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Abstract

This paper deals with a novel formulation of a nonlinear radliorder computational model for analyzing the non-
linear vibrations of a linear viscoelastic structure witeak nonlinear geometrical effects, coupled with a linear
acoustic liquid with sloshing and capillarity on the freefage. The model proposed is derived from the one used in
fluid-structure interaction for linear systems, for whible analysis of the acoustic-sloshing-capillarity phenoanis
efficient thanks to the use of a projection on the linear madéise linear acoustic liquid and on the sloshing modes
with capillarity. Concerning the construction of the veadiasis for the structure, it is proposed to use a POD approach
for the viscoelastic structure with weak nonlinear geoinateffects and taking into account the added mass induced
by the liquid. The methodology for constructing the vectasés of the admissible sets and for obtaining the non-
linear ROM are detailed. The computational nonlinear ROM th presented can directly be used for analyzing the
vibrations of such fluid-structure systems using commeficide element softwares for computing the vector bases

and the projections.

Keywords: Nonlinear vibration, nonlinear reduced-order model, R@M,cture coupled with liquid, FSI,
geometrical nonlinearity, sloshing, capillarity, sudaension,

1. Introduction linear formulation for the acoustic liquid is kept in order
to preserve the vibration analysis expressed in terms of
This paper is the continuation of the work publishe oustic and sloshing modes for small (|nf|n|te3|m.al) fluid
. . X . ~displacements (consequently, the ALE formulation that
in [1] for which the linear behavior of the structure is ™" . e
. . . Tequires a mesh deformation is not well adapted to such a
replaced by a weak geometrical nonlinear behavior (& . . -
. . . . requirement). Since the structure can undergo small finite
requirement being that if the structural nonlinear ter e .
: S . Isplacements, the model proposed consists in writing the
goes to zero, the linear formulation is retrieved). The " . ) . .
; . o - equations of the linear acoustic fluid on the undeformed
structure contains a linear dissipative acoustic liquid (n " ", . . . . ,
configuration and in transporting the actual configuration

flow), with linear sloshing and capillarity, and for wh|ch%]: the structure on its undeformed configuration. I

the effects of internal gravity waves are neglected. " ) o
gravity 9 addition, we also want to preserve a slip condition for the
fluid on the fluid-structure interface, which is facilitated
*Corresponding author: C. Soize, christian.soize@uniisgest.fr with the formUIat!on. pro_posed (SUCh a an_dnmn 1S
Email addresses: oger . ohayon@nam fr (Roger Ohayon), Of course not valid in micro- and nano-fluidics). It
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should be noted that the underlying hypotheses of sucfoa the conditions of contact angle between the free
formulation (small finite displacements for the structuurface and the structure, to [30] for sloshing problems
and linear behavior of the acoustic liquid in presencé incompressible liquids with capillarity effects in
of sloshing and capillarity effects) are justified in manglastic structures, to [31, 32, 33] for sloshing problems
applications (see for instance the experimental obsergd-compressible liquids with capillarity effects in rigid
tions described in [2]). The simplifications introducestructures, to [1] for linear dissipative acoustic liquids
in the formulation proposed (such as the non-inclusiavith sloshing and capillarity effects in linear elastic
of the finite fluctuations of the wetting fluid-structuretructures. Concerning nonlinear sloshing and cap#arit
interface) introduce uncertainties induced by modelifigr incompressible liquids in rigid tanks submitted to
errors. Such uncertainties could be taken into accountigid body motions, see [34, 35, 36, 37, 38]. Concerning
a probabilistic framework of uncertainty quantificatiorcomputational reduced-order models for the linear vibra-
Since these types of uncertainties are not relevanttiofn of structures containing compressible liquids withou
the usual parametric probabilistic approach [3], an opsuarface tension and without sloshing effects, we refer the
way of research could be the nonparametric probabilisteader for instance to [13, 39, 40, 41, 5]. Note that the
approach of modeling errors [4, 5]. But, for the presenase of a structure with weak geometrical nonlinearities
fluid-structure interaction problem, novel nonparametroupled with a linear acoustic fluid has been investigated
approaches should be developed in order to take iimche high-frequency domain in [42].
account modeling errors in computational fluid dynamics.
General computational methods for strongly non-
The novel feature of the paper is to propose ttieear fluid-structure interaction problems including
construction of a computational nonlinear reduced-orddoshing and capillarity, without the introduction of
model (ROM) derived from the one used in linearduced-order models (but generally using ALE-
fluid-structure interaction (for which the analysis dbased approach for the fluid), can be found in
the acoustic-sloshing-capillarity phenomena is efficie@t3, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].
thanks to the use of a projection on the linear modA&sgeneral discussion on elasto-capillary fluid-structure
of the acoustic liquid and on the sloshing modes withteraction including fluid-solid surface-tension effect
capillarity), in taking into account weak geometriand taking into account a transition layer made up a
nonlinearities in the structure. Furthermore, for thecstrudiffuse-interface model related to a phase separation be-
ture with geometric nonlinearities, a linear viscoelasttaveen complex fluids and/or soft matters (Cahn-Hilliard
constitutive equation without memory effects is used fanodel [56]) can be found in [57].
generating damping in the structure instead of the use of
an empirical damping model that is arbitrary added in theFor constructing computational reduced-order model
reduced-order equations (as frequently done). (ROM) in linear and nonlinear structural dynamics and
in fluid-structure interaction, some methodologies have
Concerning the linear formulation for the compressibéxtensively been analyzed in literature. A lot of works
liquid with free surface, the sloshing is taken into accouhave been published for constructing ROM and paramet-
with surface tension (capillarity) effects. We refer thec ROM for linear and nonlinear computational models
reader to [6, 7] for the classical theory on capillarity, tm dynamics in the area of computational structural
[8, 9, 10] for developments of the behavior of liquiddynamics and fluid-structure interaction among which
in microgravity environment, to [11, 12] for genera]l3, 58, 59, 60, 61, 62, 63, 64, 65] and in vibroacoustics
analyzes of sloshing problems for incompressible liqui{40, 66, 67, 5]. A hyper reduction is required for reducing
in rigid structures, to [13, 14, 15, 16, 17, 18] for sloshinthpe numerical cost of the ROM construction (see for
problems of incompressible liquids without capillaritynstance [68, 69, 70, 71]). The construction of the
effects in elastic structures, to [13, 19, 20, 21] for slaghi reduced-order basis (ROB) is based on the computation
problems of incompressible liquids with capillarity effec of solution snapshots performed with the computational
in rigid structures, to [22, 23, 24, 25, 26, 27, 28, 13, 29jodel. The Proper Orthogonal Decomposition (POD)



method [72] is a possible approach for constructiragssumed to be in a natural state.

the ROB as used in linear structural dynamics for all

possible input forces [73] or for a given set of input o . ,

forces [74, 75, 76, 77]. When the POD method is used’he gonstltut_lve equa_tlor_1 for t_he st_ructure is assumed
for constructing the ROB for a nonlinear computationtf P€ linéar viscoelastic in finite displacements with
model [62, 78], a large number of snapshots is used ({BFt@ntaneous memory, described by a displacement
time evolution problems, the time becomes a parametif)d measured from the reference configuration, and
and the responses are compressed into a low-dimensiGa4 Undergo weak finite displacements (small strain and
ROB using, for example, the singular value decorloderate rotations). The liquid is a linear dissipative

position method and several ingredients such as th@&@ustic fluid, which means that the liquid is homoge-
presented in [79, 80]. neous, compressible, inviscid with a volumic additional

dissipative term, described by a pressure field, and which
igg’n irrotational infinitesimal motions with respect to the

used. Section 3 deals with the nonlinear equation for tﬁgerence configuration. It should be noted that the liquid

structure expressed in the reference configuration. T‘ﬁén(\j’_'s_c'd O’TI Lhe fluid-structure interface on which a slip
boundary value problem for the nonlinear fluid-structufNdtion will be written.
problem is presented in Section 4 for which the formu-

lation retained is expressed using the pressure field inrpe physical space is referred to a cartesian reference
the liquid, the elevation of the free surface, and the diggstem. In the reference configuration, the boundary of
placement field of the structure. In Sections 5 and §, s assumed to be smooth enough and is written as
we present the computational fluid-structure model. The, _ 1, 4 ~ UT. The open parl;, is the fluid-
decomposition of the admissible space of the discretizgg ,cture interface. The open pdttis the free surface
coupled problem and the construction of the associagdine liquid in its reference configuration. The close
vector bases are presented in Section 7. Finally, the NBAFt~ is a curve (the contact line), which is such that
linear reduced-order computational model is detailed in_ o, — ar. The boundary of)s (supposed smooth
Section 9. enough) is written a®lg = 'y UT, U v UT¢ (see
Figure 1). The boundary of the open pdrts andI' is

the curvey. The domain whose boundary is the open set
I"u T'¢ is empty or is filled by a gas whose effects are

) ) o neglected for sake of brevity (this is the domain above
We consider the fluid-structure system inrigference Q, in Figure 1). The external unit normal @ is

configurationdefined in Figure 1. For this referenceonoted as® while the one ta)Q); is denoted as. The
configuration, the structure is undeformed ang 0CCUPISSernal unit normal toy belonging to the tangent plane
an open, bounded, and connected subsedf R”. The 1, gyrfacel is denoted as. Let Qs(t) be the actual

existing prestresses are not taken into account, whigh ... occupied by the structure at timend let9s ()
means that the undeformed configuration corresporyisiis boundary.

to a natural state. In the reference configuration, the

undeformed structure contains a liquid, which occupies

an open and bounded domafty,. The geometry of We are interested in analyzing the nonlinear vibra-
domain(), results from a pre-computation for finding théion (structural geometric nonlinearities) of the coupled
static equilibrium of the liquid in the structure considéresystem around its reference configuration. The struc-
as rigid, and submitted to the gravity effects and to there is assumed to be free (free-free structure for which
surface-tension effects (capillarity) of the free surfand no prescribed Dirichlet boundary conditions are given
of the fluid-structure interface. Since the liquid is linearn 0€25(¢)). The structure is submitted to given forces,

and since we are interested in studying the dynamighich are applied t62s(t), and which are assumed to be

around the static equilibrium, the fluid in domdily, is in equilibrium (in the actual configuration).

In Section 2, we give the notations and hypothes

2. Notations and hypotheses



whereps(x) > 0 is the mass density in the reference con-
figuration, whereS is the second Piola-Kirchhoff sym-
metric stress tensor in the reference configuration, where
div (FS) denotes the divergence of the second-order ten-
sorFS, and whereb = (b1,b9,b3) corresponds to the
transport ot of the body force field applied to de-
formed configuratiofs (), which is written as

b(x,t) = J(x,t) B(X(x,1),t). (5)

At time ¢, let F be the surface force field applied to the
deformed boundargQs(t) of the actual configuration.
The transport of on the undeformed boundadf)s is
denoted byf = (f1, f2, f3) and is written as

f(x, 1) ={det F(x, ) }[[F(x, 1)~ "n* (x)|| F(X(x, 1), ).
(6)
At time t, the boundary condition associated with surface
force fieldf applied to the undeformed bound&a{ls is
written as

Figure 1: Reference configuration of the fluid-structureeys

FSnS =f. (7)
3. Nonlinear equation for the structure expressed in

: . The constitutive equation of the structure is chosen in
the reference configuration

the framework of the theory of the linear viscoelasticity
In the cartesian reference system,xet (551; 12713) in finite displacements [83] and is written using the hy-

be the position vector of a point in the reference coRothesis of instantaneous memory (see [84], references

figurationQs = Qg U Q. In the actual (deformed)included),

configurationQ2s(¢) at timet, the position vectoX =

(X1, X2, X3) of the point that is transformed from is Sij = @ijem(X) Egm + bijem (X)

written as

dEs,,
dt ’

8

X(X,t) =X+ u(x,t), (1) inwhich the classical convention for summations over re-
in which u = (u1, us, us) is the displacement field de-Peated Latin indices is used, where tensgys,, (x) and

fined inQs. The deformation gradient tensB(x, t) de- lijem (x) are fourth-order real tensors depending>an
fined inQs by which verify symmetry and positiveness properties, and

p whereE,,, is the Green-Lagrange strain tensor, which is
7 I 1 9 t 1
Fi;(x,t) = 9Xi(x,t) =i + Qui(x,t) ) defined by

8xj al‘j ’ 1
and is assumed to be invertible and orientation preserving  Eem (1) = 5 (Fre(X,) Fim (X, 1) = dem)
for all x € Qg and for all¢: 1 Ouy Ou, Oup Oup
def =33 B e 0o O
J(x,t) = detF(x,t) > 0. 3) Tm Ze Lo Om
The dynamic equilibrium equations of the structure gt :
) . . 4. Boundary value problem in u
time ¢, expressed with respect to the reference configu- y P (P, 1)
ration, are written [81, 82] as For the linear dissipative acoustic liquid, the equations
92u _ of motion are written in the reference configuration.
ps5m —dvV(FS)=b, ¥x € Qs, (4) Let p(x,t) be the acoustic pressure field defined in



Qr = Qp U 0Qp (reference configuration), and lesound, and- is the constant coefficient that characterizes
n(x,t) be the field defined o', which is the normal the dissipation in the internal liquid (as a function of the
displacement to the free surfafealongn at pointx in dynamic, kinematic, and second viscosities).
the reference configuration. At time a surface force
field and a body force field are applied to the structuse Eq. (11) is the kinematic fluid-structure coupling
in the actual configuration, which are transported on thendition onI';, which expresses the continuity of the
reference configuration and give the force fifld, ¢) on normal velocity field on the interface.
I'r (see Eg. (6)) and the body force fididx, ) in Qg
(see Eg. (5)). e Eq. (12) represents the kinematic equation for the free
surfacel".

Attimet, and in the reference configuration, the bound-
ary value problem is expressed in terms of the strue-Eq. (13) corresponds to the free-surface constitutive
tural displacement field(x, ), the internal pressure fieldequation of surfac#, in which g, is the surface tension
p(x,t), and the normal displacementx, t) of the free coefficient,g is the gravitational acceleration vectd?;
surface. Under Cauchy initial conditions at timig the and R, are the principal curvature radii, and whévg.n
problem consists in finding, fdr> ¢, the fieldsu(x, ¢), denotes the surface Laplacian related to surfEcéf
p(X,t), andn(x, t), such that capillarity is neglected, the classical sloshing fredame

) boundary condition iSQretrieved). It can be seen that
1 0 Tgedp 1 V-0 in Q. (10) (1/R? 4+ 1/R3)n + V37 results from the change of

pocs Ot po Ot po the surface energy induced by an infinitesimal change
) in n, which yields a contribution to the surface pressure
(1+ T%) % I % n on Ty, (1) (classical Young-Laplace law) (see [13], Chapter 4).
o . dp 0% e Eq. (14) correspond to a new boundary condition for
A+75) 5 =—mps on T, (12) the contact angle compatible with a deformable structure,

considered here as linear viscoelastic with geometrical
1 1 nonlinearities. In the right-hand side of Eq. (14), the first
p=pong-n— ar{(ﬁ + ?M?‘FV%??} on I', (13) term corresponds to the classical contact angle condition
1 2 on the contact liney, in which ¢, is the contact angle
an coefficient (which is only valid for fixed rigid structure)

gy — Gt Ju on v, (14) " while the additional second term allows the structure de-
formation to be taken into account. In this terp,is a
o2u differential operator on manifoltl;,, which is (i) defined
PspE div(FS)=b, ¥x € Qg, (15) on a set of sufficiently differentiabl®?-valued functions
that are the traces dny, of functions o2, (ii) with val-
FSn®=f on Tg, (16) uesin a set oR-valued functions that are defined gnA

particular case for differential operatgris the one given

S _ S o !
FSn”dly =pn”dly — o (J'n)dpy onlr, (17) 4 [13] (Section 4.3, page 80):

in which F is defined by Eq. (2) and whefeis related

.nS
to E (defined by Eqg. (9)) by the constitutive equation Ju=FEu-n°— M, (18)
defined by Eqg. (8). In these equations, the different v
guantities are defined as follows: in which E is a real coefficient and whetey, is external

unit normal to~ belonging to the tangent plane to
e Eq. (10) is the linear dissipative acoustic equation, surfacel';. The physical interpretation of Eq. (18) corre-
which p, is the constant mass density of the homogsponds to the change of the energy due to an infinitesimal
neous liquid at equilibriumg¢, is the constant speed ofthange in the position of the contact line, which yields a



change of the wetted surface. o for Egs. (13) and (14),

e Eqg. (17), which have been introduced for the firs{Cpn] P(t) + ([K] + [Kc]) H(t) + [Cru] U(t) = 0. (23)
time in [1], corresponds to a new fluid-structure bound-

ary condition onl";, in the presence of capillarity, whiche for Egs. (15) to (17),

allows the condition of contact angle to be taken into

account in a presence of a linear viscoelastic structurgc,,] P(t) + [Cu) TH(t) + [M 5] 0(t)

with geometrical nonlinearities. For the readability of S . 5

the present paper, a short summary of the construction +ATUQE), U0 =F(UQR)1), (24)
is recalled hereinafter. The first term of the right-hand
side corresponds to the fluid-structure coupling conditidh
for a linear acoustic fluid coupled with the weak geomeEg

which A% is the vector-valued nonlinear differential
erator that can be written adl®{U(t),U(t)} =
SUMIUE) + KU}, where [DS(U(1))],
S{U(t)} and F°(U(t),t) are nonlinear mappings of
U(t). The different quantities introduced in Egs. (22) to
(24) are defined in Section 6.

rical nonlinear structure. Concerning the second ter
let x — f(x) be any real function defined dn; such
that its trace ony is integrable ony with respect to the
curvilinear measurely on v (the length of curvey is

= . Th [ I h
{: dy =1 )d en’i“” s area meaigre on; sucr:] It can be proved that, for all > ¢, the problem defined
that i, f(X) dp,(x) = [, f(x)dy(x) (this means that p o (99 1o (24) with the initial conditions, has a solu-
the support of measur., is ). The term(J'n) dp i tjgn (P(t),H(t), U(t)).
defined o', by algebraic duality of the terifTu defined

on~ (see Eq. (14)) using the duality brackets,
6. Vectors and matrices of the discretized problem

<Tu.n>, = /(ju) ndy, (19) presented in Section 5
.

In this section, we give the expressions of the vectors
(20) and matric_es ir_1tr0(_juced in Section 5, which result
from the discretization of the weak formulation of the
boundary value problem defined by Egs. (10) to (17).
For such a construction, for fixed we consider the
<u,J'n >, = <Ju,n>, . (21) fields (p(t),n(t),u(t)) and the test-function field&ip,
om, ou), which belong to the admissible spaces. In order
to simplify the notations, parametewwill be removed if
there is no possible confusion.

<u,Jm >>dM=/ (JI'n) - udpu .
I

L

The term(J'n) du., is then defined by

5. Computational fluid-structure model

Let P(¢), H(t), andU(¢) be the vectors corresponding?\/I . ) ) )
to the spatial discretization of fielggx, ¢), n(x,t), and Matrices relateq to the equations iA for the linear dis-
u(x,t). The first time derivative is denoted by a dot angfPative acoustic liquid
the second time derivative with a double dot. The dis- Symmetric real matri{}/] is positive definite, and
cretization of the variational formulation of the boundargorresponds to the discretization of the bilinear form

value problem in(p, n, u) yields: ﬁz Jo, popdx.
co L
e for Egs. (10) to (12), e Symmetric real matrixK] is positive semidefinite with

I T T a kernel of dimensiom, and corresponds to the discretiza-
[AYI{P(®)} = [Cpn]” H(#) = [Cou]” V(1) =0, (22) o0 of the bilinear form™ [, Vp- Vipdx.

in which [AL] is the symmetric matrix-valued lineare Symmetric real matrixD] = 7 [K| is positive semidef-
differential operator defined byAL] = [M]d?/dt* + inite with a kernel of dimensiof.
[D]d/dt + [K].



Matrices related to the equations it for the liquid free defined by Egs. (22) to (24) and in constructing an adapted
surface with capillarity vector basis that spans each admissible space.
o Symmetric real matrifk ] is positive definite, and cor- It can be shown (see [1]) that this admissible space can
responds to discretization of the bilinear foym [.g - P€decomposed in the following direct sum,
nnondl.

Cpauv=Cp®Cy®Cy, 25
e Symmetric real matrix[K.] is positive definite, Py r . v ()
and corresponds to the discretization of the bilinegr which each admissible space and its associated vector
form o, [ Vo -V.ondl' — o, [.(zz + 7z)nondl’ —  basis is defined hereinafter.

o f7 cyn on dry.

Matrices related to the coupling terms 7.1. Admissible spad€p and vector basis

e Rectangular real matrijC,,] corresponds to the dis- The spac&’p is related to the discretized problembn
cretization of the bilinear form- er pn-oéudly. (see Eq. (22)) for which the liquid is a linear acoustic lig-

uid (without the dissipative term) occupying doméln,
and for which we have the boundary conditigwy on = 0

i onl'; andp = 0 onI" U~ (i.e. there are no sloshing and
e Rectangular real matriXC',,| corresponds to thenq capillarity). Therefore('s is the admissible space for
discretization of the bilinear formo,. fw(ju)én dry. the problem defined byM] P(t) + [K]P(t) = 0 with

_ ) _ P(t) = 0 for all the degrees of freedom (DOFs) related
Vectors and matrices related to the equationsuifor 4 1y 4. A vector basis of”» can then be constructed
the structure with geometric nonlinearities and a lineags theacoustic modeswhich are the eigenvectors of the
viscoelastic constitutive equation without memory effecfeneralized eigenvalue problem with constraints,

e Rectangular real matri}C,,| corresponds to the dis-
cretization of the bilinear form- [, p o dI.

e Symmetric real matri¥}/5] is positive definite, and [K]P =\ [M]P, (26)
corresponds to the discretization of the bilinear form
st psU - U dx.

e The vector{DS(U(t))] U(t) + KS(U(t)) corresponds Let ['P] = [P1 o PNL] be the rectangulgr real matrix
to the discretization (see [85, 86, 87, 88, 89]) d¥hoseN,, columns are constituted of the eigenvectors as-
Jo. Fij Sjk (96u; /0y dx, in which F is a function of sociated with theV, first smallest positive eigenvalues.

u (Ssee Eq. (2)) and wherg is also a function ol (see

with P = 0 for the DOF related ta” U ~. (27)

Egs. (8) and (9)). 7.2. Admissible spad€y and vector basis
The space’y; is related to the discretized problem in
Vector of external forces H for which the liquid is considered as an inviscid in-

o Vector F'S (U (t), t) of external forces correspond to th&ompressible liquid, with sloshing and capillarity, and fo
discretization off,. _f-dudl's + [;,_b-sudx, inwhich Which the boundary condition igp/on = 0 on I'r.
b depends om (seé Eq. (5)) and whefalso depends on Therefore,Cy |sT§he admissible space of the problem,
u (see Eq. (6)). [K]P(t) — [Cpy]"H(t) = 0 and[Cpy]P(t) + ([K,] +
[K:])H(t) = 0. A vector basis o’y can then be con-
structed as thsloshing-capillarity modesf liquid occu-
7. Decomposition of the admissible space of the dispying domairf2;,, which are the eigenvectors of the gen-
cretized coupled problem and associated vectoreralized eigenvalue problem with constraints,
bases
[K]P+ Ar[Cpy)"H =0, (28)
The method consists in constructing a decomposition
of the admissible spa@p ;7 of the discretized problem [CpylP + ([K4] + [KJ)H =0. (29)



Since the kernel ofK] is equal tol, the elimination of® in which [M 4] is a positive symmetric matrix (called the

yields, added mass matrix), which is written as
[Kge]H = Ar [Mr]H. (30) u O TR G T 35
[L]H:O, (31) [ A]*[;DU][ *][;DU] : (35)
in which [L] is a real row matrix, and wherié{,.] and 7.3.2. Construction of a vector basis 6
[Mr], under the constraintd.|H = 0, are positive-  Two main approaches can be used for constructing the

definite symmetric matrices that are constructed as a fugector basis folC;;, represented by the rectangular ma-
tion of matrices K], [Cyy), [K,] and[K.]. For practical trix [t{] = [U; ... Uy,] in which theNs columns areVg
construction of these matrices, we refer the reader to Sgebraically independent vectors that span a subspace of

tion 4.6 of Chapter 4 in Ref. [13]. dimensionNg.

Let [H] = [H;...Hy,] be the rectangular real matrix

whoseNT columns are constituted of the eigenvectors as-¢ The first one is the proper orthogonal decomposition

sociated with theVr first smallest strictly positive eigen- ~ (POD) approach, which does not require expertise in

values. the selection of the vector basis, but which yields a
basis that depends on the selected excitation forces,

7.3. Admissible spag@; and vector basis and which requires solving a nonlinear dynamical

Since the structure has a nonlinear behavior, the con- Problem in high dimension.
struction is presented in two steps: definition of the ad-

missible spac€’; and then construction of a vector basis. * The second one is the linear modes approach, which

requires a very great expertise for selecting the linear
modes that participate in the nonlinear response of

7.3.1. Definition of the admissible spaCe
the structure.

Cy is the admissible space of the discretized problem

in U (see Eq. (24)), related to the viscoelastic structurdie reader will find in [90] an extensive, comprehensive,
s, coupled with the liquid considered as an inviscid ignd detailed review concerning the construction of such

compressible liquid (without sloshing and capillarity} 0 vector basis in structural dynamics for a structure with
cupying domairt),, with the boundary conditiop = 0 nonlinear geometric effects.
onI'. We then obtain the following discretized equations
in (P, U) deduced from Egs. (22) and (24), In the present paper, we propose to construct a vector
B Tl . - basis ofC; in using the nonlinear structure coupled with
[K]P(t) = [Cpu] U(t) = 0 With P(t) = 0 onT'U Zéz) the liquid considered as an incompressible inviscid liquid
in order to take into account the effects of added mass.
C P + [MS10(8) + (DS (U) Ut It should be poted that we do not recommend to use
[Cou] P(E) + [METUC )S [D=(U( )); (®) the structure in vacuo (no added mass effect taken into
+KZ{U@)} =F7(U(#),t). (33) account). Let us recall that the added-mass effects corre-

; - ; ding to compressible and incompressible fluids are
Using Eq. (32),P(¢) can be eliminated in order to ob-SPON . .
tain an equation iNJ(¢). Let ('] be the matrix such distinct (see Chapters 5 and 8 in [13]) and see [91, 92] in
that the solution of K]P — F (ﬁn which E is an arbi- Which itis shown that the added-mass of a compressible

trary vector) under the constraift = 0 onT' U ~, is flow does not admit a simple local-in-time decompo-
written asP = [ !]F. Consequently, Eq. (32) yieldssmon. Thl_s is the reasc_)n why the e_ldded_-mass effec_ts
P(t) = (K1 [Cpul” U(t). By substitution in (33), we have been introduced using an associated incompressible
obtain * P ’ liquid. Let us remark that solely for the construction of
the basis ofCy, the use of the POD for the complete
([MS] + [M.a]) U(t) + [DS (U@)] U(¢) fluid-structure problem defined by Egs. (22) to (24)
s s would not be computationally efficient, and in addition is
+ KU} =F7(U(#),1), (34) notin the spirit of the method proposed for constructing



the reduced-order model for the fluid-structure probletime rigid body modes of the underlying linear structural

under consideration. system with the added mass (and not, in general, the rigid
body modes of the nonlinear fluid-structure system) .

(i) - POD-based approachThe POD approach requiredet [(/] = [U;...Uxn,] be the rectangular real matrix

to solve the following evolution problem whoseNg columns are constituted of the selected eigen-
vectors.

([M5] + [Ma]) U(#) + [DF(U(#))] U(2)

S _ s
+KAHUDF =F(U@E),1) t>to, (36) 8. Nonlinear reduced-order computational model

with the initial conditions
i 8.1. Methodology for constructing the nonlinear
U(to) =Uo , U(to) = Vo. (37) reduced-order computational model

A displacement snapshot matriisnag is formed using  The reduced-order model of ordg¥, Nr, Ng) is ob-
the responsed(t;), ..., U(t,) of Egs. (36) and (37) at  tained by projectingP(t), H(t), U(t)) on the vector bases
instantsty, . . ., t,, (Snapshots) with sufficiently large, in constructed in Section 7,

forming the real symmetric matrix

. P(t) = [Pla” (1), (42)
[Rsnad = E[UsnadT[Usnad; (38)
H(t) = [H]a" (1), (43)
and in computing the dominant eigensubspace (associated
with the Ng largest positive eigenvalugs, > ... > u@t) =[U1qY (), (44)
uns > 0), represented by the rectangular mafdy = ) o )
[U;...Uy,], of the eigenvalue problem, and then in projecting Egs. (22) to (24). The two linear
matrix equations defined by Eqgs. (22) and (23) can clas-
[Rsna Ua = ptaUs , a=1,...,Ns. (39) sically be projected without any particular difficulties.

Concerning the nonlinear equation defined by Eq. (24),
(ii) - Use of the linear modesWith the linear modes ap-due to the nonlinearity ikJ(¢), several approaches can be
proach, the vector basis is constituted of¢ftestic modes used for constructing the projection in a computational
of the underlying linear structural system with the addéhmework, that we briefly summarized hereinafter. The
mass, and is then constructed by solving the generalizgrdsible approaches can be classified in the class of
eigenvalue problem (deduced from Eq. (34)), the intrusive methods with respect to the commercial
softwares and the class of the non-intrusive one.

[KMU = Ag ([M®] + [Ma]) U, (40)
. . (i) For the class of intrusive methods, two main ap-
in which . e

proaches can be identified:
1., — s . .

B = 10U/ 00 oo 40 (i-1) The first one consists in implementing, at each time
which is the linear part of the nonlinear operatatept required by the time integration scheme used,
U — K%{U}. As explained before, the linear modethe direct computation of the reduced nonlinear force
U ... Uy, have to be carefully selected because all thef]”. A% {[t]qV (), [U]qY(t)} and in introducing a
participating modes in the nonlinear responses musthyper reduction technique for reducing the numerical
included [90]. This means that the associated eigenvalgest of the computation (see [68, 69, 70, 71]).
0 < Ag1 < ... < Ag ng (Which are in increasing order)
are not, in general, consecutive. It should be noted ti{a2) The second one consists in implementing the direct
the eigenvectors that correspond to zero eigenvalues @mputation of the reduced nonlinear terms that result



from an algebraic calculation of the different contribu8.2. Nonlinear reduced-order computational model for

tions of the projection 0fA°{U(t), U(t)}, the fluid-struture system
T 45 U Using the methodology presented in Section 8.1, the
(" AUl o™ (1), [U] 9™ ()} following nonlinear matrix equation is obtained for the
= [UT (DS ([U) qY ()] [L] g7 (t) reduced-order computational model,

+URH[UQ” (1)} (45)

_ 6" (¢) §”(t)
The component of the reduced conservativetermcanbe 141 | §7(¢) | + [Bes] | 97 (t)
written as §Y () qv ()
(U)K (U QY (B} e = K0) aF () q (t)
+K3 a0 0+ K85 O e 0). (40) Flcrs) 3U 0
with summation on the repeated Greek indices. The com-
ponenta of the reduced dissipative term can be written i 0 }
® ] (U] A% {[U) oV (), [U]a" (1)}
()" (D% (U] q” @) [U)a” (1) = - { DL af (1) . 0 ] )
+ D, gf () aV (1) + Dgzw HOrHOr oIS )T (U (0.0) |
(47)

in which the matrice$A gs|], [Brsi], and[Crgi] are writ-
With such a direct intrusive approach, all the constaten as
coefficients of the tensors in the right-hand sides of

Egs. (46) and (47) are calculated inside the software. For n

the conservative term defined by Eq. (46), such a direct [Ars
implementation can be found in [93, 94] and can be

0 0 0

M) =[Cpn]" —[Cpu]®
. (49)
0 0 [M?]

extended without difficulty to the dissipative term defined D] 0 0
by Eq. (47). [Besl=| 0 0 0 |, (50)
0 0 0

(ii) For the class of non-intrusive methods related to the
calculation of the conservative part defined by Eq. (46), (K] 0 0
the approach consists in numerically identifying all the [Cesi] = | [Cpn] [’Cgc]T [Chul |, (B1)
coefficients of the tensors that appear in the right-hand [Cpu]  [Crul 0

side of Eq. (46) by solving an inverse problem basedth the following definitions for all the matrices in
on the computation of the nonlinear static responseskijs. (49) to (51):

the structure in vacuo submitted to appropriate Dirichlet

conditions related to the selected vectors... Uy, of e For the reduced matrices relative to the liquid,
the vector basis. In [90], the reader will find a detailepM] = [P]T [M][P], [D] = [P])¥[D][P], and
review concerning such a numerical identification for K] = [P]” [K] [P].

the coefficients of the tensors relative to the elastic part

(see the right-hand side of Eq. (46)). Some applicationsFor the reduced matrix relative to the free surface,
of such a methodology can be found, for instance, [iC,.] = [H]T ([K,] + [K.]) [H].

[4, 95, 96]. This approach could certainly be extended for

identifying the coefficients of the tensors related to the For the reduced matrix relative to the structure,
dissipative part (see the right-hand side of Eq. (47)). [M?®] = [T [M5][P].
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e For the reduced matrices relative to the couplinf] Ohayon R, Soize C. Advanced Computational Vi-

[Coul = [HIT [Cpu] [P, [Cpu] = [U]T [Cpu] [P], and broacoustics - Reduced-Order Models and Uncer-

[Cou) = [H]T [ Cru] [U]. tainty Quantification. Cambridge University Press,
New York, 2014.
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