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Travel time forecasting from clustered time series via optimal fusion
strategy

Andres Ladino1, Alain Kibangou, Hassen Fourati2, and Carlos Canudas de Wit3

Abstract— This paper addresses the problem of travel time
forecasting within a highway. Several measurements are cap-
tured describing travel times for multiple origin-destination
(OD) pairs. A network model is then proposed to infer travel
time between origin and destination based on a reduced
number of states. The forecast strategy is based on current day
and historical data. Historical data is organized into several
clusters. For each cluster, a predictor is designed based on the
Kalman filtering strategy. Then these predictions are fused, in
a best linear unbiased estimation sense, in order to get the
best prediction. The performance of the proposed method is
evaluated using traffic data from the South Ring of the Grenoble
city in France.

I. INTRODUCTION

Traffic forecasting is one of the most desired tools for
traffic management requested by operators and commuters.
In the era of data deluge in which we are, measurements
collected by sensors are important sources of information
that require analysis, classification, and processing in order
to detect patterns and behaviours that can be exploited
for traffic prediction [7], [14]. The collected information
can be classified by clusterization algorithms, such as K-
means, where each cluster collects traffic patterns which in
some cases characterize typical regimes such as congestion.
Several indicators like travel time, queue length, density,
delay are used as performance indexes to determine the status
of a traffic network [16].
In this paper we focus on models that rely on historical travel
time information. As shown in [3], typical real patterns can
be found in large data sets of historical data. For example
[10] proposes a forecasting of travel time based on an Adap-
tive Kalman Filter (AKF) strategy in which observations are
built from historical data sets of speed and flow. [11] applies
a similar strategy in flow prediction and presents the problem
of multi-step ahead forecasting based on clustered time series
by applying several predictors such as Gaussian maximum
likelihood (GML) and AKF. [17] presents an approach for
short term flow forecasting using multiple ARMAX based
predictors obtained from clustered data. The ARMAX model
is adapted independently to different groups of flow time
series and a single prediction is selected based on one
criteria that considers minimum error estimation for the
predicted signals. [15] uses Link Node Cell Transmission
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Model calibrated via Monte Carlo methods in order to
generate a prediction using the expectation maximization
algorithm. Although all these methods present strategies for
the selection of the predicted sequence, regimes described by
clustered data are not totally separable and studies like [19]
have shown the improvement of performance with combined
forecasts.
Different models can be inferred from different clusters
of data. A series of new methods have been emerging to
combine information from these models. For instance [18]
proposes a forecast based on interactive multiple models
by combining different individual forecasting methods. [4]
proposes an adaptive fusion method combining historical
information and current day data. Other hybrid forecasts
includes support vector machine methods like in [6] and
model based approaches as in [2].
Generally, forecast algorithms in the literature are designed
to satisfy a set of constraints given by the forecast problem.
Most of the algorithms take into account availability of a
full set of measurements for all possible locations and time
instants within the traffic network and they overcome the
problems of missing data, low penetration ratio or unbal-
anced spatial coverage by introducing additional steps such
as imputation algorithms [5]. Moreover, the great majority
of literature provides fixed forecasting scenarios in which
predefined OD schemes are considered [3], [9]. Some recent
approaches have emerged considering flexible OD, moreover
the possibility to exploit internal relations of the network to
reconstruct information [4]. In this paper we formulate the
problem by considering prediction over all OD pairs of the
highway. To reduce the dimensionality of the problem, we
actually predict the travel time for the internal state of the
network. In addition, since travel time measurements for all
the OD pairs cannot be available all the time, we face a
missing data problem. To overcome this issue, we resort to a
data imputation based on a dictionary learning approach [8].
From the imputed data, a clusterization is achieved, defining
then different clusters characterized by a centroid containing
the mean of the data and a given dispersion around it. The
evolution of the centroid can be used as future observation,
herein called pseudo-observation, that can feed a Kalman
filter. Therefore the prediction problem is solved as a filtering
one. However, the main question is, how to associate the
current day data to a specific cluster since we don’t know
its future? To solve this issue, we run Kalman filters for
each cluster and then we make the fusion of the obtained
forecasts. The benefits of this solution are: First, the inter-
action of main features in each cluster are captured when



the fusion is performed, and the classification of the forecast
is not always assigned to a single group a priori. Second,
applying a kalman filter incorporates measured statistics in
historical data into the forecast. Finally, under the appropriate
considerations the model can be extended into other type
of variables such as flow since the process model is mainly
stochastic. The main contribution of this paper is to develop a
fusion method controlled by the error covariance of the local
Kalman filters. The performance of the proposed method is
evaluated using real traffic data from the Grenoble Traffic
Lab (GTL) [1].
The paper is organised as follows. Section II presents the
travel time network model while Section III is devoted to
the missing information and clustering problems. The travel
time forecasting method is described in Section IV, evaluated
in Section V with real data before concluding the paper in
Section VI.

II. NETWORK TRAVEL TIME MODEL
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Fig. 1. Network architecture of a highway

Consider a highway constituted with a set of nodes N =
{1,2, · · · ,N + 1} (See. Fig. 1). An origin is defined as a
node having an on-ramp whereas a destination is a node
with an off-ramp. We define by O ⊂N and D ⊂N the
set of origins and destinations respectively. The highway
can be represented as a directed path graph P = (N ,E ).
Each directed edge e ∈ E connects two consecutive nodes.
Therefore |E |= N.
For a path starting from node i and ending at node j, we
define the vector f(i, j)∈ℜN whose qth entry equals 1 if the
qth directed edge is crossed, else it is zero. As a consequence,
‖f(i, j)‖0 is equal to the number of edges between i and j.
Let ttk,q be the travel time experienced at time k for crossing
te qth edge. Then for any OD pair (i, j) we can associate the
instantaneous travel time T Tk(i, j) as:

T Tk(i, j) = fT (i, j)ttk, (1)

where ttk =
[
ttk,1 ttk,2 · · · ttk,N

]T . By concatenating the
travel times of all the OD pairs for a particular day d in the
vector

TTk,d =



T Tk(1,2)
...

T Tk(1,N +1)
...

T Tk(i, j)
...

T Tk(N,N +1)



(i, j) ∈ O×D , we get:

TTk,d =Φttk, (2)

where Φ∈ℜM×N results on the concatenation of the vectors
fT (i, j) associated with M possible OD pairs.
The travel time related to an OD pair can be measured
using fixed sensors (magnetic sensors, bluetooth,...) and/or
crowdsourcing. In all cases, due to network data issues, and
availability of some measurements it is not posible to collect
the travel times of all OD pairs each time. The purpose of
this paper is to predict the travel time of any OD pair given
historical and current measurements of some OD pairs.

III. HISTORICAL DATA PROCESSING & FORECASTING
PROBLEM FORMULATION

A. A dictionary learning approach for data imputation

Given available information at time k we want to predict
the travel time for the next ∆ f time samples. For this purpose,
we analyse available historical information in the interval of
time [k−∆p+1,k+∆ f ]. The size of the time window in the
past to be considered is ∆p. It is standard to split historical
information in order to detect typical patterns for different
regimes [16]. Let define the matrix Γ=

[
Γ1 Γ2 · · · ΓD

]
of historical information:

Γ=


TTT

k−∆p+1,1 TTT
k−∆p+1,2 · · · TTT

k−∆p+1,D
...

...
...

...
TTT

k+∆ f ,1 TTT
k+∆ f ,2 · · · TTT

k+∆ f ,D

 ,

where we have assumed that, for the M OD pairs we have
measurements for D days, meaning that Γ has dimensions
(∆p +∆ f )×MD. Assume that the travel time measurements
associated with each OD pair can be clusterized in Q clusters
and define C ∈ℜ

(∆p+∆ f )×MQ the matrix of the centroids of
these clusters. We can then notice that

Γ= CS+V,

where S is a cluster selection matrix in which all columns
entries are zero but one while V stands for the dispersion
around the centroid. However, since some of the measure-
ments of all the OD pairs are not available at each time
step, Γ has several missing values. Let define by PΩ(Γ)
the available information; specifically Ω defines the set of
(m,n) indices of Γ for which the measurements are available.
Therefore if (m,n) /∈ Ω the (m,n) entry of PΩ(Γ) is set to
zero. We can solve the problem as a dictionary learning
problem [12]. The problem is to estimate C and S from the
available data:

min
C,S
‖PΩ(Γ−CS)‖2

F +λ

MQ

∑
q=1
‖S(:,q)‖1. (3)

We minimize the Frobenius norm of the error between
available data and their reconstruction through C and S.
The norm one regularization aims to take into account
the sparse nature of S. This problem can be solved by
alternating a LASSO step

(
St = argminJ (Ct−1, .) with



J (Ct−1, .) = ‖PΩ(Γ−Ct−1S)‖2
F + λ

MQ
∑

q=1
‖S(:,q)‖1

)
and a

constrained least-squares problem
(

Ct = argminJ (.,St)

with J (.,St) = ‖PΩ(Γ−CSt)‖2
F

)
. Both J (.,St) and

J (Ct−1, .) are convex functions. Under mild conditions, the
alternating minimization process converges to a stationary
point.
After convergence, the imputed matrix can be computed as:

Γ̂= PΩ(Γ)+P
Ω̄
(CS), (4)

Ω̄ being the complement of Ω. We can note that it exists
a permutation matrix Π of dimensions (∆p +∆ f )M× (∆p +
∆ f )M such that:

TTk−∆p+1,d
TTk−∆p+2,d

...
TTk,d

=Πvec(Γd).

where vec(Γd) stands for the operator that vectorizes the
matrix Γd by stacking its columns.

B. Multi-OD travel time clustering

In the previous section, the imputation was based on the
estimation of the matrix C assumed to be constituted with
centroids of each OD pair. Building composite centroids
from C can yield a huge number of clusters. Instead, from
the imputed matrix, we aim to clusterize the set of vectors
S = {vec(Γ1),vec(Γ2), · · · ,vec(ΓD)}. For this, let define
by {µ1,µ2, · · · ,µQ} the set of centroids. Each one of the
clusters are found by minimizing the distance between each
day vec(Γi) with respect to the centroid µ j. The main
objective is to gather particular regimes and most represen-
tative conditions and patterns of the travel time profiles. The
generation of µi is performed by the K-means algorithm that
minimises the following criteria:

argmin
j

Q

∑
j=1

D

∑
i=1
‖vec(Γi)−µ j)‖2. (5)

The classification algorithm is applied over the set
S . The set of centroids can be structured as µq =[
µT

k−∆p+1,q µT
k−∆p+2,q · · · µT

k+∆ f ,q

]T
.

C. Forecasting problem

The forecasting problem can then be stated as follows:
Given the measurements of travel time Γd within the day d
for some OD pairs in the past interval defined from k−∆p+1
up to k, and given a set of D historical days with associated
travel time data for some origins and destinations Γ̂. The aim
is to obtain a single prediction T̂Tk+l,d where 1≤ l ≤ ∆ f .
In order to perform the task we produce a separation of the
matrix Γ̂ in clusters and then construct individual forecasts
for each one of the clusters. Afterwards we look for a fusion
method based on best linear unbiased estimator principles to
create the desired forecast.

IV. PREDICTION ALGORITHM

A. Local Kalman Filter

In general the elements belonging to the qth cluster can
be written as TTk,d =µk,q +wk,q. Assuming that the current
day belongs to a cluster q, we adopt a random walk model
for the time evolution of the elements of the cluster:

TTk+1,d = TTk,d +vk,q (6a)
vk,q ∼N (∆µk,q,Qk,q), (6b)

where ∆µk,q = µk+1,q −µk,q corresponds to mean of the
process noise for the dynamic model for the cluster q. Qk,q
is the process noise covariance computed as:

Qk,q =
1

|q|−1 ∑
i∈q

(TTk,i−µk,q)(TTk,i−µk,q)
T ,

with |q| denoting the number of elements belonging to the
qth cluster. Taking into account (2), we can note that:

ttk+1,d =Ψttk,d +Φ†vk,q, (7)

with Ψ=Φ†Φ, where we have assumed Φ to be full rank, in
this case Φ† denotes the pseudo-inverse of Φ. This equation
defines the dynamics of the travel time from the qth cluster
point of view.
In particular for the current day d and up to time k, we
retrieve measurements of OD travel times given by zk,d =
HTTk,d where H is a row selection matrix of dimension
P×M with P < M. We assume that if a travel time belongs
to a given cluster q then TTk+1,d −TTk,d = ∆µk,q +mk,q,
with mk,q ∼N (0,Rk,q). As a consequence:

TTk+ j,d = TTk,d +
j

∑
i=1

∆µk+i,q +mk+i,q j ≥ 1,

which yields zk+ j,d = zk,d + H
j

∑
i=1

(
∆µk+i,q +mk+i,q

)
. Let

represent by:

yk+ j,d = zk,d +H
j

∑
i=1

(
∆µk+i,q

)
, j = 1, · · · ,∆ f ,

the pseudo-observations of the travel time from the point
of view of the qth cluster. Since by definition, zk+ j,d =
HTTk+ j,d = HΦttk+ j,d , we can conclude that:

yk+ j,d = HΦttk+ j,d +
j

∑
i=1

mk+i,q. (8)

Strictly speaking, from cluster q, the system evolves for day
d as:

ttk+1,d = Ψttk,d +Φ†vk,q (9)
yq

k+ j,d = HΦttk+ j,d +wk+ j,q, (10)

with wk+ j,q a zero mean noise with covariance Řk+ j,q =
k+ j
∑

i=k
Ri,q, where,

Rk,q =
1

|q|−1 ∑
i∈q

(∆TTk,i−∆µk,q)(∆TTk,i−∆µk,q)
T .



From the model defined by (9) and (10) we intend to run
separate predictions for each one of the clusters. Thanks to
the pseudo-observations built from clustered historical data,
the prediction problem can then be viewed as a filtering one
(See. [11]). For each one of the cluster, separate models will
evolve in the future according to the following Local Kalman
Filter (LKF) strategy as:

ttk+1|k,q =Ψt̂tk|k +Φ†∆µk,q (11a)

Pk+1|k,q =ΨP̂k|k,qΨ
T +Φ†Qk,qΦ

†T
(11b)

Kk+1|k,q = Pk+1|k,qΦ
T HT

(
HΦPk+1|k,qΦ

T HT + Řk+1,q

)−1

(11c)

t̂tk+1|k+1,q = ttk+1|k,q +Kk+1|k,q(y
q
k+1,D−HΦttk+1|k,q)

(11d)

P̂k+1|k+1,q = (I−Kk+1,qHΦ)Pk+1|k,q, (11e)

where P̂k|k,q ∈ ℜn×n represents the error covariance matrix.
The evolution of the error covariance matrix provides infor-
mation regarding the convergence of the estimate given by
(11) to the true value. We are interested in considering this
information in order to fusion the forecasts obtained for each
one of the clusters. We remark the fact that LKF strategies
are connected as a feedback system (See subsection IV-B).

B. Fusion Algorithm

Sometimes the regular performance of the clustering
algorithms not always separates individual patterns. The
main objective by introducing a fusion algorithm is justified
in the fact that the combined forecast might improve its
performance as it is discussed in [19], particularly during
peak times. In order to make the fusion of the forecasts
provided by the clusters, we take into account the fact that
t̃tk,q = t̂tk|k,q− ttk, the estimation error for each one of the
LKF strategies, has variance Pk|k,q. We assume that each
forecast is a noisy version of the actual travel time. The
algorithm is detailed in Fig. 2.

Local KF

Local KF

Cluster 1

Cluster 2

Local KF

Cluster q

Optimal Fusion

t̂tk+1|k+1,q, P̂k+1|k+1,q

t̂tk+1|k+1,1, P̂k+1|k+1,1

t̂tk+1|k+1, P̂k+1|k+1

Fig. 2. Feedback fusion mixing strategy

In what follows, we aim to fuse the forecasts provided by
each cluster with a weighting term according to their error
covariance matrix. The weighting information will provide
weight to those clusters with more confidence for the future
horizon. The measurement for the confidence is given by
the information of the covariance error. For this purpose, let

concatenate all the forecasts in a vector θk ∈ℜNQ, Q being
the number of clusters. We aim to find

t̂tk = argmin
ttk

||θk−Gttk||2Uk
, (12)

with G = [I I · · · I]T a NQ×N matrix, and Uk the forecasts
error covariance matrix. The main objective of the problem
(12) is to perform a weighted data fitting problem based on
measurements provided by the individual cluster forecasts
and weighted by Uk which is conformed by NQ×NQ block
matrices denominated u[i j]k denoting the error covariance
between the estimates from two different clusters i and j.
In this case u[i j]k is given by the following proposition:

Proposition 1: Consider the individual estimates θk from
the Local Kalman filters and the optimal fusion given by
(12). Then the error covariance matrix of the fusion is given
by:

u[i j]k+1 =ΥiΨu[i j]kΨ
TΥT

j +

δ (i− j)
(
ΥiQk, jΥ

T
j +Kk+1|k,iŘk+1, jKT

k+1|k, j
)
,

(13)
where δ (i− j) is the Kronecker delta function and Υi =
I−Kk+1|k,iHΦ.

Proof: Consider the prediction equation (11d) that com-
putes the update in the filter. Consider also the replacement
of the terms t̂tk+1|k,q and yq

k+1,D given by (11a) and (10)

t̂tk+1|k, j =Ak+1, jΨ
(

t̂tk|k +Φ†∆µk, j

)
+

Kk+1|k, j
(

HΦttk+1, j +wk+1, j

)
,

(14)

where Ak+1, j = (I−Kk+1|k, jHΦ). Substracting the term ttk, j
and using (6) on the rightside part of the equation we obtain.

t̃tk, j = Ak+1, j(Ψt̃t j
k +Φ†vk, j +Φ†

∆µk, j)+Kk+1|k, jwk+1, j.
(15)

We find the covariance between two clusters l, j. Further-
more, we group the vector X j = [t̃tk, j vk, j wk+1, j]

T and
consider the covariance between the affine term C jX j +

D j where C j =
[
Ak+1, jΨ Ak+1, jΦ

† Kk+1|k, j
]T

, D j =

Ak+1, jΦ
†∆µk, j is given by:

E[t̃tk,l t̃tk, j] = ClE[XlX j
T ]C j

T . (16)

In equation (16) by previous hypothesis of the Kalman filter
over independency between observation noise and process
noise. (See. (9)). The expression leads to:

u[l j]k+1 =Ak+1,lΨu[l j]kΨ
T AT

k+1, j+

δ (l− j)Ak+1,lE[vk,lvk, j
T ]AT

k+1, j+

δ (l− j)Kk+1|k,lE[wk,lwT
k, j]K

T
k+1|k, j,

(17)

which can be written as (13).
The optimal solution in this case is given by the best linear
unbiased estimator as:

t̂t∗k =Λkθk, (18)

where Λk = (GT UkG)−1GT Uk. The solution is then com-
puted iteratevely each sample time with updates in the



weighting matrix and the individual forecasts contained in
θk. The variance of the estimator given in (18) can be
computed in this case as:

Γ̂k =ΛkD(P̂k|k)Λ
T
k , (19)

where D(P̂k|k) is the block-diagonal matrix with P̂k|k,q as
blocks.

V. EXPERIMENTAL SETUP FOR THE FORECASTING
STRATEGY
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Fig. 3. Sensors distribution along Rocade-Sud

A. Scenario Description

The experimental data used for the test is obtained from
the Grenoble Traffic Lab (GTL). The network consists of 135
magnetometer sensors distributed along 10.5 Km connecting
the highway A31 (north-west) to A480 (south) in Grenoble
France. The network offers 68 possible locations for collect-
ing speeds in fast and slow lanes. For further details see [1].
Fig. 3 provides details of the sensor distribution along the
road. For this case we assume the scenario forecasting the
travel time in a future horizon ∆ f = 25 minutes entering the
highway at Meylan and leaving at Rondeau. Predictions are
performed between 7:30am and 9:30am, time in which it is
found peaks of congestion. Traveling times vary between 7
minutes in free flow conditions and 25 minutes in congested
cases.
We constrain the set of historical data to 93 week days
collected from April 2014 to May 2015. For all the tests,
a fixed number of K = 3 clusters was used, the value was
selected based on the average number K obtained according
to [13] and performing single clusterization of the full data
set each 1 minute for the window of time 7:30-9:30am. In
case of special conditions for empty clusters the algorithm
reduces automatically the number K by one.
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Fig. 4. Error distribution vs Horizon of prediction

B. Performance Measurement

In order to assess performance of the method, we consider
the Absolute Percentage Error (APE) as a reference. For
some future horizon 1≤ ∆ f the APE is given by:

APEk+h,d = 100
|T̂ T k+h,d−T Tk+h,d |

T Tk+h,d
. (20)

A leave one out cross validation test is performed over the
data set to perform validation. The element out of the set is
the candidate day d for performing the prediction. The APE
index in Eq. (20) is computed for each one of the forecasts
and varying the departure time in steps of one minute until
9:30am. We select this type of measurement based on the fact
that there might exist greater scenarios considering multiple
OD that can be assessed under the same criteria.

C. Results

The results condensate a total amount of 11160 forecasts
that were launched with fixed prediction horizon of 25
minutes starting at 7:30am. Each minute 93 forecasts are
performed from historical data by considering leave one
cross validation schema. The departure time is then modified
in steps of 1 minute until 9:30am, which is the normal time
of the day when conditions return to free flow. In all cases
the error is measured for the full prediction. Particularly we
depict APE error from Eq. (20) for a fixed OD scenario that
considers cars entering at Meylan and leaving at Rondeau.
Fig. 4 illustrates the behaviour of the APE error according
to the future horizon. Even though the prediction is done in
steps of 1 minute, we summarize here the main statistical
results of performance in steps of 5 minutes. The median of
the data set is displayed as a red line within the blue boxes.
Red crosses in each horizon time represent outliers of the
prediction found when the samples are in distance longer
than ±3σ for a normal distribution N (µ,σ2). These values
may occur when K-means reduces the number of clusters
since dispersion of the clusterized data sets is bigger.
It is seen an increasing APE along the future horizon due
to the high dependency on the previous sample in order to



perform the forecast. The maximum error obtained for any
future horizon of 25 minutes is 40%. Indeed, this confirms
the fact of high difficulties in accuracy with a long term
forecasting since no prior information is known. However the
maximum median at the same time horizon is 15.7% which
establishes better generalized performance of the method
with respect to the full population.
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Fig. 5. Guaranteed Probability p(APE < p)

On the other hand Fig. 5 displays the performance of the
same method from the point of view of the experimental
cumulative distribution function. In this case we analyze the
cumulated APE error over the data set and we display several
curves for guaranteed APE under some probabilities. The
plot depicts the amount of error guaranteed with probability
p = [70 80 90 95](%). From the plot we infer that in the
future horizon of 25 minutes, the maximum error is 17.1%
with 70% of probability, up to 38.3% when the probability
is 95%.

VI. CONCLUSIONS

This paper has addressed the problem of travel time
forecasting over highways based on the fusion of individual
forecasts performed for clusterized time series. The indi-
vidual clustering classification is proposed to establish a
framework for the prediction. Individual forecasts models
are developed under a Kalman filter approach. A fusion
algorithm is then proposed in order to merge the predictions.
The assessment is applied over real data in which error is
guaranteed to be less or equal than 35% in 90% of the
cases. Future research on this work may include but is not
limited to the addition of constraints into the optimal fusion
algorithm, the study of statistical merge between model based
approaches and the presented strategy and further studies on
the effect of the horizon in relationship with the clusterized
time series and the forecasting strategy.
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