparison
with the isotropic case of Figure 10(a).
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We now consider the lower Rossby number case RoL = 0.022 of Figure 10(c), for which the
behavior of polarization anisotropy is more complex:! Looking at the equatorial ring O6, the toroidal component weakly prevails at the largest scales

(E (2)(k, O6) < E (1)(k, O6)) — although this is somehow drowned in the sampling oscillations
— whereas the reverse tendency E (2)(k, O6) > E (1)(k, O6) appears at smaller scales k > 42.
From this scale up to k = 411 we observe a strong increase of the polarization anisotropy ratio,
ending with a peak E (2)(k, O6) = 2.33E (1)(k, O6). After this peak, the ratio quickly decreases
back to unity in the dissipative range.! The other rings O5, O4, O3, O2 show similar variations, although with less magnitude for
each successive ring when approaching the polar direction. We note that, for these rings and
especially the three closer to equator, the Zeman scale k! is close to the peak of the poloidally
dominated zone. Below, the further the k from k! the smaller the ratio E (2)(k, Oi )/E (1)(k, Oi ),
and similarly above. (One could also pretend to observe a similar effect on ring O6 of
Figure 10(b).) This spectacular effect of the Zeman scale could be fortuitous but it car-
ries an additional significance at low Rossby number RoL: the excess of toroidal component
E (1)(k, Oi ) at larger scale is progressively balanced by an increasing excess of poloidal com-
ponent E (2)(k, Oi ) when moving to smaller scales, until the smallest scale isotropy is restored
such that E (2)(k, Oi ) ≃ E (1)(k, Oi ). (There is of course not global balance over all scales.) The
non-monotonous behavior of the spectra is the result of a competition of linear and nonlinear
terms for polarization at k∥ ̸= 0 (see Eq. (A2)).! Finally, the ring O1 has a statistically isotropic contents E (2)(k, O1) ≃ E (1)(k, O1) with a mostly
unit poloidal/toroidal ratio. This is consistent with axisymmetry and is sometimes denoted
“polar isotropy.”

The energy at the equator and the difference between E (1)(k, Oi ) and E (2)(k, Oi ) at all scale
is a strong characteristic of the quasi-2D-3C state. From the rings O6 of Figures 10(b) and 10(c),
we confirm that the large-scale structures of the flow are anisotropic, with dominance of jetal
eddies along the rotation axis. In the larger Rossby number case of Figure 10(b), smaller scales
do not exhibit significant polarization anisotropy, hence the classical-turbulence-like small vortices
observed in Figure 6(c), which are superimposed on large-scale axially oriented clusters. However,
in Figure 10(c) the polarization anisotropy is strong at small scales, so that one expects small-scale
structures axially oriented, a feature which is confirmed when observing closely the 3D visualization
of Figure 6(d). Moreover, the strong equatorial polarization is linked to small-scale structures that
are similar to the ones observed in our strongly polarized model of Sec. III D 1 and plotted in
Figure 9. Finally, within the corresponding small-scale range, from the analysis of both equatorial
spectra and poloidal mode dominance, the energy of the flow in the axial direction is larger than in
the horizontal direction, so that velocity components are statistically ordered such that u∥ > u⊥.

E. Anisotropy reflected by the spectral energy transfer

After investigating the structure of rotating turbulence via spectra of two-point velocity corre-
lations and the related directional and polarization anisotropies, we hereafter propose to consider
the third-order moments corresponding to the nonlinear energy transfer terms. Our goal is to try to
identify the mechanisms that create the anisotropy. From Eq. (4) we deduce the equation of energy
mode by mode, at given k:

(
∂

∂t
+ 2νk2

)
e(k, t) = s(k, t), (12)

where e(k, t) = |û(k, t)|2/2 is the (unaveraged) energy for mode k and the nonlinear energy transfer
term is

s(k, t) = −ℜ

⎡

⎣û∗(k) · P(k)

⎛

⎝
∑

p+q=k

ω̂( p) × û(q)

⎞

⎠

⎤

⎦ ,
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FIG. 11. Logarithmic plot of the transfer of spectral kinetic energy T(k, Oi) at t = tf for different Rossby numbers RoL at
fixed resolution 20483: positive part of the transfer (a) for run A5, RoL = 0.074 and (b) for run A6, RoL = 0.022. Negative
part of the transfer (c) for run A5, RoL = 0.074 and (d) for run A6, RoL = 0.022.

from the discretized form of Eq. (4) or (6), in which the projection operator is defined in Eq. (5).
Note that rotation does not appear explicitly in the energy equation (12) but implicitly in the velocity
u(k, t) through nonlinearity and anisotropic pressure re-distribution.

The Lin equation for the kinetic energy spectrum is obtained by averaging Eq. (12) for e(k, t)
over the surface of a sphere Sk, i.e., E(k, t) =

∑
k∈Sk

e(k, t) and the nonlinear energy transfer is given

scale by scale by T (k, t) =
∑

k∈Sk

s(k, t). In the case of freely rotating turbulence, this nonlinear energy

transfer remains negative at large scale and positive at small scale, and thus corresponds to a direct
cascade of energy, as in isotropic turbulence, but its amplitude is decreased by rotation.16, 20

As before, in order to characterize the anisotropy, we introduce the angular dependence of the
nonlinear energy transfer T(e)(k, Oi) which is defined as the angle-dependent transfer20 related to the
angle-dependent spectral energy E(k, Oi ) defined in (9):

T (e)(k, Oi ) =
∑

k∈Oi

s(k, t). (13)

We plot T(e)(k, Oi) at final time t = tf in Figure 11. Since T(e)(k, Oi) is a third-order statistics,
its computation in practice is more demanding than second-order statistics such as energy spectra.
Accordingly, only the high resolution case (20483) appears on this figure because the results are very
noisy: a large number of Fourier modes are needed for each ring, in the absence of time averaging
not possible in freely decaying flows. We observe in both cases that the nonlinear energy transfer
T(e)(k, Oi) is mostly negative at large scale (Figures 11(c) and 11(d)) and positive at small scale
(Figures 11(a) and 11(b)) for each ring, attesting of dominant downscale cascade of energy.

At the larger Rossby number case of Figures 11(a) and 11(c), the nonlinear transfer contribution
to every ring T(e)(k, Oi) is almost equivalent, for every scale and every angle, especially at the smallest
scales, as a trace of close-to-isotropic transfer. The transfer at the equatorial ring O6 is nonetheless
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slightly dominant. At large scales, lack of sampling prevents a definitive observation. In contrast,
at lower Rossby number in Figures 11(b) and 11(d), the nonlinear energy transfer concentrates in
the equatorial ring O6. This result is consistent with direct measurements of two-point anisotropic
third-order structure function,3, 10 which carries the same information as the angle-dependent spectral
energy transfer does.

Consequently, we directly show that the anisotropic distribution of E(k, O1) is driven by
the anisotropic structure of the nonlinear transfer term. The difference between E (1)(k, O1) and
E (2)(k, O1) has the same origin, even if the linear effect of phase-mixing by inertial waves tends to
damp the polarization anisotropy.20, 23 In addition, the Zeman wavenumber k! is shown to delineate
the return to isotropy of the nonlinear energy transfer, since all contributions T(e)(k, Oi) tend to gather
if k > k!, for every ring.

IV. CONCLUSION

We have shown that the Zeman wavenumber provides a reliable threshold for restoring isotropy
within the inertial range, using high resolution DNS of decaying rotating turbulence. This is first
demonstrated on the angle-dependent distribution of spectral energy, which characterizes directional
anisotropy.

In conventional anisotropic turbulence, in which energy and anisotropy are created at large scale
either by a production term (as in sheared turbulence) or by forcing, the anisotropy is monotonically
decaying from the smallest k to the largest one, and it is not surprising to have a threshold wavenumber
above which anisotropy is no longer significant. This conventional behavior is not inconsistent with
the analysis of Zhou et al.,27 who show that in the case of anisotropic forcing at large scale the
transfer between small scales depend mainly on this large scale anisotropy. An important question
to be addressed is therefore to which extent re-isotropization of smallest scales means restoration of
universality. Do we have evidence of a clear change of slope, with restoration of a −5/3 slope? We
provide a partial answer in this work.

The main contrast with conventional anisotropic turbulence is the fact that anisotropy can
affect a range of small scales, so that anisotropy can be increasing from smallest wavenumbers to
largest wavenumbers if k! is very large. This result is consistent throughout all previous numerical1

and theoretical studies, using DNS, inertial wave-turbulence theory,19 and anisotropic eddy-damped
quasi-normal Markovian (EDQNM) two-point models.20 This anisotropy at small scales was recently
confirmed by direct measurements of anisotropic energy transfer in the Gyroflow experiment.10 This
suggested that, if isotropy is restored for k > k!, it does not decrease monotonically from the smallest
k ′s to k! but reaches a maximum at a given wavenumber kaniso

max significantly smaller than k!. This
behavior is demonstrated here, for the first time using very high resolution DNS. For this purpose,
the fully axisymmetric angle-dependent energy spectrum has been extracted from DNS, using both
a shell-to-shell and a ring-to-ring description. Directional anisotropy consists of an accumulation
of energy, at a given k (shell), from the polar ring to the equatorial ring, in a monotonic way. This
anisotropy, consistent with a saturated trend from 3D to 2D structure, seems to increase from the
smallest k to a maximum kaniso

max , and then clearly decreases from kaniso
max to wavenumbers slightly

larger than the Zeman wavenumber k!, before possible re-isotropization for higher ks.
In addition, polarization anisotropy has been explored, distinguishing the contributions from

toroidal — zonal in the polar-spherical system of coordinates on the sphere — and poloidal —
meridional in the same system — velocity components. The role of the Zeman wavenumber is
similar to its role played in directional anisotropy, but the maximum of polarization, located at the
equatorial ring, is found at a wavenumber larger than k!, even if polarization decreases at even
higher wavenumbers. In addition, the polarization can be inversed between the range (kmin, ∼k!)
and ( ∼ k!, kmax) for rings other than the equatorial and the polar ones.

Finally, the results on directional anisotropy for the angle-dependent energy spectrum are
recovered from the nonlinear energy transfer. Since the Coriolis force produces no energy, there
is no explicit production term in the energy equation, and the anisotropic distribution of energy is
closely related to the nonlinear energy transfer mediated by cubic correlations (in the right-hand-
sides of the statistically averaged equation (12)). The crucial role and related anisotropic distribution
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of the third-order structure function, which is the counterpart of the anisotropic nonlinear spectral
transfer, was shown experimentally by Lamriben et al. (2011),10 in agreement with our numerical
results.
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APPENDIX: DYNAMICAL EQUATIONS FOR THE POLARIZATION ANISOTROPY

We recall that the velocity can be split in toroidal and poloidal contributions u(1) and u(2) from
Eq. (7), and that the corresponding spectra E (1) and E (2) add up to the axisymmetric kinetic energy
spectrum

E(k) = E (1)(k) + E (2)(k),

whose dynamics is described by Lin’s equation. Separate equations can be obtained for the
toroidal and poloidal spectra (details in the book by Sagaut and Cambon11). One needs to in-
troduce also the complex polarization spectrum Z (k, t), whose real part is ℜZ = E (2) − E (1) and
imaginary part is the toroidal-poloidal cross spectrum ℑZ = ℑ(⟨u(1)(k, t)u(2)(k, t)⟩). (The real part
ℜ(⟨u(1)(k, t)u(2)(k, t)⟩) is related to helicity, absent in our simulations since initially zero.)

Separate Lin-type equations for E(k, t) and Z (k, t) are obtained from the two-point velocity
correlation in Fourier space, as

(
∂

∂t
+ 2νk2

)
E(k, t) = T (e)(k, t), (A1)

(
∂

∂t
+ 2νk2 + 4i!· k

k

)
Z (k, t) = T (z)(k, t), (A2)

with T (e)(k, t) the kinetic energy nonlinear transfer, and T (z)(k, t) the polarization nonlinear transfer.
Note the rotating-phase term in (A2), proportional to rotation and to the wavevector orientation. This
term vanishes at k∥ = 0 so that dominant polarization is governed by T(z). The half-sum and half-
difference between Eq. (A1) and real part of (A2) provide the dynamical equations for the poloidal
spectrum E (2) and toroidal one E (1).
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