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Abstract

This paper deals with a novel formulation of a nonlinear reduced-order computa-
tional model for analyzing the nonlinear vibrations of a linear viscoelastic struc-
ture with weak nonlinear geometrical effects, coupled witha linear acoustic liquid
with sloshing and capillarity on the free surface. The modelproposed is derived
from the one used in fluid-structure interaction for linear systems, for which the
analysis of the acoustic-sloshing-capillarity phenomenais efficient thanks to the
use of a projection on the linear modes of the linear acousticliquid and on the
sloshing modes with capillarity. Concerning the construction of the vector basis
for the structure, it is proposed to use a POD approach for theviscoelastic struc-
ture with weak nonlinear geometrical effects and taking into account the added
mass induced by the liquid. The methodology for constructing the vector bases
of the admissible sets and for obtaining the nonlinear ROM are detailed. The
computational nonlinear ROM that is presented can directlybe used for analyz-
ing the vibrations of such fluid-structure systems using commercial finite element
softwares for computing the vector bases and the projections.

Keywords: Nonlinear vibration, nonlinear reduced-order model, ROM,structure
coupled with liquid, FSI, geometrical nonlinearity, sloshing, capillarity, surface

∗Corresponding author: C. Soize, christian.soize@univ-paris-est.fr
Email addresses:roger.ohayon@cnam.fr (Roger Ohayon),

christian.soize@univ-paris-est.fr (Christian Soize )

Preprint submitted to Computers and Fluids March 29, 2019



tension,

1. Introduction

This paper is the continuation of the work published in [1] for which the linear
behavior of the structure is replaced by a weak geometrical nonlinear behavior
(a requirement being that if the structural nonlinear term goes to zero, the linear
formulation is retrieved). The structure contains a lineardissipative acoustic liq-
uid (no flow), with linear sloshing and capillarity, and for which the effects of
internal gravity waves are neglected. A linear formulationfor the acoustic liquid
is kept in order to preserve the vibration analysis expressed in terms of acoustic
and sloshing modes for small (infinitesimal) fluid displacements (consequently,
the ALE formulation that requires a mesh deformation is not well adapted to such
a requirement). Since the structure can undergo small finitedisplacements, the
model proposed consists in writing the equations of the linear acoustic fluid on
the undeformed configuration and in transporting the actualconfiguration of the
structure on its undeformed configuration. In addition, we also want to preserve
a slip condition for the fluid on the fluid-structure interface, which is facilitated
with the formulation proposed (such a condition is of coursenot valid in micro-
and nano-fluidics). It should be noted that the underlying hypotheses of such a
formulation (small finite displacements for the structure and linear behavior of
the acoustic liquid in presence of sloshing and capillarityeffects) are justified in
many applications (see for instance the experimental observations described in
[2]). The simplifications introduced in the formulation proposed (such as the non-
inclusion of the finite fluctuations of the wetting fluid-structure interface) intro-
duce uncertainties induced by modeling errors. Such uncertainties could be taken
into account in a probabilistic framework of uncertainty quantification. Since
these types of uncertainties are not relevant of the usual parametric probabilistic
approach [3], an open way of research could be the nonparametric probabilistic
approach of modeling errors [4, 5]. But, for the present fluid-structure interaction
problem, novel nonparametric approaches should be developed in order to take
into account modeling errors in computational fluid dynamics.

The novel feature of the paper is to propose the constructionof a computa-
tional nonlinear reduced-order model (ROM) derived from the one used in lin-
ear fluid-structure interaction (for which the analysis of the acoustic-sloshing-
capillarity phenomena is efficient thanks to the use of a projection on the linear
modes of the acoustic liquid and on the sloshing modes with capillarity), in taking
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into account weak geometric nonlinearities in the structure. Furthermore, for the
structure with geometric nonlinearities, a linear viscoelastic constitutive equation
without memory effects is used for generating damping in thestructure instead of
the use of an empirical damping model that is arbitrary addedin the reduced-order
equations (as frequently done).

Concerning the linear formulation for the compressible liquid with free sur-
face, the sloshing is taken into account with surface tension (capillarity) effects.
We refer the reader to [6, 7] for the classical theory on capillarity, to [8, 9, 10] for
developments of the behavior of liquids in microgravity environment, to [11, 12]
for general analyzes of sloshing problems for incompressible liquids in rigid struc-
tures, to [13, 14, 15, 16, 17, 18] for sloshing problems of incompressible liquids
without capillarity effects in elastic structures, to [13,19, 20, 21] for sloshing
problems of incompressible liquids with capillarity effects in rigid structures, to
[22, 23, 24, 25, 26, 27, 28, 13, 29] for the conditions of contact angle between
the free surface and the structure, to [30] for sloshing problems of incompressible
liquids with capillarity effects in elastic structures, to[31, 32, 33] for sloshing
problems of compressible liquids with capillarity effectsin rigid structures, to [1]
for linear dissipative acoustic liquids with sloshing and capillarity effects in linear
elastic structures. Concerning nonlinear sloshing and capillarity for incompress-
ible liquids in rigid tanks submitted to rigid body motions,see [34, 35, 36, 37, 38].
Concerning computational reduced-order models for the linear vibration of struc-
tures containing compressible liquids without surface tension and without slosh-
ing effects, we refer the reader for instance to [13, 39, 40, 41, 5]. Note that the case
of a structure with weak geometrical nonlinearities coupled with a linear acoustic
fluid has been investigated in the high-frequency domain in [42].

General computational methods for strongly nonlinear fluid-structure inter-
action problems including sloshing and capillarity, without the introduction of
reduced-order models (but generally using ALE-based approach for the fluid), can
be found in [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Ageneral discussion
on elasto-capillary fluid-structure interaction including fluid-solid surface-tension
effects and taking into account a transition layer made up a diffuse-interface model
related to a phase separation between complex fluids and/or soft matters (Cahn-
Hilliard model [56]) can be found in [57].

For constructing computational reduced-order model (ROM)in linear and
nonlinear structural dynamics and in fluid-structure interaction, some method-

3



ologies have extensively been analyzed in literature. A lotof works have been
published for constructing ROM and parametric ROM for linear and nonlinear
computational models in dynamics in the area of computational structural dynam-
ics and fluid-structure interaction among which [13, 58, 59,60, 61, 62, 63, 64, 65]
and in vibroacoustics [40, 66, 67, 5]. A hyper reduction is required for reducing
the numerical cost of the ROM construction (see for instance[68, 69, 70, 71]).
The construction of the reduced-order basis (ROB) is based on the computation of
solution snapshots performed with the computational model. The Proper Orthog-
onal Decomposition (POD) method [72] is a possible approachfor constructing
the ROB as used in linear structural dynamics for all possible input forces [73] or
for a given set of input forces [74, 75, 76, 77]. When the POD method is used
for constructing the ROB for a nonlinear computational model [62, 78], a large
number of snapshots is used (for time evolution problems, the time becomes a pa-
rameter) and the responses are compressed into a low-dimensional ROB using, for
example, the singular value decomposition method and several ingredients such
as those presented in [79, 80].

In Section 2, we give the notations and hypotheses used. Section 3 deals
with the nonlinear equation for the structure expressed in the reference configu-
ration. The boundary value problem for the nonlinear fluid-structure problem is
presented in Section 4 for which the formulation retained isexpressed using the
pressure field in the liquid, the elevation of the free surface, and the displacement
field of the structure. In Sections 5 and 6, we present the computational fluid-
structure model. The decomposition of the admissible spaceof the discretized
coupled problem and the construction of the associated vector bases are presented
in Section 7. Finally, the nonlinear reduced-order computational model is detailed
in Section 9.

2. Notations and hypotheses

We consider the fluid-structure system in itsreference configurationdefined in
Figure 1. For this reference configuration, the structure isundeformed and occu-
pies an open, bounded, and connected subsetΩS of R3. The existing prestresses
are not taken into account, which means that the undeformed configuration corre-
sponds to a natural state. In the reference configuration, the undeformed structure
contains a liquid, which occupies an open and bounded domainΩL. The geome-
try of domainΩL results from a pre-computation for finding the static equilibrium
of the liquid in the structure considered as rigid, and submitted to the gravity ef-
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fects and to the surface-tension effects (capillarity) of the free surface and of the
fluid-structure interface. Since the liquid is linear and since we are interested in
studying the dynamics around the static equilibrium, the fluid in domainΩL is
assumed to be in a natural state.

The constitutive equation for the structure is assumed to belinear viscoelastic
in finite displacements with instantaneous memory, described by a displacement
field measured from the reference configuration, and can undergo weak finite dis-
placements (small strain and moderate rotations). The liquid is a linear dissipative
acoustic fluid, which means that the liquid is homogeneous, compressible, invis-
cid with a volumic additional dissipative term, described by a pressure field, and
which is in irrotational infinitesimal motions with respectto the reference configu-
ration. It should be noted that the liquid is inviscid on the fluid-structure interface
on which a slip condition will be written.

The physical space is referred to a cartesian reference system. In the reference
configuration, the boundary ofΩL is assumed to be smooth enough and is written
as∂ΩL = ΓL ∪ γ ∪Γ. The open partΓL is the fluid-structure interface. The open
partΓ is the free surface of the liquid in its reference configuration. The close part
γ is a curve (the contact line), which is such thatγ = ∂ΓL = ∂Γ. The boundary
of ΩS (supposed smooth enough) is written as∂ΩS = ΓE ∪ ΓL ∪ γ ∪ ΓG (see
Figure 1). The boundary of the open partsΓL andΓG is the curveγ. The domain
whose boundary is the open setΓ∪ΓG is empty or is filled by a gas whose effects
are neglected for sake of brevity (this is the domain aboveΩL in Figure 1). The
external unit normal to∂ΩS is denoted asnS while the one to∂ΩL is denoted as
n. The external unit normal toγ belonging to the tangent plane to surfaceΓ is
denoted asν. LetΩS(t) be the actual domain occupied by the structure at timet
and let∂ΩS(t) be its boundary.

We are interested in analyzing the nonlinear vibration (structural geometric
nonlinearities) of the coupled system around its referenceconfiguration. The
structure is assumed to be free (free-free structure for which no prescribed Dirich-
let boundary conditions are given on∂ΩS(t)). The structure is submitted to given
forces, which are applied toΩS(t), and which are assumed to be in equilibrium
(in the actual configuration).

5



Γ

Γ

Γ

n

nγ

ΓΩ
S

L

E

Ω
L

G

ν

nS
ν

n

L

S

nS

Figure 1: Reference configuration of the fluid-structure system

3. Nonlinear equation for the structure expressed in the reference configura-
tion

In the cartesian reference system, letx = (x1, x2, x3) be the position vector of
a point in the reference configurationΩS = ΩS ∪ ∂ΩS . In the actual (deformed)
configurationΩS(t) at timet, the position vectorX = (X1, X2, X3) of the point
that is transformed fromx, is written as

X(x, t) = x + u(x, t) , (1)

in whichu = (u1, u2, u3) is the displacement field defined inΩS. The deformation
gradient tensorF(x, t) defined inΩS by

Fij(x, t) =
∂Xi(x, t)

∂xj

= δij +
∂ui(x, t)
∂xj

, (2)

and is assumed to be invertible and orientation preserving for all x ∈ ΩS and for
all t:

J(x, t) def
= detF(x, t) > 0 . (3)

The dynamic equilibrium equations of the structure at timet, expressed with re-
spect to the reference configuration, are written [81, 82] as

ρS

∂2u
∂t2

− div (FS) = b , ∀x ∈ ΩS , (4)
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whereρS(x) > 0 is the mass density in the reference configuration, whereS is
the second Piola-Kirchhoff symmetric stress tensor in the reference configuration,
wherediv (FS) denotes the divergence of the second-order tensorFS, and where
b = (b1, b2, b3) corresponds to the transport onΩS of the body force fieldB ap-
plied to deformed configurationΩS(t), which is written as

b(x, t) = J(x, t)B(X(x, t), t) . (5)

At time t, letF be the surface force field applied to the deformed boundary∂ΩS(t)
of the actual configuration. The transport ofF on the undeformed boundary∂ΩS

is denoted byf = (f1, f2, f3) and is written as

f(x, t)={detF(x, t)}‖F(x, t)−TnS(x)‖F(X(x, t), t). (6)

At time t, the boundary condition associated with surface force fieldf applied to
the undeformed boundary∂ΩS is written as

FS nS = f . (7)

The constitutive equation of the structure is chosen in the framework of the theory
of the linear viscoelasticity in finite displacements [83] and is written using the
hypothesis of instantaneous memory (see [84], references included),

Sij = aijℓm(x)Eℓm + bijℓm(x)
dEℓm

dt
, (8)

in which the classical convention for summations over repeated Latin indices is
used, where tensorsaijℓm(x) andbijℓm(x) are fourth-order real tensors depending
on x, which verify symmetry and positiveness properties, and whereEℓm is the
Green-Lagrange strain tensor, which is defined by

Eℓm(x, t) =
1

2
(Fkℓ(x, t)Fkm(x, t)− δℓm)

=
1

2
(
∂uℓ

∂xm

+
∂um

∂xℓ

+
∂uk

∂xℓ

∂uk

∂xm

) . (9)

4. Boundary value problem in(p, η, u)

For the linear dissipative acoustic liquid, the equations of motion are written
in the reference configuration. Letp(x, t) be the acoustic pressure field defined in
ΩL = ΩL ∪ ∂ΩL (reference configuration), and letη(x, t) be the field defined on
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Γ, which is the normal displacement to the free surfaceΓ alongn at pointx in the
reference configuration. At timet, a surface force field and a body force field are
applied to the structure in the actual configuration, which are transported on the
reference configuration and give the force fieldf(x, t) onΓE (see Eq. (6)) and the
body force fieldb(x, t) in ΩS (see Eq. (5)).

At time t, and in the reference configuration, the boundary value problem is
expressed in terms of the structural displacement fieldu(x, t), the internal pres-
sure fieldp(x, t), and the normal displacementη(x, t) of the free surface. Under
Cauchy initial conditions at timet0, the problem consists in finding, fort > t0,
the fieldsu(x, t), p(x, t), andη(x, t), such that

1

ρ0c2
0

∂2p

∂t2
−

τ

ρ0

∇
2∂p

∂t
−

1

ρ0

∇
2p = 0 in ΩL , (10)

(1 + τ
∂

∂t
)
∂p

∂n
= −ρ0

∂2u
∂t2

· n on ΓL , (11)

(1 + τ
∂

∂t
)
∂p

∂n
= −ρ0

∂2η

∂t2
on Γ , (12)

p = ρ0 η g · n − σ
Γ
{(

1

R2
1

+
1

R2
2

)η +∇
2
Γη} on Γ , (13)

∂η

∂ν
= cη η + J u on γ , (14)

ρS

∂2u
∂t2

− div (FS) = b , ∀x ∈ ΩS , (15)

FS nS = f on ΓE , (16)

FS nS dΓL = −p nS dΓL + σ
Γ
(J ′η) dµγ on ΓL , (17)

in whichF is defined by Eq. (2) and whereS is related toE (defined by Eq. (9))
by the constitutive equation defined by Eq. (8). In these equations, the different
quantities are defined as follows:

• Eq. (10) is the linear dissipative acoustic equation, in which ρ0 is the constant
mass density of the homogeneous liquid at equilibrium,c0 is the constant speed
of sound, andτ is the constant coefficient that characterizes the dissipation in the
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internal liquid (as a function of the dynamic, kinematic, and second viscosities).

• Eq. (11) is the kinematic fluid-structure coupling condition onΓL, which ex-
presses the continuity of the normal velocity field on the interface.

• Eq. (12) represents the kinematic equation for the free surfaceΓ.

• Eq. (13) corresponds to the free-surface constitutive equation of surfaceΓ,
in which σ

Γ
is the surface tension coefficient,g is the gravitational acceleration

vector, R1 and R2 are the principal curvature radii, and where∇2
Γη denotes

the surface Laplacian related to surfaceΓ (if capillarity is neglected, the clas-
sical sloshing free-surface boundary condition is retrieved). It can be seen that
(1/R2

1+1/R2
2) η+∇

2
Γη results from the change of the surface energy induced by

an infinitesimal change inη, which yields a contribution to the surface pressure
(classical Young-Laplace law) (see [13], Chapter 4).

• Eq. (14) correspond to a new boundary condition for the contact angle com-
patible with a deformable structure, considered here as linear viscoelastic with
geometrical nonlinearities. In the right-hand side of Eq. (14), the first term cor-
responds to the classical contact angle condition on the contact line,γ, in which
cη is the contact angle coefficient (which is only valid for fixedrigid structure)
while the additional second term allows the structure deformation to be taken into
account. In this term,J is a differential operator on manifoldΓL, which is (i) de-
fined on a set of sufficiently differentiableR3-valued functions that are the traces
onΓL of functions onΩS, (ii) with values in a set ofR-valued functions that are
defined onγ. A particular case for differential operatorJ is the one given in [13]
(Section 4.3, page 80):

J u = E u · nS −
∂(u · nS)

∂νL

, (18)

in whichE is a real coefficient and whereνL is external unit normal toγ belong-
ing to the tangent plane to surfaceΓL. The physical interpretation of Eq. (18)
corresponds to the change of the energy due to an infinitesimal change in the po-
sition of the contact line, which yields a change of the wetted surface.

• Eq. (17), which have been introduced for the first time in [1],corresponds to a
new fluid-structure boundary condition onΓL in the presence of capillarity, which
allows the condition of contact angle to be taken into account in a presence of a
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linear viscoelastic structure with geometrical nonlinearities. For the readability
of the present paper, a short summary of the construction is recalled hereinafter.
The first term of the right-hand side corresponds to the fluid-structure coupling
condition for a linear acoustic fluid coupled with the weak geometrical nonlinear
structure. Concerning the second term, letx 7→ f(x) be any real function defined
on ΓL such that its trace onγ is integrable onγ with respect to the curvilinear
measuredγ on γ (the length of curveγ is

∫

γ
dγ = |γ| ). Then,dµγ is a real

measure onΓL such that
∫

ΓL
f(x) dµγ(x) =

∫

γ
f(x) dγ(x) (this means that the

support of measuredµγ is γ). The term(J ′η) dµγ is defined onΓL by algebraic
duality of the termJ u defined onγ (see Eq. (14)) using the duality brackets,

<J u , η>
dγ
=

∫

γ

(J u) η dγ , (19)

≪ u ,J ′η ≫
dµγ

=

∫

ΓL

(J ′η) · u dµγ . (20)

The term(J ′η) dµγ is then defined by

≪ u ,J ′η ≫
dµγ

= <J u , η>
dγ

. (21)

5. Computational fluid-structure model

Let P(t), H(t), andU(t) be the vectors corresponding to the spatial discretiza-
tion of fieldsp(x, t), η(x, t), andu(x, t). The first time derivative is denoted by
a dot and the second time derivative with a double dot. The discretization of the
variational formulation of the boundary value problem in(p, η, u) yields:

• for Eqs. (10) to (12),

[AL]{P(t)} − [Cpη]
T Ḧ(t)− [Cpu]

T Ü(t) = 0 , (22)

in which [AL] is the symmetric matrix-valued linear differential operator defined
by [AL] = [M ]d2/dt2 + [D]d/dt+ [K].

• for Eqs. (13) and (14),

[Cpη]P(t) + ([Kg] + [Kc])H(t) + [Cηu]U(t) = 0 . (23)

• for Eqs. (15) to (17),

[Cpu]P(t) + [Cηu]
TH(t) + [MS] Ü(t)

+A
S{U(t), U̇(t)} = FS(U(t), t) , (24)
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in whichAS is the vector-valued nonlinear differential operator thatcan be written
asAS{U(t), U̇(t)} = [DS(U(t))] U̇(t)+KS{U(t)}, where[DS(U(t))], KS{U(t)}
andFS(U(t), t) are nonlinear mappings ofU(t). The different quantities intro-
duced in Eqs. (22) to (24) are defined in Section 6.

It can be proved that, for allt ≥ t0, the problem defined by Eqs. (22) to (24) with
the initial conditions, has a solution(P(t),H(t),U(t)).

6. Vectors and matrices of the discretized problem presented in Section 5

In this section, we give the expressions of the vectors and matrices introduced
in Section 5, which result from the discretization of the weak formulation of the
boundary value problem defined by Eqs. (10) to (17). For such aconstruction,
for fixed t, we consider the fields(p(t), η(t), u(t)) and the test-function fields(δp,
δη, δu), which belong to the admissible spaces. In order to simplifythe notations,
parametert will be removed if there is no possible confusion.

Matrices related to the equations inP for the linear dissipative acoustic liquid.

• Symmetric real matrix[M ] is positive definite, and corresponds to the dis-
cretization of the bilinear form1

ρ0c
2
0

∫

ΩL
p δp dx.

• Symmetric real matrix[K] is positive semidefinite with a kernel of dimension
1, and corresponds to the discretization of the bilinear form1

ρ0

∫

ΩL
∇p ·∇δp dx.

• Symmetric real matrix[D] = τ [K] is positive semidefinite with a kernel of
dimension1.

Matrices related to the equations inH for the liquid free surface with capillarity.

• Symmetric real matrix[Kg] is positive definite, and corresponds to discretiza-
tion of the bilinear formρ0

∫

Γ
g · n η δη dΓ.

• Symmetric real matrix[Kc] is positive definite, and corresponds to the dis-
cretization of the bilinear formσ

Γ

∫

Γ
∇

Γ
η ·∇

Γ
δη dΓ − σ

Γ

∫

Γ
( 1
R2

1

+ 1
R2

2

) η δη dΓ −

σ
Γ

∫

γ
cηη δη dγ.

Matrices related to the coupling terms.

• Rectangular real matrix[Cpu] corresponds to the discretization of the bilinear
form−

∫

ΓL
p n · δu dΓL.
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• Rectangular real matrix[Cpη] corresponds to the discretization of the bilinear
form−

∫

Γ
p δη dΓ.

• Rectangular real matrix[Cηu] corresponds to the discretization of the bilinear
form−σ

Γ

∫

γ
(J u) δη dγ.

Vectors and matrices related to the equations inu for the structure with geomet-
ric nonlinearities and a linear viscoelastic constitutiveequation without memory
effects.

• Symmetric real matrix[MS ] is positive definite, and corresponds to the dis-
cretization of the bilinear form

∫

ΩS
ρS u · δu dx.

• The vector[DS(U(t))] U̇(t) +KS(U(t)) corresponds to the discretization (see
[85, 86, 87, 88, 89]) of

∫

ΩS
Fij Sjk (∂δui/∂xk) dx, in whichF is a function ofu

(see Eq. (2)) and whereS is also a function ofu (see Eqs. (8) and (9)).

Vector of external forces.

• VectorF S(U(t), t) of external forces correspond to the discretization of
∫

ΓE
f ·

δu dΓE +
∫

ΩS
b · δu dx, in which b depends onu (see Eq. (5)) and wheref also

depends onu (see Eq. (6)).

7. Decomposition of the admissible space of the discretizedcoupled problem
and associated vector bases

The method consists in constructing a decomposition of the admissible space
CP,H,U of the discretized problem defined by Eqs. (22) to (24) and in constructing
an adapted vector basis that spans each admissible space.

It can be shown (see [1]) that this admissible space can be decomposed in the
following direct sum,

CP,H,U = CP ⊕ CH ⊕ CU , (25)

in which each admissible space and its associated vector basis is defined here-
inafter.

7.1. Admissible spaceCP and vector basis

The spaceCP is related to the discretized problem inP (see Eq. (22)) for
which the liquid is a linear acoustic liquid (without the dissipative term) occupying
domainΩL, and for which we have the boundary condition∂p/∂n = 0 onΓL and
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p = 0 on Γ ∪ γ (i.e. there are no sloshing and no capillarity). Therefore,CP is
the admissible space for the problem defined by[M ] P̈(t) + [K]P(t) = 0 with
P(t) = 0 for all the degrees of freedom (DOFs) related toΓ∪ γ. A vector basis of
CP can then be constructed as theacoustic modes, which are the eigenvectors of
the generalized eigenvalue problem with constraints,

[K]P = λL [M ]P , (26)

with P = 0 for the DOF related toΓ ∪ γ . (27)

Let [P] = [P1 . . .PNL
] be the rectangular real matrix whoseNL columns are con-

stituted of the eigenvectors associated with theNL first smallest positive eigenval-
ues.

7.2. Admissible spaceCH and vector basis

The spaceCH is related to the discretized problem inH for which the liq-
uid is considered as an inviscid incompressible liquid, with sloshing and capil-
larity, and for which the boundary condition is∂p/∂n = 0 on ΓL. Therefore,
CH is the admissible space of the problem,[K]P(t) − [Cpη]

T Ḧ(t) = 0 and
[Cpη]P(t) + ([Kg] + [Kc])H(t) = 0. A vector basis ofCH can then be constructed
as thesloshing-capillarity modesof liquid occupying domainΩL, which are the
eigenvectors of the generalized eigenvalue problem with constraints,

[K]P+ λΓ[Cpη]
TH = 0 , (28)

[Cpη]P+ ([Kg] + [Kc])H = 0 . (29)

Since the kernel of[K] is equal to1, the elimination ofP yields,

[Kgc]H = λΓ [MΓ]H . (30)

[L]H = 0 , (31)

in which [L] is a real row matrix, and where[Kgc] and[MΓ], under the constraints
[L]H = 0, are positive-definite symmetric matrices that are constructed as a func-
tion of matrices[K], [Cpη], [Kg] and [Kc]. For practical construction of these
matrices, we refer the reader to Section 4.6 of Chapter 4 in Ref. [13].
Let [H] = [H1 . . .HNΓ

] be the rectangular real matrix whoseNΓ columns are con-
stituted of the eigenvectors associated with theNΓ first smallest strictly positive
eigenvalues.
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7.3. Admissible spaceCU and vector basis
Since the structure has a nonlinear behavior, the construction is presented in

two steps: definition of the admissible spaceCU and then construction of a vector
basis.

7.3.1. Definition of the admissible spaceCU

CU is the admissible space of the discretized problem inU (see Eq. (24)), re-
lated to the viscoelastic structureΩS, coupled with the liquid considered as an
inviscid incompressible liquid (without sloshing and capillarity) occupying do-
mainΩL, with the boundary conditionp = 0 onΓ. We then obtain the following
discretized equations in(P,U) deduced from Eqs. (22) and (24),

[K]P(t)− [Cpu]
T Ü(t) = 0 with P(t) = 0 on Γ ∪ γ, (32)

[Cpu]P(t) + [MS ] Ü(t) + [DS(U(t))] U̇(t)

+ KS{U(t)} = FS(U(t), t) . (33)

Using Eq. (32),P(t) can be eliminated in order to obtain an equation inU(t).
Let [K−1

∗
] be the matrix such that the solution of[K]P = F (in which F is an

arbitrary vector) under the constraintP = 0 onΓ ∪ γ, is written asP = [K−1
∗

]F.
Consequently, Eq. (32) yieldsP(t) = [K−1

∗
] [Cpu]

T Ü(t). By substitution in (33),
we obtain

([MS] + [MA]) Ü(t) + [DS(U(t))] U̇(t)

+ KS{U(t)} = FS(U(t), t) , (34)

in which [MA] is a positive symmetric matrix (called the added mass matrix),
which is written as

[MA] = [Cpu] [K
−1
∗

] [Cpu]
T . (35)

7.3.2. Construction of a vector basis forCU

Two main approaches can be used for constructing the vector basis forCU ,
represented by the rectangular matrix[U ] = [U1 . . .UNS

] in which theNS columns
areNS algebraically independent vectors that span a subspace of dimensionNS.

• The first one is the proper orthogonal decomposition (POD) approach, which
does not require expertise in the selection of the vector basis, but which
yields a basis that depends on the selected excitation forces, and which re-
quires solving a nonlinear dynamical problem in high dimension.
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• The second one is the linear modes approach, which requires avery great
expertise for selecting the linear modes that participate in the nonlinear re-
sponse of the structure.

The reader will find in [90] an extensive, comprehensive, anddetailed review
concerning the construction of such a vector basis in structural dynamics for a
structure with nonlinear geometric effects.

In the present paper, we propose to construct a vector basis of CU in using
the nonlinear structure coupled with the liquid consideredas an incompressible
inviscid liquid in order to take into account the effects of added mass. It should
be noted that we do not recommend to use the structure in vacuo(no added mass
effect taken into account). Let us recall that the added-mass effects corresponding
to compressible and incompressible fluids are distinct (seeChapters 5 and 8 in
[13]) and see [91, 92] in which it is shown that the added-massof a compressible
flow does not admit a simple local-in-time decomposition. This is the reason why
the added-mass effects have been introduced using an associated incompressible
liquid. Let us remark that solely for the construction of thebasis ofCU , the use
of the POD for the complete fluid-structure problem defined byEqs. (22) to (24)
would not be computationally efficient, and in addition is not in the spirit of the
method proposed for constructing the reduced-order model for the fluid-structure
problem under consideration.

(i) - POD-based approach. The POD approach requires to solve the following
evolution problem

([MS] + [MA]) Ü(t) + [DS(U(t))] U̇(t)

+ KS{U(t)} = FS(U(t), t) t > t0 , (36)

with the initial conditions

U(t0) = U0 , U̇(t0) = V0 . (37)

A displacement snapshot matrix[Usnap] is formed using the responsesU(t1), . . . ,U(tn)
of Eqs. (36) and (37) atn instantst1, . . . , tn (snapshots) withn sufficiently large,
in forming the real symmetric matrix

[Rsnap] =
1

n
[Usnap]

T [Usnap] , (38)
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and in computing the dominant eigensubspace (associated with theNS largest
positive eigenvaluesµ1 ≥ . . . ≥ µNS

> 0), represented by the rectangular matrix
[U ] = [U1 . . .UNS

], of the eigenvalue problem,

[Rsnap]Uα = µαUα , α = 1, . . . , NS . (39)

(ii) - Use of the linear modes. With the linear modes approach, the vector basis
is constituted of theelastic modesof the underlying linear structural system with
the added mass, and is then constructed by solving the generalized eigenvalue
problem (deduced from Eq. (34)),

[K(1)]U = λS ([M
S ] + [MA])U , (40)

in which
[K(1)]ij = {∂{KS{U}}i/∂Uj}|U=0 , (41)

which is the linear part of the nonlinear operatorU 7→ KS{U}. As explained
before, the linear modesU1 . . .UNS

have to be carefully selected because all the
participating modes in the nonlinear responses must be included [90]. This means
that the associated eigenvalues0 ≤ λS,1 ≤ . . . ≤ λS,NS

(which are in increasing
order) are not, in general, consecutive. It should be noted that the eigenvectors
that correspond to zero eigenvalues are the rigid body modesof the underlying
linear structural system with the added mass (and not, in general, the rigid body
modes of the nonlinear fluid-structure system) .
Let [U ] = [U1 . . .UNS

] be the rectangular real matrix whoseNS columns are
constituted of the selected eigenvectors.

8. Nonlinear reduced-order computational model

8.1. Methodology for constructing the nonlinear reduced-order computational
model

The reduced-order model of order(NL, NΓ, NS) is obtained by projecting
(P(t),H(t),U(t)) on the vector bases constructed in Section 7,

P(t) = [P] qP (t) , (42)

H(t) = [H] qH(t) , (43)

U(t) = [U ] qU(t) , (44)
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and then in projecting Eqs. (22) to (24). The two linear matrix equations defined
by Eqs. (22) and (23) can classically be projected without any particular difficul-
ties. Concerning the nonlinear equation defined by Eq. (24),due to the nonlin-
earity inU(t), several approaches can be used for constructing the projection in a
computational framework, that we briefly summarized hereinafter. The possible
approaches can be classified in the class of the intrusive methods with respect to
the commercial softwares and the class of the non-intrusiveone.

(i) For the class of intrusive methods, two main approaches can be identified:

(i-1) The first one consists in implementing, at each time step t required by the
time integration scheme used, the direct computation of thereduced nonlinear
force [U ]TAS{[U ] qU(t), [U ] q̇U(t)} and in introducing a hyper reduction tech-
nique for reducing the numerical cost of the computation (see [68, 69, 70, 71]).

(i-2) The second one consists in implementing the direct computation of the re-
duced nonlinear terms that result from an algebraic calculation of the different
contributions of the projection ofAS{U(t), U̇(t)},

[U ]TAS{[U ] qU(t), [U ] q̇U(t)}

= [U ]T [DS([U ] qU(t))] [U ] q̇U(t)

+ [U ]TKS{[U ] qU(t)} . (45)

The componentα of the reduced conservative term can be written as

{[U ]TKS{[U ] qU(t)}}α = K
(1)
αβ q

U
β (t)

+K
(2)
αβγ q

U
β (t) q

U
γ (t) +K

(3)
αβγδ q

U
β (t) q

U
γ (t) q

U
δ (t) . (46)

with summation on the repeated Greek indices. The componentα of the reduced
dissipative term can be written as

[U ]T [DS([U ] qU(t))] [U ] q̇U(t) =
d

dt

{

D
(1)
αβ q

U
β (t)

+D
(2)
αβγ q

U
β (t) q

U
γ (t) + D

(3)
αβγδ q

U
β (t) q

U
γ (t) q

U
δ (t)

}

. (47)

With such a direct intrusive approach, all the constant coefficients of the tensors
in the right-hand sides of Eqs. (46) and (47) are calculated inside the software.
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For the conservative term defined by Eq. (46), such a direct implementation can
be found in [93, 94] and can be extended without difficulty to the dissipative term
defined by Eq. (47).

(ii) For the class of non-intrusive methods related to the calculation of the conser-
vative part defined by Eq. (46), the approach consists in numerically identifying
all the coefficients of the tensors that appear in the right-hand side of Eq. (46)
by solving an inverse problem based on the computation of thenonlinear static
responses of the structure in vacuo submitted to appropriate Dirichlet conditions
related to the selected vectorsU1, . . .UNS

of the vector basis. In [90], the reader
will find a detailed review concerning such a numerical identification for all the
coefficients of the tensors relative to the elastic part (seethe right-hand side of
Eq. (46)). Some applications of such a methodology can be found, for instance,
in [4, 95, 96]. This approach could certainly be extended foridentifying the co-
efficients of the tensors related to the dissipative part (see the right-hand side of
Eq. (47)).

8.2. Nonlinear reduced-order computational model for the fluid-struture system

Using the methodology presented in Section 8.1, the following nonlinear ma-
trix equation is obtained for the reduced-order computational model,

[A FSI]





q̈P (t)

q̈H(t)

q̈U(t)



+ [B FSI]





q̇P (t)

q̇H(t)

q̇U(t)





+ [C FSI]





qP (t)
qH(t)
qU(t)





+





0
0

[U ]TAS{[U ] qU(t), [U ] q̇U(t)}





=





0
0

[U ]T FS([U ] qU(t), t)



 , (48)
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in which the matrices[A FSI], [B FSI], and[C FSI] are written as

[A FSI] =





[M] −[ Cpη]
T −[ Cpu]

T

0 0 0
0 0 [MS]



 , (49)

[B FSI] =





[D] 0 0
0 0 0
0 0 0



 , (50)

[C FSI] =





[K] 0 0
[ Cpη] [Kgc] [ Cηu]
[ Cpu] [ Cηu]

T 0



 , (51)

with the following definitions for all the matrices in Eqs. (49) to (51):

• For the reduced matrices relative to the liquid,[M] = [P]T [M ] [P], [D] =
[P]T [D] [P], and[K] = [P]T [K] [P].

• For the reduced matrix relative to the free surface,[Kgc] = [H]T ([Kg] +
[Kc]) [H].

• For the reduced matrix relative to the structure,[MS] = [U ]T [MS ] [P].

• For the reduced matrices relative to the coupling,[ Cpη] = [H]T [Cpη] [P],
[ Cpu] = [U ]T [Cpu] [P], and[ Cηu] = [H]T [Cηu] [U ].

9. Conclusion

In this paper, a nonlinear reduced-order computational model has been con-
structed for a linear viscoelastic structure with weak nonlinear geometrical ef-
fects, the structure being coupled with a linear acoustic liquid with sloshing and
capillarity on the free surface. The model proposed is derived from the one
used in fluid-structure interaction for linear systems, forwhich the analysis of
the acoustic-sloshing-capillarity phenomena is efficientthanks to the use of a pro-
jection on the linear modes of the linear acoustic liquid andon the sloshing modes
with capillarity. Concerning the construction of the vector basis for the structure,
its is proposed to use a POD approach for the viscoelastic structure with weak
nonlinear geometrical effects and taking into account the added mass induced by
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the liquid. The methodology for constructing the vector bases of the admissi-
ble sets and for obtaining the nonlinear ROM are detailed. The computational
nonlinear ROM presented can directly be used for analysis the vibration of such
fluid-structure systems using commercial finite element softwares for computing
the vector bases and the projections.
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[14] Bermùdez A, Rodrı́guez R, Santamarina D. Finite element computation of
sloshing modes in containers with elastic baffle plates. International Journal for
Numerical Methods in Engineering 2003; 56(3):447-467.

[15] Ohayon R. Reduced models for fluid-structure interaction problems. Inter-
national Journal of Numerical Methods in Engineering 2004;60(1):139-152.

[16] Felippa CA, Park KC, Ross MR. A classification of interface treatments for
FSI, pp. 27-51 in Fluid Structure Interaction II, Springer,Berlin, 2010.

[17] Farhat C, Chiu EKY, Amsallem D, Schotté JS, Ohayon R. Modeling of fuel
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[30] Miras T, Schotté JS, Ohayon R. Energy approach for static and linearized
dynamic studies of elastic structures containing incompressible liquids with
capillarity: a theoretical formulation. Computational Mechanics 2012; 50:729-
741.

[31] Finn R. On the equations of capillary. Journal of Mathematical Fluid Me-
chanics 2001; 3:139-151.

[32] Finn R. The contact angle in capillarity. Physics of Fluids 2006; 18:047102.

[33] Finn R, Luli GK. On the capillary problem for compressible fluids. Journal
of Mathematical Fluid Mechanics 2007; 9:87-103.

[34] Luke JC. A variational principle for a fluid with a free surface. Journal of
Fluid Mechanics 1967; 27(2):395-397;

22



[35] Miles JW. Nonlinear surface-waves in closed basins. Journal of Fluid Me-
chanics 1976; 75:419-448.

[36] Limarchenko OS. Effect of capillarity on the dynamics of a container liquid
system. Soviet Applied Mechanics 1981, 17(6):601-604.

[37] Limarchenko OS. Application of the variational methodto the solution of
nonlinear problems of the dynamics of combined motions of a tank with fluid.
Soviet Applied Mechanics 1983, 19(11):1021-1025.

[38] Peterson LD, Crawley EF, Hansman RJ. Nonlinear fluid slosh coupled with
a dynamics of a spacecraft. AIAA Journal 1989; 27(9):1230-1240.

[39] Harari I, Grosh K, Hughes TJR, Malhotra M, Pinsky PM, Stewart JR,
Thompson LL. Recent development in finite element methods for structural
acoustics. Archives of Computational Methods in Engineering 1996; 3(2-
3):131-309.

[40] Ohayon R, Soize C. Structural Acoustics and Vibration.Academic Press,
London, 1998.

[41] Ohayon R, Soize C. Advanced computational dissipativestructural acous-
tics and fluid-structure interaction in low- and medium-frequency domains.
Reduced-order models and uncertainty quantification. International Journal of
Aeronautical and Space Sciences 2012; 13(2):127-153.

[42] Soize C. Coupling between an undamped linear acoustic fluid and a damped
nonlinear structure - Statistical energy analysis considerations. Journal of the
Acoustical Society of America 1995; 98(1):373-385.

[43] Tezduyar T, Behr M, Liou J. A new strategy for finite element compu-
tations involving moving boundaries and interfaces - The deforming-spatial-
domain/space-time procedure: I. The concept and preliminary numerical tests.
Computer Methods in Applied Mechanics and Engineering 1992; 94:339-351.

[44] Tezduyar T, Behr M, Mittal S, Liou J. A new strategy for finite element
computations involving moving boundaries and interfaces -The deforming-
spatial-domain/space-time procedure: II. Computation offree-surface flows,
two-liquid flows, and flows with drifting cylinders. Computer Methods in Ap-
plied Mechanics and Engineering 1992; 94:353-371.

23



[45] Farhat C, M. Lesoinne M, Le Tallec P. Load and motion transfer algorithms
for fluid/structure interaction problems with non-matching discrete interfaces:
Momentum and energy conservation, optimal discretizationand application
to aeroelasticity. Computer Methods in Applied Mechanics and Engineering
1998; 157(1-2):95-114.

[46] Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-
structure formulation to the prediction of the aeroelasticparameters of an F-16
fighter. Computers and Fluids 2003; 32(1):3-29.

[47] Tezduyar T. Interface-tracking and interface-capturing techniques for finite
element computation of moving boundaries and interfaces. Computer Methods
in Applied Mechanics and Engineering 2006; 195:2983-3000.

[48] Wall WA, Genkinger S, Ramm E. A strong coupling partitioned approach
for fluid-structure interaction with free surfaces. Computers and Fluids 2007;
36(1): 169-183

[49] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y. Isogeometric fluid-structure
interaction: theory, algorithms, and computations. Computational Mechanics
2008; 43(1):3-37.

[50] Takizawa K, Tezduyar TE. Multiscale space-time fluid-structure interaction
techniques. Computational Mechanics 2011; 48:247-267.

[51] Bazilevs Y, Takizawa K, Tezduyar TE. Computational Fluid-Structure Inter-
action. John Wiley & Sons, Chichester, 2013.

[52] Nobile F, Pozzoli M, Vergara C. Time accurate partitioned algorithms for the
solution of fluid-structure interaction problems in haemodynamics. Computers
and Fluids 2013; 86:470-482

[53] Farhat C, Lakshminarayana VK. An ALE formulation of embedded bound-
ary methods for tracking boundary layers in turbulent fluid-structure interaction
problems. Journal of Computational Physics 2014; 263:53-70.

[54] Li Z, Leduc J, Combescure A, Leboeuf F. Coupling of SPH-ALE method
and finite element method for transient fluid-structure interaction. Computers
and Fluids 2014; 103:6-17.

24
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