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Cournot-Nash Equilibria for Bandwidth Allocation

under Base-Station Cooperation

J.S. Gomez, A. Vergne, P. Martins, L. Decreusefond, and Wei Chen

Abstract—In this paper, a novel resource allocation scheme
based on discrete Cournot-Nash equilibria and optimal transport
theory is proposed. The originality of this framework lies in
the joint optimization of downlink bandwidth allocation and
cooperation between base stations. A tractable formalization
is given in the form of a quadratic optimization problem. A
low complexity approximate solution is derived and theoretically
characterized. Simulations highlight the existence of an optimal
working point, that maximizes user satisfaction ratio and network
load. The impact of the network deployment on the optimum is
numerically investigated, thanks to the β-Ginibre model. Indeed,
base stations are assumed to be drawn according to β-Ginibre
point processes. Numerical analysis shows that the network
performance increases with β going to one.

Index Terms—Cournot-Nash equilibria, Optimal transport,
Downlink bandwidth resource allocation, Base station cooper-
ation, β-Ginibre point process.

I. INTRODUCTION

W IRELESS networks have to tackle a major chal-

lenge: offering increasing user throughput while cost-

efficiently allocating resources. Consequently, dynamic re-

source allocation adaptation to user traffic has been introduced

in cellular networks. Strategies based on Markov processes [1],

queuing theory [2], graph theory or game theory [3] are used to

finely tune bandwidth and power allocation. Nash bargaining

theory has been used in this matter [4], assimilating the optimal

resource allocation as a Nash equilibrium.

Another type of equilibria, the Cournot-Nash equilibria,

has been defined by Antoine Augustin Cournot in 1838. He

studied the situation of a spring water company duopoly. Each

firm competes on the amount of their production output and

decides at the same time which volume to produce in order

to maximize its profit. This problem has been reformulated by

Mas-Colell [5] in probabilistic terms. Blanchet et al. were able

to characterize existence and uniqueness of such equilibria in

[6] by taking advantage of properties of probability spaces and

optimal transport theory exposed in the book of Villani [7].

This paper focuses on a novel approach that jointly op-

timizes bandwidth allocation and cooperation between base

stations. In the downlink scenario we consider, base stations
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are deployed according to a Poisson point process or a β-

Ginibre point process. The SINR between each user and each

base station is the only known information. Under these rough

assumptions, we are able to solve the user bandwidth allocation

and an optimal distribution of resources among cooperative

base stations. Optima correspond to Cournot-Nash equilibria.

We also show the link between Cournot-Nash equilibria and

optimal transport theory and give a tractable mathematical

formulation of the problem. A low complexity approximate op-

timal solution is also provided and characterized. Simulations

reveal that there is an optimal working point of the network,

where the user satisfaction ratio and the network load are

equal. We finally compare the impact of the spatial deployment

of the base stations, assuming that they are localized according

to a β-Ginibre point process.

Resource allocation has been widely explored in literature.

Many algorithms based on optimization have been described

in [8]. One example is the α-fair resource allocation [9] that

gives a unified framework for optimization solution. Going one

step further, optimal transport theory has been introduced in

[10] and [11]. This theory is used to shape cell boundaries

and efficiently allocate power. Authors in [10] introduce a

congestion term, in order to modify the optimized solution,

using the Wardrop equilibrium. Unlike optimization problems,

this framework provides many mathematical tools to charac-

terize the optimal solution. However, pure optimal transport

solutions suffer from the fact that user demand for resources

has to be known in order to compute the solution. Authors also

limit their analysis to power allocation. On the contrary, the

Cournot-Nash framework does not need an a priori knowledge

of the user spatial distribution. It can therefore solve the

fair allocation of the bandwidth even in the case of outage.

The impact of the regularity of the deployment on SINR has

been studied and [12] shows that the β-Ginibre point process

is an eligible candidate to model cellular networks. To our

knowledge, this is the first paper that uses the Cournot-Nash

framework to tackle the joint resource allocation and coop-

eration problem and that investigates the impact of network

deployment with a β-Ginibre point process model.

This paper is organized as follows: in Section II, the system

model is introduced and Cournot-Nash equilibria theory is

applied to solve the resource allocation problem. In Section

III, simulation results for different kinds of base station de-

ployment are compared and analyzed. We conclude in Section

IV.



II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular wireless network composed of omni-

directional identical base stations drawn in the plane according

to a certain point process (Poisson or β-Ginibre point process)

of intensity λn. Users are drawn according to a Poisson point

process of intensity λm. The state of the network is observed

and assessed at a given moment. The downlink spectrum

allocation problem where bandwidth is decomposed in blocks

-i.e. resource block in LTE- is investigated. Using Shannon’s

capacity law, each user computes the number of resource

blocks it wishes Nj , to fulfill its desired capacity Cj , based

on the best SINR:

Nj =

⌈

Cj

WRB log2(1 + maxi(SINRi,j))

⌉

,

where WRB is the bandwidth of one resource block and ⌈x⌉ is

the ceil value of x. In our scheme, a user can receive resource

blocks from several base stations.

When the number of users is large enough, the network

has to share the available resource blocks among users and

among base stations. The bandwidth allocation problem is thus

divided into two sub-cases:

• Knowing Nj , how many resource blocks does the network

allocate to the jth user?

• Knowing the number of resource blocks allocated to

the jth user, from which base stations should they be

transferred?

The second sub-problem can be addressed with to optimal

transport theory.

TABLE I: Notations

n
Number of base stations

drawn according to the chosen point process

m
Number of users

drawn according to the chosen point process

Nt
Total available number

of resource blocks in the network

µi
Proportion of the total available

resource blocks at the ith base station

νj
Proportion of the total allocated

resource blocks at the jth user

Nj
Number of resource blocks

requested by the jth user

γij
Proportion of resources allocated

from the ith base station to the jth user

SINRij
Measured SINR between

the ith base station and the jth user

A. Optimal transport and base stations cooperation

In 1781, Monge first described the optimal transport prob-

lem. One has to transfer sand from a pile of sand to a hole

in the ground. Knowing the shape of the pile and of the hole,

what are the paths taken by each grain of sand that minimize

the energy used to transfer the pile to the hole? Assimilating

µ = (µ1, . . . , µn), ν = (ν1, . . . , νm) and γ = (γ1,1, . . . γn,m)
as discrete probability measures respectively µ ∈ P([1, n]),
ν ∈ P([1,m]) and γ ∈ P ([1,m]× [1, n]), the resource trans-

fer problem can be described by the discrete transport problem,

where the pile is identified by µ, the hole is identified by ν
and the quantity transferred is given by γ. The transport cost

between the ith and jth entities is defined by ci,j = SINR−1
ij .

γ is naturally the joint probability density of marginals µ and

ν.

Definition 1. The optimal transfer policy is given by the linear

optimization problem:

γ∗ = argmin
γ∈Π(µ,ν)

∑

(i,j)

ci,j γij ,

where Π(µ, ν) is the space of the joint probability measures

of marginals µ and ν.

In other words, γ∗ solves the transportation problem be-

tween µ and ν, and verifies:

∀1≤ i≤n,

m
∑

j=1

γ∗
ij = µi,

∀1≤j≤m,

n
∑

i=1

γ∗
ij = νj ,

∀(i, j), γi,j ≥ 0.

Collapsing γ and c into a vector form, the previous optimiza-

tion problem can be rewritten in this form:

γ
∗ = argmin

γ

t
c · γ,

such that:

Tnγ = µ,

Tmγ = ν,

∀1≤ l≤nm, γl ≥ 0,

where:

Tn = 11,m ⊗ Idn,

Tm = Idm ⊗ 11,n.

⊗ denotes the Kronecker product, 1n,m is the matrix of ones

with n lines and m columns and Idn is the square identity

matrix on R
n.

Since γ∗ is a probability measure, this linear programming

problem takes place on a compact set. Optimal solutions there-

fore exist. However, before applying optimal transport theory,

we must first obtain the probability measure ν representing

the user demand. This problem is solved with Cournot-Nash

equilibria.



B. Exact Cournot-Nash equilibria

Definition 2. Using previous notations, the Cournot-Nash

equilibria are the joint density probabilities γ∗ such that their

second marginal ν∗ verifies:

ν∗ = argmin
ν∈P([1,m])

Wc(µ, ν)+s(ν),

where:

Wc(µ, ν)= inf
γ∈Π(µ,ν)

c · γ,

s(ν) = t

(

ν −
N

Nt

)

·

(

ν −
N

Nt

)

,

and N = (N1, . . . , Nm).

This definition of the Cournot-Nash equilibria is the one

introduced by Blanchet et al. in [6]. The first term, Wc, solves

the optimal transport problem between the probabilities µ and

ν. It is also known as the Wasserstein distance between the

probability measures µ and ν. The second term s(ν) is the

fairness term, it only depends on the probability measure

ν. This Cournot-Nash problem can be reformulated into a

quadratic optimization problem.

Definition 3. Cournot-Nash equilibria are solutions of the

following quadratic optimization problem :

γ
∗ = argmin

γ

t
γHγ + t

Lγ,

such that:

Tnγ = µ,

Tmγ ≤ N/Nt,

∀1≤ l≤nm, γl ≥ 0,

where:

H = tTmTm = Idm ⊗ 1n,n,

L = c− 2Tm

N

Nt

.

Since H is a positive semi-definite matrix and γ∗ is a prob-

ability measure, the boundedness of the optimization domain

is ensured. The existence of a solution is hence guaranteed.

Such formulation is easily implementable in a common solver

and allows numerical simulations on networks composed of

up to half a thousand users in a reasonable amount of time as

it will be shown in Section III.

C. Approximate Cournot-Nash equilibria

Thanks to the separability of the Cournot-Nash objective

function, one can interpret this Cournot-Nash equilibria as a

superposition of the user allocation problem and the resource-

transfer problem. This superposition structure is highlighted

by the algebraic structure of H , due to the Kronecker product.

Indeed, the Idm factor gives the allocation of resources and the

1n,n factor gives for each user the optimal resource transfer.

The quadratic formalization however cannot be fully separated

due to the cost term c. Considering that most of the resources

are allocated to the link of the minimal cost cmin,j defined

by cmin,j = mini ci,j , the classical approach of the problem

consists in:

• first, solving the resource allocation problem at a user

level,

• second, routing the allocated resources among cooperat-

ing base stations to attain the final user.

1) Resource allocation algorithm: Therefore, the simplified

quadratic problem function is derived:

ν
∗ = argmin

ν

t
νHν + t

Lν,

such that:
t
11,m · ν = 1 and νj ≥ 0,

with:

H = Idm, and L = cmin − 2
N

Nt

.

Theorem 1. The solution ν
∗ of the above simplified optimiza-

tion problem is unique and is of the form:

ν
∗ = ν

0 −
t
u(ν0 −M)

(m−k)
u,

where k is the number of zero coordinates of ν∗, u = 1m−k,1

ν
0 = −L/2 and M = u/(m−k).

Proof. The theorem is proven in Appendix A.

2) Cooperation: Solving the resource transfer problem is

equivalent to solve the optimal transport problem:

γ
∗ = argmin

γ

t
c · γ,

such that:

Tnγ = µ,

Tmγ = ν
∗.

3) Complexity:

Theorem 2. An approximate optimum can be found in poly-

nomial time.

Proof. In order to compute approximate Cournot-Nash equi-

libria, one must first solve the allocation problem and then the

optimal transport problem. Since the allocation problem in-

volves at most m projections, its complexity is in O(m2). The

optimal transport part is a linear programming optimization

problem and is known to be solved in polynomial time.

4) Algorithm: Algorithm 1 is derived from the proof of

Theorem 1. The optimal allocation ν∗ is first computed, then

the optimal transport γ∗ between the two discrete probability

measures µ and ν∗ is derived by linear programming. The al-

gorithm is centralized and iterative. The while-loop converges

as the dimensions of the projective space is strictly decreasing

and bounded by one.



Data: c, cmin,N, Nt, Tm, Tn.

Result: γ∗.

Initalize (k, ν0, M, u, ν∗);

while ∃ν∗j < 0 do

Project (ν0, M, u, ν∗) on the space of strictly

positive coordinates of ν∗;

Let k be the number of negative coordinates of ν∗;

Project ν∗ on the new hyperplane defined by (k, ν0,

M, u, ν∗);

end

γ
∗ = LinearProg(µ,ν∗, c, Tn, Tm);

Algorithm 1: Approximate solution algorithm

D. Cournot-Nash equilibria and system optimum

On a system level, three indicators are analyzed in function

of the number of users in the network:

• The user satisfaction ratio:

ru =
Nt

m

m
∑

j=1

νj
Nj

.

It is the mean ratio between the number of resource blocks

allocated by the network to each user and the number of

resources requested by each user.

• The network load:

rn =

m
∑

j=1

νj .

It is the proportion of total available resources used in

the network.

• The cooperation proportion:

rc =
1

m

m
∑

j=1

1

((

n
∑

i=1

1(γi,j 6= 0)

)

6= 1

)

,

where 1 is the indicator function. It is the proportion

of users that receive resource blocks from multiple base

stations.

We define the optimum network working point as the intersec-

tion of user satisfaction curve and the network load curve. In

the next section, this point is identified for both the exact and

the approximate Cournot-Nash solutions. Its relative position

is investigated under several network deployment schemes.

III. NUMERICAL ANALYSIS

A. Simulation parameters

Simulation parameters are summarized in Table II. We as-

sume that each base station reuses all the resource blocks. All

antennas are omnidirectional and emit at the same power level.

Base station locations are drawn according to a Poisson point

process of intensity λn. Users locations are drawn according

to a Poisson point process with intensity λm. Each user asks

for the same capacity C. The number of resource blocks per

TABLE II: Simulation parameters

λn 10 per unit square

λm from 10 to 500 per unit square

RBmax 10

C 500 kB/s

WRB 180 kHz

Resource blocks per base station 100

Path-loss exponent 3

Shadowing 10 dB

user is limited to RBmax. Therefore the number of resource

blocks requested per user is given by:

Nj=max

(⌈

C

WRB log2(1 + maxj(SINRi,j)

⌉

,RBmax

)

.

B. Exact vs. approximate Cournot-Nash solution
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Fig. 1: Exact Cournot-Nash vs. approximate Cournot-Nash.

In Figure 1, rn, ru and rc are plotted for the exact Cournot-

Nash equilibria in function of the density ratio λm/λn in solid

lines. Using Matlab quadprog function, an iteration for the

maximum number of users takes about 3 seconds to compute

on a late 2014, 8 cores CPU laptop computer. This figure was



produced with 500 iterations. The optimum working point of

the network is reached for a density ratio of 21 and for a user

satisfaction ratio (or a network load) of 89%. The cooperation

proportion reaches a minimum in the neighborhood of the

optimum working point, with about 10% of the users under

base station cooperation.

A comparison between the approximate solutions and the

exact solutions is also given in Figure 1. The optimal transport

was solved with the intlinprog function. One iteration for

a density of 500 users and 10 base stations per unit square is

computed in about 350 ms. The network optimum working

point is reached for a density ratio of 17 and for a user

satisfaction ratio (or a network load) of 80%. The approximate

algorithm thus proves to be a pessimistic bound of the exact

Cournot-Nash solution, that can be used for an under-estimate

of the network performance. It is a good trade-off between

computational complexity and precision, since computation is

about ten times faster than the exact algorithm whereas the

error made is only of 10% on the indicator. The cooperation

proportion and the network load behaviors are similar to the

exact curves.

C. Impact of network deployment on the optimum network

working point

We consider networks composed of antennas drawn accord-

ing to a β-Ginibre or Poisson point process with the same

intensity λn. The β-Ginibre point process is a repulsive point

process, which regularity can be set with the parameter β.

A β-Ginibre point process is obtained after a thinning of a

Ginibre point process. Each point of the Ginibre point process

is independently selected with a probability β. If β goes to 0,

the point process tends to a Poisson point process (corresponds

to a uniform network deployment). If β = 1, then the point

process corresponds to a Ginibre point process (corresponds to

a regular network deployment). A way to simulate a Ginibre

point process (and therefore a β-Ginibre point process) is given

in [13].

In Figures 2a and 2b, the impact of regularity is studied.

Curves for Poisson and β-Ginibre point processes are plotted

for the exact and the approximate Cournot-Nash equilibria.

Four β-Ginibre point processes are considered with four values

of β: 0.25, 0.50, 0.75 and 1. Results are given in Table III.

TABLE III: Optimum network working points in function of

β.

Exact CN Approx. CN

Point Process λm/λn ru or rn λm/λn ru or rn
Poisson 21 88% 17 80%

β = 0.25 22.5 88% 19 82%

β = 0.50 25 90% 21 84%

β = 0.75 27.5 92% 22.5 85%

β = 1 29 94% 24 87%

For both exact and approximate Cournot-Nash equilibria,

the density ratio and the user satisfaction of the optimum

working point jointly increase with the value of β. This can be

explained as the overall SINR quality in the network increases

with the regularity of the deployment [14].

IV. CONCLUSION

A novel resource allocation scheme under cooperation based

on Cournot-Nash equilibria has been introduced. An exact as

well as an approximate fast computable solution have been

provided. Numerical analysis has shown the existence of an

optimum network working point, where network load and

user satisfaction ratio are jointly maximized. The cooperation

proportion, is minimum in the neighborhood of the optimum

working point. Impact of the network deployment has been

investigated. The more regular the network is, the better the

performance is.

APPENDIX A

PROOF OF THEOREM 1

Lemma 1. The simplified optimization problem can be trans-

formed into a hypersphere equation.

Proof. The simplified optimization problem can be written in

the following form:

ν
∗ = argmin

ν

t
νHν + t

Lν +
1

4
t
LL,

such that:
t
11,m · ν = 1 and νj ≥ 0,

We denote by C, the convex hull defined by the constraints

of this optimization problem. The added constant does not

modify the optima and therefore this problem is equivalent to

the simplified optimization problem. Furthermore, the utility

function is the equation of an hypersphere of center ν
0 =

−L/2 and the objective value is its radius.

Thanks to Lemma 1, the optimum ν
∗ is given by the

intersection of the minimal radius hypersphere of center ν0 =
−L/2 and of C. Let H be the hyperplane defined by:

H =
{

x ∈ R
m | t1m,1x = 1

}

.

C is included in the hyperplane H. Let ν∗ be the orthogonal

projection of ν0 on H. Two cases can be distinguished:

1) ν
∗ has no strictly negative coordinates.

2) ν
∗ has some strictly negative coordinates.

In the first case, ν∗ is the tangent point between C and the

hypersphere. Since ν
∗ is the orthogonal projection of ν

0 on

C, it also minimizes the radius of the hypersphere that intersect

C. The optimum is given by:

ν
∗ = ν

0 −
t
u(ν0 −M)

m
u,

where M = 1m,1/m and u = 1m,1. If all coordinates are

positive, then the optimum has been reached.

In the second case (indexing from 1 to m − k the strictly

positive coordinates, where k is the number of negative coor-

dinates), the positivity constraints m−k+1 to m are saturated.

ν
∗ is in H but outside C. Therefore, ν∗m−k+1 . . . ν

∗
m are set to
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(a) Exact Cournot-Nash.
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(b) Approximate Cournot-Nash.

Fig. 2: Equilibria obtained for β =0.25, 0.50, 0.75 and 1.

zero and ν∗1 . . . ν
∗
m−k have to be computed. M,u and ν

0 are

first projected on the non-null subspace:

∀1 ≤ j ≤ m−k, Mj = 1/(m−k),

∀m− k + 1 ≤ j ≤ m, ν0j = 0,Mj = 0, uj = 0.

Then the optimum is calculated in the non-null subspace:

ν
∗ = ν

0 −
t
u(ν0 −M)

(m−k)
u.

In this case, the previous operations must be repeated until all

coordinates are positive.

Uniqueness of the solution is ensured by the fact that the

optimal solution is the orthogonal projection of the center of

an hypersphere.
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