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Abstract

The simplest example of an infinite Burnside group arises in the class of automaton groups.

However there is no known example of such a group generated by a reversible Mealy automaton.

It has been proved that, for a connected automaton of size at most 3, or when the automaton is

not bireversible, the generated group cannot be Burnside infinite. In this paper, we extend these

results to automata with bigger stateset, proving that, if a connected reversible automaton has

a prime number of states, it cannot generate an infinite Burnside group.
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1 Mealy automata and the General Burnside problem

The Burnside problem is a famous, long-standing question in group theory. In 1902, Burnside

asked if a finitely generated group whose all elements have finite order –henceforth called a

Burnside group– is necessarily finite [3].

The question stayed open until Golod and Shafarevitch exhibit in 1964 an infinite group

satisfying Burnside’s conditions [8, 9], hence solving the general Burnside problem. In the

early 60’s, Glushkov suggested using automata to attack the Burnside problem [6]. Later,

Aleshin [2] in 1972 and then Grigorchuk [10] in 1980 gave simple examples of automata gen-

erating infinite Burnside groups. Over the years, automaton groups have been successfully

used to solve several other group theoretical problems and conjectures such as Atiyah, Day,

Gromov or Milnor problems; the underlying automaton structure can indeed be used to

better understand the generated group.

It is remarkable that every known examples of infinite Burnside automaton groups are

generated by non reversible Mealy automata, that is, Mealy automata where the input

letters do not all act like permutations on the stateset. We conjecture that it is in fact

impossible for a reversible Mealy automaton to generate an infinite Burnside group. Our

past work with several co-authors has already given some partial results to this end. In [7]

it is proven that non bireversible Mealy automata cannot generate Burnside groups. For the

whole class of reversible automata, it has been proved in [12] that 2-state reversible Mealy

automata cannot generate infinite Burnside groups. This result has later been extended in

[13] to 3-state connected reversible automata. In this paper we generalize these results to

any connected revertible automaton with a prime number of states:
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45:2 Connected rev. automata of prime size cannot generate infinite Burnside groups

◮ Theorem. A connected invertible-reversible Mealy automaton of prime size cannot gener-

ate an infinite Burnside group.

Our proof is inspired by the former work in the 3-state case of the second author with

Picantin and Savchuk [13]. However the extension from 3 to any prime p required the

introduction of a new machinery. This constitutes the main part of our paper, see Section 5.

The paper is organized as follows. In Section 2 we set up notations and recall useful

facts on Mealy automata, automaton groups, and rooted trees. Then in Section 3 we link

some characteristics of an automaton group to the connected components of the powers of

the generating automaton. In Section 4 we introduce a tool developed in [13], the labeled

orbit tree, that is used in Section 5 to define our main tool, the jungle tree. In this former

section we also present some constructions and properties connected to this jungle tree. At

last, in Section 6, we gather our information and prove our main result.

2 Basic notions

2.1 Groups generated by Mealy automata

We first recall the formal definition of an automaton. A (finite, deterministic, and complete)

automaton is a triple
(

Q, Σ, δ = (δi : Q → Q)i∈Σ

)

, where the stateset Q and the alphabet Σ

are non-empty finite sets, and the δi are functions.

A Mealy automaton is a quadruple A = (Q, Σ, δ, ρ), where both (Q, Σ, δ) and (Σ, Q, ρ)

are automata. In other terms, it is a complete, deterministic, letter-to-letter transducer with

the same input and output alphabet. Its size #A is the cardinality of its stateset.

The graphical representation of a Mealy automaton is standard, see Figure 1 left.

1
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0|0

1|1

1|1

0|0

Figure 1 The Bellaterra automaton B and four levels of the orbit tree t(B).

A Mealy automaton (Q, Σ, δ, ρ) is invertible if the functions ρx are permutations of Σ

and reversible if the functions δi are permutations of Q.

In a Mealy automaton A = (Q, Σ, δ, ρ), the sets Q and Σ play dual roles. So we may

consider the dual (Mealy) automaton defined by d(A) = (Σ, Q, ρ, δ). Obviously, a Mealy

automaton is reversible if and only if its dual is invertible.

An invertible Mealy automaton is bireversible if it is reversible (i.e. the input letters of

the transitions act like permutations on the stateset) and the output letters of the transitions

act like permutations on the stateset.
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Let A = (Q, Σ, δ, ρ) be a Mealy automaton. Each state x ∈ Q defines a mapping from

Σ∗ into itself recursively defined by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρx(is) = ρx(i)ρδi(x)(s) .

The mapping ρx for each x ∈ Q is length-preserving and prefix-preserving: it is the

function induced by x. For x = x1 · · · xn ∈ Qn with n > 0, set ρx : Σ∗ → Σ∗, ρx =

ρxn
◦ · · · ◦ ρx1

.

Denote dually by δi : Q∗ → Q∗, i ∈ Σ, the functions induced by the states of d(A).

For s = s1 · · · sn ∈ Σn with n > 0, set δs : Q∗ → Q∗, δs = δsn
◦ · · · ◦ δs1

.

The semigroup of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q} is called the

semigroup generated by A and is denoted by 〈A〉+. When A is invertible, the functions

induced by its states are permutations on words of the same length and thus we may consider

the group of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q}. This group is called the

group generated by A and is denoted by 〈A〉.

2.2 Terminology on trees

Throughout this paper, we will use different sorts of labeled trees. Here we set up some

common terminology for all of them.

All our trees are rooted, i.e. with a selected vertex called the root. We visualize the

trees traditionally as growing down from the root. A path is a (possibly infinite) sequence

of adjacent edges without backtracking from top to bottom. A path is initial if it starts at

the root of the tree. A branch is an infinite initial path. The lead-off vertex of a non-empty

path e is denoted by ⊤(e) and its terminal vertex by ⊥(e) whenever the path is finite.

The level of a vertex is its distance to the root and the level of an edge or a path is the

level of its initial vertex.

If the edges of a rooted tree are labeled by elements of some finite set, the label of a

(possibly infinite) path is the ordered sequence of labels of its edges.

Extending the notions of children, parents and descendent to the edges, we will say that

an edge f is the child of an edge e if ⊥(e) = ⊤(f) (parent being the converse notion, and

descendent the transitive closure).

All along this article we will follow walks on some trees. A walk is just a path in a tree,

which is build gradually. In particular if e is a finite path (or can identify one), to say that

it can be followed by f in some tree means that ef is (or identifies) also a path in that tree.

3 Connected components of the powers of an automaton

In this section we detail the basic properties of the connected components of the powers of a

reversible Mealy automaton, as it has been done in [13]. The link between these components

is central in our construction.

Let A = (Q, Σ, δ, ρ) be a reversible Mealy automaton.

By reversibility, all the connected components of its underlying graph are strongly con-

nected.

Consider the powers of A: for n > 0, its n-th power An is the Mealy automaton

An =
(

Qn, Σ, (δi : Qn → Qn)i∈Σ, (ρx : Σ → Σ)x∈Qn

)

.

By convention, A0 is the trivial automaton on the alphabet Σ.

MFCS 2016



45:4 Connected rev. automata of prime size cannot generate infinite Burnside groups

As A is reversible, so are its powers and the connected components of An coincide with

the orbits of the action of 〈d(A)〉 on Qn.

Since A is reversible, there is a very particular connection between the connected com-

ponents of An and those of An+1 as highlighted in [12]. More precisely, take a connected

component C of some An, and let u ∈ Qn (also written |u| = n) be a state of C. Take also

x ∈ Q a state of A, and let D be the connected component of An+1 containing the state ux.

Then, for any state v of C, there exists a state of D prefixed with v:

∃s ∈ Σ∗ | δs(u) = v and so δs(ux) = vδρu(s)(x) .

Furthermore, if uy is a state of D, for some state y ∈ Q different from x, then δs(ux)

and δs(uy) are two different states of D prefixed with v, because of the reversibility of An+1:

the transition function δρu(s) is a permutation. Hence D can be seen as consisting of several

copies of C and #C divides #D. They have the same size if and only if, for each state u of C

and any different states x, y ∈ Q, ux and uy cannot simultaneously lie in D.

The connected components of the powers of a Mealy automaton and the finiteness of the

generated group or of a monogenic subgroup are closely related, as shown in the following

propositions (obtained independently in [13, 4]).

◮ Proposition 1. A reversible Mealy automaton generates a finite group if and only if the

connected components of its powers have bounded size.

◮ Proposition 2. Let A = (Q, Σ, δ, ρ) be an invertible-reversible Mealy automaton and

let u ∈ Q+ be a non-empty word. The following conditions are equivalent:

(i) ρu has finite order,

(ii) the sizes of the connected components of (un)n∈N are bounded,

(iii) there exists a word v such that the sizes of the connected components of (vun)n∈N are

bounded,

(iv) for any word v, the sizes of the connected components of (vun)n∈N are bounded.

4 The Labeled Orbit Tree and the Order Problem

Most of the notions of this section have been introduced in [13]. We refer the reader to this

reference for the proofs of the results in this section.

We build a tree capturing the links between the connected components of consecutive

powers of a reversible Mealy automaton. See an example in Figure 1. As recalled at the end

of this section, the existence of elements of infinite order in the semigroup generated by an

invertible-reversible automaton is closely related to some path property of this tree.

Let A = (Q, Σ, δ, ρ) be a reversible Mealy automaton. Consider the tree with vertices

the connected components of the powers of A, and the incidence relation built by adding an

element of Q: for any n ≥ 0, the connected component of u ∈ Qn is linked to the connected

component(s) of ux, for any x ∈ Q. This tree is called the orbit tree of d(A) [5, 11]. It can

be seen as the quotient of the tree Q∗ under the action of the group 〈d(A)〉.

We label any edge C → D of the orbit tree by the ratio #D
#C , which is always an integer

(less than or equal to #A) by the reversibility of A. We call this labeled tree the labeled

orbit tree of d(A) [13]. We denote by t(A) the labeled orbit tree of d(A). Note that for each

vertex of t(A), the sum of the labels of all edges going down from this vertex always equals

to #Q, the size of A.
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Each vertex of t(A) is labeled by a connected automaton with stateset in Qn, where n

is the level of this vertex in the tree. By a minor abuse, we can consider that each vertex is

labeled by a finite language in Qn, or even by a word in Qn.

Let u be a (possibly infinite) word over Q. The path of u in the orbit tree t(A) is the

unique initial path going from the root through the connected components of the prefixes

of u; u can be called a representative of this initial path (we can say equivalently that this

path is represented by u or that the word u represents the path).

◮ Definition 3. Let A be a reversible Mealy automaton and s be a subtree of t(A). An

s-word is a word in Q∗ ∪ Q∞ representing an initial path of s. A cyclic s-word is a word in

Q∗ whose all powers are s-words (equivalently, it is an s-word viewed as a cyclic word).

The structure of an orbit tree is not arbitrary and it is possible to identify some similar-

ities inside this tree.

◮ Definition 4. Let e and f be two edges in the orbit tree t(A). We say that e is liftable

to f if each word of ⊥(e) admits some word of ⊥(f) as a suffix.

Consider u in ⊤(e) and its suffix v in ⊤(f): any state x ∈ Q such that ux ∈ ⊥(e)

satisfies vx ∈ ⊥(f). Informally, “e liftable to f” means that what can happen after ⊤(e)

by following e can also happen after ⊤(f) by following f . This condition is equivalent to a

weaker one:

◮ Lemma 5. Let A be a reversible Mealy automaton, and let e and f be two edges in the

orbit tree t(A). If there exists a word of ⊥(e) which admits a word of ⊥(f) as suffix, then e

is liftable to f .

Obviously if e is liftable to f , then f is closer to the root of the orbit tree. The fact

that an edge is liftable to another one reflects a deeper relation stated below. The following

lemma is one of the key observations.

◮ Lemma 6. Let e and f be two edges in the orbit tree t(A). If e is liftable to f , then the

label of e is less than or equal to the label of f .

The notions of children of an edge and of being liftable to it are not linked, but it is

interesting to consider their intersection.

◮ Definition 7. Let e and f be two edges in an orbit tree: e is a legitimate child of f if f

is its parent and e is liftable to f .

The notion of liftability can be generalized to paths:

◮ Definition 8. Let e = (ei)i∈I and f = (fi)i∈I be two paths of the same (possibly infinite)

length in the orbit tree t(A). The path e is liftable to the path f if, for any i ∈ I, the edge ei

is liftable to the edge fi.

◮ Definition 9. Let A be a bireversible Mealy automaton and s be a (possibly infinite) path

or subtree of t(A). For k > 0, s is k-self-liftable whenever any path in s starting at level i+k

is liftable to a path in s starting at level i, for any i ≥ 0. A path or a subtree is self-liftable

if it is k-self-liftable for some k > 0.

The path represented by xω, for some state x, is an example of an infinite initial 1-self-

liftable path.

MFCS 2016



45:6 Connected rev. automata of prime size cannot generate infinite Burnside groups

◮ Lemma 10. Let e be a non-empty finite initial 1-self-liftable path of some orbit tree t(A),

with last edge e. The edge e has at least one legitimate child. The sum of the labels of the

legitimate children of e is equal to the label of e.

Proof. Denote by k the label of e. Let u be some state in ⊤(e) and x some state of A such

that ux is a state of ⊥(e) —this is possible by the definition of an orbit tree. We decompose

u in its first letter and some suffix: u = zv. As e is a 1-self-liftable path and zvx is a state

in ⊥(e) = ⊥(e), we know that vx is a state in ⊤(e). Hence by the construction of a label

orbit tree, there exist exactly k states (yi)1≤i≤k such that (vxyi)i are states of ⊥(e). So the

connected components of the (zvxyi)i label legitimate children of e. Clearly e cannot have

another legitimate child. ◭

We recall here a characterization of the existence of elements of infinite order in the

semigroup generated by a reversible Mealy automaton A in terms of path properties of the

associated orbit tree t(A) [13].

◮ Definition 11. Any branch labeled by a word not suffixed by 1ω is called active.

◮ Theorem 12. [13] The semigroup generated by an invertible-reversible automaton A ad-

mits elements of infinite order if and only if the orbit tree t(A) admits an active self-liftable

branch.

5 Jungle Trees

Our main result being known for non bireversible automata [7], we focus on the bireversible

case. All the tools introduced in this section are new. They are used to get rid of the

particularity of the stateset of size 3 in [13].

Let A = (Q, Σ, δ, ρ) be a connected bireversible Mealy automaton with no active self-

liftable branch. From Theorem 12, all the elements of the semigroup 〈A〉+ have finite order.

In this section we introduce the tools to prove that such an automaton of prime size generates

a finite group (Theorem 32).

5.1 Jungle trees and stems

We focus on some particular subtrees of t(A):

◮ Definition 13. Let e be a finite initial 1-self-liftable path such that:

⊥(e) has at least two legitimate children;

every legitimate child of ⊥(e) has label 1.

The jungle tree j(e) of e is the subtree of t(A) build as follows:

it contains the path e — its trunk;

it contains the regular tree rooted by ⊥(e), and formed by all the edges which are

descendant of ⊥(e) and liftable to the lowest (i.e. the last) edge of e.

The arity of this jungle tree is the number of legitimate children of ⊥(e). Since every

legitimate child has label 1, it is also the label of the last edge of e.

Words in ⊥(e) are called stems. They have all the same length which is the length of

the trunk of j(e).

A tree is a jungle tree if it is the jungle tree of some finite initial 1-self-liftable path. An

example of such a tree is depicted in Figure 3.
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Graphically, a jungle tree starts with a linear part whose labels decrease (its trunk) and

eventually ends as a regular tree with all labels 1. Any jungle tree is 1-self-liftable.

Note that: (i) there exists at least one jungle tree, from Lemma 10 and the hypothesis

that A has no active self-liftable branch; (ii) there are finitely many jungle trees.

From now on, j denotes a jungle tree of A, whose trunk has length n.

As shown below, any cyclic j-words has finite order.

◮ Remark 14. If uv is a j-word, with |v| ≥ n, what can follow uv in j is independent

from u. In particular, if vw is also a j-word, then so is uvw.

The existence of cyclic j-words is ensured by the simple fact that any j-word of length n×

(1 + #Qn) admits at least two identical factors of length n, and hence has a cyclic j-word

as a factor by Remark 14.

◮ Proposition 15. Every cyclic j-word induces an action of finite order, bounded by a uni-

form constant depending on j.

Proof. Let u be a cyclic j-word, then, for any integer k > n, uk is a j-word. By the definition

of a jungle tree, the label of the path of uω is ultimately 1 and, by Proposition 1, the action

induced by u has finite order, bounded by a constant which depends on the connected

component at the end of the trunk of j. ◭

Because of the self-liftability of j, any factor of a j-word is itself a j-word. Hence any

factor of length n of a j-word is a stem. And by the construction of j, the end of its trunk has

only one vertex whose label is hence a connected component, and all the stems are states of

that same connected component.

◮ Definition 16. Let j be a jungle tree of trunk of length n. A liana covering up j is a

language of j-words, of the form wLw, where w ∈ Qn is a stem, and Lw ⊆ Q∗ ∪ Q∞ is a

prefix-preserving language which, seen as a tree, is regular of the same arity than j.

Each vertex of j has exactly one representative in wLw. For each stem w there is exactly

one suitable Lw.

◮ Remark 17. Let wLw be a liana covering up a jungle tree j and uv be a finite j-word such

that |v| = n: if Lv is the greatest language such that uvLv ⊆ wLw, then vLv is also a liana

covering up j.

In what follows, we try to better understand the stucture of jungle trees and lianas. Let

S = sLs be a liana covering up j (s ∈ Qn). Our goal is to prove the following result:

◮ Theorem 18. Let u be a factor in S. Then u has the following property:

If uv ∈ Q∗ is a factor in S, then u exists further in S. (Ubiquity)

More formally: if tuv ∈ S, there exists w ∈ Q∗ such that tuvwu ∈ S.

The graphical sense of this theorem is that if you are walking on a j-word and you have

already seen some factor, you can find eventually this same factor.

Proof. First, remember that if u is a stem (i.e. u is a factor in S of length n), what can

follow u (in S) does not depend either of the choice of the liana (as long as you are in a liana

covering up the same jungle tree), or of the location of u in this liana. Hence it is sufficient

to prove Theorem 18 for |u| = n.

We start by proving that there is at least one stem u0 with Property (Ubiquity). To

obtain this word, we travel along S = sLs in the following way, starting with u0 = s:

MFCS 2016



45:8 Connected rev. automata of prime size cannot generate infinite Burnside groups

if u0 answers to the question, our journey is over;

otherwise, at the end of u0 we follow some finite path such that u0 does not exist anymore

after this path; then we replace u0 by the next word of length n in S, and back to the

previous step.

Since S is infinite but has a finite arity and a fi-

nite number of factors of length n, the previous

algorithm ends returning a stem u0 satisfying Prop-

erty (Ubiquity). By Remark 17, the jungle tree j

is covered up by a liana of the form u0Lu0
.

The extension of Property (Ubiquity) to other

words is illustrated by Figure 2. Let uv be a factor

in S, with |u| = n. In particular u is a stem, hence

u0 and u are states of the same connected com-

ponent, and there exists a path in this component

from u0 to u, say by the action of some a ∈ Σ∗.

The automaton being reversible, v is the image of

some v0 ∈ Q|v| by b = δu0
(a) (see Figure 2).

Now, we know that on the left part of Figure 2 we

can find eventually u0, after some w0 (because u0

has Property (Ubiquity)). And by the invertibil-

ity of the automaton, there exists some power α of

u0v0w0 which stabilizes a (see Figure 2).

a

u0 u

b

v0 v

. . .

w0 . . .

. . .

(u0v0w0)α−1 . . .

a

u0 u

Figure 2 Extension of Property

(Ubiquity) from u0 to u.

Hence u can be seen again eventually. Furthermore, the vertical word on the right of

Figure 2 is a j-word, as it is in the same connected component than the vertical j-word on

the left of this same figure, and so it is a factor of S because, by hypothesis, its prefix of

length n is a factor of S. Hence u has Property (Ubiquity). ◭

◮ Remark 19. Note that, from Theorem 18, if u, v are two stems such that v is a factor

of some word in uLu, then u is a factor of some word in vLv.

5.2 An equivalence on stems

Remember that A = (Q, Σ, δ, ρ) is a connected bireversible Mealy automaton such that t(A)

has no active self-liftable branch (and as a consequence all the elements of the semigroup

〈A〉+ have finite order). Let j be a jungle tree of t(A) with trunk of length n. All the stems

considered from now on are stems of j.

In this subsection we prove several properties for the stems of the jungle tree j. Stems

are used then in Section 6 to build a j-word inducing the same action than some given word.

Let us first introduce an equivalence relation on the set of stems.

◮ Definition 20. Let u, v be two stems. We say that u is equivalent to v, denoted by u ∼ v,

whenever there exists s ∈ Q∗ such that usv is a j-word and ρus acts like the identity on Σ∗.

◮ Lemma 21. The relation ∼ is an equivalence relation on stems.

Proof. Let u, v, and w be three stems.

transitivity Suppose that u ∼ v and v ∼ w: there exists s, t ∈ Q∗ such that usv and vtw

are j-words, and ρus and ρvt act like the identity. As v is a stem, we obtain by Remark 14

that usvtw is a j-word, and ρusvt acts like the identity, so u ∼ w.
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reflexivity From Theorem 18, there exists s ∈ Q∗ such that usu is a j-word (in fact from

Theorem 18 one can even chose the beginning of s, as long as we keep a j-word). As u is

a stem, usus is also a j-word, and so are all the powers of us. Now, by hypothesis and

Theorem 12, us is of finite order, say α: u(su)α−1su is a j-word and ρu(su)α−1s = ρ(us)α

acts like the identity.

symmetry Suppose that u ∼ v: there exists s ∈ Q∗ such that usv is a j-word and ρus

acts like the identity. From the reflexivity proof, there exists t ∈ Q∗ such that usvtu

is a j-word and ρusvt acts like the identity. Hence vtu is a j-word and ρvt acts like the

identity, which proves the symmetry.

◭

Note that from reflexivity of ∼ and Theorem 18, if u and v are equivalent stems and uw

is a j-word for some w ∈ Q∗, then there exists s ∈ Q∗ such that uwsv is a j-word and ρuws

acts like the identity. So not only v can be reached from u by producing first the identity,

but even if you walk in j after reading u, you can still reach v and produce first the identity.

We can now consider the equivalence classes induced by ∼. The aim of this subsection

is to prove that if A has a prime size, then for a given state q there is in each ∼-class a stem

with prefix q (Theorem 30).

◮ Proposition 22. All the equivalence classes of ∼ have the same size.

Proof. Let u0 and v0 be two stems of j: they are states of the same connected component

and so there exists a ∈ Σ∗ such that δa(u0) = v0. Denote by {u0, . . . , uk} the ∼-class

of u0: for any i, 1 ≤ i ≤ k, there exists si ∈ Q∗ such that u0siui is a j-word and ρu0si

acts like the identity. Define the words vi ∈ Q|ui| and ti ∈ Q|si| in the following way:

δa(u0siui) = v0tivi. Note that v0tivi is also a j-word: any factor of size n of v0tivi is the

image of a stem (the corresponding factor in u0siui) and therefore belongs to the connected

component of u0 and v0, hence every prefix of v0tivi is on a 1-self-liftable path. Now ρv0ti

acts like the identity by the reversibility of A, so vi is ∼-equivalent to v0. Furthermore, as

ρu0si
acts like the identity, we know that vi = δa(ui), and all the vi are different. ◭

5.3 Combinatorial properties of stems

We now state several combinatorial properties for stems. Let k1, k2, . . . , kn be the labels,

from root to ⊥(e), of the jungle tree j = j(e). Recall that, since A is connected, k1 = p and

by construction of the jungle tree kn ≥ 2. For instance in Figure 3, n = 4, k1 = k2 = 3, and

k3 = k4 = 2.

First if we consider no restriction then we can directly count stems by looking to the

labels of the trunk:

◮ Lemma 23. The number of stem with a given prefix depends only on length i of the prefix

and is ki+1ki+2 . . . kn.

We are now interested in two somehow dual questions. Fix a j-word u of length less

than n: (i) if u is the prefix of a stem in some ∼-class γ, in how many way can u be

completed in γ (Proposition 24)? (ii) in how many ∼-classes is u the prefix of a stem

(Corollary 29)?

◮ Proposition 24. Fix some j-word u of length less than n, a ∼-class γ of stems including

an element with prefix u, and some integer k such that |u| + k ≤ n. The number of v ∈ Qk

such that uv is a prefix of a stem of γ depends only on |u| and k.
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Proof. By the same argument than in the proof of Proposition 22. ◭

Let u ∈ Q∗ be a prefix of a stem in some ∼-class γ. Denote by Seq(|u|+1) the cardinality

of the set {q ∈ Q | uq is a prefix of some stem in γ} (from Proposition 24 it depends only

of |u| and so it is well-defined).

In order to obtain a minimal bound on the size of a ∼-class, we introduce another

equivalence relation between stems which is finer than ∼, as proved in Lemma 26:

◮ Definition 25. Let u, v be two stems. Define the relation u ∧0 v whenever there exists a

stem s such that both su and sv are j-words. The equivalence relation ∧ is defined as the

transitive closure of ∧0.

Note that by the construction of the jungle tree, a ∧0-class contains kn elements, where

k stands for the arity of this jungle tree.

◮ Lemma 26. The relation ∧ is finer than the relation ∼: u ∧ v ⇒ u ∼ v.

Proof. By transitivity it is enough to prove that: u∧0 v ⇒ u ∼ v. Let u and v be two stems

such that u ∧0 v: there exists a stem s such that su and sv are j-words. From Theorem 18,

there exists a word w ∈ Q∗ such that uws is a j-word. As u and s are stems, and su is

a j-word, (uws)2 is a j-word by Remark 14, and so are all the powers of uws. Now, by

hypothesis and Theorem 12, the word uws has finite order, say α: (uws)αv is a j-word and

ρ(uws)α acts like the identity. ◭

◮ Corollary 27. For any i, Seq(i) ≥ 2.

Proof. For a stem u, the set of words in ∧0-relation with u, seen as a tree, has the same

arity than j; so, by Lemma 26, for any i, Seq(i) is greater than or equal to the arity of j. ◭

◮ Proposition 28. Fix a j-word u of length less than n. The number of stems prefixed by u

in a ∼-class is either 0 or depends only on |u|.

Proof. By the same argument than in the proof of Proposition 22. ◭

From Propositions 24 and 28 we obtain:

◮ Corollary 29. Fix a j-word u of length less than n. The number of ∼-classes where u is

the prefix of some stem depends only on |u|.

Denote by Peq(|u| + 1) the number of ∼-classes containing a stem prefixed by u (it is

correctly define by Corollary 29).

We can now prove the main result of this section:

◮ Theorem 30. Let A be a connected bireversible Mealy automaton of prime size and without

any active self-liftable branch. The set of states which appear as first letter of a stem in a

fixed ∼-class is the whole stateset.

Proof. Suppose A = (Q, Σ, δ, ρ) has prime size p, and let j be a jungle tree of t(A) whose

trunk e has length n. We denote by k1,. . . ,kn the label of the edges of e (from top to

bottom). By the connectivity of A, k1 = p.

Let γ be a ∼-class of stems for j and u ∈ Q∗ of length i ≤ n be the prefix of some stem

in γ. Consider all the stems in γ with prefix u.

From Lemma 23, the number of stems of j prefixed by u is ki+1 ×ki+2 × . . .×kn. On the

other hand, it is also the number of stems with prefix u in γ, i.e. Seq(i + 1) × · · · × Seq(n),
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times the number of ∼-classes which has a stem prefixed by u, i.e. Peq(i + 1) × · · · × Peq(n).

Hence

ki+1 ×ki+2 × . . .×kn = Seq(i+1)×Peq(i+1)×Seq(i+2)×Peq(i+2)× . . .×Seq(n)×Peq(n).

It is straightforward that kn = Peq(n) × Seq(n) and by induction Peq(ℓ) × Seq(ℓ) = kℓ

for all ℓ. In particular for ℓ = 1, we get that Seq(1) devides k1. Since k1 = p and, from

Corollary 27, Seq(1) ≥ 2, we obtain then Seq(1) = p. ◭

◮ Corollary 31. Let A = (Q, Σ, δ, ρ) be a connected bireversible Mealy automaton of prime

size, with no active self-liftable branch. Let j be a jungle tree of t(A) and u some j-word.

Then for any state x ∈ Q, there exists w ∈ Q∗ such that uwx is a j-word and ρw acts like

the identity of Σ∗.

Proof. Let s be a stem such that us is a j-word: there exists a stem x with first letter x in

the ∼-class of s, from Theorem 30, i.e. there exists v ∈ Q∗ such that svx is a j-word and

ρsv acts like the identity of Σ∗. Conclusion comes from Remark 14. ◭

Note that in the previous corollary, the word u can be empty.

6 Proof of the main theorem

We now have all elements to prove our main result.

◮ Theorem 32. A connected invertible-reversible Mealy automaton of prime size cannot

generate an infinite Burnside group.

Proof. Let A be a connected invertible-reversible Mealy automaton of prime size. If A is

not bireversible we can apply [1, 7] and we get that, on one hand, 〈A〉 is necessarily infinite,

but on the other hand, it cannot be Burnside. If A is bireversible and t(A) has an active

self-liftable branch, then 〈A〉 has an element of infinite order by Theorem 12.

Therefore we can assume that A is bireversible and t(A) has no active self-liftable branch.

Let us show that 〈A〉 is finite. Let j be some jungle tree of t(A). As in [13] we prove that for

any word u ∈ Q∗, ρu has some uniformly bounded power which acts like some cyclic j-word.

Let u ∈ Q∗. We prove by induction that any prefix u induces the same action than some

j-word. It is obviously true for the empty prefix. Fix some k < |u| and suppose that the

prefix v of length k of u induces the same action than some j-word s. Let x ∈ Q be the

(k + 1)-th letter of u. By Corollary 31, there exists a j-word w inducing the identity, such

that swx is a j-word. But vx and swx induce the same action ; the result follows. Hence

we obtain a j-word u(1) inducing the same action than u.

By the very same process, we can construct, for any i ∈ N, a j-word u(i) inducing the

same action than u, such that u(1)u(2) . . . u(i) is a j-word. Since the set Qn is finite there

exist i < j, j − i ≤ |Q|n, such that u(i) and u(j) have the same prefix of length n. Take

v = u(i)u(i+1) . . . u(j−1): v is a cyclic j-word and induces the same action than uj−i. By

Proposition 15, the order of ρv is bounded by a constant depending only on j, hence so

is the order of ρu (with a different constant, but still depending only on j). Consequently,

every element of 〈A〉 has a finite order, uniformly bounded by a constant, whence, as 〈A〉 is

residually finite, by Zelmanov’s theorem [14, 15], 〈A〉 is finite, which concludes the proof. ◭

The tools and techniques we have developed here enabled to bridge the gap between 3 and

the set of all prime numbers. The next step is the extension of our result to any connected
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automaton. However, experiments suggest that there are strong similarities between the non

prime case and the non connected case, bringing the hope to solve entirely the question of

the (im)possible generation of an infinite Burnside group by a reversible Mealy automaton.

Note that the primality of the stateset is not used here before Theorem 30. It is likely that

the extension of Theorem 32 to more general statesets will require to choose carefully some

k-self-liftable branches, with k > 1. In fact, there exist examples of automata for which the

set of first letters in a ∼-class is not the whole stateset. However the ∼-classes seem to still

play a crucial role in these examples. So our construction will certainly be a key element for

a more general result.
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Figure 3 An exemple of the first levels of an orbit tree (all edges) and a jungle tree (plain edges).

After the trunk the jungle tree consists in a regular binary tree (plain edges).
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