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Abstract. This paper is devoted to sequential decision problems with
imprecise probabilities. We study the problem of determining an opti-
mal strategy according to the Hurwicz criterion in decision trees. More
precisely, we investigate this problem from the computational viewpoint.
When the decision tree is separable (to be defined in the paper), we pro-
vide an operational approach to compute an optimal strategy, based on
a bicriteria dynamic programming procedure. The results of numerical
tests are presented. When the decision tree is non-separable, we prove
the NP-hardness of the problem.
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1 Introduction

Decision under uncertainty is one of the main field of research in decision theory,
due to its numerous applications (e.g. medical diagnosis, robot control, strategic
decision, games...). Decision under uncertainty means that the consequences of
a decision depends on uncertain events. In decision under risk, it is customary
to assume that a precise probability is known for each event appearing in the
decision problem. A decision can thus be characterized by a lottery over possible
consequences. A popular criterion to compare lotteries (and therefore decisions)
is the expected utility (EU) model proposed by von Neumann and Morgenstern
[10]. In this model, a utility function u (specific to each decision maker) assigns a
numerical value to every outcome. The evaluation of a lottery is then performed
via the computation of its utility expectation (the greater the better). How-
ever, when several experts have divergent viewpoints or when empirical data are
missing, it is not obvious to elicit sharp numerical probabilities for each event.
A natural way to take into account this difficulty is to use intervals of proba-
bilities rather than scalar probabilities. This is known as decision making under
imprecise probabilities.

Comparing decisions amounts then to comparing imprecise lotteries, i.e. lot-
teries where several possible probability distributions are taken into account. A
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pessimistic agent will make the decision that maximizes the worst possible ex-
pected utility. This is known as the Γ -maximin decision criterion. Conversely,
an optimistic agent will make the decision that maximizes the best possible ex-
pected utility. This is known as the Γ -maximax decision criterion. Including
these two extremes, Jaffray and Jeleva recently proposed to use the Hurwicz
criterion, that enables to model intermediate attitudes by performing a linear
combination of both previous criteria [3]. Note that Hurwicz introduced this cri-
terion in the context of decision under complete ignorance (i.e., when absolutely
no information is known about the probabilities), but the authors preserved its
denomination of “Hurwicz’s criterion” since it extends naturally to the case of
imprecise probabilities.

To our knowledge, the algorithmic issues related to the use of Hurwicz’s cri-
terion in a sequential decision problem with imprecise probabilities have not
been studied until now. It is indeed frequent to encounter sequential decision
problems where one does not make a simple decision but one follows a strategy
(i.e. a sequence of decisions conditioned by events) resulting in a non determin-
istic outcome. Several representation formalisms can be used for sequential de-
cision problems, such as decision trees (e.g., [8]), influence diagrams (e.g., [9]) or
Markov decision processes (e.g., [7]). A decision tree is an explicit representation
of a sequential decision problem, while influence diagrams or Markov decision
processes are compact representations and make it possible to deal with decision
problems of greater size. It is important to note that, in all these formalisms,
the set of potential strategies is combinatorial (i.e., its size increases exponen-
tially with the size of the instance). The computation of an optimal strategy
for a given representation and a given decision criterion is then an algorithmic
issue in itself. It is well-know that an optimal strategy for EU in a decision tree
endowed with scalar probabilities can be determined in linear time by backward
induction. This is no more the case when dealing with imprecise probabilities
and Hurwicz’s criterion. In the particular case of Γ -maximin and Γ -maximax
criteria, Kikuti et al. [1] have presented algorithms that employ dynamic fea-
sibility, that is, one declares infeasible any strategy that includes a suboptimal
substrategy (a substrategy is a strategy in a subtree). In the present paper, on
the contrary, we consider that all strategies are feasible (i.e., even the ones that
include a suboptimal substrategy), and we study the computational complexity
of determining an optimal strategy according to Hurwicz’s criterion in a decision
tree endowed with imprecise probabilities. Furthermore, we propose algorithmic
procedures to tackle the problem.

The remainder of the paper is organized as follows. We first give some pre-
liminaries on imprecise probabilities and decision criteria used in such a setting
(Section 2). Then, we present the difficulties raised by the use of imprecise prob-
abilities in sequential decision problems, and we distinguish a separable case and
a non-separable case (Section 3). The next two sections are devoted to the de-
scription of our results in these two cases (Section 4 and 5). Finally, we conclude
by giving some avenues for future research (Section 6).
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2 Single stage decision making with imprecise

probabilities

Several mathematical models of imprecise probabilities have been proposed in
the literature [11, 12]. A common point between these models is that they of-
ten define a probability interval [P−(E), P+(E)] for each event E. Following
Jaffray and Jeleva [3], we assume that there exists a real probability P0 such
that P0(E) ∈ [P−(E), P+(E)] for all events E. To compare imprecise lotteries
(i.e., lotteries with imprecise probabilities), one must therefore consider a set
P of possible probability distributions. This is close to the approach adopted
to compare feasible solutions in discrete optimization with interval data [4],
with the difference that the set of possible probability distributions is not the
cartesian product of the probability intervals of the events. A probability dis-
tribution should indeed satisfy the Kolmogorov axioms (P (E) ≥ 0, P (Ω) = 1,
P (E1 ∪ E2 ∪ . . .) = P (E1) + P (E2) + . . . for pairwise disjoint events Ei).

Let us present popular decision criteria in such a setting. For instance, con-
sider two lotteries f, g involving three pairwise disjoint events E1, E2, E3. If
E1 (resp. E2, E3) occurs, f yields -50 (resp. 0,100). If E1 (resp. E2, E3) oc-
curs, g yields 130 (resp. -30,-50). In the EU model with sharp probabilities,
a lottery is evaluated by its expected utility, namely E(f) = P (E1)u(−50) +
P (E2)u(0) + P (E3)u(100) for f . Assume now that probabilities are imprecise,
e.g. P0(E1) ∈ [0.2, 0.4], P0(E2) ∈ [0.4, 0.6] and P0(E3) ∈ [0.2, 0.3]. The set P of
possible probability distributions is therefore defined by P = {P : P (Ei) ∈
[P−(Ei), P

+(Ei)] ∀i, and
∑

i P (Ei) = 1}. If the decision maker wants to
hedge against the worst possible expected utility, a lottery f is evaluated by
E(f) = min{E(f, P ) : P ∈ P} where E(f, P ) denotes the expected utility of
lottery f according to probability P . This is the so-called Γ -maximin decision
criterion. The value of the Γ -maximin criterion can be computed by using the
following simple result:

Proposition 1 Consider a lottery f yielding utility ui if event Ei occurs (i =
1, . . . , n), with u1 ≤ . . . ≤ un and P (Ei) ∈ [P−(Ei), P

+(Ei)]. The probability
distribution Pf in P recursively defined by
{

Pf (E1) = min{1 −
∑n

j=2 P−(Ej), P
+(Ej)}

Pf (Ei) = min{1 −
∑i−1

j=1 Pf (Ej) −
∑n

j=i+1 P−(Ej), P
+(Ei)} ∀i

yields expected utility E(f).

Proof. Consider a probability distribution P 6= Pf . Let us show that E(f, Pf ) ≤
E(f, P ). We denote by i0 the index such that P (Ei) = Pf (Ei) for i < i0
and P (Ei0) < Pf (Ei0) (P (Ei0 ) > Pf (Ei0 ) is impossible). One should have
∑n

i=i0
P (Ei) = 1−

∑i0−1
i=1 Pf (Ei). Consequently, P (Ei0 ) < Pf (Ei0 ) implies that

P (Ei) > P−(Ei) for some i > i0. Let us set i1 = min{i : i > i0 and P (Ei) >
P−(Ei)} and ε = min{Pf (Ei0) − P (Ei0), P (Ei1 ) − P−(Ei1 )} > 0. We denote
by P1 the probability distribution defined by P1(Ei0 ) = P (Ei0) + ε, P1(Ei1 ) =
P (Ei1)− ε and P1(Ei) = P (Ei) for i 6= i0, i1. We have E(f, P1) ≤ E(f, P ) since
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E(f, P1) − E(f, P ) = ε(ui0 − ui1) ≤ 0. If P1 6= Pf , by the same reasoning one
can construct a probability distribution P2 such that E(f, P2) ≤ E(f, P1). In
this way, one generates a sequence P1, . . . , Pk of probability distributions such
that E(f, Pi+1) ≤ E(f, Pi) and Pk = Pf . Therefore E(f, Pf ) ≤ E(f, P ). �

For instance, let us come back to lotteries f, g previously mentioned. We have
Pf (E1) = min{1 − 0.4 − 0.2, 0.4} = 0.4, Pf (E2) = min{1 − 0.4 − 0.2, 0.6} = 0.4
and Pf (E3) = min{1 − 0.4 − 0.4, 0.3} = 0.2. Consequently, for u(x) = x, we
have E(f) = 0.4× (−50)+ 0.2× 100 = 0. Similarly, one computes Pg(E1) = 0.2,
Pg(E2) = 0.5, Pg(E3) = 0.3 and E(g) = −4. Therefore lottery f is preferred to
g for the Γ -maximin criterion.

Conversely, if the decision maker wants to maximize the best possible ex-
pected utility, a lottery f is evaluated by Ē(f) = max{E(f, P ) : P ∈ P}. This
is the so-called Γ -maximax decision criterion. The probability distribution P̄f

yielding Ē(f) is defined by:
{

P̄f (E1) = max{1 −
∑n

j=2 P+(Ej), P
−(Ej)}

P̄f (Ei) = max{1 −
∑i−1

j=1 P̄f (Ej) −
∑n

j=i+1 P+(Ej), P
−(Ei)} ∀i

Coming back again to lotteries f, g previously mentioned, we have P̄f (E1) = 0.2,
P̄f (E2) = 0.5, P̄f (E3) = 0.3, Ē(f) = 20 on the one hand, and P̄g(E1) = 0.4,
P̄g(E2) = 0.4, P̄g(E3) = 0.2, Ē(g) = 30 on the other hand. Therefore lottery g
is preferred to f for the Γ -maximax criterion. This shows that the preferences
are of course very dependent on the degree of pessimism of the decision maker.

For this reason, Jaffray and Jeleva [3] propose to extend the Hurwicz criterion
for decision under complete ignorance to the case of imprecise probabilities.
According to the Hurwicz criterion, a lottery f is evaluated by αE(f) + (1 −
α)Ē(f). In other words, the decision maker will look at the worse and best
possible expected utilities and, according to its degree of pessimism, will put
more or less weight on the former or the later. It reduces to Γ -maximin for
α = 1, and to Γ -maximax for α = 0. When comparing lotteries f, g previously
mentioned according to the Hurwicz criterion, we have f preferred to g for
α > 5/7, and g preferred to f for α < 5/7. Note that the Hurwicz criterion is
compatible with dominance, i.e. if a lottery has a greater expected utility than
another one for all possible probability distributions, then its evaluation will be
better [3]. This property is indeed desirable to guarantee a rational behavior.

3 Multistage decision making with imprecise probabilities

In multistage decision making, one studies problems where one has to take a
sequence of decisions conditionally to events. The formalism of decision trees
provides a simple and explicit representation of a sequential decision problem
under risk. It is a tree with three kinds of nodes: decision nodes (represented
by squares), chance nodes (represented by circles) and utility nodes (leaves of
the tree). A decision node (resp. chance node) can be seen as a decision variable
(resp. random variable), the domain of which corresponds to the labels of the
branches starting from that node. When probabilities are imprecise, the sharp
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probability that a given random variable takes a given value is unknown: one only
knows an interval of probabilities in which it is included. The values indicated
at the leaves correspond to the utilities of the consequences. For the sake of
illustration, we now give an example of a well-kown multistage decision problem,
and its representation with a decision tree. Note that one omits the orientation
of the edges when representing decision trees.

Example 1 (oil wildcatter’s problem [8]) An oil wildcatter has to decide
whether to drill or not at a given site. For that purpose, he first has to decide
whether to sound or not the geological structure of the site (decision D1), which
costs 10000$ and gives a better estimation of the quantity of oil to be found. The
result of the sounding can be seen as a random variable T that can take three
possible values: no if there is no hope of oil, open if some oil is expected, or
closed if much oil is expected. Next, he decides whether to drill or not (decision
D2), which costs 70000$. Finally, if he decides to drill, the result of the drilling
can be seen as a random variable S that can take three possible values: the hole
is dry (the outcome is 0$), wet (120000$) or soaking (270000$). This problem
can be represented by the decision tree on the left side of Figure 1. Note that
decision D2 is duplicated in several nodes (nodes D1

2, D2
2, D3

2 and D4
2) since it

can be taken in several different contexts (a sounding has been performed or not,
the result of the sounding is encouraging or not...).

D1

D1

2

no sounding

b

0
not drill

Sdrill

b

200Ksoak

b

50K
wet

b

-70Kdry

T

sounding D2

2
no

b

-10K
not drill

Sdrill

b

190Ksoak

b

40K
wet

b

-80Kdry

D3

2

open
b

-10K
not drill

Sdrill

b

190Ksoak

b

40K
wet

b

-80Kdry

D4

2

closed

b

-10K
not drill

Sdrill

b

190Ksoak

b

40K
wet

b

-80Kdry

P (S|T ) dry wet soak

no [0.500,0.666] [0.222,0.272] [0.125,0.181]

open [0.222,0.333] [0.363,0.444] [0.250,0.363]

closed [0.111,0.166] [0.333,0.363] [0.454,0.625]

T no open closed

P (T ) [0.181,0.222] [0.333,0.363] [0.444,0.454]

S dry wet soak

P(S) [0.214,0.344] [0.309,0.386] [0.307,0.456]

Fig. 1. Decision tree for the oil wildcatter problem.

When sharp probabilities are known, each branch starting from a chance node
representing random variable X is endowed with probability P (X = x|past(X)),
where past(X) denotes all the value assignments to random and decision vari-
ables on the path from the root to X . Furthermore, in this paper, we assume
that P (X = x|past(X)) only depends on the random variables in past(X). For
instance, in the decision tree for the oil wildcatter problem, P (S = soak|D1 =
sounding, T = no) = P (S = soak|T = no). When probabilities are imprecise,
we assume that a conditional probability table is indicated for each chance node
in the decision tree. In each cell of the table, an interval of probabilities is given.
For the oil wildcatter problem, the conditional probability tables are presented
besides the decision tree in Figure 1. So as to have complete conditional prob-
ability tables, we make an assumption of symmetry: the structures of subtrees
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of a same chance node are identical. Note that this assumption does not imply
symmetric decision trees (as those obtained by unfolding an influence diagram
[2]). For instance, the decision tree in Figure 1 is not symmetric but the condi-
tion holds: the three subtrees of node T have the same structure (the subtrees
of nodes S are all leaves).

A strategy consists in setting a value to every decision variable condition-
ally to its past. The decision tree in Figure 1 includes 10 feasible strategies,
among which for instance strategy s = (D1 = sounding, D2

2 = not drill, D3
2 =

drill, D4
2 = drill) (note that node D1

2 cannot be reached when D1 = sounding).
In our setting, a strategy can be associated to a compound lottery over the util-
ities, where the probabilities of the involved events are imprecise. For instance,
strategy s corresponds to the compound lottery yielding −10K if T = no, 190K
(resp. 40K,−80K) if T = open or T = closed and then S = soak (resp. wet, dry).
Comparing strategies amounts therefore to compare compound lotteries. Given
a decision tree T , the evaluation of a strategy (more precisely, of the corre-
sponding compound lottery) according to the Hurwicz criterion depends on the
set PT of possible probability distributions on decision tree T (i.e., the set of
assignments of sharp probabilities to the tables coming with T ). This evaluation
is a combinatorial problem in itself due to the combinatorial nature of PT . We
distinguish two cases:

Non-separable decision trees. We say that a decision tree T is non-separable
when PT is a subset of the cartesian product of possible probability distributions
at each chance node. In other words, the fact that the probabilities sum up to
1 at each chance node is not sufficient to ensure the global consistency of the
probability distribution on the decision tree. This is the case for the decision
tree of Figure 1. Consider for instance the following partial probability distri-
bution on the tree: P (S = dry|T = no) = 0.55, P (S = dry|T = open) = 0.33,
P (S = dry|T = closed) = 0.12, P (T = no) = 0.20, P (T = open) = 0.35,
P (T = closed) = 0.45, P (S = dry) = 0.22. This partial probability distribution
can be completed so that the probabilities sum up to 1 at each chance node,
but is globally inconsistent since the total probability theorem does not hold:
P (S = dry|T = no)P (T = no) + P (S = dry|T = open)P (T = open) + P (S =
dry|T = closed)P (T = closed) = 0.2795 6= 0.22 = P (S = dry).

Separable decision trees. We say that a decision tree T is separable when
PT is equal to the cartesian product of possible probability distributions at each
chance node. In other words, the only requirement to ensure that a probability
distribution is globally consistent is that the probabilities sum up to 1 at each
chance node. This is for instance the case for the decision tree of Figure 2 as
soon as random variables A, B, C, D, E are mutually independent.

Solving a decision tree means finding an optimal strategy according to a given
decision criterion (here, Hurwicz and its particular cases). Note that the num-
ber of potential strategies grows exponentially with the size of the decision tree,
i.e. the number of decision nodes (this number has indeed the same order of
magnitude as the number of nodes in T ). Indeed, one easily shows that there
are Θ(2

√
n) strategies in a complete binary decision tree T , where n denotes the
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number of decision nodes. This prohibitive number of potential strategies makes
it impossible to resort to an exhaustive enumeration of the strategies when the
size of the decision tree increases. For this reason, it is necessary to develop an
optimization algorithm to determine the optimal strategy. It is well-known that
the rolling back method makes it possible to compute in linear time an optimal
strategy w.r.t. EU. Indeed, such a strategy satisfies the optimality principle: any
substrategy of an optimal strategy is itself optimal. Starting from the leaves,
one computes recursively for each node the expected utility of an optimal sub-
strategy: the optimal expected utility for a chance node equals the expectation
of the optimal utilities of its successors; the optimal expected utility for a deci-
sion node equals the maximum expected utility of its successors. This is however
more difficult to optimize the Hurwicz criterion in decision trees with imprecise
probabilities. In Section 5, we will show that this is actually an NP-hard problem
in non-separable decision trees. Before that, in the next section, we will study
the case of separable decision trees.

D1

Aup

D2

Bup
b 20

b 10

Cdown

b 25

b 0
b 0

Ddown

D3

b 10up

Edown

b 15

b 4b 5

Fig. 2. A separable decision tree.

4 Optimizing the Hurwicz criterion in separable decision

trees

When trying to optimize the Hurwicz criterion in a decision tree, it is impor-
tant to note that the optimality principle does not hold. For instance, consider
Figure 2 and assume complete ignorance about probabilities (i.e., all intervals
of probabilities are [0, 1]). Let us set α = 0.5 and perform backward induction
on the decision tree with u(x) = x. In D2, the decision maker prefers decision
up to down (the Hurwicz criterion is equal to 15 for D2 = up, compared to 12.5
for D2 = down) and in D3 he also prefers decision up to down (a sure utility
of 10, compared to 9.5). In D1, the decision maker has then the choice between
a first lottery offering a minimum utility of 0 and a maximum utility of 20 if
he decides up, and a second lottery offering a minimum of 5 and a maximum
of 10 if he decides down. The best decision according to the Hurwicz criterion
is up (10 compared to 7.5). The strategy returned by dynamic programming is
therefore (D1 = up, D2 = up) with a value of 10. Table 1 indicates the value of
every strategy with respect to α. For α = 0.5, strategy (D1 = up, D2 = down)
is optimal with a value of 12.5. In this case, one thus observes that the strategy
returned by dynamic programming is suboptimal. For this reason, a decision
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maker using the Hurwicz criterion should adopt a resolute choice behavior [6],
i.e. he initially chooses a strategy and never deviates from it later. We focus here
on determining an optimal strategy from the root.

D1 D2 D3 α = 0 α = 0.5 α = 1

up up − 20 10 0
up down − 25 12.5 0

down − up 10 7.5 5
down − down 15 9.5 4

Table 1. Strategies and their evaluations.

Before showing how to compute an optimal strategy according to the Hurwicz
criterion in a separable decision tree, we first show how to compute an optimal
strategy according to Γ -maximin and Γ -maximax. It is well-known that the
validity of the rolling back method on decision trees relies on the fulfillment of
the independence axiom [5]. The independence axiom [10] states that the mixture
of two lotteries f and g with a third one h should not reverse preferences (induced
by the decision criterion used): if f is strictly preferred to g, then λf + (1− λ)h
(i.e., the compound lottery that yields lottery f (resp. h) with probability λ
(resp. 1− λ)) should be strictly preferred to λg + (1− λ)h. The following result
states that the independence axiom holds for Γ -maximin and Γ -maximax under
a separability condition:

Proposition 2 Let f, g, h denote lotteries with sets Pf ,Pg,Ph of possible prob-
ability distributions. If the set Pλf+(1−λ)h (resp. Pλg+(1−λ)h) of possible proba-
bility distributions on the compound lottery λf +(1−λ)h is the cartesian product
of Pf (resp. Pg) and Ph (separability condition), then the following properties
hold:

E(f) ≥ E(g) ⇒ E(λf + (1 − λ)h) ≥ E(λg + (1 − λ)h)
Ē(f) ≥ Ē(g) ⇒ Ē(λf + (1 − λ)h) ≥ Ē(λg + (1 − λ)h)

Proof. We show that E(λf +(1−λ)h) = λE(f)+(1−λ)E(h) under the assump-
tions of the proposition. We have indeed E(λf + (1 − λ)h) = min{E(λf + (1 −
λ)h, P ) : P ∈ Pλg+(1−λ)h}. By linearity of expectation, it equals min{λE(f, P )+
(1 − λ)E(h, P ) : P ∈ Pλg+(1−λ)h}. By separability assumption, it equals min{λ
E(f, Pf ) + (1 − λ)E(h, Ph) : Pf ∈ Pf , Ph ∈ Ph} = λmin{E(f, Pf ) : Pf ∈
Pf} + (1 − λ)min{E(h, Ph) : Ph ∈ Ph}. By definition of E(·), it equals λE(f) +
(1 − λ)E(h). This implies the validity of the first property. The proof is similar
for the second property. �

In a separable decision tree, the separability condition of Proposition 2 holds
at every chance node. For this reason, the rolling back method returns an opti-
mal strategy when used with Γ -maximin or Γ -maximax in a separable decision
tree. The computational complexity of this procedure is linear in the number of
decision nodes.

Let us now explain our approach for computing an optimal strategy according
to the Hurwicz criterion. We recall that the rolling back method does not work
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when operating directly with the Hurwicz criterion for α 6= 0, 1. However, one
can use the following simple property: if a substrategy is dominated by another
one at the same node for both the Γ -maximin and Γ -maximax criteria (i.e., its
value is smaller or equal for both criteria, and strictly smaller for at least one),
then it cannot yield an optimal strategy for the Hurwicz criterion. The idea is
to compute the set of non-dominated strategies (more precisely, one strategy
for each non-dominated vector) by a bicriteria rolling back procedure from the
leaves. At the root, one computes then the value of every non-dominated strategy
according to the Hurwicz criterion, and one returns the best one. Due to space
limitation, we only give here an example to provide an intuitive idea of how the
procedure operates.

Example 2 Let us come back to the decision tree of Figure 2 and assume again
complete ignorance about probabilities, α = 0.5 and u(x) = x (for simplicity
in the calculation). We describe here, for each node X in the subtree rooted at
node A, how the set ND(X) of non-dominated vectors (the first (resp. second)
component represents the minimum (resp. maximum) expected utility of a feasible
strategy) are inferred from the non-dominated vectors of its successors:

- at leaf 20 (resp. 10, etc.) ND(20) = {(20, 20)} (resp. {(10, 10)}, etc.);
- ND(B) = {(10, 20)} since combining (10, 10) and (20, 20) yields (10, 20);
- ND(C) = {(0, 25)} since combining (0, 0) and (25, 25) yields (0, 25);
- ND(D2) = {(10, 20), (0, 25)} since both vectors are non-dominated;
- ND(A) = {(0, 25)} since combining (10, 20) (resp. (0, 25)) and (0, 0) yields
(0, 20) (resp. (0, 25)), and (0, 25) dominates (0, 20);

By proceeding similarly, one obtains ND(D) = {(4, 15), (5, 10)}. At the root, one
obtains finally ND(D1) = {(0, 25), (4, 15), (5, 10)}. By evaluating every vector
according to the Hurwicz criterion, one finds that (0, 25) is an optimal vector
(corresponding to optimal strategy (D1 = up, D2 = down)).

The algorithm has been implemented in C++, and we have carried out nu-
merical tests on a PC with a Pentium IV CPU 2.13Ghz processor and 3.5GB
of RAM. Our tests were performed on complete binary decision trees of even
depth. The depth of these decision trees varies from 4 to 14 (5 to 5461 deci-
sion nodes), with an alternation of decision nodes and chance nodes. Utilities
are real numbers randomly drawn within interval [1, 500]. The imprecise prob-
abilities were generated by randomly drawning a sharp probability distribution
for each chance node, and then randomly generating an interval of probabili-
ties around each probability. The numerical results are summarized in Table 2.
Column “Imprecision” (resp. “Ignorance”) details results obtained in the case
of imprecise probabilities (resp. complete ignorance). Note that some tuning of
the bicriteria rolling back method is possible in the case of complete ignorance,
that considerably speeds up the procedure. Furthermore, the number of non-
dominated vectors at each node is upper bounded by n in this case (where n
denotes the number of decision nodes), and therefore the whole procedure per-
forms in O(n2). For each depth, 500 instances were randomly generated and one
indicates the average (Avg) and maximum (Max) computation times (in sec.),
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as well as the cardinality of the set of non-dominated vectors at the root. Symbol
“−” appears when the memory size was not sufficient to execute the algorithm.
One can observe that the smaller memory space requirements make it possible
to solve larger instances (up to 16 millions of nodes) in the case of complete
ignorance.

Algorithms Imprecision Ignorance

Depth (nodes) Avg Max Avg Max

13 (16, 383)
card. 144 600 24 39
time 0 0 0 0

15 (65, 535)
card. 940 3, 290 47 68
time 2.35 44 0.02 1

17 (262, 143)
card. 7, 182 40, 930 90 115
time 1, 189.97 3, 595 0.14 1

19 (1, 048, 575)
card. − − 174 216
time − − 0.58 1

21 (4, 194, 303)
card. − − 348 570
time − − 2.09 3

23 (16, 777, 215)
card. − − 714 1, 164
time − − 8.31 9

25 (67, 108, 863)
card. − − − −

time − − − −

Table 2. Numerical results.

5 Optimizing the Hurwicz criterion in non-separable

decision trees

We now prove that the determination of an optimal strategy according to the
Hurwicz criterion in a non-separable decision tree is an NP-hard problem, where
the size of an instance is the number of involved decision nodes. Actually, we
show a stronger result:

Proposition 3 The determination of an optimal strategy according to the Γ -
maximax criterion in a non-separable decision tree is an NP-hard problem.

Proof. The proof relies on a polynomial reduction from problem 3-SAT, which
can be stated as follows:

INSTANCE: a set X of boolean variables, a collection C of clauses on X such
that |c| = 3 for every clause c ∈ C.

QUESTION: does there exist an assignment of truth values to the boolean vari-
ables of X that satisfies simultaneously all the clauses of C ?

Let X = {x1, . . . , xn} and C = {c1, . . . , cm}. The polynomial generation of a
decision tree from an instance of 3-SAT is performed as follows. One defines a
decision node for each clause of C. Given ci a clause in C, the corresponding
decision node in the decision tree, also denoted by ci, has three children (chance
nodes), one for each literal in the clause. These chance nodes are denoted by
the name of the corresponding literal. Every chance node xi (resp. x̄i) has two
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children: a leaf of utility 1 with probability pi ∈ [0, 1] (resp. 1− pi), and a leaf of
utility 0 with probability 1−pi ∈ [0, 1] (resp. pi). Finally, one adds a chance node
A as root, predecessor of all decision nodes ci, with probability 1/m on every
branch. The obtained decision tree includes m decision nodes, 3m + 1 chance
nodes and 6m leaves. Furthermore, n probability variables are involved. This
guarantees the polynomiality of the reduction. For the sake of illustration, on
Figure 3, we represent the decision tree obtained for the following instance of
3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

Note that, in this kind of decision trees, the Γ -maximax value of any strategy
is upper bounded by 1. Furthermore, given an assignment of truth values that
makes satisfiable the 3-SAT expression, one can construct a strategy whose Γ -
maximax value is 1. There exists indeed at least a literal whose truth value is
“true” for every clause ci. Let us denote by ki the index of such a literal in ci.
At every node ci, one makes decision leading to literal whose index is ki. By
setting pki

= 1 (resp. 0) if it is a positive (resp. negative) literal, the expected
utility of the corresponding strategy is 1. Conversely, given a strategy whose
Γ -maximax value is 1, one can construct an assignment of truth values that
makes satisfiable the 3-SAT expression. Indeed, at every decision node ci the
chosen decision necessarily leads to a chance node returning a utility of 1 with
a probability set to 1. Let us denote by ki the index of the chance node chosen
at ci. One obtains a partial assignment by setting xki

to “true” (resp. “false”)
if pki

= 1 (resp. 0). Any completion of this partial assignment makes satisfiable
the 3-SAT expression. This concludes the proof. �
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Fig. 3. An example of reduction.
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6 Conclusion

In this paper, we have proposed an operational procedure to determine an opti-
mal strategy according to the Hurwicz criterion in a separable decision tree. Fur-
thermore, we have proved that the problem becomes NP-hard in non-separable
decision trees. For future research, it would be interesting to propose an algo-
rithm for optimizing the Hurwicz criterion in a non-separable decision tree. In
this purpose, a branch and bound is worth investigating. An upper bound eas-
ily computable would consist for instance in computing an upper bound of the
value of a Γ -maximin strategy by determining the maximum expected utility
for a feasible sharp probability distribution (i.e., consistent with the intervals
of probabilities), and an upper bound of a Γ -maximax strategy by relaxing the
non-separability constraints (and therefore using the procedure for Γ -maximax
detailled in Section 4). Combining both upper bounds with α and 1 − α would
provide an upper bound for the Hurwicz criterion.
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