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Current applications, from complex sensor systems (e.g. quantified self) to online e-markets acquire vast 

quantities of personal information which usually end-up on central servers where they are exposed to 

prying eyes. Conversely, decentralized architectures helping individuals keep full control of their data, 

complexify global treatments and queries, impeding the development of innovative services. This paper 

precisely aims at reconciling individual's privacy on one side and global benefits for the community and 

business perspectives on the other side. It promotes the idea of pushing the security to secure hardware 

devices controlling the data at the place of their acquisition. Thanks to these tangible physical elements of 

trust, secure distributed querying protocols can reestablish the capacity to perform global computations, 

such as SQL aggregates, without revealing any sensitive information to central servers. This paper studies 

how to secure the execution of such queries in the presence of honest-but-curious and malicious attackers. 

It also discusses how the resulting querying protocols can be integrated in a concrete decentralized 

architecture. Cost models and experiments on SQL/AA, our distributed prototype running on real tamper-

resistant hardware, demonstrate that this approach can scale to nationwide applications.   
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1. INTRODUCTION 

With the convergence of mobile communications, sensors and online social networks 

technologies, an exponential amount of personal data - either freely disclosed by 

users or transparently acquired by sensors - end up in servers. This massive amount 

of data, the new oil, represents an unprecedented potential for applications and 

business (e.g., car insurance billing, traffic decongestion, smart grids optimization, 

healthcare surveillance, participatory sensing). However, centralizing and processing 

all one’s data in a single server incurs a major problem with regards to privacy. 

Indeed, individuals’ data is carefully scrutinized by governmental agencies and 

companies in charge of processing it [de Montjoye et al. 2012]. Privacy violations also 

arise from negligence and attacks and no current server-based approach, including 

cryptography based and server-side secure hardware [Agrawal et al. 2002], seems 

capable of closing the gap. Conversely, decentralized architectures (e.g., personal 

data vault), providing better control to the user over the management of her personal 

data, impede global computations by construction.  

This paper aims to demonstrate that privacy protection and global computation 

are not antagonist and can be reconciled to the best benefit of the individuals, the 
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community and the companies. To reach this goal, this paper capitalizes on a novel 

architectural approach called Trusted Cells [Anciaux et al. 2013]. Trusted Cells push 

the security to the edges of the network, through personal data servers [Allard et al. 
2010] running on secure smart phones, set-top boxes, plug computers1 or secure 

portable tokens2 forming a global decentralized data platform. Indeed, thanks to the 

emergence of low-cost secure hardware and firmware technologies like ARM 

TrustZone3, a full Trusted Execution Environment (TEE) will soon be present in any 

client device. In this paper, and up to the experiments section, we consider that 

personal data is acquired and/or hosted by secure devices but make no additional 

assumption regarding the technical solution they rely on. 

Global queries definitely make sense in this context. Typically, it would be helpful 

to compute aggregates over smart meters without disclosing individual's raw data 

(e.g., compute the mean energy consumption per time period and district). Identifying 

queries also make sense assuming the identified subjects consent to participate (e.g., 

send an alert to people living in Paris-La Defense district if their total energy 
consumption reaches a given threshold). Computing SQL-like queries on such 

distributed infrastructure leads to two major and different problems: computing joins 

between data hosted at different locations and computing aggregates over this same 

data. We tackled the first issue in [To et al. 2015a] thanks to a trusted MapReduce-

based system that can support joins and cover parallelizable tasks executed over a 

Trusted Cells infrastructure. This paper concentrates on the second issue: how to 

compute global queries over decentralized personal data stores while respecting 

users' privacy? Indeed, we believe that the computation of aggregates is central to the 

many novel privacy preserving applications such as smart metering, e-

administration, etc.  

Our objective is to make as few restrictions on the computation model as possible. 

We model the information system as a global database formed by the union of a 

myriad of distributed local data stores (e.g., nation-wide context) and we consider 

regular SQL queries and a traditional access control model. Hence the context we are 

targeting is different and more general than, (1) querying encrypted outsourced data 

where restrictions are put on the predicates which can be evaluated [Agrawal et al. 
2004, Amanatidis et al. 2007, Popa et al. 2011, Hacigümüs et al. 2004], (2) 

performing privacy-preserving queries usually restricted to statistical queries 

matching differential privacy constraints [Fung et al. 2010, Fayyoumi and Oommen 

2010] and (3) performing Secure-Multi-Party (SMC) query computations which 

cannot meet both query generality and scalability objectives [Kissner and Song 

2005]. 

The contributions of this paper are4: (1) to propose different secure query 

execution techniques to evaluate regular SQL “group by” queries over a set of 

distributed trusted personal data stores, (2) to quantify and compare the respective 

information exposure of these techniques, (3) to study the range of applicability of 

 
1http://freedomboxfoundation.org/ 
2http://www.gd-sfs.com/portable-security-token 
3http://www.arm.com/products/processors/technologies/trustzone.php 
4 This paper is an extended and restructured version of [To et al. 2014a]. The new material covers a set of important 

problems that need to be solved to make the approach practical: cryptographic key management, accuracy and latency of 
the collection phase, access control management. The security analysis was also improved to address stronger attackers 

with more knowledge. A solution was also proposed to prevent malicious attackers from deleting the data, ensuring the 

completeness of the result.  In addition, it validates our cost model thanks to performance measurement performed on real 
secure hardware. This version also integrates more detailed results and a performance comparison with state of the art 

methods. 

http://fr.wikipedia.org/wiki/Memphis_%28Tennessee%29
http://freedomboxfoundation.org/
http://www.gd-sfs.com/portable-security-token
http://www.arm.com/products/processors/technologies/trustzone.php
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these techniques and show that our approach is compatible with nation-wide contexts 

by thorough analysis of a cost model and performance measurements of a prototype 

running on real secure hardware devices.  

The rest of this paper is organized as follows. Section 2 states our problem. 

Section 3 discusses related works. Section 4 introduces a framework to execute 

simple queries and Section 5 concentrates on complex queries involving Group By 

and Having clauses. Section 6 discusses practical aspects of the proposed solution. 

Section 7 presents a privacy analysis of each querying protocol. Section 8 analyzes 

the performance of these solutions through cost models while section 9 validates 

these cost models through performance measurements. Finally section 10 concludes. 

Appendix A is added at the end to clarify how we prevent malicious attacks. 

2. CONTEXT OF THE STUDY 

2.1 Scenarios and queries of interest 

As discussed in [Anciaux et al. 2013], trusted hardware is more and more versatile 

and has become a key enabler for all applications where trust is required at the edges 

of the network. Figure 1 depicts different scenarios where a Trusted Data Server 

(TDS) is called to play a central role, by reestablishing the capacity to perform global 

computations without revealing any sensitive information to central servers. TDS 

can be integrated in energy smart meters to gather energy consumption raw data, to 

locally perform aggregate queries for billing or smart grid optimization purpose and 

externalize only certified results, thereby reconciling individuals' privacy and energy 

providers’ benefits. Green button5 is another application example where individuals 

accept sharing their data with their neighborhood through distributed queries for 

their personal benefit. Similarly, TDS can be integrated in GPS trackers to protect 

individuals' privacy while securely computing insurance fees or carbon tax and 

participating in general interest distributed services such as traffic jam reduction. 

Moreover, TDSs can be hosted in personal devices to implement secure personal 

folders like e.g., PCEHR (Personally Controlled Electronic Health Record) fed by the 

individuals themselves thanks to the Blue Button initiative6 and/or quantified-self 

devices. Distributed queries are useful in this context to help epidemiologists 

performing global surveys or allow patients suffering from the same illness to share 

their data in a controlled manner.  

For the sake of generality, we make no assumption about how the data is actually 

gathered by TDSs, this point being application dependent [Allard et al. 2010, 

Montjoye et al. 2012]. We simply consider that local databases conform to a common 

schema (Fig. 3) which can be queried in SQL. For example, power meter data (resp., 

GPS traces, healthcare records, etc) can be stored in one (or several) table(s) whose 

schema is defined by the national distribution company (resp., insurance company 

consortium, Ministry of Health7, specific administration, etc). Since raw data can be 

highly sensitive, it must also be protected by an access control policy defined either 

by the producer organism, by the legislator or by a consumer association. Depending 

on the scenario, each individual may also opt-in/out of a particular query. For sake of 

generality again, we consider that each TDS participating in a distributed query 

protocol enforces at the same time the access control policy protecting the local data 

it hosts, with no additional consideration for the access control model itself, the 

 
5http://www.greenbuttondata.org/ 
6http://healthit.gov/patients-families/your-health-data 
7 This is the case in France for instance. 

http://www.greenbuttondata.org/
http://healthit.gov/patients-families/your-health-data
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choice of this model being orthogonal to this study. Hence, the objective is to let 

queriers (users) query this decentralized database exactly as if it were centralized, 

without restricting the expressive power of the language to statistical queries as in 

many Privacy-Preserving Data Publishing (PPDP) works [Fayyoumi and Oommen 

2010, Popa et al. 2011]. 

 
Fig. 1. Different scenarios of TDSs 

Consequently, we assume that the querier can issue the following form of SQL 

queries8, borrowing the SIZE clause from the definition of windows in the 

StreamSQL standard [StreamSQL 2015]. This clause is used to indicate a maximum 

number of tuples to be collected, and/or a collection duration.  

SELECT <attribute(s) and/or aggregate function(s)> 
FROM <Table(s)> 
[WHERE <condition(s)>]  
[GROUP BY <grouping attribute(s)>]  
[HAVING <grouping condition(s)>] 
[SIZE <size condition(s)>] 

For example, an energy distribution company would like to issue the following 

query on its customers' smart meters: "SELECT AVG(Cons) FROM Power P, 
Consumer C WHERE C.accomodation='detached house' and C.cid = P.cid GROUP BY 
C.district HAVING Count(distinct C.cid) > 100 SIZE 50000".  This query computes 

the mean energy consumption of consumers living in a detached home grouped by 

district, for districts where over 100 consumers answered the poll and the poll stops 

after having globally received at least 50.000 answers. The semantics of the query 

are the same as those of a stream relational query [Abadi et al. 2003]. Only the smart 

meter of customers who opt-in for this service will participate in the computation. 

Needless to say that the querier, that is the distribution company, must be prevented 

to see the raw data of its customers for privacy concerns9.   

In other scenarios where TDSs are seldom connected (e.g., querying mobile 

PCEHR), the time to collect the data is probably going to be quite large. Therefore 

the challenge is not on the overall response time, but rather to show that the query 

computation on the collected data is tractable in reasonable time, given local 

resources. 

 

8 As stated in the introduction, we do not consider joins between data stored in different TDSs in this 

article, the solution to this specific problem being addressed in [To et al. 2015a]. However, there is no 

restriction on the queries executed locally by each TDS. 
9 At the 1HZ granularity provided by the French Linky power meters, most electrical appliances have a 

distinctive energy signature. It is thus possible to infer from the power meter data inhabitants activities 

[Lam et al. 2007]. 
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Also note that unless specified otherwise, our semantics make the Open World 
Assumption:  since we assume that data is not replicated over TDS, many true tuples 

will not be collected during the specified period and/or due to the limit, both indicated 

in the SIZE clause. Hence, the SIZE clause is mandatory, since having a complete 

answer is contradictory with the open world assumption. Under the closed world 

assumption (in which all TDS are always connected to the infrastructure), one can 

replace the keyword SIZE by ALL to collect all available data. 

2.2 Asymmetric Computing Architecture 

The architecture we consider is decentralized by nature. It is formed by a large set of 

low power TDSs embedded in secure devices. Despite the diversity of existing 

hardware platforms, a secure device can be abstracted by (1) a Trusted Execution 

Environment and (2) a (potentially untrusted but cryptographically protected) mass 

storage area (see Fig. 2)10. E.g., the former can be provided by a tamper-resistant 

microcontroller while the latter can be provided by Flash memory. The important 

assumption is that the TDS code is executed by the secure device hosting it and thus 

cannot be tampered, even by the TDS holder herself. Each TDS exhibits the following 

properties: 

High Security. This is due to a combination of factors: (1) the microcontroller 

tamper-resistance, making hardware and side-channel attacks highly difficult, (2) 

the certification of the embedded code making software attacks also highly difficult, 

(3) the ability to be auto-administered, in contrast with traditional multi-user 

servers, precluding DBA attacks, and (4) the fact that the device holder cannot 

directly access the data stored locally (she must authenticate and can only access 

data according to her own privileges). This last point is of utmost importance because 

it allows the definition of distributed protocols where data is securely exchanged 

among TDSs with no confidentiality risk. 

Low Availability. The Secure Device is physically controlled by its owner who may 

connect or disconnect it at will, providing no availability guarantee. 

Modest Computing Resource. Most Secure Devices provide modest computing 

resources (see section 8) due to the hardware constraints linked to their tamper-

resistance. On the other hand, a dedicated cryptographic co-processor usually 

handles cryptographic operations very efficiently (e.g., AES and SHA). 

 
Fig. 2. Trusted Data Servers 

Hence, even if there exist differences among Secure Devices (e.g., smart tokens are 

more robust against tampering but less powerful than TrustZone devices), all provide 

much stronger security guarantees combined with a much weaker availability and 
computing power than any traditional server. 

 

 
10 For illustration purpose, the secure device considered in our experiments is made of a tamper-resistant microcontroller 

connected to a Flash memory chip.  
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Fig. 3. The Asymmetric Architecture 

 

Since TDSs have limited storage and computing resources and they are not 

necessarily always connected, an external infrastructure, called hereafter Supporting 
Server Infrastructure (SSI), is required to manage the communications between 

TDSs, run the distributed query protocol and store the intermediate results produced 

by this protocol. Because SSI is implemented on regular server(s), e.g., in the Cloud, 

it exhibits the same low level of trustworthiness, high computing resources, and 

availability. 

The computing architecture, illustrated in Fig. 3 is said asymmetric in the sense 

that it is composed of a very large number of low power, weakly connected but highly 

secure TDSs and of a powerful, highly available but untrusted SSI. 

2.3 Threat Model 

TDSs are the unique elements of trust in the architecture and are considered honest. 
As mentioned earlier, no trust assumption needs to be made on the TDS holder 

herself because a TDS is tamper-resistant and enforces the access control rules 

associated to its holder (just like a car driver cannot tamper the GPS tracker 

installed in her car by its insurance company or a customer cannot gain access to any 

secret data stored in her banking smartcard).  

We primarily consider honest-but-curious (also called semi-honest) SSI (i.e., which 

tries to infer any information it can but strictly follows the protocol), concentrating on 

the prevention of confidentiality attacks. We additionally discuss (see Appendix A) 

how to extend our protocols with safety properties to detect attacks conducted by 

malicious SSI (i.e., which may tamper the protocol with no limit, including denial-of-

service), although the probability of such attacks is supposed to be much lower 

because of the risk of an irreversible political/financial damage and even the risk of a 

class action against the SSI. 

The objective is thus to implement a querying protocol so that (1) the querier can 

gain access only to the final result of authorized queries (not to the raw data 

participating in the computation), as in a traditional database system and (2) 

intermediate results stored in SSI are obfuscated. Preventing inferential attacks by 

combining the result of a sequence of authorized queries as in statistical databases 

and PPDP work (see section 3) is orthogonal to this study. 

3. RELATED WORKS 

This work has connections with related studies in different domains, namely 

protection of outsourced (personal) databases, statistical databases and PPDP, SMC 

and finally secure aggregation in sensor networks. We review these works below. 

Security in outsourced databases. Outsourced database services or DaaS 

[Hacigumus et al. 2002] allow users to store sensitive data on a remote, untrusted 

server and retrieve desired parts of it on request. Many works have addressed the 
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security of DaaS by encrypting the data at rest and pushing part of the processing to 

the server side. Searchable encryption has been studied in the symmetric-key 

[Amanatidis et al. 2007] and public-key [Bellare et al. 2007] settings but these works 

focus mainly on simple exact-match queries and introduce a high computing cost. 

Agrawal et al. [2004] proposed an order preserving encryption (OPE) scheme, which 

ensures that the order among plaintext data is preserved in the ciphertext domain, 

supporting range and aggregate queries, but OPE relies on the strong assumption 

that all plaintexts in the database are known in advance and order-preserving is 

usually synonym of weaker security. The assumption on the a priori knowledge of all 

plaintext is not always practical (e.g., in our highly distributed database context, 

users do not know all plaintexts a priori), so a stateless scheme whose encryption 

algorithm can process single plaintexts on the fly is more practical. Bucketization-

based techniques [Hacigumus et al. 2002, Hore et al. 2012] use distributional 

properties of the dataset to partition data and design indexing techniques that allow 

approximate queries over encrypted data. Unlike cryptographic schemes that aim for 

exact predicate evaluation, bucketization admits false positives while ensuring all 

matching data is retrieved. A post-processing step is required at the client-side to 

weed out the false positives. These techniques often support limited types of queries 

and lack of a precise analysis of the performance/security tradeoff introduced by the 

indexes. To overcome this limitation, the work in [Damiani et al. 2003] quantitatively 

measures the resulting inference exposure. Other works introduce solutions to 

compute basic arithmetic over encrypted data, but homomorphic encryption [Paillier 

1999] supports only range queries, fully homomorphic encryption [Gentry 2009] is 

unrealistic in terms of time, and privacy homomorphism [Hacigumus et al. 2004] is 

insecure under ciphertext-only attacks [Mykletun, and Tsudik 2006]. Hence, optimal 

performance/security tradeoff for outsourced databases is still regarded as the Holy 

Grail. Recently, the Monomi system [Tu et al. 2013] has been proposed for securely 

executing analytical workloads over sensitive data on an untrusted database server. 

Although this system can execute complex queries, there can be only one trusted 

client decrypting data, and therefore it cannot enjoy the benefit of parallel 

computing. Another limitation of this system is that to perform the GROUP BY 

queries, it encrypts the grouping attributes with deterministic encryption, allowing 

frequency-based attacks.   

Statistical Database and PPDP. Statistical databases (SDB) [Fayyoumi and 

Oommen 2010] are motivated by the desire to compute statistics without 

compromising sensitive information about individuals. This requires trusting the 

server to perform query restriction or data perturbation, to produce the approximate 

results, and to deliver them to untrusted queriers. Thus, the SDB model is 

orthogonal to our context since (1) it assumes a trusted third party (i.e., the SDB 

server) and (2) it usually produces approximate results to prevent queriers from 

conducting inferential attack [Fayyoumi and Oommen 2010]. For its part, Privacy-

Preserving Data Publishing [Fung et al. 2010] provides a non trusted user with some 

sanitized data produced by an anonymization process such as k-anonymity, l-
diversity or differential privacy to cite the most common ones [Fung et al. 2010]. 

Similarly, PPDP is orthogonal to our context since it again assumes a trusted third 

party (i.e., the publisher) and produces sanitized data of lower quality to match the 

information exposure dictated by a specific privacy model. The work in [Allard et al. 
2014] tackles the first limitation by pushing the trust to secure clients but keeps the 

objective of producing sanitized releases. Contrary to these works, our paper targets 
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the execution of general SQL queries, considers a traditional access control model 

and does not rely on a secure server. 

Secure Multi-party Computation. Secure multi-party computation (SMC) allows N 

parties to share a computation in which each party learns only what can be inferred 

from their own inputs (which can then be kept private) and the output of the 

computation. This problem is represented as a combinatorial circuit which depends 

on the size of the input. The resulting cost of a SMC protocol depends on the number 

of inter-participant interactions, which in turn depends exponentially on the size of 

the input data, on the complexity of the initial function, and on the number of 

participants. Despite their unquestionable theoretical interest, generic SMC 

approaches are impractical where inputs are large and the function to be computed 

complex. Ad-hoc SMC protocols have been proposed [Kissner and Song 2005] to solve 

specific problems/functions but they lack of generality and usually make strong 

assumptions on participants’ availability. Hence, SMC is badly adapted to our 

context. 

Secure Data Aggregation. Wireless sensor networks (WSN) [Alzaid et al. 2008] 

consist of sensor nodes with limited power, computation, storage, sensing and 

communication capabilities. In WSN, an aggregator node can compute the sum, 

average, minimum or maximum of the data from its children sensors, and send the 

aggregation results to a higher-level aggregator. WSN have some connection with our 

context regarding the computation of distributed aggregations. However, contrary to 

the TDS context, WSN nodes are highly available, can communicate with each other 

in order to form a network topology to optimize calculations (In fact, TDSs can 

collaborate to form the topology through SSI, but because of the weak connectivity of 

TDSs, forming the topology is inefficient in term of time). Other work [Castelluccia et 
al. 2005] uses additively homomorphic encryption for computing aggregation function 

on encrypted data in WSN but fails to consider queries with GROUP BY clauses. Liu 

et al. [2010] protects data against frequency-based attacks but considers only point 

and range queries. 

As a conclusion, and to the best of our knowledge, our work is the first proposal 

achieving a fully distributed and secure solution to compute aggregate SQL queries 

over a large set of participants. 

4. BASIC QUERYING PROTOCOL 

This section presents the protocol to compute Select-From-Where queries. This 

protocol is simple yet very useful in practice, since many queries are of this form. We 

also use it to help the reader get used to our approach. We tackle the more difficult 

Group By clause in section 5. 

4.1 Core infrastructure 

Our querying protocols share common basic mechanisms to make TDSs aware of the 

queries to be computed and to organize the dataflow between TDSs and queriers such 

that SSI cannot infer anything from the queries and their results.  

Query and result delivery: queries are executed in pull mode. A querier posts its 

query to SSI and TDSs download it at connection time. To this end, SSI can maintain 

personal query boxes (in reference to mailboxes) where each TDS receives queries 

directed to it (e.g., get the monthly energy consumption of consumer C) and a global 

query box for queries directed to the crowd (e.g., get the mean of energy consumption 
per month for people living in district D). Result tuples are gathered by SSI in a 
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temporary storage area. A query remains active until the SIZE clause is evaluated to 

true by SSI, which then informs the querier that the result is ready. 

Dataflow obfuscation: all data (queries and tuples) exchanged between the querier 

and the TDSs, and between TDSs themselves, can be spied by SSI and must 

therefore be encrypted. However, an honest-but-curious SSI can try to conduct 

frequency-based attacks [Liu et al. 2010], i.e., exploiting prior knowledge about the 

data distribution to infer the plaintext values of ciphertexts. Depending on the 

protocols (see later), two kinds of encryption schemes will be used to prevent 

frequency-based attacks. With non-deterministic (aka probabilistic) encryption, 

denoted by nDet_Enc, several encryptions of the same message yield different 

ciphertexts while deterministic encryption (Det_Enc for short) always produces the 

same ciphertext for a given plaintext and key [Bellare et al. 2007]. Whatever the 

encryption scheme, symmetric keys must be shared among TDSs: we note kQ the 

symmetric key used by the querier and the TDSs to communicate together and kT the 

key shared by TDSs to exchange temporary results among them. We can choose 

either a different kQ per querier, or a different kQ per query. Note that these keys 

may also change over time and the way they are delivered to TDSs (and how much 

this costs) is discussed more deeply in section 6. 

4.2 Select-From-Where statements 

Let us first consider simple SQL queries of the form: 

SELECT <attribute(s)> FROM <Table(s)> [WHERE <condition(s)>] [SIZE <size 
condition(s)>] 

These queries do not have a GROUP BY or HAVING clause nor involve aggregate 

functions in the SELECT clause. Hence, the selected attributes may (or may not) 

contain identifying information about the individuals. Though basic, these queries 

answer a number of practical use-cases, e.g., a doctor querying the embedded 

healthcare folders of her patients, or an energy provider willing to offer special prices 

to people matching a specific consumption profile. To compute such queries, the 

protocol is divided in two phases (see Fig. 4): 

Collection phase: (step 1) the querier posts on SSI a query Q encrypted with kQ, its 

credential ₡ signed by an authority and S the SIZE clause of the query in cleartext so 

that SSI can evaluate it; (step 2) targeted TDSs11 download Q when they connect; 

(step 3) each of these TDSs decrypts Q, checks ₡, evaluates the AC policy associated 

to the querier and computes the result of the WHERE clause on the local data; then 

each TDS either sends its result tuples (step 4), or a small random number of dummy 

tuples12 when the result is empty or the querier has not enough privilege to access 

these local data (step 4'), non-deterministically encrypted with kT. The collection 

phase stops when the SIZE condition has been reached (i.e., the total number of 

collected encrypted tuples is S)13. The result of the collection phase is actually the 

result of the query, possibly complemented with dummy tuples. We call it Covering 

Result. 

 
11Connected TDSs actually download all queries and decrypt them to check whether they can contribute to them or not. 

The SSI cannot perform this task since queries are encrypted. 
12 The objective is to hide which TDSs satisfy the Where clause of the query in the case SSI and Querier collude. 
13 The production of dummy tuples may slightly impact the evaluation of the SIZE clause. The Querier must thus oversize 

this parameter according to his perception of the selectivity of the query and the percentage of TDSs opting-out for the 
query. If this over sizing turns out to be insufficient, the query could need to be rerun. Note anyway that the SIZE limit is a 

coarse parameter in the open world assumption. 
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Filtering phase: (step 5) SSI partitions the Covering Result with the objective to 

let several TDSs manage next these partitions in parallel. The Covering Result being 

fully encrypted, SSI sees partitions as uninterpreted chunks of bytes; (step 6) 

connected TDSs download these partitions. These TDSs may be different from the 

ones involved in the collection phase; (step 7) each of these TDS decrypts the 

partition and filters out dummy tuples; (step 8) each TDS sends back the true tuples 

encrypted with key kQ to SSI, which finally concatenates all results and informs the 

querier that she can download the result (step 9). 

 

 
Fig. 4. Select-From-Where querying protocol 

 

Informally speaking, the accuracy, security and efficiency properties of the protocol 

are as follows: 

Accuracy. Since SSI is honest-but-curious, it will deliver to the querier all tuples 

returned by the TDSs. Dummy tuples are marked so that they can be recognized and 

removed after decryption by each TDS. Therefore the final result contains only true 

tuples. If a TDS goes offline in the middle of processing a partition, SSI resends that 

partition to another available TDS after a given timeout so that the result is 

complete. As discussed in Appendix A, accuracy is more difficult to achieve in the 

case of malicious SSI. 

Security. Since SSI does not know key kQ, it can decrypt neither the query nor the 

result tuples. TDSs use nDet_Enc for encrypting the result tuples so that SSI can 

neither launch any frequency-based attacks nor detect dummy tuples. There can be 

two additional risks. The first risk is that SSI acquires a TDS with the objective to 

get the cryptographic material. As stated in section 2, TDS code cannot be tampered, 

even by its holder. Whatever the information decrypted internally, the only output 

that a TDS can deliver is a set of encrypted tuples, which does not represent any 

benefit for SSI. The second risk is if SSI colludes with the querier. For the same 

reason, SSI will only get the same information as the querier (i.e., the final result in 

clear text and no more). 

Efficiency. The efficiency of the protocol is linked to the frequency of TDSs 

connection and to the SIZE clause. Both the collection and filtering phases are run in 

parallel by all connected TDSs and no time-consuming task is performed by any of 

them. As the experiment section will clarify, each TDS manages incoming partitions 
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in streaming because the internal time to decrypt the data and perform the filtering 

is significantly less than the time needed to download the data. 

While important in practice, executing Select-From-Where queries in the Trusted 

Cells context shows no intractable difficulties and the main objective of this section 

was to present the query framework in this simple context. Executing Group By 

queries is far more challenging. The next section will present different alternatives to 

tackle this problem. Rather than trying to get an optimal solution, which is context 

dependent, the objective is to explore the design space and show that different 

querying protocols may be devised to tackle a broad range of situations. 

5. GROUP BY QUERIES  

The Group By clause introduces an extra phase: the computation of aggregates of 

data produced by different TDSs, which is the weak point for frequency-based 

attacks. In this section, we propose several protocols, discussing their strong and 

weak points from both efficiency and security points of view. 

5.1 Generic query evaluation protocol 

Let us now consider general SQL queries of the form14: 

SELECT <attribute(s) and/or aggregate function(s)> FROM <Table(s)> [WHERE 
<condition(s)>] [GROUP BY <grouping attribute(s)>] [HAVING <grouping 
condition(s)>][SIZE <size condition(s)>] 

These queries are more challenging to compute because they require performing 

set-oriented computations over intermediate results sent by TDSs to SSI. The point 

is that TDSs usually have limited RAM, limited computing resources and limited 

connectivity. It is therefore unrealistic to devise a protocol where a single TDS 

downloads the intermediate results of all participants, decrypts them and computes 

the aggregation alone. On the other hand, SSI cannot help much in the processing 

since (1) it is not allowed to decrypt any intermediate results and (2) it cannot gather 

encrypted data into groups based on the encrypted value of the grouping attributes, 

denoted by AG={Gi}, without gaining some knowledge about the data distribution. 

This would indeed violate our security assumption since the knowledge of AG 

distribution opens the door to frequency-based attacks by SSI: e.g. in the extreme 

case where AG contains both quasi-identifiers and sensitive values, attribute linkage 

would become obvious. Finally, the querier cannot help in the processing either since 

she is only granted access to the final result, and not to the raw data. 

To solve this problem, we suggest a generic aggregation protocol divided into three 

phases (see Fig. 5): 

Collection phase: similar to the basic protocol.  

Aggregation phase:(step 5) SSI partitions the result of the collection phase; (step 

6) connected TDSs (may be different from the ones involved in the collection phase) 

download these partitions; (step 7) each of these TDS decrypts the partition, 

eliminates the dummy tuples and computes partial aggregations (i.e., aggregates 

data belonging to the same group inside each partition); (step 8) each TDS sends its 

partial aggregations encrypted with kT back to SSI; depending on the protocol (see 

next sections), the aggregation phase is iterative, and continues until all tuples 

belonging to the same group have been aggregated (steps 6', 7', 8'); The last iteration 

 
14 For the sake of clarity, we concentrate on the management of distributive, algebraic and holistic aggregate functions 

identified in [Locher 2009] as the most prominent and useful ones. 
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produces a Covering Result containing a single (encrypted) aggregated tuple for each 

group. 

 

 
Fig. 5. Group By querying protocol 

 

Filtering phase: this phase is similar to the basic protocol except that the role of 

step 11 is to eliminate the groups which do not satisfy the HAVING clause instead of 

eliminating dummy tuples.   

The rest of this section presents different variations of this generic protocol, 

depending on which encryption scheme is used in the collection and aggregation 

phases, how SSI constructs the partitions, and what information is revealed to SSI. 

Each solution has its own strengths and weaknesses and therefore is suitable for a 

specific situation. Three kinds of solutions are proposed: secure aggregation, noise-

based, and histogram-based. They are subsequently compared in terms of privacy 

protection (Section 7) and performance (Section 8). 

5.2 Secure Aggregation protocol 

This protocol, denoted by S_Agg and detailed in Algorithm 1, instantiates the generic 

protocol as follows. In the collection phase, each participating TDS encrypts its result 

tuples using nDet_Enc (i.e., nEkT(tup)) to prevent any frequency-based attack by SSI. 

The consequence is that SSI cannot get any knowledge about the group each tuple 

belongs to. Thus, during step 5, tuples from the same group are randomly distributed 

among the partitions. This imposes the aggregation phase to be iterative, as 

illustrated in Fig. 6. At each iteration, TDSs download encrypted partitions (i.e., Ωe) 

containing a sequence of (AG, Aggregate) value pairs ((City, Energy_consumption) in 

the example), decrypt them to plaintext partitions (i.e., Ω ← nEkT-1(Ωe)), aggregate 

values belonging to the same grouping attributes (i.e., Ωnew = Ωold⨢ Ω), and sends 
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back to SSI an (usually smaller) encrypted sequence of (AG, Aggregate) value pairs 

where values of the same group have been aggregated. SSI gathers these partial 

aggregations to form new partitions, and so on and so forth until a single partition 

(i.e., Ωfinal) is produced, which contains the final aggregation. 

ALGORITHM 1.  Secure Aggregation: S_Agg (kQ, kT, Q, α) 

Input: (TDS’s side): The cryptographic keys (kQ, kT), query Q from Querier. 

(SSI’s side): reduction factor α (α ≥ 2).  
Output: The final aggregation Ωfinal.  

Notations: encrypted partial aggregation Ωe; Total number of partitions ne
Ω 

Non-deterministic encryption/decryption with key kT nEkT()/nEkT
-1(); 

The aggregation operator ⨢ to aggregate tuples having the same AG; 

begin Collection phase 
 Each connected TDS sends a tuple of the form tupe = nEkT(tup) to SSI 
end 

begin Aggregation phase  

    SSI side  
repeat 
 Randomly choose tupe or Ωe to form partitions 
 repeat  
  Send these partitions to connected TDSs 
 until all partitions in SSI have been sent 
 Receive Ωe from TDSs 
until ne

Ω = 1 
send term←true to TDS   

   

    TDSs side  
term ← false 
while (term = false) 
 Reset Ω = 0 
 Receive partition from SSI 
 Decrypt partition: tup ← nEkT

-1(tupe);  (or Ωe): Ω←nEkT
-1(Ωe)   

 Add to its partial aggregation: Ω = Ω⨢ tup ;  or Ωnew = Ωold⨢ Ω 
 Encrypt its partial aggregation: Ωe← nEkT(Ω) 
 Send Ωe to SSI 
endwhile 

end 
 Filtering phase //evaluate HAVING clause 
return nEkQ(Ωfinal) by SSI to Querier; 

 
Accuracy. The requirement for S_Agg to terminate is that TDSs have enough 

resources to perform partial aggregations. Each TDS needs to maintain in memory a 

data structure called partial aggregate which stores the current value of the 

aggregate function being computed for each group. Each tuple read from the input 

partition contributes to the current value of the aggregate function for the group this 

tuple belongs to. Hence the partial aggregate structure must fit in RAM (or be 

swapped in stable storage at much higher cost). If the number of groups is high (e.g., 

grouping on a key attribute) and TDSs have a tiny RAM, this may become a limiting 

factor. In this case, FLASH memory can be used to store large intermediate results, 

at the cost of swapping. 
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Fig. 6. (iterative partial) aggregation 

 

Security. In all phases, the information revealed to SSI is a sequence of tuples or 

value pairs (i.e., tupe and Ωe) encrypted non-deterministically (nDet_Enc) so that SSI 

cannot conduct any frequency-based attack. 

Efficiency. The aggregation process is such that the parallelism between TDSs 

decreases at each iteration (i.e., α =
N1
TDS

N2
TDS = ⋯ =

N
n-1
TDS

Nn
TDS, with 𝑁𝑖

𝑇𝐷𝑆 being the number of 

TDSs that participate in the ith partial aggregation phase), up to having a single TDS 

producing the final aggregation (i.e., 𝑁𝑛
𝑇𝐷𝑆 = 1). The cost model is proposed in section 

8 to find the optimal value for the reduction factor 𝛼. Note again that incoming 

partitions are managed in streaming because the cost to download the data 

significantly dominates the rest. 

Suitable queries. Because of the limited RAM size, this algorithm is applicable for 

the queries with small G such as Q1: SELECT AVG(Cons) FROM Power P, Customer 
C WHERE C.City=’Paris’ and C.cid=P.cid GROUP BY C.district (Paris has only 20 

districts) or Q2: SELECT COUNT(*) FROM Customer C WHERE 25 < C.Age and 
C.Age < 45 GROUP BY C.Gender. 

5.3 Noise-based protocols 

In these protocols, called Noise_based and detailed in Algorithm 2, Det_Enc is used 

during the collection phase on the grouping attributes AG. This is a significant 

change, since it allows SSI to help in data processing by assembling tuples belonging 

to the same groups in the same partitions. However, the downside is that using 

Det_Enc reveals the distribution of AG to SSI. To prevent this disclosure, the 

fundamental idea is that TDSs add some noise (i.e., fake tuples) to the data in order 

to hide the real distribution. The added fake tuples must have identified 

characteristics, as dummy tuples, such that TDSs can filter them out in a later step. 

The aggregation phase is roughly similar to S_Agg, except that the content of 

partitions is no longer random, thereby accelerating convergence and allowing 

parallelism up to the final iteration. Two solutions are introduced to generate noise: 

random (white) noise, and noise controlled by complementary domains. 

Random (white) noise solutions. In this solution, denoted Rnf_Noise, nf fake tuples 

are generated randomly then added. TDSs apply Det_Enc on AG, and nDet_Enc on 

ĀG (the attributes not appearing in the GROUP BY clause). However, because the 

fake tuples are randomly generated, the distribution of mixed values may not be 

different enough from that of true values especially if the disparity in frequency 

among AG is big. To overcome this difficulty, a large quantity of fake tuples (nf>>1) 

must be injected to make the fake distribution dominate the true one.   
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ALGORITHM 2.  Random noise: Rnf_Noise (kQ, kT, Q, nf) 

Input: (TDS’s side): the cryptographic keys (kQ, kT), query Q from Querier. 

Output: The final aggregation Ωfinal.  

Notation: EkT()/EkT
-1() deterministic encryption/decryption with key kT 

begin Collection phase 
 Each connected TDS sends (nf + 1) tuples of the form tupe = (EkT(AG),nEkT(ĀG) to SSI 
end 

begin Aggregation phase 

    SSI side   
repeat 
 Group data with the same EkT(AG) to form partitions 

  repeat      
   Send these partitions to connected TDSs 
  until all partitions in SSI have been sent 
  Receive [EkT(AG),nEkT(AGG)] from TDSs 
until ne

Ω = 1 
send term←true to TDS 

 

    TDSs side 
term ← false 
while (term = false) 
 Reset [AG, AGG] = 0  

  Receive partition from SSI 
  Decrypt tupe: AG← EkT

-1(Ae
G); ĀG← nEkT

-1(Āe
G) 

  Filter false tuples  
  Compute aggregate for AG: [AG, AGG]    
  Encrypt aggregate: [EkT(AG),nEkT(AGG)] 
  Send [EkT(AG),nEkT(AGG)] to SSI 
 endwhile 

 
end 
 Filtering phase //evaluate HAVING clause 
return nEkQ(Ωfinal) to Querier by SSI; 

Noise controlled by complementary domains. This solution, called C_Noise, 

overcomes the limitation of Rnf_Noise by generating fake tuples based on the prior 

knowledge of the AG domain cardinality. Let us assume that AG domain cardinality is 

nd (e.g., for attribute Age, nd ≈ 130), a TDS will generate nd - 1 fake tuples, one for 

each value different from the true one. The resulting distribution is totally flat by 

construction. However, if the domain cardinality is not readily available, a 

cardinality discovering algorithm must be launched beforehand (see section 5.4). 

Accuracy. True tuples are grouped in partitions according to the value of their AG 

attributes so that the aggregate function can be computed correctly. Fake tuples are 

eliminated during the aggregation phase by TDSs thanks to their identified 

characteristics and do not contribute to the computation. 

Security. Although TDSs apply Det-Enc on AG, AG distribution remains hidden to 

SSI by injecting enough white noise such that the fake distribution dominates the 

true one or by adding controlled noise producing a flat distribution. 

Efficiency. TDSs do not need to materialize a large partial aggregate structure as 

in S_Agg because each partition contains tuples belonging to a small set of (ideally 

one) groups. Additionally, this property guarantees the convergence of the 

aggregation process and increases the parallelism in all phases of the protocol. 

However, the price to pay is the production and the elimination afterwards of a 
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potentially very high number of fake tuples (the value is algorithm and data 

dependent). 

Suitable queries. Rnf_Noise with small nf is suitable for the queries in which there 

is no wide disparity in frequency between AG such as Q3: SELECT COUNT(Child) 
FROM Customer C GROUP BY C.Name HAVING COUNT(Child) <3. In contrast, 

the white noise solution with big nf is suitable for queries with big disparity such as 

Q4: SELECT COUNT(*) FROM Customer C GROUP BY C.Salary because the 

number of very rich people (i.e, salary > 1 M€/year) is much less than that of people 

having average salary. For the C_Noise, in term of the feasibility, because the 

process of calculating aggregation is divided among connected TDSs in a distributed 

and parallel way, better balancing the loads between TDSs, this protocol is applicable 

not only for the queries where G is small (e.g., Q1, Q2) but also for those with big G, 

such as Q5: SELECT AVG(Cons) FROM Customer C WHERE C.Age>20 GROUP BY 
C.Age (because the Age’s domain is 130 at maximum). However, considering the 

efficiency, because the number of fake tuples is proportional to G, this solution is 

inappropriate for the queries with very big G (e.g., Q4) when it has to generate and 

process a large amount number of fake tuples. 

5.4 Equi-depth histogram-based protocol 

Getting a prior knowledge of the domain extension of AG allows significant 

optimizations as illustrated by C_Noise. Let us go one step further and exploit the 

prior knowledge of the real distribution of AG attributes. The idea is no longer to 

generate noisy data but rather to produce a uniform distribution of true data sent to 

SSI by grouping them into equi-depth histograms, in a way similar to [Hacigumus et 
al. 2002]. The protocol, named ED_Hist, works as follows. Before entering the 

protocol, the distribution of AG attributes must be discovered and distributed to all 

TDSs. This process needs to be done only once and refreshed from time to time 

instead of being run for each query. The discovery process is similar to computing a 

Count function on Group By AG and can therefore be performed using one of the 

protocol introduced above. During the collection phase, each TDS uses this 

knowledge to calculate nearly equi-depth histograms that is a decomposition of the 

AG domain into buckets holding nearly the same number of true tuples. Each bucket 

is identified by a hash value giving no information about the position of the bucket 

elements in the domain. Then the TDS allocates its tuple(s) to the corresponding 

bucket(s) and sends to SSI couples of the form (h(bucketId), nDet_Enc(tuple)). During 

the partitioning step of the aggregation phase, SSI assembles tuples belonging to the 

same buckets in the same partitions. Each partition may contain several groups since 

a same bucket holds several distinct values. The first aggregation step computes 

partial aggregations of these partitions and returns to SSI results of the form 

(Det_Enc(group), nDet_Enc(partial aggregate)). A second aggregation step is required 

to combine these partial aggregations and deliver the final aggregation. 

Accuracy. Only true tuples are delivered by TDSs and they are grouped in 

partitions according to the bucket they belong to. Buckets are disjoint and partitions 

contain a small set of grouping values so that partial aggregations can be computed 

by TDSs. 

Security. SSI only sees a nearly uniform distribution of h(bucketId) values and 

cannot infer any information about the true distribution of AG attributes. Note that 

h(bucketId) plays here the same role as Det_Enc(bucketId) values but is cheaper to 

compute for TDSs. 
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ALGORITHM 3.  Histogram-based: ED_Hist (kQ, kT, Q) 

Input: (TDS’s side): the cryptographic keys (kQ, kT), query Q from Querier. 

Output: The final aggregation Ωfinal.  

Call distribution discovering algorithm to discover the distribution 
begin Collection phase 
 Each connected TDS sends a tuple of the form tupe = (h(AG),nEkT(ĀG)) to SSI. 
 // h(AG) is the mapping function applied on the AG. 
end 

begin First aggregation phase 

    SSI side   
Group tupe with the same h(AG) to form partitions 
repeat            
 Send these partitions to connected TDSs 
until all partitions in SSI have been sent 
send term←true to TDS 

 

    TDSs side 
term← false 
while (term = false) 
 Reset[AGi, AGGi] = 0 
 Receive partition from SSI 
 Decrypt tupe: AG← h-1(Ae

G); ĀG← nEkT
-1(Āe

G) 
 Compute aggregate for h(AG): [AGi, AGGi] 
 Encrypt aggregate: [EkT(AGi),nEkT(AGGi)] 
 Send [EkT(AGi),nEkT(AGGi)] to SSI 
endwhile 

end 

begin Second aggregation phase 

    SSI side    
repeat 
 Group data with the same EkT(AG) to form partitions 
 repeat  
  Send these partitions to connected TDSs 
 until all partitions in SSI have been sent 
 Receive [EkT(AG),nEkT(AGG)] from TDSs 
until ne

Ω = 1 
send term←true to TDS 

 

    TDSs side  
term ← false 
while (term = false) 
 Reset[AG, AGG] = 0; 
 Receive partition from SSI 
 Decrypt tupe: AG← EkT

-1(Ae
G); AGG ← nEkT

-1(AGGe) 
 Compute aggregate for only group AG: [AG, AGG]  
 Encrypt aggregate: [EkT(AG),nEkT(AGG)] 
 Send [EkT(AG),nEkT(AGG)] to SSI 
endwhile 

end 
 Filtering phase //evaluate HAVING clause 
return nEkQ(Ωfinal) to Querier by SSI; 

Efficiency. TDSs do not need to materialize a large partial aggregate structure as 

in S_Agg because each partition contains tuples belonging to a small set of groups 

during the first phase and to a single group during the second phase. As for C_Noise, 

this property guarantees convergence of the aggregation process and maximizes the 

parallelism in all phases of the protocol. But contrary to C_Noise, this benefit does 

not come at the price of managing fake tuples. 



39:18 . 
 

 
ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

Suitable queries. This solution is suitable for both kinds of queries (i.e., with small 

G like Q1, Q2 and big G like Q4, Q5) both in terms of efficiency (because it does not 

handle fake data) and feasibility (because it divides the big group into smaller ones 

and assigns the tasks for TDSs). 

This section shows that the design space for executing complex queries with 

Group By is large. It presented three different alternatives for computing these 

queries and provided a short initial discussion about their respective accuracy, 

security and efficiency. Sections 8 and 9 compare in a deeper way these alternatives 

in terms of performance while Section 7 summarizes a comparison of these same 

alternatives in terms of security. The objective is to assess whether one solution 

dominates the others in all situations or which parameters are the most influential in 

the selection of the solution best adapted to each context. 

6. PRACTICAL  ISSUES 

This section discusses complementary issues that are not core of the protocols but 

play an important role in ensuring that the protocols work in practice. These issues 

include: (i) how to manage the shared keys among TDSs and Querier; (ii) how to 

enforce the access control in the TDSs context; and (iii) how to calibrate the dataset 

subset.  

6.1 Key Management 

Our protocols rely heavily on the use of symmetric key cryptography. This section 

explains how these keys (kQ for Querier-TDS communication and kT for inter-TDS 

communication) can be managed and shared in a secure way. 

 

State-of-the-Art. Group key exchange (GKE) protocols can be roughly classified into 

three classes: centralized, decentralized, and distributed [Rafaeli and Hutchison 

2003]. In centralized group key protocols, a single entity is employed to control the 

whole group and is responsible for distributing group keys to group members. In the 

decentralized approaches, a set of group managers is responsible for managing the 

group as opposed to a single entity. In the distributed method, group members 

themselves contribute to the formation of group keys and are equally responsible for 

the re-keying and distribution of group keys. Their analysis [Rafaeli and Hutchison 

2003] made clear that there is no unique solution that can satisfy all requirements. 

While centralized key management schemes are easy to implement, they tend to 

impose an overhead on a single entity. Decentralized protocols are relatively harder 

to implement and raise other issues, such as interfering with the data path or 

imposing security hazards on the group. Finally, distributed key management, by 

design, is simply not scalable. Hence it is important to understand fully the 

requirements of the application to select the most suitable GKE protocol.  

 

Overview of Key Management. There are numerous ways to share the keys between 

TDSs and Querier depending on which context we consider.  

In the closed context, we assume that all TDSs are produced by the same provider, 

so the shared key kT can be installed into TDSs at manufacturing time. If Querier 

also owns a TDS, and only one key kQ is used per querier, then it can be installed at 

manufacturing time as well. Otherwise (i.e. if we want to support one kQ per query), 

Querier must create a private/public key and can use any GKE to exchange key kQ. 

An illustrative scenario for the closed context can be: patients and physicians in a 

hospital get each a TDS from the hospital, all TDSs being produced by the same 
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manufacturer, so that the required cryptographic material is preinstalled in all TDSs 

before queries are executed. 

In an open context, a Public Key Infrastructure (PKI) can be used so that queriers 

and TDSs all have a public-private key pair. When a TDS or querier registers for an 

application, it gets the required symmetric keys encrypted with its own public key. 

Since the total number of TDS manufacturers is assumed to be very small (in 

comparison with the total number of TDSs) and all the TDSs produced by the same 

producer have the same private/public key pair, the total number of private/public 

key pairs in the whole system is not big. Therefore, deploying a PKI in our 

architecture is suitable since it does not require an enormous investment in 

managing a very large number of private/public key pairs (i.e., proportional to the 

number of TDSs). PKI can be used to exchange both keys kQ and kT for both Querier 

cases i.e. owning a token or not. In the case we want to exchange kT, we can apply the 

above protocol for kQ with Querier being replaced by one of the TDSs. This TDS can 

be chosen randomly or based on its connection time (e.g., the TDS that has the 

longest connection time to SSI will be chosen). 

An illustrative scenario for the open context can be: TDSs are integrated in smart 

phones produced by different smart phone producers. Each producer has many 

models and we assume that it installs the same private/public key on each model. In 

total, there are about one hundred models in the current market, so the number of 

different private/public keys is manageable. The phone’s owner can then securely 

take part in surveys such as: what is the volume of 4G data people living in Paris 

consume in one month, group by network operators (Orange, SFR…). 

In PKI, only one entity creates the whole secret key, and securely transfers it to 

the others. In the distributed key agreement protocols, however, there is no 

centralized key server available. This arrangement is justified in many situations—

e.g., in peer-to-peer or ad hoc networks where centralized resources are not readily 

available or are not fully trusted to generate the shared key entirely. Moreover, an 

advantage of distributed protocols over the centralized protocols is the increase in 

system reliability, because the group key is generated in a shared and contributory 

fashion and there is no single-point-of-failure [Lee et al. 2006]. Group AKE protocols 

are essential for secure collaborative (peer-to-peer) applications [Lee et al. 2006]. In 

these circumstances, every participant wishes to contribute part of its secrecy to 

generate the shared key such that no party can predetermine the resulting value. In 

other words, no party is allowed to choose the group key on behalf of the whole group. 

These reasons lead to another way to exchange the shared key between TDSs and 

Querier in the open context. In this way, GKE protocols [Wu et al. 2011, Amir et al. 
2004, Wu et al. 2008] can be used so that Querier can securely exchange the secret 

contributive key to all TDSs. Some GKE protocols [Amir et al. 2004] require a 

broadcast operation in which a participant sends part of the key to the rest. These 

protocols are not suitable for our architecture since TDSs communicate together 

indirectly through SSI. This incurs a lot of operations for SSI to broadcast the 

messages (i.e., O(n2), with n is the number of participants). Other protocols [Wu et al. 
2008] overcome this weakness by requiring that participants form a tree structure to 

reduce the communication cost. Unfortunately, SSI has no knowledge in advance 

about TDSs thus this tree cannot be built. The work in [Wu et al. 2011] proposes a 

protocol with two rounds of communications and only one broadcast operation. 

However, this protocol still has the inherent weakness of the GKE: all participants 

must connect during the key exchange phase. This characteristic does not fit in our 

architecture since TDSs are weakly connected. Finally, the Broadcast Encryption 
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Scheme (BES) [Castelluccia et al. 2005] requires that all participants have a shared 

secret in advance, preventing us from using it in a context where TDSs are produced 

by different manufacturers. 

In consequence, we propose an adaptive GKE scheme, fitting our architecture as 

follows.   

 

The Adaptive Key Exchange Protocol.Based on the decisional and computational 

Diffie-Hellman (CDH) assumptions, we propose a GKE protocol in [To et al. 2015b] in 

which each participant contributes a secret to the shared key. In the first step, each 

TDS generates a secret and sends it to Querier. Then, Querier selects a random 

number and computes a secret. The shared key is generated using these contributive 

secrets and broadcast to TDSs. Finally, upon receiving the message, only the TDSs 

who can compute the secret can decrypt the message and compute the shared key.  

The security of the proposed GKE comes from the difficulty of the CDH problem 

and the one-way hash functions. Formally, there are five notions of security [Bresson 

and Manulis 2007] used as the standards to evaluate the security of a GKE protocol: 

Authenticated key exchange (AKE), Forward/backward secrecy, Contributiveness, 

Universal Composability (UC), and Mutual Authentication (MA).  As detailed in [To 

et al. 2015b], our proposed GKE satisfies AKE security, forward/backward secrecy, 

and contributiveness and can also achieve MA-security at an additional cost of only 

two communication rounds.  

The resulting protocol has three advantages over other GKEs in literature. First, 

it does not require that all TDSs connect at the same time to form the group, the 

connection of a single TDS per manufacturer being enough. The encrypted kT could 

be stored temporarily on SSI so that the offline TDS can get it as soon as it comes 

online and still take part in the protocol (i.e., using its private key to compute the 

secret, then the shared key). Second, even if a TDS opts out of a SQL query in the 

collection phase, it can still contribute to the parallel computation in the aggregation 

phase. With a traditional distributed key exchange, any TDS disconnected during 

setup will require a new key exchange to take place. With our protocol, each TDS 

contributes to part of the shared secret key, the only requirement is that at least one 

TDS per manufacturer participates in step 1 to contribute to the secret value 

representing this manufacturer. Third, in terms of performance, this protocol 

requires only 2-round of communications. Interested readers can refer to technical 

report [To et al. 2015b] for detail analysis of the computation comparison of this GKE 

with other related works. 

In conclusion, our way of managing encryption keys can accommodate any 

situation, open or closed context, central PKI or fully distributed GKE, making our 

protocols very versatile. 

6.2 Enforcing Access Control 

Contrary to statistical databases or PPDP works where the protection resides on the 

fact that aggregate queries or anonymized releases do not reveal any information 

linkable to individuals, we consider here traditional SQL queries and a traditional 

access control model where subjects (either users, roles or applications) are granted 

access to objects (either tables or views).  In the fully decentralized context we are 

targeting, this impacts both the definition of the access control (AC for short) and its 

enforcement.  

AC policies can be defined and signed by trusted authorities (e.g., Ministry of 

Health, bank consortium, consumer association). As for the cryptographic material, 
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such predefined policy can be either installed at burn time or be downloaded 

dynamically by each TDS using the key exchange protocols discussed in section 6.1. 

In more flexible scenarios, users may be allowed to modify the predefined AC policy 

to personalize it or to define it from scratch. The latter case results in a decentralized 

Hippocratic database [Agrawal et al. 2002] in the sense that tuples belonging to a 

same table vertically partitioned among individuals may be ruled by different AC 

policies. Lastly, each individual may have the opportunity to opt-in/out of a given 

query. Our query execution protocol accommodates this diversity by construction, 

each TDS checking the querier's credentials and evaluating the AC policy locally 

before delivering any result (either true or dummy tuples depending on the AC 

outcome).  

But how can AC be safely enforced at TDS side? The querier's credentials are 

themselves certified by a trusted party (e.g., a public organization or a company 

consortium delivering certificates to professionals to testify their identity and roles). 

TDSs check the querier's credentials and evaluates the AC policies thanks to an AC 

engine embedded on the secure chip, thereby protecting the control against any form 

of tampering. Details about the implementation of such a tamper-resistant AC 

module can be found in [Anciaux et al. 2009]. 

6.3 Collecting Data 

In scenarios where TDSs are seldom connected (e.g., TDSs hosting a PCEHR), the 

collection phase of the querying protocol may be critical since its duration depends on 

the connection rate of TDSs. However, many of these scenarios can accommodate a 

result computed on a representative subset of the queried dataset (e.g., if Querier 

wants to find out the average salary of people in France with the total population of 

65 millions, it is reasonable to survey only a fraction of the population). The question 

thus becomes how to calibrate the dataset subset? Larger subsets slow down the 

collection phase while smaller subsets diminish the accuracy and/or utility of the 

results. To determine if a sample population accurately portrays the actual 

population, we can estimate the sample size required to determine the actual mean 

within a given error threshold [Cochran 1977]. 

We propose to use the Cochran’s sample size formula [Cochran 1977] to calculate 

the required sample size as follow: 

𝑠𝑝𝑜𝑝𝑒𝑠𝑡 =
𝜑2 ∗ ζ

2 ∗ (
𝑝𝑜𝑝𝑚

𝑝𝑜𝑝𝑚−1
)

𝜆2 + (𝜑2 ∗
ζ
2

𝑝𝑜𝑝𝑚−1
)
 

with popm the size of the actual population, λ the user selected error rate, φ the user 

selected confidence level, and ζ the standard deviation of the actual population. The 

meaning of each parameter in this formula is explained below. 

The error rate λ (sometimes called the level of precision) is the range in which the 

true value of the population is estimated to be (e.g., if a report states that 60% of 

people in the sample living in Paris have salary greater than 1300 EUR/month with 

an error rate of ±5%, then we can conclude that between 55% and 65% of Parisian 

earn more than 1300 EUR/month). 

The confidence level φ is originated from the ideas of the Central Limit Theorem 

which states that when a population is repeatedly sampled, the average value of the 

attribute obtained by those samples approaches to the true population value. 

Moreover, the values obtained by these samples are distributed normally around the 

real value (i.e., some samples having a higher value and some obtaining a lower score 

than the true population value). In a normal distribution, approximately 95% of the 
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sample values are within two standard deviations of the true population value (e.g., 

mean). 

The degree of variability ζ of the dataset refers to the distribution of attributes in 

the population. A low standard deviation indicates that the data points tend to be 

very close to the expected value; a high standard deviation indicates that the data 

points are spread out over a large range of values. The more heterogeneous a 

population, the larger the sample size required to obtain a given level of precision 

and vice versa. 

To take into account the fact that some TDS’s holders may opt out of the query, let 

us call optout the percentage of TDSs that opt out of the survey. Then, the required 

sample size we need to collect in the collection phase is: 

𝑆 =
1

1 − 𝑜𝑝𝑡𝑜𝑢𝑡
∗ 𝑠𝑝𝑜𝑝𝑒𝑠𝑡 

Among the three parameters, λ and φ are user selected but ζ is data-dependent. 

Cochran [1977] listed four ways of estimating population variances for sample size 

determinations: (1) take the sample in two steps, and use the results of the first step 

to determine how many additional responses are needed to attain an appropriate 

sample size based on the variance observed in the first step data; (2) use pilot study 

results; (3) use data from previous studies of the same or a similar population; or (4) 

estimate or guess the structure of the population assisted by some logical 

mathematical results. Usually, φ = 1.96 (i.e., within two standard deviations of the 

mean of the actual population) is often chosen in statistics to reflect 95% confidence 

level. In the experiment, because ζ is data-dependent, we will vary this parameter to 

see its impact to S. We also vary the error rate reflecting Querier’s preference. 

 

7. INFORMATION EXPOSURE ANALYSIS 

7.1 Security of Basic Encryption Schemes 

In cryptography, indistinguishability under chosen plaintext attack (IND-CPA) [Katz 

and Lindell. 2007] is considered as a basic requirement for most provably secure 

cryptosystems. While nDet_Enc is considered to be IND-CPA [Arasu et al. 2014], the 

maximum level of security for Det_Enc is PRIV [Bellare et al. 2007], which is a 

weaker notion of security than IND-CPA, due to the lack of randomness in cipertext. 

Then, it is important to understand how much (quantitatively) less (more) secure the 

Noise_based and ED_Hist are, in compare with nDet_Enc (Det_Enc). To address this 

question, we use two ways to measure the security level of Noise_based and ED_Hist, 
given nDet_Enc as the highest bound of security level. Each way corresponds to each 

increasing level of adversary’s knowledge. In the first level, we assume that 

adversary does not know the distribution within a bucket of equi-depth histogram 

but only the global distribution (section 7.2). In the higher level, we address stronger 

attackers with more knowledge in which he knows the probability distribution of the 

values within each bucket (section 7.3).  

7.2 Information Exposure with Coefficient 

To quantify the confidentiality of each algorithm, we measure the information 

exposure of the encrypted data they reveal to SSI by using the approach proposed in 

[Damiani et al. 2003] which introduces the concept of coefficient to assess the 

exposure. To illustrate, let us consider the example in Fig. 7 where Fig. 7a is taken 

from [Damiani et al. 2003] and Fig. 7b is the extension of [Damiani et al. 2003] 
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applied in our context. The plaintext table Accounts is encrypted in different ways 

corresponding to our proposed protocols. To measure the exposure, we consider the 

probability that an attacker can reconstruct the plaintext table (or part of the table) 

by using the encrypted table and his prior knowledge about global distributions of 

plaintext attributes. 

 

 
Fig. 7. Encryptions and IC tables 

Although the attacker does not know which encrypted column corresponds to 

which plaintext attribute, he can determine the actual correspondence by comparing 

their cardinalities. Namely, she can determine that IA, IC, and IB correspond to 

attributes Account, Customer, and Balance respectively. Then, the IC table (the table 

of the inverse of the cardinalities of the equivalence classes) is formed by calculating 

the probability that an encrypted value can be correctly matched to a plaintext value. 

For example, with Det_Enc, P(α = Alice) = 1 and P(κ = 200) = 1 since the attacker 

knows that the plaintexts Alice and 200 have the most frequent occurrences in the 

Accounts table (or in the global distribution) and observes that the ciphertexts α and 
κ have highest frequencies in the encrypted table respectively. The attacker can infer 

with certainty that not only α and κ represent values Alice and 200 (encryption 
inference) but also that the plaintext table contains a tuple associating values Alice 

and 200 (association inference). The probability of disclosing a specific association 

(e.g., <Alice,200>) is the product of the inverses of the cardinalities (e.g., P(<α,κ> = 
<Alice,200>) = P(α = Alice)× P(κ = 200) = 1). The exposure coefficient Ԑ of the whole 

table is estimated as the average exposure of each tuple in it: 

 
Here, n is the number of tuples, k is the number of attributes, and ICi,j is the value 

in row i and column j in the IC table. Let’s Nj be the number of distinct plaintext 

values in the global distribution of attribute in column j (i.e., Nj≤ n). 

,
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Using nDet_Enc, because the distribution of ciphertexts is obfuscated uniformly, 

the probability of guessing the true plaintext of α is P(α = Alice) = 1/5. So, ICi,j = 1/Nj 

for all i, j, and thus the exposure coefficient of S_Agg is: 

 
For the nearly equi-depth histogram, each hash value can correspond to multiple 

plaintext values. Therefore, each hash value in the equivalence class of multiplicity 

m can represent any m values extracted from the plaintext set, that is, there are  

different possibilities. The identification of the correspondence between hash and 

plaintext values requires finding all possible partitions of the plaintext values such 

that the sum of their occurrences is the cardinality of the hash value, equating to 

solving the NP-Hard multiple subset sum problem [Ceselli et al. 2005]. We consider 

two critical values of collision factor h (defined as the ratio G/M between the number 

of groups G and the number M of distinct hash values) that correspond to two 

extreme cases (i.e., the least and most exposure) of ɛED_Hist: (1) h = G: all plaintext 

values collide on the same hash value and (2) h = 1: distinct plaintext values are 

mapped to distinct hash values (i.e., in this case, the nearly equi-depth histogram 

becomes Det_Enc since the same plaintext values will be mapped to the same hash 

value). 

In the first case, the optimal coefficient exposure of histogram is: 

 
because ICi,j = 1/Nj for all i, j. For the second case, the experiment in [Ceselli et al. 
2005] (where they generated a number of random databases whose number of 

occurrences of each plaintext value followed a Zipf distribution) varies the value of h 

to see its impact to ɛED_Hist. This experiment shows that the smaller the value of h, the 

bigger the ɛED_Hist and ɛED_Hist reaches maximum value (i.e., max(ɛED_Hist) ≈ 0.4) when h 

= 1. 

For Noise_based algorithms, when nf = 0 (i.e., no fake tuples), Rnf_Noise becomes 

Det_Enc and therefore it has maximum exposure in this case. If nf is not big enough, 

since each TDS generates very few fake tuples, the transformed distribution cannot 

hide some ciphertexts with remarkable (highest or lowest) frequencies, increasing the 

exposure. The bigger the nf, the lower the probability that these ciphertexts are 

revealed. Exceptionally, when the noise is not random (but controlled by domain 

cardinality of AG), C_Noise has better exposure since all ciphertexts have the same 

frequency (ICi,j = 1/Nj for all i, j): 

𝜀𝐶_𝑁𝑜𝑖𝑠𝑒 =
1

(𝑛𝑓 + 1) ∗ 𝑛
∑ ∏𝐼𝐶𝑖,𝑗

𝑘

𝑗=1

(𝑛𝑓+1)∗𝑛

𝑖=1

 

=
1

𝑛𝑑 ∗ 𝑛
∑ ∏

1

𝑁𝑗

𝑘

𝑗=1

𝑛𝑑∗𝑛

𝑖=1

= 1/∏ 𝑁𝑗
𝑘

𝑗=1
 

The exposure coefficient gets the highest value when no encryption is used at all 

and therefore all plaintexts are displayed to attacker. In this case, ICi,j = 1 ∀ i, j, and 

thus the exposure coefficient of plaintext table is (trivially): 
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Fig 8. Information exposure among protocols 

The information exposures among our proposed solutions are summarized in Fig. 

8. In conclusion, S_Agg is the most secure protocol. To reach the same highest 

security level as S_Agg, other protocols must pay a high price. Specifically, Rnf_Noise 

has to generate a very large amount of noise regardless of the value of G; C_Noise 

also incurs large noise if G is big; and ED_Hist must have a significant collision 

factor. Hence, as usual, there exists a trade-off between security and performance 

and the expected balance can be reached in each protocol by tuning a specific 

parameter (i.e., amount of noise in Rnf_Noise and C_Noise or number of histograms 

in ED_Hist).   

7.3 Privacy Measure using Variance 

In this section, we propose a stronger assumption that the adversary A possesses 

more knowledge of encrypted dataset than the previous section: A knows the entire 
bucketization scheme and the exact probability distribution of the values within each 

bucket. For example, given that bucket B has 10 elements, we assume A knows that: 

3 of them have value 85, 3 have value 87 and 4 have value 95, say. However, since 

the elements within each bucket are indistinguishable, this does not allow A to map 

values to elements with absolute certainty. Then, the A’s goal is to determine the 

precise values of sensitive attributes of some (all) individuals (records) with high 

degree of confidence. Eg: What is the value of salary field for a specific tuple? [Hore 

et al. 2004] proposes the Variance of the distribution of values within a bucket B as 

its measure of privacy guarantee. They first define the term Average Squared Error 
of Estimation (ASEE) as follows.  

Definition ASEE: Assume a random variable XB follows the same distribution as 

the elements of bucket B and let PB denote its probability distribution. For the case of 

a discrete (continuous) random variable, we can derive the corresponding probability 

mass (density) function denoted by pB. Then, the goal of the adversary A is to 

estimate the true value of a random element chosen from this bucket. We assume 

that A employs a statistical estimator for this purpose which is, itself a random 

variable, X’B with probability distribution P’B. 

In other words, A guesses that the value of X’B is xi, with probability p’B(xi). If 

there are N values in the domain of B, then we define Average Squared Error of 
Estimation (ASEE) as: 

𝐴𝑆𝐸𝐸(𝑋𝐵 , 𝑋𝐵
′ ) = ∑∑𝑝𝐵

′ (𝑥𝑖)

𝑁

𝑖=1

𝑁

𝑗=1

∗ 𝑝𝐵(𝑥𝑗) ∗ (𝑥𝑖 − 𝑥𝑗)
2 

Theorem [Hore et al. 2004]: ASEE(X, X’) = Var(X) + Var(X’) + (E(X) - E(X’))2 where 
X and X’ are random variables with probability mass (density) functions p and p0, 
respectively. Also Var(X) and E(X) denote variance and expectation of X respectively. 

Proof: refer to [Hore et al. 2004]. 

Note that unlike coefficient exposure, the smaller value of ASEE implies the 

bigger security breach because the distance between guessed values and actual 

values is smaller, and vice versa. So the adversary tries to minimize ASEE as much 

as he can. From the theorem above, it is easy to see that A can minimize ASEE(XB, 
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X’B) in two ways: 1) by reducing Var(X’B) or 2) by reducing the absolute value of the 

difference E(XB) - E(X’B). Therefore, the best estimator of the value of an element 

from bucket B that A can get, is the constant estimator equal to the mean of the 

distribution of the elements in B (i.e., E(XB)). For the constant estimator X’B, Var(X’B) 
= 0. Also, as follows from basic sampling theory, the “mean value of the sample-

means is a good estimator of the population (true) mean”. Thus, A can minimize the 

last term in the above expression by drawing increasing number of samples or, 

equivalently, obtaining a large sample of plaintext values from B. However, note that 

the one factor that A cannot control (irrespective of the estimator he uses) is the true 

variance of the bucket values, Var(XB). Therefore, even in the worst case scenario 

(i.e., E(X’B) = E(XB) and Var(X’B) = 0), A still cannot reduce the ASEE below Var(XB), 

which, therefore, forms the lowest bound of the accuracy achievable by A. Hence, the 

data owners try to bucketize data in order to maximize the variance of the 

distribution of values within each bucket. These two cases corresponds to the two 

extreme cases of nearly equi-depth histogram (when h = 1 and h = G) as analyzed 

below. 

When h = 1 (Det_Enc), since each bucket contains only the same plaintext values, 

and with the assumption above about additional knowledge of adversary, he can 

easily infer that the expected value of X’B equals to that of XB: E(X’B) = E(XB). For the 

variance, with h = 1, the variance of X’B gets the minimum value Var(X’B) = 0 

(because variance measures how far a set of numbers is spread out, a variance of zero 

indicates that all the values are identical). In this case, the value of ASEE equals to 

the lowest bound Var(XB). 
When h = G, since all plaintext values collide on the same hash value, the 

difference between E(X’2B) – (E(X’B))2 is big, leading to the big value of Var(X’B). So, 

the value of ASEE approaches highest bound. 

As you can see, although the coefficient exposure and average squared error of 
estimation are different ways to measure privacy of equi-depth histogram depending 

on the adversary’s knowledge, they give the same result. 

8. ANALYTICAL COST MODEL 

This section proposes an analytical cost model for the evaluation of our protocols. We 

calibrate this model with basic performance measurements performed on a real 

hardware platform (see section 8.3). We also show in section 9 that this model is 

accurate when compared to real measures on a real system composed of a set of 

TDSs. Thus the objective of this section is to provide an analytical model to assess 

the efficiency of the deployment of a TDSs based infrastructure for a given 

application without having to set up such a costly experiment.  

8.1 Metrics of interest 

The metrics of interest in this evaluation are the following: 

 MaxPTDS: The maximum number of TDSs concurrently needed in the 

computation. In different phases of the protocol, the optimal number of TDSs 

needed for the parallel computation varies and can exceed the number of 

connected TDSs available at that time (i.e., demanding resource is greater 

than available resource), reducing the parallelism degree. Nonetheless, this 

value should be considered to measure the parallelism level of the protocol. 

 LoadQ: Global resource consumption for evaluating a query Q, expressed as 

the total size of data that all TDSs and SSI have to process. This metric 

reflects the scalability of the solution in terms of capacity of the system to 
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manage a large set of queries in parallel and/or a large set of TDSs to be 

queried. It also provides a global view of the resource consumption (i.e., the 

bigger LoadQ, the more resource spent to process that data). 

 LoadAVG: Average load of all participating TDSs in the computation. While 

LoadQ reflects the global resource consumption, this metric reflects the local 

resource consumption (i.e., how much load that each TDS has to incur locally 

in average). 

 LoadMAX: Maximum load of participating TDSs in the computation. Each TDS 

that participates in the computation incurs different load because the same 

TDS can participate in different steps of the protocol if connection time of 

that TDS is long enough. LoadMAX reflects the possible worst case of load that 

a TDS can incur. This is important to measure the feasibility of the protocol. 

If LoadMax is too large, maybe no TDS will ever connect for long enough. 

 LoadBL: Load balance among participating TDSs in the parallel computation. 

It is measured as the ratio of LoadMAX/LoadAVG. It reflects the protocol’s 

ability to evenly divide and deliver the parallel tasks to connected TDSs. 

 TQ: query response time, reflecting the responsiveness of the protocol. Since 

the time in the collection phase is application-dependent and is similar for all 

protocols, and since the time in the filtering phase is also similar for all 

protocols, TQ focuses on the time spent on the aggregation phase, which is 

actually the most complex phase. 

 Tlocal: Average time that each participating TDS spends to compute the query. 

This metric reflects the feasibility of the solution because the longer this 

time, (1) the lower the probability that TDS stays connected during this time 

and (2) the higher the burden for an individual to accept participating in 

distributed queries. 

 sRAM: Size of RAM required in each participating TDS for the computation. 

The above metrics can be classified into: (i) Local resource consumption, reflecting 

the resource consumed locally in each TDS; (ii) Global resource consumption, 

reflecting the global resource needed for the whole system to answer a query. The 

weight associated to each of these metrics is context-dependent, as discussed in 

Section 8.6. These metrics are computed based on the following main parameters 

which reflect the characteristics and resources of the architecture:  

 Nt total number of encrypted tuples sent to SSI by TDSs (without loss of 

generality, we consider in the model that each TDS produces a single tuple in 

the collection phase, hence Nt reflects also the number of TDSs participating 

in the collection phase);  
 PTDS: total number of TDSs that participate in the computation (depending on 

the protocol, not all connected TDSs may be involved in a computation); 
 G number of groups;  
 st size of an encrypted tuple (this size depends on the schema of the database, 

number of attributes needed in the query, and size of each attribute);  
 Tt time spent by each TDS to process one tuple (including transfer, 

cryptographic and aggregation time);  

 Ni
TDSnumber of TDSs that participate in the ith partial aggregation phase 

(protocol dependent);  
 α, nNB, nED, reduction factors in the aggregation phase in S_Agg, Noise_based 

and ED_Hist respectively;  
 nf number of fake tuples per true tuple in Noise_based protocols;  
 h average number of groups corresponding to each hash value in ED_Hist. 
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8.1.1 Secure Aggregation protocol 

Because the aggregation phase is iterative, the time spent in this phase is the total 

time for all iterative steps. In the first step of this phase, the time required to 

download data from SSI and return temporary result is: 

𝑡1 =
𝑁𝑡

𝑁1
𝑇𝐷𝑆 ∗ 𝑇𝑡 (since there are total Nt number of tuples which are evenly divided to 

𝑁1
𝑇𝐷𝑆 connected TDSs); 𝑡1

′ = 𝐺 ∗ 𝑇𝑡 (since each TDS returns at most G tuples).  

Similarly, in step i of the aggregation phase, we have: 

𝑡𝑖 =
𝑁𝑖−1
𝑇𝐷𝑆

𝑁𝑖
𝑇𝐷𝑆 ∗ 𝐺 ∗ 𝑇𝑡; 𝑡𝑖

′ = 𝐺 ∗ 𝑇𝑡 (i = 2 –n), with n is the total number of iterative steps in 

this phase.  

For simplicity, we assume that the reduction factor α in every step is similar:  

𝛼 =
𝑁𝑡/𝐺

𝑁1
𝑇𝐷𝑆 =

𝑁1
𝑇𝐷𝑆

𝑁2
𝑇𝐷𝑆 = ⋯ =

𝑁𝑛−1
𝑇𝐷𝑆

𝑁𝑛
𝑇𝐷𝑆.  

Since 𝑁𝑛
𝑇𝐷𝑆 = 1 (there is only one TDS who computes the final aggregation), the 

number of iterative steps is 𝑛 = ⌈log𝛼
𝑁𝑡

𝐺
⌉ 

The computation time of S_Agg is the total time of all iterative steps: 

𝑇𝑄
𝑆_𝐴𝑔𝑔

=∑(𝑡𝑖 + 𝑡𝑖
′) = [(𝛼 + 1) log𝛼

𝑁𝑡
𝐺
] ∗ 𝐺 ∗ 𝑇𝑡

𝑛

𝑖=1

 

To find the optimal time for aggregation phase, let f(α) = (α + 1)logα(Nt/G) (if Nt and G 

are fixed, the computation time of S_Agg is a function of α and therefore its optimal 

value depends on α) 

We have: 
df

dα
=

α*lnα-(α+1)

α*(lnα)2
*ln (

Nt

G
) 

Solving the equation 
𝑑𝑓

𝑑𝛼
= 0 gives α ≈ 3.6.  

We call αop = 3.6 the optimal reduction factor (i.e., 𝑇𝑄
𝑆_𝐴𝑔𝑔

 gets the minimum value 

when αop = 3.6). 

These other metrics are calculated as follows: 

In each step, the participating TDSs reduces α times:𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

= ∑ 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=1 =
𝑁𝑡

𝐺
∗ ∑ 𝛼−𝑖𝑛

𝑖=1  

The first step requires the most number of TDSs: 𝑀𝑎𝑥𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

=
𝑁𝑡

𝛼𝐺
 

The total size of data in all iterative steps: 

𝐿𝑜𝑎𝑑𝑄
𝑆_𝐴𝑔𝑔

= (𝑁𝑡 + 𝛼𝐺∑𝑁𝑖
𝑇𝐷𝑆

𝑛

𝑖=2

+ 𝐺∑𝑁𝑖
𝑇𝐷𝑆

𝑛

𝑖=1

) ∗ 𝑠𝑡 

                    =  (1 + 2∑ 𝛼−𝑖𝑛
𝑖=1 ) ∗ 𝑁𝑡 ∗ 𝑠𝑡 

The maximum load of the TDS that participates in all iterative steps:  

𝐿𝑜𝑎𝑑𝑀𝐴𝑋
𝑆_𝐴𝑔𝑔

= (𝑛 + 1)𝛼𝐺 × 𝑠𝑡 

The average load of each TDS can be calculated by dividing the total load of all TDSs 

by the total number of participating TDSs:   

𝐿𝑜𝑎𝑑𝐴𝑉𝐺
𝑆_𝐴𝑔𝑔

=

{
 
 

 
 
(𝑁𝑡 + 𝛼𝐺 ∑ 𝑁𝑖

𝑇𝐷𝑆𝑛
𝑖=2 )

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔 × 𝑠𝑡  , 𝑖𝑓 𝑃𝑇𝐷𝑆

𝑆_𝐴𝑔𝑔
< 𝑁𝑡

(𝑁𝑡 + 𝛼𝐺 ∑ 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=2 )

𝑁𝑡
× 𝑠𝑡  , 𝑖𝑓 𝑃𝑇𝐷𝑆

𝑆_𝐴𝑔𝑔
≥ 𝑁𝑡

 

Finally, the average time of each TDS is the division of total time by total number of 

TDSs: 𝑇𝑙𝑜𝑐𝑎𝑙
𝑆_𝐴𝑔𝑔

=
(𝑁𝑡+𝛼𝐺 ∑ 𝑁𝑖

𝑇𝐷𝑆𝑛
𝑖=2 )∗𝑇𝑡

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔 . 
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8.1.2 Noise_based protocols 

Because all tuples belonging to one group may spread over multiple partitions, the 

aggregation phase includes two steps. 

In the first step, each group contains (nf + 1) * Nt / G tuples in average, and we 

assume that there are nNB TDSs handling tuples belonging to one group. The time 

required to download data from SSI and return temporary result in this step is: 

𝑡1 =
(𝑛𝑓+1)∗𝑁𝑡

𝑛𝑁𝐵∗𝐺
∗ 𝑇𝑡 ; 𝑡1

′ = 𝑇𝑡 ; 

In the second step, each TDS receives nNB tuples belonging to one group to compute 

the final aggregation, so the time required is: 

𝑡2 = 𝑛𝑁𝐵 ∗ 𝑇𝑡 ; 𝑡2
′ = 𝑇𝑡 ; 

The computation time of Rnf_Noise is: 

𝑇𝑄
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = (𝑛𝑁𝐵 +

(𝑛𝑓 + 1) ∗ 𝑁𝑡

𝑛𝑁𝐵 ∗ 𝐺
+ 2) ∗ 𝑇𝑡 

Apply the Cauchy’s inequality, we have: 

𝑛𝑁𝐵 +
(𝑛𝑓 + 1) ∗ 𝑁𝑡

𝑛𝑁𝐵 ∗ 𝐺
≥ 2 ∗ √

(𝑛𝑓 + 1) ∗ 𝑁𝑡

𝐺
 

The computation time of Rnf_Noise gets optimal value when the optimal reduction 

factor is: 𝑛𝑁𝐵 = √
(𝑛𝑓+1)∗𝑁𝑡

𝐺
 . 

𝑃𝑇𝐷𝑆
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = (𝑛𝑁𝐵 + 1) ∗ 𝐺 

𝑀𝑎𝑥𝑃𝑇𝐷𝑆
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = 𝑛𝑁𝐵 ∗ 𝐺 

𝐿𝑜𝑎𝑑𝑄
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = [(𝑛𝑓 + 1) ∗ 𝑁𝑡 + 2𝑛𝑁𝐵 ∗ 𝐺 + 𝐺] ∗ 𝑠𝑡 

𝐿𝑜𝑎𝑑𝑀𝐴𝑋
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = (

(𝑛𝑓 + 1) ∗ 𝑇𝑡𝑢𝑝𝑙𝑒

𝑛𝑁𝐵 ∗ 𝐺
+ 𝑛𝑁𝐵) ∗ 𝑠𝑡 

𝐿𝑜𝑎𝑑𝐴𝑉𝐺
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = {

𝑛𝑁𝐵 × 𝑠𝑡  , 𝑖𝑓 𝑃𝑇𝐷𝑆
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 < 𝑁𝑡

((𝑛𝑓 + 1) × 𝑁𝑡 + 𝑛𝑁𝐵 × 𝐺)𝑠𝑡

𝑁𝑡
 , 𝑖𝑓 𝑃𝑇𝐷𝑆

𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 ≥ 𝑁𝑡
 

𝑇𝑙𝑜𝑐𝑎𝑙
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = 𝐿𝑜𝑎𝑑𝐴𝑉𝐺

𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 ×
𝑇𝑡
𝑠𝑡

 

8.1.3 Histogram-based protocol 

Let’s h be the average number of groups corresponding to each hash value. By 

applying the Cauchy’s inequality and the same mechanism as in Rnf_Noise, the 

optimal computation time is: 

𝑇𝑄(𝑜𝑝)
𝐸𝐷_𝐻𝑖𝑠𝑡 = (3 ∗ √

ℎ∗𝑁𝑡

𝐺

3
+ ℎ + 2) ∗ 𝑇𝑡 when the reduction factors in each step are: 𝑛𝐸𝐷 =

√(
ℎ∗𝑁𝑡

𝐺
)
23

 ; 𝑚𝐸𝐷 = √
ℎ∗𝑁𝑡

𝐺

3
 

Then, the other metrics are based on these factors as follows: 

𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 = (

𝑛𝐸𝐷
ℎ
+𝑚𝐸𝐷 + 1) ∗ 𝐺 

𝑀𝑎𝑥𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 = 𝑚𝑎𝑥 {

𝑛𝐸𝐷
ℎ
× 𝐺,𝑚𝐸𝐷 × 𝐺} 

𝐿𝑜𝑎𝑑𝑄
𝐸𝐷_𝐻𝑖𝑠𝑡 = (𝑁𝑡 + 2𝑛𝐸𝐷 ∗ 𝐺 + 2𝑚𝐸𝐷 ∗ 𝐺 + 𝐺) ∗ 𝑠𝑡 

𝐿𝑜𝑎𝑑𝑀𝐴𝑋
𝐸𝐷_𝐻𝑖𝑠𝑡 = (

ℎ × 𝑁𝑡
𝑛𝐸𝐷 × 𝐺

+
𝑛𝐸𝐷
𝑚𝐸𝐷

+𝑚𝐸𝐷) × 𝑠𝑡 
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𝐿𝑜𝑎𝑑𝐴𝑉𝐺
𝐸𝐷_𝐻𝑖𝑠𝑡 =

{
 
 

 
 
(𝑁𝑡 + 𝑛𝐸𝐷 ∗ 𝐺 + 𝑚𝐸𝐷 ∗ 𝐺)𝑠𝑡

(
𝑛𝐸𝐷

ℎ
+𝑚𝐸𝐷 + 1)𝐺

 , 𝑖𝑓 𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 < 𝑁𝑡

(𝑁𝑡 + 𝑛𝐸𝐷 ∗ 𝐺 + 𝑚𝐸𝐷 ∗ 𝐺)𝑠𝑡
𝑁𝑡

 , 𝑖𝑓 𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 ≥ 𝑁𝑡

 

𝑇𝑙𝑜𝑐𝑎𝑙
𝐸𝐷_𝐻𝑖𝑠𝑡 =

(𝑁𝑡 + 𝑛𝐸𝐷 ∗ 𝐺 + 𝑚𝐸𝐷 ∗ 𝐺) ∗ 𝑇𝑡
(𝑛𝐸𝐷/ℎ + 𝑚𝐸𝐷 + 1) ∗ 𝐺

 

Note that this is just a subset of the complete cost model which can be found in the 

technical report [To et al. 2013]. 

8.2 Sample size in the collection phase 

Let us consider a nation-wide study, taking the population of France, popm = 65*106, 

as a representative example. We fix φ = 1.96 for 95% confidence level (the most 

popular value used in statistics). We assume there are 10% people who do not want 

to answer the query (i.e., optout = 10%). We vary two parameters to see their impact 

to the sample size required in the collection phase: λ = 0.05, 0.01, 0.005, 0.002, 0.001; 

the variance ζ2 = 5, 10, 20, 50, 100. 

 

Fig. 11. Estimated sample size 

 

As shown in Fig. 11, the higher the precision of the query result and the bigger the 

variability of the dataset, the higher the number of data we need to collect and 

therefore the longer the collection time that querier has to wait for and vice versa. 

For instance, if the querier wants 0.2% precision and the dataset has high variability, 

he has to wait until almost all the dataset is collected. However, if the querier 

queries low variable dataset, or if he does not want high precision, collecting only 

10% or even 1% of the population is enough. Note that our system also supports 

opinion poll quota methods. 

8.3 Unit test 

To calibrate our model, we performed unit tests on the development board presented 

in Fig. 12a. This board exhibits hardware characteristics representative of secure 

tokens-like TDSs, including those provided by Gemalto (the smartcard world leader), 

our industrial partner. This board has the following characteristics: the 

microcontroller is equipped with a 32 bit RISC CPU clocked at 120 MHz, a crypto-

coprocessor implementing AES and SHA in hardware (encrypting or decrypting a 

block of 128bits costs 167 cycles), 64 KB of static RAM, 1 MB of NOR-Flash and is 

connected to a 1 GB external NAND-Flash and to a smartcard chip hosting the 

cryptographic material. The device can communicate with the external world through 

USB full speed. The speed in theory is 12 Mbps but the real speed measured with the 

device is around 7.9 Mbps. 
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a)                                b) 

Fig. 12. Hardware device & its internal time consumption 

 

We measured on this device the performance of the main operations influencing 

the global cost, that is: encryption, decryption, hashing, communication and CPU 

time, and put these numbers as constants in the formulas. Fig. 12b depicts the 

internal time consumption of this platform to manage partitions of 4KB. The transfer 

cost dominates the other costs due to the network latencies. The CPU cost is higher 

than cryptographic cost because (1) the cryptographic operations are done in 

hardware by the crypto-coprocessor and (2) TDS spends CPU time to convert the 

array of raw bytes (resulting from the decryption) to the number format for 

calculation later. Encryption time is much smaller than decryption time because only 

the result of the aggregation of each partition needs to be encrypted.  

Other TDSs (e.g., smart meters) may be more powerful than smart tokens, 

although client-based hardware security is always synonym of low power. Anyway, as 

this section will make clear, the internal time consumption turns out not to be the 

limiting factor. Hence our choice of considering low-power TDSs in this experiment is 

expected to broaden our conclusions.  

8.4 Performance comparisons 

In this study, we concentrate on the performance of Group By queries since they are 

the most challenging to compute. We vary the dataset size (Nt varies from 5 to 65 

million), the number of groups (G varies from 1 to 106) as well as the number of TDSs 

participating in the computation as a percentage of all TDSs connected at a given 

time (varying from 1% to 100%). For each study, we fix two parameters and vary the 

others. When the parameters are fixed, Nt=106, G=103,st=16b, Tt=16μs, h=5 and the 

percentage of TDS connected is 10% of Nt. We also compute and use the optimal 

value for all reduction factors as well as for Ni
TDS. In the figures, we plot two curves 

for Rnf_Noise protocols, R2_Noise (nf = 2) and R1000_Noise (nf = 1000) to capture the 

impact of the ratio of fake tuples. We summarize below the main conclusions of the 

performance evaluation. A more detailed study is provided in a technical report [To 

et al. 2013]. 

In what follows, we study each of the aspects of the protocol that seem important. 

We draw conclusions on the use cases for each protocol in section 8.6. 

Parallelism requirement (MaxPTDS).Fig. 13a presents MaxPTDS with varied G. 

Since S_Agg does not need too many TDSs for parallel computing, the demand of 

connected TDSs for computation is almost satisfied. Unlike S_Agg, the other 

solutions need a lot of TDSs for the parallel computation, and when G increases to a 

specific point, the available resource does not meet these demands, reducing the 

parallel deployment of these solutions. In Fig. 13b, when G is not too big (i.e., 
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G=1000), most of the protocols can fully deploy the parallel computation (except 

R1000_Noise). 

Resource consumption (LoadQ). Fig. 13c and 13d show LoadQ respectively in terms 

of G and Nt. Not surprisingly, the total load of Noise_based protocols is highest 

because of the extra processing incurred by fake tuples. However, nf depends only on 

Nt, so when G increases, the total load of Noise_based protocols remains constant. 

Other protocols generate much lower and roughly comparable loads. In general, in 

Fig. 13d, LoadQ increases steadily due to the increase of Nt.    
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Fig. 13. Performance evaluations 

Maximum load (LoadMAX). The maximum load of a particular TDS is illustrated in 

Fig. 13e. In S_Agg, when G increases, due to the increasing size of partial 

aggregation, each TDS has to process bigger aggregation, resulting in the increase of 

LoadMAX. Also, when G increases, the number of participating TDSs decreases, so 

each participating TDS has to incur higher load. For others, when G increases, since 

Nt remains unchanged, the number of tuples in each group decreases and the number 

of participating TDSs increases. Consequently, each TDS processes less tuples, and 

thus LoadMAX decreases. In other words, the parallel level in this case is high, 

reducing the maximum load that a particular TDS incurs. In Fig. 13f, when Nt 

increases, the number of participating TDSs also increases proportionally. So, in 

general, the LoadMAX remains stable except a slight increase in R1000_Noise and 

C_Noise. 

Average load (LoadAVG). Fig. 13g is the average load of every participating TDS. In 

S_Agg, since the total load stays almost constant and the number of participating 

TDSs declines steeply when G increases, the average load goes up. In the R1000_Noise 
and C_Noise, the high total load is constant and all available connected TDSs 

participate in the computation when G varies from 103-106, thus every TDSs incur 

the same amount of load. For the rest, LoadAVG decreases when G increases, because 

there is more number of participating TDSs but the total load is almost unchanged. 

In Fig. 13h, although C_Noise has higher LoadQ than S_Agg, the number of 

participating TDSs in S_Agg is much less than that in C_Noise, and therefore the 

LoadAVG of C_Noise is less than that of S_Agg. 

Load balance (LoadBL). Fig. 13i and 13j presents the load balance of solutions. 

Because of the low parallelism, S_Agg is the most unbalanced protocol. R2_Noise 

divides the load evenly among participating TDSs. ED_Hist has worse load balance 
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than R2_Noise since each TDS has to process a partition including h groups while in 

R2_Noise a partition composes of only one group. 

Query response time (TQ). Fig. 13k shows the impact of G over TQ. In all protocols 

but S_Agg, TQ depends on the total number of tuples in each group (resp. bucket for 

ED_Hist) because all groups (resp. buckets) are processed in parallel. Hence, when G 

increases while Nt remains constant, the number of tuples in each group (resp. 

bucket) decreases and so does TQ. In S_Agg, when G increases, the size of each 

partial aggregation increases accordingly, and so does the time to process it and in 

consequence, so does TQ. Fig. 13l shows that, for ED_Hist, when Nt increases, the 

number of TDSs which can be mobilized for processing increases accordingly, leading 

to a minimal impact on execution time. This statement is true also for Rnf_Noise 

protocols with the difference that the greater number of fake tuples generates extra 

work which is not entirely absorbed by the increase of parallelism. For S_Agg, the 

number of iterative steps increases with Nt and so does TQ. 
Local execution time (Tlocal). Fig. 13m and 13n plot the average execution time of 

every participating TDSs varying G and Nt respectively. It shows that all protocols 

benefit from an increase of G except S_Agg. This is due to the fact that, in S_Agg, less 

TDSs can participate in the parallel computation, and therefore each TDS has to 

process a higher load of bigger partial aggregations. Other protocols benefit from the 

fact that the computing load is shared evenly between TDSs.  Fig. 13n shows that all 

protocols but Noise_based protocols are insensitive to an increase of Nt again thanks 

to independent parallelism. The bad behavior of Noise_based protocols is explained 

by the fact that the number of fake tuples increases linearly with Nt and this 

increased load cannot be entirely absorbed by parallelism because the number of 

TDSs available for the computation is bounded in this setting by 10% of the 

participating TDSs. 

Throughput. In general, throughput is the amount of work that a computer can do 

in a given period of time. Applied in our case, throughput is measured as the number 

of queries that our distributed system can answer in a given time period, reflecting 

the efficiency of our protocols (cf., Fig. 13o and 13p). In Fig. 13o, when G increases, 

the number of participating TDSs for each query increases and the execution time for 

each query does not reduce considerably, resulting in the reduction of throughput for 

all solutions. The throughput of S_Agg, however, increases because PTDS reduces 

much faster than the execution time for each query when G increases. In Fig. 13p, 

when Nt increases, the throughput remains constant for all solutions due to the 

proportional increase of participating TDSs. The ED_Hist solution has the highest 

throughput because it needs least participating TDSs and shortest execution time for 

each query. For S_Agg, although the response time for each query is long, the PTDS is 

very low, resulting in high throughput. For the R1000_Noise, since it not only demands 

very high number of PTDS (to process fake tuples), but also responses slowly for each 

query, its throughput is worst. 
Elasticity issues. A distributed and parallel system is said to be elastic if it can 

mobilize smoothly a variable part of its computing resources to meet run time 

requirements. Fig. 13q, r, k measures the elasticity of all protocols by varying the 

computing resource and assessing its impact on TQ. The computing resource is 

materialized here by the number of TDSs which can be mobilized to contribute to a 

given computation. It is expressed by a percentage of the TDSs contributing to the 

collection phase. Fig. 13q (resp. Fig. 13r, Fig. 13k) considers scarce (resp. abundant, 

intermediate) computing resource in the sense that only 1% (resp. 100%, 10%) of the 

TDSs contributing to the collection phase contributes to the rest of the query 
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computation. Comparing these figures shows that, when the resource is scarce, the 

parallel computation is not completely deployed, resulting in a longer time to answer 

the query and vice-versa. Since S_Agg does not depend on the number of available 

TDSs (but on G and on the memory size of TDS), its performance is not impacted by a 

fluctuation of the resource available. In other words, S_Agg has lowest elasticity. 

Memory size. Fig. 13s details the memory’s size required for the computation in 

each TDS when G is varied. Because the only factor that impacts the memory’s size 

requirement is G but not Nt, we assess this metric by varying only G. The 

Noise_based solutions require least memory because each partition sent to TDS 

contains tuples belonged to only one group due to the Det_Enc, and thus TDSs store 

only one group in memory regardless of the value of G. The ED_Hist requires more 

memory because each TDS needs to process the partition having the same hash value 

and each hash value corresponds to multiple (i.e., h) groups in the first aggregation 

phase. The S_Agg needs highest memory because each TDS has to store the whole 

partial aggregation (which includes many groups) in the RAM. So, when G increases, 

the memory needed for storing the whole aggregation also increases linearly. When G 

is too big (i.e., G >1000), the sRAM exceeds the actual RAM’s size of TDS, and thus 

S_Agg is not feasible in this case15. 

8.5 Comparison with State of the Art 

In order to provide a baseline comparison in terms of performance (and not security), 

Fig. 13t compares the performance of S_Agg, our most secure solution, with server-

based solutions working on encrypted data. We consider the performance of two well-

known encryption schemes, a symmetric one (i.e., DES) and a homomorphic one (i.e., 

Paillier [Paillier 1999]), as measured in [Ge and Zdonik 2007]. In DES method, each 

value is decrypted on the server and the computation is performed on the plaintext. 

Clearly this method is not a viable solution in our security model, because the 

database server must have access to the secret key or plaintext to answer the query, 

violating the security requirements. In Paillier's method, the secure modern 

homomorphic encryption scheme, which typically operates on a much larger 

(encryption) block size (say 2K bits) than single numeric data values, is used to 

densely pack data values in an encryption block. Then, the database server performs 

the computation directly on ciphertext blocks which are then passed back to a trusted 

agent (i.e., the Key Holder) to perform a final decryption and simple calculation of 

the final result. The strength of this method is due to the dense packing of values to 

reduce the number of modular multiplications and the minimization of the number of 

expensive decryption operations. We refer to the author’s experimentations, which 

were run on now outdated hardware16, since both methods were implemented in C-

Store17which was run on a Linux workstation with an AMD Athlon-64 2Ghz 

processor and 512 MB memory [Ge and Zdonik 2007]. We also compare its 

performance with C-Store using no encryption at all. We ran an AVG query varying 

G and the database size. The result (Fig. 13t) shows that, with homomorphic 

encryption scheme (generalized Paillier), C-Store runs slightly faster than using DES 

for encryption due to the saving in the decryption cost during execution. It turns out 

that S_Agg outperforms DES and Paillier when the number of grouping attributes is 

 
15Swapping between FLASH memory and RAM is used in this case 
16 However, this hardware is still orders of magnitude superior to the secure tokens we use. 
17 http://db.csail.mit.edu/projects/cstore/ 
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small (i.e., G ≤ 1000) since it can exploit the parallel calculation of TDSs to speed up 

the computation and becomes worse after this threshold. 

Although these algorithms are a little dated, the objective is simply to provide a 

baseline comparison, to show the effectiveness of our approach and demonstrates the 

strength of large-scale parallel computation even when modest hardware is available 

on the participant's side. Fig. 13t matches this objective explicitly. 

8.6 Conclusion: Trade-off between criteria 

Fig.14 summarizes and complements the experimental results described above 

through a qualitative comparison of our proposed protocols over all criteria of interest 

to perform a choice.  

 

 
Fig. 14. Comparison among solutions 

 

Each axis can be interpreted as follows. Local resource consumption axis refers to 

Tlocal metrics and compares the protocols in terms of feasibility, i.e., is the resource 

consumed by a single TDS compatible with the actual computing power of the 

targeted TDSs. This question is particularly relevant for low-end TDSs (e.g., smart 

tokens) and of lesser interest for high-end TDSs. S_Agg is at the worst extremity of 

this axis because the final aggregation must be done by a single TDS while ED_Hist 
occupies the other extremity thanks to its capacity to evenly share the load among all 

TDSs. That also explains why in Load Balance axis ED_Hist better balances the load 

among TDSs than S_Agg. Noise_based protocols are in between because they also 

share the load evenly but at the price of managing a large number of fake tuples. 

Note that the relative position of S_Agg and ED_Hist is reversed in the Global 

Resource Consumption and Satisfied Level of Parallel Deployment axis which refers 

to LoadQ and MaxPTDS metrics and compares the scalability of the protocols in terms 

of number of parallel queries which can be computed and their ability of fully parallel 

computation, respectively. Indeed, the total number of TDSs mobilized by S_Agg for 

one single query computation is much smaller than that of ED_Hist. Regarding the 

Responsiveness axis, the relative ordering of S_Agg and ED_Hist actually differs 
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depending on G. According to Fig. 13, S_Agg outperforms ED_Hist for small G 

(smaller than 10) and is dominated by ED_Hist for larger G.  Finally, Elasticity axis 

is a direct translation of the conclusions drawn in Section 8.4 and Confidentiality 

axis recalls the conclusion of Section 7. 

This figure makes clear that Noise_based protocols are always dominated either 

by S_Agg or ED_Hist and should be avoided. However, choosing between the other 

two depends on the application’s characteristics, and Fig. 14 should be used to decide. 

Let us consider a first scenario where individuals manage their data (e.g., their 

medical folder) using a secure Personal Data Server embedded in a smart token-like 

TDS [Allard et al. 2010]. In such a scenario, individuals are likely to connect their 

TDS seldom, for short periods of time (e.g., when visiting a doctor) and would prefer 

to save resource for executing their own tasks rather than being slowed down by the 

computation of external queries. According to Fig. 14, ED_Hist best matches the 

above requirements. Conversely, let us consider a smart metering platform composed 

of power meter-like TDSs, connected all the time and mostly idle. In this case, TDSs’ 

owners do not care how much resources are monopolized to compute queries and the 

primary concern is for the distribution company to maximize the capacity to perform 

global computation. S_Agg is more appropriate in this case. In short, ED_Hist and 

S_Agg are the two best solutions and the final choice depends on the weight 

associated to each axis for a given application.  

9. PERFORMANCE MEASUREMENTS ON REAL HARDWARE 

To test the accuracy of our proposed cost models given in previous section, we 

compare the values taken from experiments conducted on real hardware with that of 

the cost models.   

9.1 Experiment Setting 

This section experimentally verifies the proposed cost models using 20 ZED secure 

tokens18 (Fig. 15) playing the role of a pool of TDSs used during the processing phase 

(i.e., after the collection phase has been performed). The experiment is tested on a 

Centrino Core 2 Duo PC with 2.4 Ghz CPU and 4Gbytes RAM, playing the role of 

SSI. The 20 ZED tokens communicate with the PC through USB port (Fig. 16). We 

verify our cost models on (i) Query response time (TQ), (ii) Resource consumption 

(LoadQ), (iii) Local execution time (Tlocal) and (iv) Load balance (LoadBL) among 

tokens. The low number of tokens has an influence on a certain number of results, 

but overall our prototype demonstrates that the cost model is accurate. 

 

 
Fig. 15. ZED Token (front & back) 

 

 
18 These secure tokens are used in different universities and FabLabs in France and will be soon distributed under an open-
hardware license. In terms of hardware resources, they share many commonalities with the development board described in 

Section 8.3. 
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The prediction accuracy is measured as the error between actual and estimated 

values in answering a query. Specifically, let act be the actual values when running 

on real tokens and est be the estimated values when applying our proposed cost 

model, we adopt the following error rate definition [Tao et al. 2003]: 

𝐸𝑟𝑟 =
|𝑒𝑠𝑡 − 𝑎𝑐𝑡|

𝑎𝑐𝑡
 

 

 
Fig. 16. Twenty tokens running parallel 

 

Similar to the performance comparison done with the cost model in the previous 

section, we vary two parameters (i.e., G and Nt) to see its impact to the error rate. 

When Nt varies up to one million, G is fixed at 100, and when G varies from 50 to 400 

groups, Nt is fixed to one million tuples. 

9.2 Comparison  

In the following figures, for each metric, the first graph represents the real absolute 

value measured using the 20 ZED tokens while the second graph represents the 

relative error between these real values and the values predicted by the cost model. 

This second graph captures the accuracy of our cost model. 

The first set of experiments verifies the correctness of the query response time. 

Figure 17a plots TQ varying G. The Noise protocol has the longest execution time due 

to fake tuples, and S_Agg runs longer than ED_Hist since each token has to process 

large partial aggregation. This observation is similar to that in figure 13k, giving a 

maximum estimation error under 7% in figure 17b. When Nt varies, TQ increases 

linearly in figure 17c, similarly to figure 13l. However, the increase rate of figure 17c 

is bigger than that of figure 13l because in the case of 20 participating tokens, 

parallelism is not fully deployed due to the limited number of tokens. On the 

contrary, in figure 13l where we have many participating TDSs, the parallel 

computation is completely deployed, resulting in a lower increase rate when the data 

load increases.  The maximum error is around 10% in figure 17d.     

Figures 17 e-h show the resource consumption error rate. Similar to figure 13c, all 

protocols in figure 17e incur constant loads (except a very small increase in case of 

S_Agg) when G varies because the total number of tuples is fixed. This gives a very 

low error rate for ED_Hist and Noise protocols (around 2%) and a rather low error 

rate for S_Agg (less than 8%). Similarly, the variation of Nt yields the linear increase 

of LoadQ in both figures 13d and 17g, giving an accurate result (around 2%-3% error) 

in figure 17h.     
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Fig. 17. Performance and error rate 
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Figure 17 i-l depicts the error rate on local execution time. Except the small linear 

increase of S_Agg in figure 17i, Noise and ED_Hist remain constant. This contradicts 

the decreasing trend of Noise and ED_Hist in figure 13m when G varies. This can be 

explained again by the limited number of tokens. If the global data load keeps 

unchanged, and the number of tokens remains at twenty, each token processes the 

same amount of data in average even when G varies (except for S_Agg since the size 

of the aggregations depends on G). In contrast, when G increases in figure 13m, the 

number of participating tokens also increases, reducing the average connecting time 

for each token to process less load. Notice that when G increases over 1000 in figure 

13m, the Tlocal of C_Noise and R1000_Noise also remains constant since the number of 

connecting TDSs is less than the required TDSs to fully deploy parallel computation. 

We believe this explanation reinforces the credibility of our cost model since this 

trend repeats in figure 17i. When varying Nt, all protocols increase linearly in the 

experiment (figure 17k), while they remain unchanged in the cost model (figure 13n), 

except for Noise protocols. The reason of this difference is that when the total load 

increases while the number of tokens remain fixed (figure 17k), or when the number 

of tokens increases but does not meet the demand for an optimal parallel computing 

(Noise protocols in figure 13n), each token has to connect longer to process a bigger 

load. This is not the case for S_Agg and ED_Hist in the cost model since the increase 

rate of total load is less than that of connecting TDSs (in the cost model we assume 

that the percentage of connected TDSs is 10% of Nt).     

Figure 17m displays the error rate of load balance among tokens. Since the total 

load is divided evenly among twenty tokens, the load balance remains at 

approximately 1 because all twenty tokens incur nearly the same load, yielding 

extremely accurate prediction (with maximum error less than 2% in figure 17n, 

except for S_Agg). Similarly, when Nt varies in figure 17o, Noise and ED_Hist have 

better load balance than S_Agg since some tokens in S_Agg have to process big 

aggregations to produce the final result. This observation conforms to the figure 13j 

where S_Agg has also the most unbalanced load among protocols. 

As a summary of this section, although we can measure some differences between 

the cost model predictions and the real measurements, the error rate remains around 

few percents and the trends of all graphs in figure 17 are similar to the trends 

observed in figure 13. We believe the differences arise mostly from the inability to 

fully deploy the parallel computation due to limited connecting TDSs in the 

experiments.  We plan on experimenting on larger sets of tokens in the future. 

9.3 Scalability of the System 

To test the ability of our system to scale up to millions of tokens in real life 

applications, we measure its speedup when increasing the number of tokens. 

Specifically, the speedup of our system is measured as follow: 

S(n) = T(1)/T(n) 
with T(n)being the execution time using n tokens. 

We vary the number of tokens to measure the execution time in figure 17q. From 

that, we calculate the speedup when doubling the number of tokens each time.  
In figure 17r, the speedup approaches 12x when we use 16 tokens. When the 

number of tokens doubles, the average speedup ratios of S_Agg, Noise and EDHist 
are 1.82, 1.81 and 1.83 respectively. These speedup ratios let us expect that our 

system should be able to scale to millions of tokens (given an equivalent increase in 

power of the SSI) in real applications with reasonable execution time and speedup. 
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This result is not surprising considering that all protocols exhibit mainly 

independent parallelism.  

10. CONCLUSION 

An ever increasing amount of personal data is collected and ends-up on servers. 

Decentralized architectures, devised to help individuals better protect their privacy, 

hinder global treatments and queries, impeding the development of services of great 

interest. This article presents a first attempt to fill this gap. It capitalizes on secure 

hardware advances promising soon the presence of a Trusted Execution Environment 

at low cost in any client device (trackers, smart meters, sensors, cell phones and 

other personal devices). 

Based on this statement, we have proposed new query execution protocols to 

compute general SQL queries while maintaining strong privacy guarantees. The 

objective was not to find the most efficient solution for a specific problem but rather 

to perform a first exploration of the design space. We proposed three very different 

protocols and compared them according to different axes. The encouraging conclusion 

is that a good performance/security trade-off can be found in many situations and 

that the proposed protocols can scale up to nation-wide contexts.  

We expect that this work will pave the way for the definition of future fully 

decentralized privacy-preserving querying protocols. The main research directions we 

foresee are: (1) extend the threat model to (a small number of) compromised TDSs 

and (2) perform performance study on large scale TDS platforms. The on-going 

deployment of very large TDS platforms (e.g., the Linky power meters installed by 

EDF in France or the growing interest for PCEHR hosted in secure tokens) would 

enable point (2) while providing a strong motivation to investigate issue (1). 

ELECTRONIC APPENDIX 

The electronic appendix for this article can be accessed in the ACM Digital Library. 

ACKNOWLEDGMENTS 

The authors wish to thank Anne Cantaut from INRIA-SECRET team and Matthieu 

Finiasz from CryptoExperts for their help in defining and proving the security of our 

GKE protocol, and Philippe Bonnet from University of Copenhagen for fruitful 

discussions on this paper.  

REFERENCES 

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker, 

Nesime Tatbul, and Stan B. Zdonik. 2003. Aurora: a new model and architecture for data stream management. VLDB 

Journal 12, 2 (August 2003), 120-139. DOI:http://dx.doi.org/10.1007/s00778-003-0095-z 

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2002. Hippocratic databases. In Proceedings of the 

28th  International Conference on Very Large Data Bases (VLDB’02). VLDB Endowment, Hong Kong, 143-154. 
DOI:http://dx.doi.org/10.1016/B978-155860869-6/50021-4 

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004. Order-preserving encryption for numeric 

data. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’04). ACM 

Press, New York, NY, 563-574. DOI: http://dx.doi.org/10.1145/1007568.1007632 

Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le Folgoc, Benjamin Nguyen, Philippe Pucheral, 
Indrajit Ray, Indrakshi Ray and Shaoyi Yin. 2010. Secure Personal Data Servers: a Vision Paper. In Proceedings of the 

36th  International Conference on Very Large Data Bases (VLDB’10). VLDB Endowment, Singapore, 25-35. 

DOI:http://dx.doi.org/10.14778/1920841.1920850 

Tristan Allard, Benjamin Nguyen, and Philippe Pucheral. 2014. MetaP: Revisiting Privacy-Preserving Data Publishing 

using Secure Devices. Distributed and Parallel Databases 32, 2 (June 2014), 191-244. 

DOI:http://dx.doi.org/10.1007/s10619-013-7122-x 

Hani Alzaid, Ernest Foo, and Juan G. Nieto. 2008. Secure Data Aggregation in Wireless Sensor Networks: A Survey. In 

Proceedings of the 6th Australasian Information Security Conference (AISC’08). 93-105. 



39:42 . 
 

 
ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

Georgios Amanatidis, Alexandra Boldyreva, and Adam O'Neill. 2007. Provably-secure schemes for basic query support in 

outsourced databases. In DBSec. Lecture Notes in Computer Science,volume 4602, Springer. 14-30. 

DOI:http://dx.doi.org/10.1007/978-3-540-73538-0_2 

Yair Amir, Yongdae Kim, Cristina Nita-Rotaru, and Gene Tsudik. 2004. On the performance of group key agreement 

protocols. ACM Transactions on Information and System Security (TISSEC). 7, 3 (August 2004), 457-488. 
DOI:http://dx.doi.org/10.1145/1015040.1015045 

Nicolas Anciaux, Luc Bouganim, and Philippe Pucheral. 2009. Hardware Approach for Trusted Access and Usage Control. 

Handbook of research on Secure Multimedia Distribution (Chapter A). IGI Global. 

Nicolas Anciaux, Philippe Bonnet, Luc Bouganim, Benjamin Nguyen, Philippe Pucheral and Iulian Sandu-Popa. 2013. 

Trusted Cells: A Sea Change for Personal Data Services. In CIDR. Asilomar, USA. 

Arvind Arasu, Ken Eguro, Raghav Kaushik, and Ravi Ramamurthy. 2014. Querying Encrypted Data (Tutorial). In 

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’14). ACM Press, 

New York, NY, 1259-1261. DOI:http://dx.doi.org/10.1145/2588555.2588893 

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and efficiently searchable encryption. In 

CRYPTO. Lecture Notes in Computer Science,volume 4622. 535–552. DOI:http://dx.doi.org/10.1007/978-3-540-
74143-5_30 

Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, and David Pointcheval. 2004. Mutual authentication and group 

key agreement for low-power mobile devices. Computer Communications. 27, 17 (November, 2004), 1730-1737. 
DOI:http://dx.doi.org/10.1016/j.comcom.2004.05.023 

Emmanuel Bresson and Mark Manulis. 2007. Malicious Participants in Group Key Exchange: Key. Control and 

Contributiveness in the Shadow of Trust. In ATC, 395–409. DOI:http://dx.doi.org/10.1007/978-3-540-73547-2_41 

Emmanuel Bresson, Mark Manulis and Joerg Schwenk. 2007. On Security Models and Compilers for Group Key 

Exchange Protocols. IWSEC. 4752, 292–307. DOI:http://dx.doi.org/10.1007/978-3-540-75651-4_20 

Claude Castelluccia, Einar Mykletun, and Gene Tsudik. 2005. Efficient Aggregation of Encrypted Data in Wireless Sensor 

Networks. In Mobiquitous. 109-117. DOI:http://dx.doi.org/10.1109/MOBIQUITOUS.2005.25 

Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela 

Samarati. 2005. Modeling and assessing inference exposure in encrypted databases. ACM TISSEC 8, 1 (Feb. 2005), 

119-152. DOI:http://dx.doi.org/10.1145/1053283.1053289 

William Gemmell Cochran. 1977. Sampling Techniques. John Wiley, 3rd edition. 

Ernesto Damiani , Sabrina De Capitani di Vimercati , Sushil Jajodia , Stefano Paraboschi, and Pierangela Samarati. 2003. 
Balancing confidentiality and efficiency in untrusted relational DBMSs. In ACM CCS. ACM Press, New York, NY, 

93-102. DOI:http://dx.doi.org/10.1145/948109.948124 

Ebaa Fayyoumi and B. John Oommen. 2010. A survey on statistical disclosure control and micro-aggregation techniques 

for secure statistical databases. Software: Practice and Experience. 40, 12 (November 2010), 1161-1188. 

DOI:http://dx.doi.org/10.1002/spe.v40:12 

The World Economic Forum. 2012. Rethinking Personal Data: Strengthening Trust. (May 2012). Retrieved March 3, 2016 

from http://www.weforum.org/reports/rethinking-personal-data-strengthening-trust 

Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-Preserving Data Publishing: A survey of 

Recent Developments. ACM Computing Surveys 42, 4 (June 2010), 1-53. 

DOI:http://dx.doi.org/10.1145/1749603.1749605 

Tingjian Ge, and Stan Zdonik. 2007. Answering aggregation queries in a secure system model. In Proceedings of the 33rd  

International Conference on Very Large Data Bases (VLDB’07). VLDB Endowment, Vienna, 519–530.  

Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC. Maryland, 169-178. 

DOI:http://dx.doi.org/10.1145/1536414.1536440 

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. 1984. Journal of Computer and System Sciences 28, 2 (April 
1984), 270–299. DOI:http://dx.doi.org/10.1016/0022-0000(84)90070-9 

Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing SQL over encrypted data in database service 
provider model. In ACM SIGMOD. ACM Press, New York, NY, 216-227. 

DOI:http://dx.doi.org/10.1145/564691.564717 

Hakan Hacigümüs, Balakrishna R. Iyer, and Sharad Mehrotra. 2004. Efficient execution of aggregation queries over 
encrypted relational databases. In DASFAA. Korea, 125-136. DOI:http://dx.doi.org/10.1007/978-3-540-24571-1_10 

Bijit Hore, Sharad Mehrotra, and Gene Tsudik. 2004. A Privacy-Preserving Index for Range Queries. In VLDB’04. VLDB 
Endowment, 223-235. 

Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012. Secure multidimensional range queries over 
outsourced data. VLDB Journal 21, 3 (August 2011), 333-358. DOI:http://dx.doi.org/10.1007/s00778-011-0245-7 

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography: Principles and Protocols. Chapman and 

Hall/CRC 

Jonathan Katz and Ji Sun Shin. 2005. Modeling Insider Attacks on Group Key-Exchange Protocols. In Proceedings of the 

12th ACM Conference on Computer and Communications Security (CCS’05), 180–189. 
DOI:http://dx.doi.org/10.1145/1102120.1102146 



Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:43  
 

 
ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

Lea Kissner and Dawn Song. 2005. Privacy-Preserving Set Operations. In Advances in Cryptology (CRYPTO’05). 241–

257. DOI:http://dx.doi.org/10.1007/11535218_15 

H.Y. Lam, G.S.K. Fung, and W.K. Lee. 2007. A Novel Method to Construct Taxonomy Electrical Appliances Based on 

Load Signatures. IEEE Transactions on Consumer Electronics 53, 2 (May 2007), 653-660. 

DOI:http://dx.doi.org/10.1109/TCE.2007.381742 

P.P.C. Lee, J.C.S.Lui, D.K.Y. Yau. 2006. Distributed collaborative key agreement and authentication protocols for 

dynamic peer Groups.  ACM Transactions onNetworking 14, 2, 263-276. 

DOI:http://dx.doi.org/10.1109/TNET.2006.872575 

Hongbo Liu and Hui Wang and Yingying Chen. 2010. Ensuring Data Storage Security against Frequency-based Attacks in 

Wireless Networks. In DCOSS. California, 201-215. DOI:http://dx.doi.org/10.1007/978-3-642-13651-1_15 

Thomas Locher. 2009. Foundations of Aggregation and Synchronization in Distributed Systems. Ph.D. Dissertation. ETHZ 

University, Zurich. DISS. ETH NO. 18249. ISBN 978-3-86628-254-4. 

Yves-Alexandre de Montjoye, Samuel S Wang, Alex Pentland, Dinh Tien Tuan Anh, Anwitaman Datta. 2012. On the 

Trusted Use of Large-Scale Personal Data. IEEE Data Eng. Bull. 35, 4, 5-8. 

Einar Mykletun, and Gene Tsudik. 2006. Aggregation queries in the database-as-a-service model. In DBSec. France, 89-
103. DOI:http://dx.doi.org/10.1007/11805588_7 

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT. 223-238. 
DOI:http://dx.doi.org/10.1007/3-540-48910-X_16 

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: protecting 

confidentiality with encrypted query processing. In ACM SOSP. New York, 85-100. 
DOI:http://dx.doi.org/10.1145/2043556.2043566 

Sandro Rafaeli and David Hutchison. 2003. A Survey of Key Management for Secure Group Communication. ACM 
Computing Surveys 35, 3 (September 2003), 309-329. DOI:http://dx.doi.org/10.1145/937503.937506 

StreamSQL. 2015. Retrieved March 3, 2015 from : http://www.streambase.com/developers/docs/latest/streamsql/ 

Yufei Tao, Jimeng Sun, and Dimitris Papadias. 2003. Analysis of predictive spatiotemporal queries. ACM Transactions on 

Database Systems (TODS). 28, 4 (Dec. 2003), 295–336. DOI:http://dx.doi.org/10.1145/958942.958943 

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2013. Secure Global Protocol in Personal Data Server. SMIS 

Technical report. INRIA, France. 

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2014a. Privacy-Preserving Query Execution using a 
Decentralized Architecture and Tamper Resistant Hardware. In EDBT. Athens, 487-498. 

DOI:http://dx.doi.org/10.5441/002/edbt.2014.44 

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2014b. SQL/AA : Executing SQL on an Asymmetric 

Architecture. PVLDB 7, 13 (August 2014), 1625-1628. DOI:http://dx.doi.org/10.14778/2733004.2733046 

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2015a. TrustedMR: A Trusted MapReduce System based on 
Tamper Resistance Hardware. In CoopIS. Rhodes, 38-56. DOI:http://dx.doi.org/10.1007/978-3-319-26148-5_3 

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2015b. Key Exchange Protocol in the Trusted Data Servers 
Context.SMIS Technical report. INRIA, France.  

Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013. Processing analytical queries over 

encrypted data. PVLDB. 6, 5 (March 2013), 289–300. DOI:http://dx.doi.org/10.14778/2535573.2488336 

Bing Wu, Jie Wu, and Mihaela Cardei. 2008. A Survey of Key Management in Mobile Ad Hoc Networks. In Handbook of 

Research on Wireless Security. IGI Global, 479-499. DOI:http://dx.doi.org/10.4018/978-1-59904-899-4.ch030 

Tsu-Yang Wu, Yuh-Min Tseng, and Ching-Wen Yu. 2011. Two-round contributory group key exchange protocol for 

wireless network environments. In EURASIP Journal on Wireless Communications and Networking 2011, 1 (June 

2011), 1-8. DOI:http://dx.doi.org/10.1186/1687-1499-2011-12 

INRIA, LIRIS, UVSQ, GEMALTO, CryptoExperts, CG78. 2012. Use cases and functional architecture specification. 

KISS deliverable ANR-11-INSE-0005-D1, 21/12/2012. France. 

 

  

http://www.informatik.uni-trier.de/~ley/db/journals/debu/debu35.html#MontjoyeWP12


39:44 . 
 

 
ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

Online Appendix to: 
Private and Scalable Execution of SQL Aggregates on a Secure 

Decentralized Architecture   

QUOC-CUONG TO, Inria and University of Versailles St-Quentin, PRiSM lab 

BENJAMIN NGUYEN, INSA Centre Val de Loire, LIFO lab 

PHILIPPE PUCHERAL, Inria and University of Versailles St-Quentin, PRiSM lab 

A. SAFETY PROPERTIES AGAINST MALICIOUS ATTACKER  

The protocols presented in this paper protect against confidentiality attacks 

conducted by honest-but-curious adversary. Additional counter-measures must be 

integrated in the protocols to defeat malicious attackers. Indeed, a malicious SSI 

could try to tamper with the intermediate results produced during the query 

execution, either to mislead the querier or to gain some benefit (e.g., save computing 

and storage resources) from skipping part of the computation. Hence, the integrity of 

the final result must be made controllable by the Querier. Checking the integrity of 

an outsourced query result sums up to checking data authenticity, data freshness 

and query completeness.  

Authenticity means that the query result is generated from original database 

tuples. Authenticity is generally achieved by attaching a signature to a tuple or part 

of a tuple. As the signature is unforgeable by anyone who does not own the key, any 

TDS can check signatures produced by any other TDS. 

Freshness means that the query result is computed over the latest version of the 

tuples. Since the query is executed directly in the client’s side (TDS), the tuples 

returned in the collection phase are guaranteed to be up-to-date. However, SSI must 

be prevented from replacing fresh encrypted tuples sent by TDSs by old tuples 

resulted from previous queries by attaching the session id to the tuples. 

Completeness means that all tuples participating to the collection phase are 

reflected once, and only once (hence completeness encompass accuracy in our 

definition), in the result. To ensure completeness, we must prevent duplicate and 

delete actions from malicious attackers. These actions are hard to detect since this 

requires having a global view of the dataset. 

In order for the TDS and the querier to check authenticity, freshness and 

completeness, extra information, called hereafter security information, has to be 

produced by the TDSs and bind both to the tuples produced during the collection 

phase and to the partitions produced during the aggregation phase. We introduce 

below the set of properties required to enforce authenticity, freshness and 

completeness and detail the associated security information and security test 

performed on it. 

Let us call Гe ← {tupe} the set of encrypted tuples collected in the collection phase. 

Each tuple tupe  Гe follows the format:  

tupe ← (c, id) with tupe.c ← nEk(tup), and tupe.id ← nEk(identifier) with tup is the 

plaintext tuple and identifier is the identity of tup. We assume that identifiers are 

unique in the whole system, e.g., by concatenated the local tuple identifier with the 

TDS identifier. 

 

© 2010 ACM 1539-9087/2010/03-ART39 $15.00 

DOI:http://dx.doi.org/10.1145/0000000.0000000 



Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:45  
 

 
ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

Each encrypted partition/aggregation Ωei contains a set of tuples’ identifiers it is 

supposed to contain, called Ω-set, denoted as Ωei.ID, and the total number of tuples 

contributed to that aggregation, denoted as Ωei.ψ.  

 

Definition 1 (Origin safety property). The Origin safety property guarantees that a 

tuple originates from a real TDS as target of a given query itself identified by Qid. 

Origin is considered as a proof of authenticity and freshness. To enforce this 

property, each tuple embeds a signature, denoted σ, which is the result of signing the 

encrypted tuple concatenated to its encrypted identifier and query identifier: tup.σ ← 

sign(tupe.c || tupe.id || Qid).  

As previously said, completeness is significantly harder to achieve since it requires 

building a global view of the collected dataset and be able to detect any delete and 

copy action on it from an adversary. 

Delete actions means removing encrypted tuples from partitions or even removing 

complete partitions during the execution, making the final result incomplete. These 

actions reduce the size of the encrypted dataset to be processed. We use the Quantity 

Preservation safety property to prevent this kind of attack. Basically, this safety 

property preserves the number of tuples to be processed from the beginning of the 

protocol until the final step.  

Definition 2 (Quantity Preservation safety property). Aggregations or partitions 

respect Quantity Preservation if ∑ |Ω𝑖
𝑒 . ψ| = 𝑆

𝑝
𝑖=1  with p being the total number of 

aggregations/partitions, and S the value in SIZE clause of the query.    

Thank to this property, if SSI drops any tuple or partition during the execution, 

the total number of tuples for this query will be less than the required number, 

making this action detectable. Similarly, this property also prevents duplicate 

actions augmenting the number of tuples. However, it doesn’t prevent a malicious 

SSI to delete arbitrary d encrypted tuples from a partition, and then copy another d 

existing encrypted tuples from this (or another) partition to replace them. This action 

satisfies both the Origin safety property (SSI does not forge any new tuples) and 

Quantity Preservation safety property (since the total number of tuples remains 

unchanged). However, it still makes the final result incorrect due to the difference 

between deleted tuples and duplicated ones. Replace actions (i.e., replacing a deleted 

tuple by a duplicated one) can be either intra-partition (tuples are replaced into their 

own partition) or inter-partition (the destination partition is different from the source 

partition). Intra-partition replace actions can be easily detected by checking the 

unicity of tuple identifiers within each partition. The Identifier Unicity safety 

property (Definition 3) serves this purpose. 

Definition 3 (Identifier Unicity safety property) Let tupe ∈ Ωei be a tuple in the 

partition/aggregation Ωei. Partition/Aggregation Ωei respects the Identifier Unicity 

safety property if for every pair of tuples tupej, tupek∈Ωei, tupej.id = tupek.id ⇒ j = k.    

Detecting inter-partition replace actions is more difficult and requires organizing 

the set of tuples such that each identifier is authorized to be part of a single partition 

(partitions intersections are empty). To this end, we define for each partition the set 

of identifiers it is supposed to contain, called Ω-set, denoted by Ωei.ID. The Mutual 

Exclusion safety property (Definition 4) ensures that no Ωei.ID overlaps, and the 

Membership safety property (Definition 5) ensures that each identifier must appear 

in the partition to which it is supposed to belong. As a result, Mutual Exclusion and 

Membership together guarantee that each identifier actually appears within a single 

partition (as stated in the Lemma).  
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Definition 4 (Mutual Exclusion safety property) Partitions respect Mutual 

Exclusion if for every pair of partitions Ωei, Ωej, i ≠ j ⇒ Ωei.ID∩ Ωej.ID = Ø.  

Definition 5 (Membership safety property) A partition respects Membership if for 

every tuple tupej ∈ Ωei, then tupej.id ∈ Ωei.ID.       

Lemma. Enforcing together the Identifier Unicity, Mutual Exclusion, and 

Membership safety properties is necessary and sufficient to guarantee the absence of 

any (intra/inter-partition) replace action. 

Proof We start by showing the sufficiency of these properties. First, Identifier 

Unicity is sufficient to preclude by itself intra-partition replace actions (recall that 

the authenticity of a tuple and its identifier is guaranteed by the Origin safety 

property). Second, assume that a given tuple tupe has been copied into two distinct 

partitions. Only the Ω-set of one of them contains tupe identifier because otherwise 

Mutual Exclusion would be contradicted. Consequently there must be one partition's 

Ω-set that does not contain tupe identifier. But this clearly contradicts the 

Membership safety property. As a result, Membership and Mutual Exclusion are 

together sufficient to preclude inter-partition replace actions. 

We now show the necessity of these properties. First, since a distinct identifier is 

assigned to each tuple, the absence of intra-partition replace results immediately in 

the satisfaction of the Identifier Unicity property. Second, the absence of inter-

partition replace implies that the partitioning is correct so that: (1) the Mutual 

Exclusion property is satisfied in that Ω-sets do not overlap (recall that a distinct 

identifier is assigned to each tuple) and (2) the Membership property too in that each 

tuple appears in the partition which Ω-set contains its identifier.  □ 

Implementation Sketches.  

The implementations of the Origin and Identifier Unicity safety properties are 

straightforward: when receiving a partition to compute, the given TDS simply checks 

the signatures of tuples and the absence of duplicate identifier19. 

The other properties are harder to check because they concern the complete 

dataset. We thus add an header in each partition to contain the summary 

information of that partition. 

First, the header contains Ωei-ψ, the total number of tuples contributing to the 

aggregation Ωei. Every times a TDS receives partitions from SSI and computes the 

new aggregation, it cumulates all Ωei-ψ belonging to these partitions and stores the 

result in the header of the new aggregation. Note that only the TDS that combines 

the last partitions into the final result can check that ∑ |Ω𝑖
𝑒 . ψ| = 𝑆

𝑝
𝑖=1 . But since a 

TDS does not know if he is calculating the final or intermediate result, he cannot 

check the Quantity Preservation safety property. Only when the final result is 

delivered to Querier, who knows for sure that he is obtaining the final result, this 

property (Ωefinal.ψ = S) can be checked. 

Second, the header also contains Ωei.ID, the set of identifiers of all tuples in the 

partition Ωei. In every step of the protocol, when the partitions are accumulated, TDS 

also makes a union between these lists. When making this union, TDS can detect 

only the partial inter-partition replace actions in which these actions happen among 

the partitions that TDS is handling. Similar to Ωei-ψ, it is impossible for a TDS to 

detect the full inter-partition replace actions unless that TDS is handling the last 

 
19 In general, the identifier can be implemented simply by letting secure devices generate a random number. It has to be big 

enough with respect to the number of tuples to collect in order to make collisions improbable so that in the rare collision 
cases the recipient simply keeps one of the colliding tuples. For example, around 5 billion numbers have to be generated to 

reach 50% chance collision with a 64-bits random number. 
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partitions to create the Ωefinal. Therefore, it is Querier, who obtains the Ωefinal, which 

can check the full inter-partition replace actions.  

While the extra-cost of these verifications has not been evaluated yet, it relies on 

rather simple tests compared to the usual complexity of checking the integrity of 

outsourced query results.  
   


