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Abstract

This paper deals with a novel formulation of a nonlinear cadlsorder computa-
tional model for analyzing the nonlinear vibrations of aeln viscoelastic struc-
ture with weak nonlinear geometrical effects, coupled w&itimear acoustic liquid
with sloshing and capillarity on the free surface. The mgueposed is derived
from the one used in fluid-structure interaction for linegstems, for which the
analysis of the acoustic-sloshing-capillarity phenomisrefficient thanks to the
use of a projection on the linear modes of the linear acoligtitd and on the

sloshing modes with capillarity. Concerning the consinrcbf the vector basis
for the structure, it is proposed to use a POD approach fovido®elastic struc-
ture with weak nonlinear geometrical effects and taking imtcount the added
mass induced by the liquid. The methodology for constrggctire vector bases
of the admissible sets and for obtaining the nonlinear RO& datailed. The

computational nonlinear ROM that is presented can dirdmtlyised for analyz-
ing the vibrations of such fluid-structure systems usingmmential finite element
softwares for computing the vector bases and the projextion
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tension,

1. Introduction

This paper is the continuation of the work published in [X]dnich the linear
behavior of the structure is replaced by a weak geometricalimear behavior
(a requirement being that if the structural nonlinear teoagyto zero, the linear
formulation is retrieved). The structure contains a lindigsipative acoustic lig-
uid (no flow), with linear sloshing and capillarity, and fohigh the effects of
internal gravity waves are neglected. A linear formulafionthe acoustic liquid
is kept in order to preserve the vibration analysis expegséerms of acoustic
and sloshing modes for small (infinitesimal) fluid displaesits (consequently,
the ALE formulation that requires a mesh deformation is nell adapted to such
a requirement). Since the structure can undergo small filfjglacements, the
model proposed consists in writing the equations of thealireeoustic fluid on
the undeformed configuration and in transporting the actaafiguration of the
structure on its undeformed configuration. In addition, \#® avant to preserve
a slip condition for the fluid on the fluid-structure intergaavhich is facilitated
with the formulation proposed (such a condition is of coursevalid in micro-
and nano-fluidics). It should be noted that the underlyingdtlgeses of such a
formulation (small finite displacements for the structunel déinear behavior of
the acoustic liquid in presence of sloshing and capillaftgcts) are justified in
many applications (see for instance the experimental gagsens described in
[2]). The simplifications introduced in the formulation pased (such as the non-
inclusion of the finite fluctuations of the wetting fluid-stture interface) intro-
duce uncertainties induced by modeling errors. Such uamiogigs could be taken
into account in a probabilistic framework of uncertaintyaqtification. Since
these types of uncertainties are not relevant of the uswahpetric probabilistic
approach [3], an open way of research could be the nonpariarpedbabilistic
approach of modeling errors [4, 5]. But, for the present fstidicture interaction
problem, novel nonparametric approaches should be des@lwporder to take
into account modeling errors in computational fluid dynasnic

The novel feature of the paper is to propose the constructi@ancomputa-
tional nonlinear reduced-order model (ROM) derived frora @me used in lin-
ear fluid-structure interaction (for which the analysis lo¢ tacoustic-sloshing-
capillarity phenomena is efficient thanks to the use of agmtagn on the linear
modes of the acoustic liquid and on the sloshing modes withlagty), in taking

2



into account weak geometric nonlinearities in the struetiurthermore, for the
structure with geometric nonlinearities, a linear viseséit constitutive equation
without memory effects is used for generating damping irstnecture instead of
the use of an empirical damping model that is arbitrary adidéue reduced-order
equations (as frequently done).

Concerning the linear formulation for the compressibleikiqwith free sur-
face, the sloshing is taken into account with surface ten@apillarity) effects.
We refer the reader to [6, 7] for the classical theory on taty, to [8, 9, 10] for
developments of the behavior of liquids in microgravity eomment, to [11, 12]
for general analyzes of sloshing problems for incompréssdpiids in rigid struc-
tures, to [13, 14, 15, 16, 17, 18] for sloshing problems obmeressible liquids
without capillarity effects in elastic structures, to [11®, 20, 21] for sloshing
problems of incompressible liquids with capillarity effeen rigid structures, to
[22, 23, 24, 25, 26, 27, 28, 13, 29] for the conditions of cohtngle between
the free surface and the structure, to [30] for sloshing lerols of incompressible
liquids with capillarity effects in elastic structures, [@1, 32, 33] for sloshing
problems of compressible liquids with capillarity effettgigid structures, to [1]
for linear dissipative acoustic liquids with sloshing amgbitlarity effects in linear
elastic structures. Concerning nonlinear sloshing andlagfy for incompress-
ible liquids in rigid tanks submitted to rigid body motiosge [34, 35, 36, 37, 38].
Concerning computational reduced-order models for trealivibration of struc-
tures containing compressible liquids without surfacesitem and without slosh-
ing effects, we refer the reader for instance to [13, 39, 4054 Note that the case
of a structure with weak geometrical nonlinearities codpiéth a linear acoustic
fluid has been investigated in the high-frequency domaid2j.[

General computational methods for strongly nonlinear fitrdcture inter-
action problems including sloshing and capillarity, witih@ahe introduction of
reduced-order models (but generally using ALE-based ambrtor the fluid), can
be foundin [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55jeAeral discussion
on elasto-capillary fluid-structure interaction incluglittuid-solid surface-tension
effects and taking into account a transition layer made ufieseé-interface model
related to a phase separation between complex fluids arftamatters (Cahn-
Hilliard model [56]) can be found in [57].

For constructing computational reduced-order model (RGMhnear and
nonlinear structural dynamics and in fluid-structure iatéion, some method-
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ologies have extensively been analyzed in literature. Aofaworks have been
published for constructing ROM and parametric ROM for linead nonlinear
computational models in dynamics in the area of computatistnuctural dynam-
ics and fluid-structure interaction among which [13, 58,&8,61, 62, 63, 64, 65]
and in vibroacoustics [40, 66, 67, 5]. A hyper reduction gguieed for reducing
the numerical cost of the ROM construction (see for instd68e 69, 70, 71]).
The construction of the reduced-order basis (ROB) is basd¢ldeocomputation of
solution snapshots performed with the computational motet Proper Orthog-
onal Decomposition (POD) method [72] is a possible apprdaciconstructing
the ROB as used in linear structural dynamics for all possitput forces [73] or
for a given set of input forces [74, 75, 76, 77]. When the PODRhoe is used
for constructing the ROB for a nonlinear computational md€ég2, 78], a large
number of snapshots is used (for time evolution problenestithe becomes a pa-
rameter) and the responses are compressed into a low-donahROB using, for
example, the singular value decomposition method and alewgredients such
as those presented in [79, 80].

In Section 2, we give the notations and hypotheses used.ioB8e®tdeals
with the nonlinear equation for the structure expressetiénréference configu-
ration. The boundary value problem for the nonlinear flurdisture problem is
presented in Section 4 for which the formulation retaineexisressed using the
pressure field in the liquid, the elevation of the free siwefand the displacement
field of the structure. In Sections 5 and 6, we present the atatipnal fluid-
structure model. The decomposition of the admissible spad¢ke discretized
coupled problem and the construction of the associate@vbases are presented
in Section 7. Finally, the nonlinear reduced-order comiportal model is detailed
in Section 9.

2. Notations and hypotheses

We consider the fluid-structure system inrggerence configuratiodefined in
Figure 1. For this reference configuration, the structurengeformed and occu-
pies an open, bounded, and connected subsetf R®. The existing prestresses
are not taken into account, which means that the undeforimefthciration corre-
sponds to a natural state. In the reference configuratierynideformed structure
contains a liquid, which occupies an open and bounded dofaaimhe geome-
try of domain(, results from a pre-computation for finding the static edpuilim
of the liquid in the structure considered as rigid, and sutedito the gravity ef-
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fects and to the surface-tension effects (capillarity)haf free surface and of the
fluid-structure interface. Since the liquid is linear andlcgl we are interested in
studying the dynamics around the static equilibrium, th&lflan domain(;, is
assumed to be in a natural state.

The constitutive equation for the structure is assumed tmbar viscoelastic
in finite displacements with instantaneous memory, deedrlly a displacement
field measured from the reference configuration, and canrgodecak finite dis-
placements (small strain and moderate rotations). Thelligua linear dissipative
acoustic fluid, which means that the liquid is homogeneooisypressible, invis-
cid with a volumic additional dissipative term, describgdabpressure field, and
which is in irrotational infinitesimal motions with respeotthe reference configu-
ration. It should be noted that the liquid is inviscid on thed}structure interface
on which a slip condition will be written.

The physical space is referred to a cartesian referencersy#t the reference
configuration, the boundary 6f; is assumed to be smooth enough and is written
asofly =I'py U~ UT. The open part';, is the fluid-structure interface. The open
partl’ is the free surface of the liquid in its reference configamtiThe close part
~ is a curve (the contact line), which is such that 0I';, = 0I'. The boundary
of Q05 (supposed smooth enough) is writtendss = ' UT', U v U ' (See
Figure 1). The boundary of the open pdrisandl’s is the curvey. The domain
whose boundary is the open $&8t/ I'; is empty or is filled by a gas whose effects
are neglected for sake of brevity (this is the domain alioyen Figure 1). The
external unit normal t@<)s is denoted as® while the one ta)(2;, is denoted as
n. The external unit normal t9 belonging to the tangent plane to surfdces
denoted ag. Let(24(t) be the actual domain occupied by the structure at time
and letoQ25(t) be its boundary.

We are interested in analyzing the nonlinear vibratioru¢dtiral geometric
nonlinearities) of the coupled system around its referezm@iguration. The
structure is assumed to be free (free-free structure fochvhnd prescribed Dirich-
let boundary conditions are given 0fs(¢)). The structure is submitted to given
forces, which are applied tQ¢(¢), and which are assumed to be in equilibrium
(in the actual configuration).



Figure 1: Reference configuration of the fluid-structureaeays

3. Nonlinear equation for the structure expressed in the regrence configura-
tion

In the cartesian reference systemxXet (z1, x9, x3) be the position vector of
a point in the reference configuratiély = Qg U 0. In the actual (deformed)
configuration()¢(t) at timet, the position vectoK = (X, X,, X3) of the point
that is transformed from, is written as

X(X,t) = x+u(x,t), (1)

inwhichu = (uy, us, u3) is the displacement field defined@y,. The deformation
gradient tensoff (x, t) defined inQ2s by

B 8XZ-(X, t) _5 8uz~(x, t)

— Ugg 5.
81‘]‘ c%j

Fij(%,t) (2)

and is assumed to be invertible and orientation preserdgnglfx € Qg and for

all ¢
J(x,t) < det F(x,¢) > 0. )

The dynamic equilibrium equations of the structure at timexpressed with re-
spect to the reference configuration, are written [81, 82] as

d%u

psﬁ—dN(FS):b,VXEQS, (4)



whereps(x) > 0 is the mass density in the reference configuration, wiSee
the second Piola-Kirchhoff symmetric stress tensor in éfierence configuration,
wherediv (F'S) denotes the divergence of the second-order tefi§oand where
b = (b1, b9, b3) corresponds to the transport ory of the body force fieldB ap-
plied to deformed configuratiofs(t), which is written as

b(x,t) = J(x, t) B(X(X,),1) . (5)

Attimet, letF be the surface force field applied to the deformed bound@gy(t)
of the actual configuration. The transportFobn the undeformed boundady2
is denoted by = (f1, f2, f3) and is written as

f(x, 1) = {det F(x, t)}[|F(x,t)"'n®(x)|| F(X(X, 1), 1). (6)

At time ¢, the boundary condition associated with surface force fielplplied to
the undeformed bounda#}f)s is written as

FSn® =f. (7)

The constitutive equation of the structure is chosen intéu@éwork of the theory
of the linear viscoelasticity in finite displacements [88das written using the
hypothesis of instantaneous memory (see [84], referemchsded),

dE ¢,
dt -’

in which the classical convention for summations over rgggbaatin indices is

used, where tensors;,, (X) andb; ;. (x) are fourth-order real tensors depending

on X, which verify symmetry and positiveness properties, aneérneli,,, is the
Green-Lagrange strain tensor, which is defined by

Sij = aijom(X) Egm + bijem (X) (8)

1
E€m<x7 t) = §(Fld<x7 t) ka(x, t) - 6€m)
1 Ou, Ou,  Ouy Ouy
- 5(89% * Oxy + Oxy O,

(9)

4. Boundary value problem in (p, n, u)

For the linear dissipative acoustic liquid, the equatiohsotion are written
in the reference configuration. Lgtx, ¢) be the acoustic pressure field defined in
Qp = Qp U oQ, (reference configuration), and letx, t) be the field defined on
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I', which is the normal displacement to the free surfa@ongn at pointx in the
reference configuration. At timi a surface force field and a body force field are
applied to the structure in the actual configuration, whighteansported on the
reference configuration and give the force fifll ) onT'z (see Eq. (6)) and the
body force fieldb(x, ¢) in Q25 (see Eq. (5)).

At time ¢, and in the reference configuration, the boundary valuelenolis
expressed in terms of the structural displacement fiéld¢), the internal pres-
sure fieldp(x, t), and the normal displacementx, ¢) of the free surface. Under
Cauchy initial conditions at time,, the problem consists in finding, for> ¢,
the fieldsu(x, t), p(X, t), andn(x, t), such that

1 0*p 71._,0p 1 _, .
o2 OF pOV o o Vp | L (10)

o Op o%u
(1+75)%——pown on Iy, (11)
0. Op 0n
14+7—) == —p,— r 12
( +T8t) an pO 6t2 on ) ( )
1 1 )
P=png n—o{(z+ 5+ Vin} on T, (13)
1 2
on
a_V:C”n+‘7u on -, (24)
2
psﬁ—dlv(FS) =b, VxeQg, (15)
FSn®=f on Ty, (16)
FSn*dl'y, = —pn®dl'y + 0. (J'n)dp, onTy, (17)

in which IF is defined by Eqg. (2) and wheteis related taE (defined by Eq. (9))
by the constitutive equation defined by Eq. (8). In these egus, the different
guantities are defined as follows:

e Eqg. (10) is the linear dissipative acoustic equation, incll, is the constant

mass density of the homogeneous liquid at equilibriggms the constant speed
of sound, and- is the constant coefficient that characterizes the digsipat the
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internal liquid (as a function of the dynamic, kinematicda®cond viscosities).

e Eq. (11) is the kinematic fluid-structure coupling condition ', which ex-
presses the continuity of the normal velocity field on theiiface.

e EqQ. (12) represents the kinematic equation for the freeasait.

e Eqg. (13) corresponds to the free-surface constitutive imuaf surfacel’,

in which o is the surface tension coefficier,is the gravitational acceleration
vector, R, and R, are the principal curvature radii, and whe¥&., denotes
the surface Laplacian related to surfdc€if capillarity is neglected, the clas-
sical sloshing free-surface boundary condition is reathv It can be seen that
(1/R?+1/R2) n+ V3in results from the change of the surface energy induced by
an infinitesimal change in, which yields a contribution to the surface pressure
(classical Young-Laplace law) (see [13], Chapter 4).

e Eq. (14) correspond to a new boundary condition for the airdagle com-
patible with a deformable structure, considered here a&saliviscoelastic with
geometrical nonlinearities. In the right-hand side of Hgt)( the first term cor-
responds to the classical contact angle condition on th&acbhne,~, in which
¢, is the contact angle coefficient (which is only valid for fixedid structure)
while the additional second term allows the structure de&dion to be taken into
account. In this termy is a differential operator on manifold;,, which is (i) de-
fined on a set of sufficiently differentiabR?-valued functions that are the traces
onI'; of functions on(g, (ii) with values in a set oR-valued functions that are
defined ony. A particular case for differential operatgr is the one given in [13]
(Section 4.3, page 80):

d(u-n%)

u=FEu-n®—
j 81/L

; (18)

in which F is a real coefficient and whetreg, is external unit normal te belong-
ing to the tangent plane to surfa€g. The physical interpretation of Eq. (18)
corresponds to the change of the energy due to an infinitéslmage in the po-
sition of the contact line, which yields a change of the wkterface.

e Eq. (17), which have been introduced for the first time in gbjiresponds to a

new fluid-structure boundary condition dn in the presence of capillarity, which
allows the condition of contact angle to be taken into actaua presence of a
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linear viscoelastic structure with geometrical nonlingas. For the readability
of the present paper, a short summary of the constructicecelled hereinafter.
The first term of the right-hand side corresponds to the fitiideture coupling
condition for a linear acoustic fluid coupled with the weakgetrical nonlinear
structure. Concerning the second termxet f(x) be any real function defined
onI'; such that its trace on is integrable ony with respect to the curvilinear
measurely on v (the length of curvey 5 f dy = |7| ) Then,dp., is a real

measure o', such thatf,.  f(x) du,(x f f(x) dv(x) (this means that the

support of measuréy., is v). The term(j’ )du7 is deflned orl’;, by algebraic
duality of the term7u defined ony (see Eq. (14)) using the duality brackets,

< Tu >, / (Tu)ndy. (19)

v

<u,Jn >>dM:/ (J'n) -udpu, . (20)
T
The term(J'n) dy., is then defined by
<u,Jn >, = <Ju,n>, . (21)

5. Computational fluid-structure model

LetP(¢), H(t), andU(¢) be the vectors corresponding to the spatial discretiza-
tion of fieldsp(x,t), n(x,t), andu(x,t). The first time derivative is denoted by
a dot and the second time derivative with a double dot. Therelization of the
variational formulation of the boundary value probleninn, u) yields:

e for Eqgs. (10) to (12),

AP} — (Gl (1) = (G O) = 0. (22)
in which [A*] is the symmetric matrix-valued linear differential operadefined
by [AL] = [M]d?/dt? + [D]d/dt + [K].

e for Egs. (13) and (14),
[Conl P(t) + ([Kg] + [K]) H(t) + [Cru] U(E) = 0. (23)
e for Eqgs. (15) to (17),
[Cou] P() + [Cou] TH(#) + [ME]O(1)
+A%{U(),U(1)} = F(U(1),1), (24)
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in which.4° is the vector-valued nonlinear differential operator treat be written
asA{U(t), U(H)} = [DS(U(£))] U()+KS{U(1)}, where[ DS (U(#))], K5 {U(#)}
andF®(U(t),t) are nonlinear mappings &f(¢). The different quantities intro-
duced in Egs. (22) to (24) are defined in Section 6.

It can be proved that, for atl> ¢, the problem defined by Egs. (22) to (24) with
the initial conditions, has a solutigR(¢), H(t), U(t)).

6. Vectors and matrices of the discretized problem presentkin Section 5

In this section, we give the expressions of the vectors artdeea introduced
in Section 5, which result from the discretization of the wéarmulation of the
boundary value problem defined by Egs. (10) to (17). For sucbnstruction,
for fixed ¢, we consider the field®(t), n(t), u(t)) and the test-function fieldsp,
dn, éu), which belong to the admissible spaces. In order to simghiénotations,
parametet will be removed if there is no possible confusion.

Matrices related to the equations i for the linear dissipative acoustic liquid

e Symmetric real matriX)| is positive definite, and corresponds to the dis-
- - g 1

cretization of the bilinear forngo—cg fQL pop dX.

e Symmetric real matrixk] is positive semidefinite with a kernel of dimension

1, and corresponds to the discretization of the bilinear fgérrﬁh Vp - Vépdx.

e Symmetric real matri¥D| = 7 [K] is positive semidefinite with a kernel of
dimensiont.

Matrices related to the equations i for the liquid free surface with capillarity

e Symmetric real matriXX,] is positive definite, and corresponds to discretiza-
tion of the bilinear formp, [.g-nndndrl.

e Symmetric real matriXK,| is positive definite, and corresponds to the dis-
cretization of the bilinear formw, [, V.n-V.ondl' — o, [1(zz + 7z) ndndl —

chf7 cyn on dry.

Matrices related to the coupling terms

e Rectangular real matri}C,,| corresponds to the discretization of the bilinear
form — fFLpn -oudly.
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e Rectangular real matri}C,, | corresponds to the discretization of the bilinear
form — [.pondr.

e Rectangular real matri}C,,] corresponds to the discretization of the bilinear
form —o,. [ (Ju)ondy.

Vectors and matrices related to the equationsiifor the structure with geomet-
ric nonlinearities and a linear viscoelastic constitutieguation without memory
effects

e Symmetric real matri¥)/*] is positive definite, and corresponds to the dis-
cretization of the bilinear fornj, psu - du dx.

e The vector D3(U(t))] U(t) + K°(U(t)) corresponds to the discretization (see
[85, 86, 87, 88, 89]) oﬂgs [F;; S;k (0du;/0xy) dX, in whichF is a function ofu
(see Eq. (2)) and whefgis also a function oti (see Egs. (8) and (9)).

Vector of external forces
e Vector F¥(U(t), t) of external forces correspond to the discretizatiodr%ff .

oudl'y + fQS b - dudx, in whichb depends o (see Eq. (5)) and wherfealso
depends ol (see Eg. (6)).

7. Decomposition of the admissible space of the discretizedupled problem
and associated vector bases

The method consists in constructing a decomposition of dneissible space
Cp.up of the discretized problem defined by Egs. (22) to (24) andirstructing
an adapted vector basis that spans each admissible space.

It can be shown (see [1]) that this admissible space can bmgsused in the
following direct sum,

Cpuy=Cp®Cx®Cy, (25)

in which each admissible space and its associated vect® isadefined here-
inafter.

7.1. Admissible spad€p and vector basis

The space’s is related to the discretized problem fh(see Eq. (22)) for
which the liquid is a linear acoustic liquid (without the sligative term) occupying
domain(2,, and for which we have the boundary conditigyyon = 0 onI';, and
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p = 0onI' U~ (i.e. there are no sloshing and no capillarity). Therefarg,is
the admissible space for the problem defined b P(t) + [K]P(t) = 0 with
P(t) = 0 for all the degrees of freedom (DOFs) related'to . A vector basis of
C'p can then be constructed as #i@ustic modesvhich are the eigenvectors of
the generalized eigenvalue problem with constraints,

[K]P =\, [M]P, (26)

with P = 0 for the DOF related ta" U . (27)

Let [P] = [P, ...Px,] be the rectangular real matrix whodg columns are con-
stituted of the eigenvectors associated withAhefirst smallest positive eigenval-
ues.

7.2. Admissible spad€y and vector basis

The space’y is related to the discretized problem kh for which the lig-
uid is considered as an inviscid incompressible liquidhvatoshing and capil-
larity, and for which the boundary condition #&/0n = 0 onIT',. Therefore,
Cy is the admissible space of the problefi;] P(t) — [C,,|TH(t) = 0 and
(CpylP(t) + ([K,] + [K])H(t) = 0. A vector basis o’y can then be constructed
as thesloshing-capillarity modesf liquid occupying domairi2;,, which are the
eigenvectors of the generalized eigenvalue problem witistcaints,

[K]P + Ap[Cp)"H =0, (28)

[Con]P + ([Ky] + [KJ)H = 0. (29)

Since the kernel of| is equal tol, the elimination o yields,
[Kye)H = Ar [Mr]H. (30)

[L]H =0, (31)

in which [L] is a real row matrix, and whefé,.| and[Mr|, under the constraints
[L]H = 0, are positive-definite symmetric matrices that are cowgtdias a func-
tion of matrices[K], [C,,], [K,] and[K.]. For practical construction of these
matrices, we refer the reader to Section 4.6 of Chapter 4 in[R&].

Let[#] = [H; ...Hx.] be the rectangular real matrix whodg columns are con-
stituted of the eigenvectors associated with Mefirst smallest strictly positive
eigenvalues.
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7.3. Admissible spaag;; and vector basis

Since the structure has a nonlinear behavior, the consiruist presented in
two steps: definition of the admissible spa¢e and then construction of a vector
basis.

7.3.1. Definition of the admissible spaCe

Cy is the admissible space of the discretized probletd {isee Eq. (24)), re-
lated to the viscoelastic structufgy, coupled with the liquid considered as an
inviscid incompressible liquid (without sloshing and dkgity) occupying do-
main(;, with the boundary conditiop = 0 onIT". We then obtain the following
discretized equations i{, U) deduced from Egs. (22) and (24),

[K]P(t) — [Cp)"U(t) = 0 WithP(t) =0 onT U , (32)

[Cou] P(t) + [ME]U(t) + [D(U(2))] U(t)
+ K{U(t)} = F¥(U(t),t). (33)

Using Eg. (32),P(¢) can be eliminated in order to obtain an equatiorUift).

Let [K '] be the matrix such that the solution [@f]P = F (in which F is an
arbitrary vector) under the constrait= 0 onT" U v, is written asP = [K_!]F.

Consequently, Eq. (32) yield&(t) = [K '] [C,u]" U(t). By substitution in (33),
we obtain

([MP]+ [Ma) U(t) + [D2(U(#))] V(1)
+ KU} =F(U(1),1), (34)

in which [M,] is a positive symmetric matrix (called the added mass matrix
which is written as
(M) = [Cpu] [KT] [C]” (35)

*

7.3.2. Construction of a vector basis fOf;

Two main approaches can be used for constructing the veats tborCy,
represented by the rectangular maftik = [U; ... Uy,] inwhich theNg columns
are Ny algebraically independent vectors that span a subspacgmendion/V.

e Thefirstone is the proper orthogonal decomposition (POPj@ach, which
does not require expertise in the selection of the vectoispast which
yields a basis that depends on the selected excitationsfoacel which re-
quires solving a nonlinear dynamical problem in high dimens
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e The second one is the linear modes approach, which requies/agreat
expertise for selecting the linear modes that participatbée nonlinear re-
sponse of the structure.

The reader will find in [90] an extensive, comprehensive, dathiled review
concerning the construction of such a vector basis in stractdynamics for a
structure with nonlinear geometric effects.

In the present paper, we propose to construct a vector bagig an using
the nonlinear structure coupled with the liquid considessdan incompressible
inviscid liquid in order to take into account the effects dflad mass. It should
be noted that we do not recommend to use the structure in acuamdded mass
effect taken into account). Let us recall that the addedsraetiscts corresponding
to compressible and incompressible fluids are distinct (Gagpters 5 and 8 in
[13]) and see [91, 92] in which it is shown that the added-nesscompressible
flow does not admit a simple local-in-time decompositionisTitithe reason why
the added-mass effects have been introduced using an agsbiticompressible
liquid. Let us remark that solely for the construction of thesis ofCy,, the use
of the POD for the complete fluid-structure problem definedqyg. (22) to (24)
would not be computationally efficient, and in addition i imothe spirit of the
method proposed for constructing the reduced-order madehé fluid-structure
problem under consideration.

(i) - POD-based approachThe POD approach requires to solve the following
evolution problem

([MP] + [Ma]) U(t) + [D*(U(1))] U(t)
+ KU} =F5(U(t),t) t>ty, (36)

with the initial conditions
U(to) = UO 5 U(to) = VO . (37)

A displacement snapshot matfiX,,] is formed using the responsgét, ), . .., U(¢,,)
of Egs. (36) and (37) at instantsy, . . ., t,, (Snapshots) with sufficiently large,
in forming the real symmetric matrix

[Rsnag = [Usna;JT [Usnaé ) (38)

1
n
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and in computing the dominant eigensubspace (associatbdtivéa Ng largest
positive eigenvalueg; > ... > uy, > 0), represented by the rectangular matrix
[U] = [U; ... Uy,], of the eigenvalue problem,

[Rsnag Ua = ttaUs , a=1,...,Ng. (39)

(i) - Use of the linear modesWith the linear modes approach, the vector basis
is constituted of thelastic mode®f the underlying linear structural system with
the added mass, and is then constructed by solving the dieedraigenvalue
problem (deduced from Eq. (34)),

[KWTU = Ag ([M®] + [MA]) U, (40)

in which
(KW = {0{K>{U}}:/0U; Hu=o, (41)

which is the linear part of the nonlinear operatbr— K“{U}. As explained
before, the linear modds, . .. Uy, have to be carefully selected because all the
participating modes in the nonlinear responses must beded [90]. This means
that the associated eigenvalues: \g; < ... < Agn, (Which are in increasing
order) are not, in general, consecutive. It should be ndtatithe eigenvectors
that correspond to zero eigenvalues are the rigid body motitse underlying
linear structural system with the added mass (and not, ierg&rthe rigid body
modes of the nonlinear fluid-structure system) .

Let (/] = [U;...Uy,] be the rectangular real matrix who$& columns are
constituted of the selected eigenvectors.

8. Nonlinear reduced-order computational model

8.1. Methodology for constructing the nonlinear reducedeo computational
model

The reduced-order model of ordéN;, Nr, Ng) is obtained by projecting
(P(t),H(t),U(t)) on the vector bases constructed in Section 7,

P(t) = [P]a"(1), (42)
H(t) = [H]a" (1), (43)
u(t) = [U]q”(1), (44)



and then in projecting Egs. (22) to (24). The two linear nxaeéquations defined
by Egs. (22) and (23) can classically be projected withoytgarticular difficul-
ties. Concerning the nonlinear equation defined by Eq. (@4, to the nonlin-
earity inU(¢), several approaches can be used for constructing the poojéc a
computational framework, that we briefly summarized hexftgr. The possible
approaches can be classified in the class of the intrusivieadetwith respect to
the commercial softwares and the class of the non-intrusiee

() For the class of intrusive methods, two main approacheshe identified:

(i-1) The first one consists in implementing, at each time steequired by the
time integration scheme used, the direct computation ofr¢kdeced nonlinear
force [U]" A {[U] 9 (1), [L] Y (¢)} and in introducing a hyper reduction tech-
nique for reducing the numerical cost of the computatioe (68, 69, 70, 71]).

(i-2) The second one consists in implementing the directmaation of the re-
duced nonlinear terms that result from an algebraic caiculaof the different
contributions of the projection A {U(t), U(t)},

[U]" A {[U] Q" (1), [U) g (1)}
= [U]"[D([U)a” ()] (U] 47 (¢)
+ [U]"KH{[U]q"(t)} . (45)

The component of the reduced conservative term can be written as
{[U] KU1 0" (0)}}a = K03 g5 (1)
+ Ko, 45 (6) €5 (1) + K, 05 (8) 03/ (1) a5 (1) . (46)

with summation on the repeated Greek indices. The compenehthe reduced
dissipative term can be written as

(D2 1) (U] &7 (1) = 5 { D g 1
+ D a5 ¢! () + D s a0 a (1)) - (47)

With such a direct intrusive approach, all the constantfaoehts of the tensors
in the right-hand sides of Eqgs. (46) and (47) are calculatsitie the software.
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For the conservative term defined by Eq. (46), such a direpteémentation can
be found in [93, 94] and can be extended without difficultytte tissipative term
defined by Eq. (47).

(i) For the class of non-intrusive methods related to tHeutation of the conser-
vative part defined by Eq. (46), the approach consists in nigally identifying
all the coefficients of the tensors that appear in the rigimehside of Eq. (46)
by solving an inverse problem based on the computation ohtiminear static
responses of the structure in vacuo submitted to apprepDaichlet conditions
related to the selected vectdds, . . . Uy, of the vector basis. In [90], the reader
will find a detailed review concerning such a numerical ideation for all the
coefficients of the tensors relative to the elastic part {(eeeright-hand side of
EqQ. (46)). Some applications of such a methodology can bedoior instance,
in [4, 95, 96]. This approach could certainly be extendeddentifying the co-
efficients of the tensors related to the dissipative pag {ke right-hand side of

Eq. (47)).

8.2. Nonlinear reduced-order computational model for thedflstruture system

Using the methodology presented in Section 8.1, the follgwionlinear ma-
trix equation is obtained for the reduced-order computationodel,

6" (t) q”(t)
6" (1) ] + [Brsi ! q" (1) ]
6" (t) g (t)

[A FSI]

, (48)
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in which the matrice$A rg, [Brs|, and[C'rs] are written as

(M) —[Cp]" [Cpu]T]
[AFSI]: 0 0 0 ’ (49)
0 0 [M?]
D] 0 0
[BFSJ! 0 0 o] , (50)
0 00
[K] 0 0
[Ces] = | [Con]  [Ky] [Cnu]:| ; (51)
[Cpu] [Cp]™ O

with the following definitions for all the matrices in Eqs9to (51):

e For the reduced matrices relative to the liquiddt] = [P]* [M][P], [D] =
[PI" [D][P], and[ K] = [P]" [K] [P].

e For the reduced matrix relative to the free surfack,.] = [H]” ([K,] +
[KC]) [H].

e For the reduced matrix relative to the structure(®] = [U]T [M*] [P].

e For the reduced matrices relative to the couplinG,,] = [H|" [C,,][P],
[Cpu] = [UI" [Cpu] [P], @and[Cp] = [H]" [ Cr] [U].

9. Conclusion

In this paper, a nonlinear reduced-order computationalahbds been con-
structed for a linear viscoelastic structure with weak medr geometrical ef-
fects, the structure being coupled with a linear acoudaidi with sloshing and
capillarity on the free surface. The model proposed is éerifrom the one
used in fluid-structure interaction for linear systems, Widrich the analysis of
the acoustic-sloshing-capillarity phenomena is efficteanhks to the use of a pro-
jection on the linear modes of the linear acoustic liquid andhe sloshing modes
with capillarity. Concerning the construction of the vedbasis for the structure,
its is proposed to use a POD approach for the viscoelastictate with weak
nonlinear geometrical effects and taking into account thaeed mass induced by
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the liquid. The methodology for constructing the vectordsasf the admissi-
ble sets and for obtaining the nonlinear ROM are detailede ddmputational
nonlinear ROM presented can directly be used for analysivitbration of such
fluid-structure systems using commercial finite elementsoes for computing
the vector bases and the projections.

References

[1] Ohayon R, Soize C. Vibration of structures containinghgoessible liquids
wit surface tension and sloshing effects. Reduced-ordelem@omputational
Mechanics 2015; 55(6):1071-1078.

[2] Kana DD, Lindholm US, Abramson HN. An experimental stualyliquid
instability in a vibrating elastic tank. Journal of Spaedti966; 3(8):1183-
1188.

[3] Soize C. Stochastic Models of Uncertainties in Compatetl Mechanics.
American Society of Civil Engineers (ASCE), Reston, 2012.

[4] Mignolet MP, Soize C. Stochastic reduced order modalsificertain nonlin-
ear dynamical systems, Computer Methods in Applied Medsaand Engi-
neering 2008; 197(45-48): 3951-3963.

[5] Ohayon R, Soize C. Advanced Computational Vibroacassti Reduced-
Order Models and Uncertainty Quantification. Cambridgevigrsity Press,
New York, 2014.

[6] de Gennes PG, Brochard-Wyart F, Quéré D. Capillanitg Wetting Phenom-
ena. Drops, Bubbles, Pearls, Waves, Springer, New York4 200

[7] Landau L, Lifchitz E. Fluid Mechanics. Pergamon Pressfotd, 1992.

[8] Abramson HN. The dynamic behavior of liquids in movingitainers. NASA
SP-106, 1966.

[9] Myshkis AD, Babskii VG, Kopachevskii ND, Slobozhanin L.Ayuptsov AD,
Wadhwa RS. Low-Gravity Fluid Mechanics. Springer-Verlggrlin, 1987.

[10] Dodge FT. The New "Dynamical Behaviour of Liquids in Mog Contain-
ers”. Southwest Research Institute, San Antonio, Texa¥).20

20



[11] Moiseyev NM, Rumyantsev VV. Dynamic Stability of Bogi€ontaining
Fluid. Volume 6, Applied Physics and Engineering EditiompyriBger, New
York, 1968.

[12] Ibrahim R. Liquid Sloshing Dynamics: Theory and Applions. Cambridge
University Press, Cambridge, 2005.

[13] Morand HJP, Ohayon R. Fluid Structure Interaction.nlbdtiley & Sons,
Chichester, 1995.

[14] Bermudez A, Rodriguez R, Santamarina D. Finite elenoemputation of
sloshing modes in containers with elastic baffle plategriational Journal for
Numerical Methods in Engineering 2003; 56(3):447-467.

[15] Ohayon R. Reduced models for fluid-structure intecacproblems. Inter-
national Journal of Numerical Methods in Engineering 2@B{]1):139-152.

[16] Felippa CA, Park KC, Ross MR. A classification of interdareatments for
FSI, pp. 27-51 in Fluid Structure Interaction Il, Spring@erlin, 2010.

[17] Farhat C, Chiu EKY, Amsallem D, Schotté JS, Ohayon Rdelmg of fuel
sloshing and its physical effects on flutter. AIAA Journall3§51(9):2252-
2265.

[18] Schotté JS, Ohayon R. Linearized formulation for flatducture interaction:
Application to the linear dynamic response of a pressuraadtic structure
containing a fluid with a free surface. Journal of Sound aratation 2013;
332:2396-2414.

[19] Dettmer W, Peri¢ D. A computational framework for frearface fluid flows
accounting for surface tension. Computer Methods in Aplplechanics and
Engineering 2006; 195:3038-3071.

[20] Veldman AEP, Gerrits J, Luppes R, Helder JA, Vreeburg.Jfhe numerical
simulation of liquid sloshing on board spacecraft. JouwfaComputational
Physics 2007; 224:82-99.

[21] El-Kamali M, Schotté JS, Ohayon R. Three-dimensianabal analysis of
sloshing under surface tension. International Journalifonerical Methods in
Fluids 2011; 65:87-105.

21



[22] Pukhnachev VV, Solonnikov VA. On the problem of dynaroontact angle.
Journal of Applied Mathematics and Mechanics 1982; 46:9B1-

[23] Concus P, Finn R. On the behavior of a capillarity suefata wedge. Pro-
ceedings of the National Academy of Sciences 1969; 63(2)28®.

[24] Thompson PA, Robbins MO. Simulation of contact line raot slip and the
dynamic contact angle. Physical Review Letters 1989; 637/&0.

[25] Cocciaro B, Faetti S, Nobili M. Capillarity effects ohd surface gravity
waves in a cylindrical container: wetting boundary corutis. Journal of Fluid
Mechanics 1991; 231:325-343.

[26] Dussan V, Ramé E, Garoff S. On identifying the appratgriboundary con-
ditions at moving contact line: an experimental investgatJournal of Fluid
Mechanics 1991, 230:97-111.

[27] Keller JB, Merchant G. Flexural rigidity of a liquid dace. Journal of Sta-
tistical Physics 1991; 63:1039-1051.

[28] Henderson DM, Miles JW. Surface-wave damping in a dacaylinder with
a fixed contact line. Journal of Fluid Mechanics 1994; 275:289.

[29] Shankar PN, Kidambi R. The contact angle in invisciddloiechanics. Pro-
ceedings of the Indian Academy of Sciences (Math. Sci.) 2005(2):227-
240.

[30] Miras T, Schotté JS, Ohayon R. Energy approach foicstatd linearized
dynamic studies of elastic structures containing incosglae liquids with
capillarity: a theoretical formulation. Computational &hanics 2012; 50:729-
741.

[31] Finn R. On the equations of capillary. Journal of Matlagical Fluid Me-
chanics 2001; 3:139-151.

[32] Finn R. The contact angle in capillarity. Physics ofiBki2006; 18:047102.

[33] Finn R, Luli GK. On the capillary problem for compredsilfluids. Journal
of Mathematical Fluid Mechanics 2007; 9:87-103.

[34] Luke JC. A variational principle for a fluid with a free réace. Journal of
Fluid Mechanics 1967; 27(2):395-397;

22



[35] Miles JW. Nonlinear surface-waves in closed basinsridal of Fluid Me-
chanics 1976; 75:419-448.

[36] Limarchenko OS. Effect of capillarity on the dynamidsaccontainer liquid
system. Soviet Applied Mechanics 1981, 17(6):601-604.

[37] Limarchenko OS. Application of the variational methimdthe solution of
nonlinear problems of the dynamics of combined motions aink twith fluid.
Soviet Applied Mechanics 1983, 19(11):1021-1025.

[38] Peterson LD, Crawley EF, Hansman RJ. Nonlinear fluidislcoupled with
a dynamics of a spacecraft. AIAA Journal 1989; 27(9):1220aL

[39] Harari I, Grosh K, Hughes TJR, Malhotra M, Pinsky PM, &aet JR,
Thompson LL. Recent development in finite element methodstmctural
acoustics. Archives of Computational Methods in Engimeeri996; 3(2-
3):131-309.

[40] Ohayon R, Soize C. Structural Acoustics and Vibratidnademic Press,
London, 1998.

[41] Ohayon R, Soize C. Advanced computational dissipattvectural acous-
tics and fluid-structure interaction in low- and mediumginency domains.
Reduced-order models and uncertainty quantificationrdateonal Journal of
Aeronautical and Space Sciences 2012; 13(2):127-153.

[42] Soize C. Coupling between an undamped linear acousttdhd a damped
nonlinear structure - Statistical energy analysis comaittens. Journal of the
Acoustical Society of America 1995; 98(1):373-385.

[43] Tezduyar T, Behr M, Liou J. A new strategy for finite elemeompu-
tations involving moving boundaries and interfaces - Thioweing-spatial-
domain/space-time procedure: |. The concept and prelipimamerical tests.
Computer Methods in Applied Mechanics and Engineering 199239-351.

[44] Tezduyar T, Behr M, Mittal S, Liou J. A new strategy for ifen element
computations involving moving boundaries and interfacd$e deforming-
spatial-domain/space-time procedure: Il. Computatiofre$-surface flows,
two-liquid flows, and flows with drifting cylinders. Comput®lethods in Ap-
plied Mechanics and Engineering 1992; 94:353-371.

23



[45] Farhat C, M. Lesoinne M, Le Tallec P. Load and motion $fanalgorithms
for fluid/structure interaction problems with non-matahuhiscrete interfaces:
Momentum and energy conservation, optimal discretizatiod application
to aeroelasticity. Computer Methods in Applied Mechaniod &ngineering
1998; 157(1-2):95-114.

[46] Farhat C, Geuzaine P, Brown G. Application of a thretfrenlinear fluid-
structure formulation to the prediction of the aeroelagticameters of an F-16
fighter. Computers and Fluids 2003; 32(1):3-29.

[47] Tezduyar T. Interface-tracking and interface-cajpigitechniques for finite
element computation of moving boundaries and interfacemliter Methods
in Applied Mechanics and Engineering 2006; 195:2983-3000.

[48] Wall WA, Genkinger S, Ramm E. A strong coupling partitesl approach
for fluid-structure interaction with free surfaces. Congyatand Fluids 2007,
36(1): 169-183

[49] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y. Isogeometrigdistructure
interaction: theory, algorithms, and computations. Cotational Mechanics
2008; 43(1):3-37.

[50] Takizawa K, Tezduyar TE. Multiscale space-time fluidisture interaction
technigues. Computational Mechanics 2011; 48:247-267.

[51] BazilevsY, Takizawa K, Tezduyar TE. ComputationaliBit&tructure Inter-
action. John Wiley & Sons, Chichester, 2013.

[52] Nobile F, Pozzoli M, Vergara C. Time accurate partigdralgorithms for the
solution of fluid-structure interaction problems in haewramics. Computers
and Fluids 2013; 86:470-482

[53] Farhat C, Lakshminarayana VK. An ALE formulation of eadlled bound-
ary methods for tracking boundary layers in turbulent flsiidicture interaction
problems. Journal of Computational Physics 2014; 263®%3-7

[54] Li Z, Leduc J, Combescure A, Leboeuf F. Coupling of SPHEAmMethod
and finite element method for transient fluid-structureratgon. Computers
and Fluids 2014; 103:6-17.

24



[55] Becker P, Idelsohn SR, Onate, E. A unified monolithipra@ch for multi-
fluid flows and fluid-structure interaction using the Padiélinite Element
Method with fixed mesh 2015; 55(6):1091-1104.

[56] Cahn JW, Hilliard JE. Free energy of a nonuniform systetmterfacial free
energy. The Journal of Chemical Physics 1958; 28(2):258-26

[57] van Brummelen EH, Shokrpour-Roudbari M, van Zwieten. Glasto-
capillarity simulations based on the Navier-Stokes-CHilhard equations.
ArXiv 1510.02441v1 2015; 1-8.

[58] Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/sinee modeling of a
complete aircraft configuration. Computer Methods in ApglMechanics and
Engineering 2006; 195(41-43):5730-5742.

[59] Grepl MA, Maday Y, Nguyen NC, Patera A. Efficient redudeakis treat-
ment of nonaffine and nonlinear partial differential eqoiasi. ESAIM: Mathe-
matical Modelling and Numerical Analysis 2007; 41(03):55b.

[60] Nguyen N, Peraire J. An efficient reduced-order modgdipproach for non-
linear parametrized partial differential equations. ing&ional Journal for Nu-
merical Methods in Engineering 2008; 76(1):27-55.

[61] Amsallem D, Cortial J, Carlberg K, Farhat C. A methodifterpolating on
manifolds structural dynamics reduced order models. mattgsnal Journal for
Numerical Methods in Engineering 2009; 80(9):1241-1258.

[62] Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-lineaodel reduction
via a least-squares Petrov-Galerkin projection and cosspre tensor approx-
imations. International Journal for Numerical Methods mgkheering 2011;
86(2):155-181.

[63] Amsallem D, Zahr MJ, Farhat C. Nonlinear model orderuatn based
on local reduced-order bases. International Journal fan&tical Methods in
Engineering 2012; 92(10):891-916.

[64] Amsallem D, Farhat C. On the stability of projectionskd linear reduced-
order models: Descriptor vs nondescriptor forms, pp. 23%i8 Reduced Or-
der Methods for Modeling and Computational Reduction. I8t MS & A
Series, 2014.

25



[65] Farhat C, Avery P, Chapman T, Cortial J. Dimensionalictn of nonlinear
finite element dynamic models with finite rotations and epdrgsed mesh
sampling and weighting for computational efficiency. Inefonal Journal for
Numerical Methods in Engineering 2014; 98(9):625-662.

[66] Hetmaniuk U, Tezaur R, Farhat C. Review and assessniénteopolatory
model order reduction methods for frequency responsetstalaynamics and
acoustics problems. International Journal for Numericatids in Engineer-
ing 2012; 90:1636-1662.

[67] Hetmaniuk U, Tezaur R, Farhat C. An adaptive scheme &aiss of interpo-
latory model reduction methods for frequency responselgnod. International
Journal for Numerical Methods in Engineering 2013; 93:110924.

[68] Bui-Thanh T, Murali D, Willcox K. Proper orthogonal demposition ex-
tensions for parametric applications in compressible&aramics AIAA Pa-
per 2003-4213, 21st Applied Aerodynamics Confere@ckando, Florida, June
23-26, 2003.

[69] Ryckelynck D. A priori hyperreduction method: an ade@gpproachJour-
nal of Computational Physic2005;202346-366.

[70] Amsallem D, Zahr M, Choi Y, Farhat C. Design optimizatiosing hyper-
reduced-order modelsStructural and Multidisciplinary Optimizatio2015;
51(4):919-940.

[71] Farhat C, Chapman T, Avery P. Structure-preservirahibty, and accuracy
properties of the Energy-Conserving Sampling and WeigtftCSW) method
for the hyper reduction of nonlinear finite element dynammdels.Interna-
tional Journal for Numerical Methods in Engineeri@g15; 102(5):1077-1110.

[72] Holmes P, Lumley J, Berkooz G. Turbulence, Coherenic®ires, Dynami-
cal Systems and Symmetry. Cambridge University Press: @dg#) 1996.

[73] Soize C. Reduced models in the medium frequency ranggeioeral dissi-
pative structural-dynamics systems. European Journalkahénics - A/Solids
1998; 17(4):657-685.

[74] Han S, Feeny BF. Enhanced proper orthogonal deconmoséitr the modal
analysis of homogeneous structures. Journal of Vibratrah @ontrol 2002;
8(1):19-40.

26



[75] Amabili M, Sarkar A, Paidoussis MP. Reduced-order nieder nonlin-
ear vibrations of cylindrical shells via the proper orthngbdecomposition
method. Journal of Fluids and Structures 2003; 18(2):227-2

[76] Kerschen G, Golinval JC, Vakakis AF, Bergman LA. The hwet of proper
orthogonal decomposition for dynamical characterizaind order reduction
of mechanical systems: an overview. Nonlinear Dynamic$200:147-169.

[77] Sampaio R, Soize C. Remarks on the efficiency of POD fadehceduction
in nonlinear dynamics of continuous elastic systems. iagonal Journal for
Numerical Methods in Engineering 2007; 72(1):22-45.

[78] Willcox K, Peraire J. Balanced model reduction via threger orthogonal
decomposition. AIAA Journal 2002; 40(11):2323-2330.

[79] Prudhomme C, Rovas D, Veroy K, Machiels L, Maday Y, Patéy,
Turinici G. Reliable real-time solution of parametrizedtg differential equa-
tions: Reduced-basis output bound methods. Journal ofi$lEngineering-
Transactions of the ASME 2002; 124(1):70-80.

[80] Astrid P, Weiland S, Willcox K, Backx T. Missing point&@sation in mod-
els described by proper orthogonal decomposition. IEEESaetions on Au-
tomatic Control 2008; 53(10):2237-2251.

[81] Ciarlet PG. Mathematical Elasticity: Three-dimemsbelasticity, Volume
1. Elsevier, Amsterdam, 1993.

[82] Fung YC, Tong P. Classical and Computational Solid Megsbs. World Sci-
entific, Singapore, 2001.

[83] Coleman BD, Noll W. Foundations of linear viscoelagyicReview of Mod-
ern Physics 1961; 33(2):239249.

[84] Desceliers C, Soize C. Nonlinear viscoelastodynangigagions of three-
dimensional rotating structures in finite displacement nide element dis-
cretization. International Journal of Non-linear Meclw@n2004; 39(3): 343-
368.

[85] Zienkiewicz OC, Taylor RL. The Finite Element Method olid and Struc-
tural Mechanics. Sixth edition. Elsevier, Butterworthihamann, Amsterdam,
2005.

27



[86] Bonet J, Wood RD. Nonlinear Continuum Mechanics foritéirElement
Analysis. Second edition. Cambridge University Press, laige, 2008.

[87] Wriggers P. Nonlinear Finite Element Methods. Sprirgerlag, Berlin,
2010.

[88] De Borst R, Crisfield MA, Remmers JJC, Verhoosel CV. Niogdr Finite
Element Analysis of Solids and Structures. Second edifioinn Wiley & Sons,
Chichester, 2012.

[89] Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear tite Elements
for Continua and Structures. John Wiley & Sons, Chicheg@t4.

[90] Mignolet MP, Przekop A, Rizzi SA, Spottswood SM. A rewieof
indirect/non-intrusive reduced order modeling of nordingeometric struc-
tures. Journal of Sound and Vibration 2013; 332:2437-2460.

[91] van Brummelen EH. Added mass effects of compressibteiacompress-
ible flows in fluid-structure interaction. Journal of Apmli&lechanics 2009;
76:021206-1-7.

[92] van Brummelen EH. Partitioned iterative solution nueth for fluid-structure
interaction. International Journal for Numerical Methods Fluids 2011;
65:327.

[93] Capiez-Lernout E, Soize C, Mignolet MP. Post-bucklnamlinear static and
dynamical analyses of uncertain cylindrical shells andeeixpental validation.
Computer Methods in Applied Mechanics and Engineering 2074(1):210-
230.

[94] Capiez-Lernout E, Soize C, Mbaye M. Mistuning analyeigl uncertainty
guantification of an industrial bladed disk with geometrimanlinearity. Jour-
nal of Sound and Vibration 2015; 356:124-143.

[95] Perez R, Wang XQ, Mignolet MP. Nonlinear reduced-ormtdedels for ther-
moelastodynamic response of isotropic and functionakylgd panels. AIAA
Journal 2011; 49(3):630-641.

[96] Murthy R, Wang XQ, Perez R, Mignolet MP, Richter LA. Umtzenty-based
experimental validation of nonlinear reduced order mad#sirnal of Sound
and Vibration 2012; 331:1097-1114.

28



