

ACM Transactions on Database Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Private and Scalable Execution of SQL Aggregates on a Secure

Decentralized Architecture 

QUOC-CUONG TO, Inria and University of Versailles St-Quentin, PRiSM lab

BENJAMIN NGUYEN, INSA Centre Val de Loire, LIFO lab

PHILIPPE PUCHERAL, Inria and University of Versailles St-Quentin, PRiSM lab

Current applications, from complex sensor systems (e.g. quantified self) to online e-markets acquire vast

quantities of personal information which usually end-up on central servers where they are exposed to

prying eyes. Conversely, decentralized architectures helping individuals keep full control of their data,

complexify global treatments and queries, impeding the development of innovative services. This paper

precisely aims at reconciling individual's privacy on one side and global benefits for the community and

business perspectives on the other side. It promotes the idea of pushing the security to secure hardware

devices controlling the data at the place of their acquisition. Thanks to these tangible physical elements of

trust, secure distributed querying protocols can reestablish the capacity to perform global computations,

such as SQL aggregates, without revealing any sensitive information to central servers. This paper studies

how to secure the execution of such queries in the presence of honest-but-curious and malicious attackers.

It also discusses how the resulting querying protocols can be integrated in a concrete decentralized

architecture. Cost models and experiments on SQL/AA, our distributed prototype running on real tamper-

resistant hardware, demonstrate that this approach can scale to nationwide applications.

Categories and Subject Descriptors: [Security and Privacy]: Privacy-Preserving Protocols

General Terms: SQL execution, privacy-preserving database protocols

Additional Key Words and Phrases: Trusted hardware, decentralized architecture, parallel computing.

ACM Reference Format:

Quoc-Cuong To, Benjamin Nguyen and Philippe Pucheral, 2016. Private and Scalable Execution of SQL
Aggregates on a Secure Decentralized Architecture. ACM Transactions on Database Systems X, Y, Article

ZZ (March 2016), 43 pages. DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

With the convergence of mobile communications, sensors and online social networks

technologies, an exponential amount of personal data - either freely disclosed by

users or transparently acquired by sensors - end up in servers. This massive amount

of data, the new oil, represents an unprecedented potential for applications and

business (e.g., car insurance billing, traffic decongestion, smart grids optimization,

healthcare surveillance, participatory sensing). However, centralizing and processing

all one’s data in a single server incurs a major problem with regards to privacy.

Indeed, individuals’ data is carefully scrutinized by governmental agencies and

companies in charge of processing it [de Montjoye et al. 2012]. Privacy violations also

arise from negligence and attacks and no current server-based approach, including

cryptography based and server-side secure hardware [Agrawal et al. 2002], seems

capable of closing the gap. Conversely, decentralized architectures (e.g., personal

data vault), providing better control to the user over the management of her personal

data, impede global computations by construction.

This paper aims to demonstrate that privacy protection and global computation

are not antagonist and can be reconciled to the best benefit of the individuals, the

This work is partly supported by ANR Grant KISS (Keep your Information Safe and Secure) n° ANR-11-

INSE-0005, by the Paris-Saclay Institut de la Société Numérique funded by the IDEX Paris-Saclay, ANR-

11-IDEX-0003-02 and by INRIA Project Lab CAPPRIS..

Author’s addresses: Quoc-Cuong To and Philippe Pucheral: Laboratoire PRiSM - 45, avenue des Etats-

Unis - 78035 Versailles cedex, France. Benjamin Nguyen : Office CRI 07, INSA Centre Val de Loire, 88

boulevard Lahitolle, CS 60013 - 18022 Bourges cedex, France.

DOI:http://dx.doi.org/10.1145/0000000.0000000

39

39:2 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

community and the companies. To reach this goal, this paper capitalizes on a novel

architectural approach called Trusted Cells [Anciaux et al. 2013]. Trusted Cells push

the security to the edges of the network, through personal data servers [Allard et al.
2010] running on secure smart phones, set-top boxes, plug computers1 or secure

portable tokens2 forming a global decentralized data platform. Indeed, thanks to the

emergence of low-cost secure hardware and firmware technologies like ARM

TrustZone3, a full Trusted Execution Environment (TEE) will soon be present in any

client device. In this paper, and up to the experiments section, we consider that

personal data is acquired and/or hosted by secure devices but make no additional

assumption regarding the technical solution they rely on.

Global queries definitely make sense in this context. Typically, it would be helpful

to compute aggregates over smart meters without disclosing individual's raw data

(e.g., compute the mean energy consumption per time period and district). Identifying

queries also make sense assuming the identified subjects consent to participate (e.g.,

send an alert to people living in Paris-La Defense district if their total energy
consumption reaches a given threshold). Computing SQL-like queries on such

distributed infrastructure leads to two major and different problems: computing joins

between data hosted at different locations and computing aggregates over this same

data. We tackled the first issue in [To et al. 2015a] thanks to a trusted MapReduce-

based system that can support joins and cover parallelizable tasks executed over a

Trusted Cells infrastructure. This paper concentrates on the second issue: how to

compute global queries over decentralized personal data stores while respecting

users' privacy? Indeed, we believe that the computation of aggregates is central to the

many novel privacy preserving applications such as smart metering, e-

administration, etc.

Our objective is to make as few restrictions on the computation model as possible.

We model the information system as a global database formed by the union of a

myriad of distributed local data stores (e.g., nation-wide context) and we consider

regular SQL queries and a traditional access control model. Hence the context we are

targeting is different and more general than, (1) querying encrypted outsourced data

where restrictions are put on the predicates which can be evaluated [Agrawal et al.
2004, Amanatidis et al. 2007, Popa et al. 2011, Hacigümüs et al. 2004], (2)

performing privacy-preserving queries usually restricted to statistical queries

matching differential privacy constraints [Fung et al. 2010, Fayyoumi and Oommen

2010] and (3) performing Secure-Multi-Party (SMC) query computations which

cannot meet both query generality and scalability objectives [Kissner and Song

2005].

The contributions of this paper are4: (1) to propose different secure query

execution techniques to evaluate regular SQL “group by” queries over a set of

distributed trusted personal data stores, (2) to quantify and compare the respective

information exposure of these techniques, (3) to study the range of applicability of

1http://freedomboxfoundation.org/
2http://www.gd-sfs.com/portable-security-token
3http://www.arm.com/products/processors/technologies/trustzone.php
4 This paper is an extended and restructured version of [To et al. 2014a]. The new material covers a set of important

problems that need to be solved to make the approach practical: cryptographic key management, accuracy and latency of
the collection phase, access control management. The security analysis was also improved to address stronger attackers

with more knowledge. A solution was also proposed to prevent malicious attackers from deleting the data, ensuring the

completeness of the result. In addition, it validates our cost model thanks to performance measurement performed on real
secure hardware. This version also integrates more detailed results and a performance comparison with state of the art

methods.

http://fr.wikipedia.org/wiki/Memphis_%28Tennessee%29
http://freedomboxfoundation.org/
http://www.gd-sfs.com/portable-security-token
http://www.arm.com/products/processors/technologies/trustzone.php

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:3

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

these techniques and show that our approach is compatible with nation-wide contexts

by thorough analysis of a cost model and performance measurements of a prototype

running on real secure hardware devices.

The rest of this paper is organized as follows. Section 2 states our problem.

Section 3 discusses related works. Section 4 introduces a framework to execute

simple queries and Section 5 concentrates on complex queries involving Group By

and Having clauses. Section 6 discusses practical aspects of the proposed solution.

Section 7 presents a privacy analysis of each querying protocol. Section 8 analyzes

the performance of these solutions through cost models while section 9 validates

these cost models through performance measurements. Finally section 10 concludes.

Appendix A is added at the end to clarify how we prevent malicious attacks.

2. CONTEXT OF THE STUDY

2.1 Scenarios and queries of interest

As discussed in [Anciaux et al. 2013], trusted hardware is more and more versatile

and has become a key enabler for all applications where trust is required at the edges

of the network. Figure 1 depicts different scenarios where a Trusted Data Server

(TDS) is called to play a central role, by reestablishing the capacity to perform global

computations without revealing any sensitive information to central servers. TDS

can be integrated in energy smart meters to gather energy consumption raw data, to

locally perform aggregate queries for billing or smart grid optimization purpose and

externalize only certified results, thereby reconciling individuals' privacy and energy

providers’ benefits. Green button5 is another application example where individuals

accept sharing their data with their neighborhood through distributed queries for

their personal benefit. Similarly, TDS can be integrated in GPS trackers to protect

individuals' privacy while securely computing insurance fees or carbon tax and

participating in general interest distributed services such as traffic jam reduction.

Moreover, TDSs can be hosted in personal devices to implement secure personal

folders like e.g., PCEHR (Personally Controlled Electronic Health Record) fed by the

individuals themselves thanks to the Blue Button initiative6 and/or quantified-self

devices. Distributed queries are useful in this context to help epidemiologists

performing global surveys or allow patients suffering from the same illness to share

their data in a controlled manner.

For the sake of generality, we make no assumption about how the data is actually

gathered by TDSs, this point being application dependent [Allard et al. 2010,

Montjoye et al. 2012]. We simply consider that local databases conform to a common

schema (Fig. 3) which can be queried in SQL. For example, power meter data (resp.,

GPS traces, healthcare records, etc) can be stored in one (or several) table(s) whose

schema is defined by the national distribution company (resp., insurance company

consortium, Ministry of Health7, specific administration, etc). Since raw data can be

highly sensitive, it must also be protected by an access control policy defined either

by the producer organism, by the legislator or by a consumer association. Depending

on the scenario, each individual may also opt-in/out of a particular query. For sake of

generality again, we consider that each TDS participating in a distributed query

protocol enforces at the same time the access control policy protecting the local data

it hosts, with no additional consideration for the access control model itself, the

5http://www.greenbuttondata.org/
6http://healthit.gov/patients-families/your-health-data
7 This is the case in France for instance.

http://www.greenbuttondata.org/
http://healthit.gov/patients-families/your-health-data

39:4 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

choice of this model being orthogonal to this study. Hence, the objective is to let

queriers (users) query this decentralized database exactly as if it were centralized,

without restricting the expressive power of the language to statistical queries as in

many Privacy-Preserving Data Publishing (PPDP) works [Fayyoumi and Oommen

2010, Popa et al. 2011].

Fig. 1. Different scenarios of TDSs

Consequently, we assume that the querier can issue the following form of SQL

queries8, borrowing the SIZE clause from the definition of windows in the

StreamSQL standard [StreamSQL 2015]. This clause is used to indicate a maximum

number of tuples to be collected, and/or a collection duration.

SELECT <attribute(s) and/or aggregate function(s)>
FROM <Table(s)>
[WHERE <condition(s)>]
[GROUP BY <grouping attribute(s)>]
[HAVING <grouping condition(s)>]
[SIZE <size condition(s)>]

For example, an energy distribution company would like to issue the following

query on its customers' smart meters: "SELECT AVG(Cons) FROM Power P,
Consumer C WHERE C.accomodation='detached house' and C.cid = P.cid GROUP BY
C.district HAVING Count(distinct C.cid) > 100 SIZE 50000". This query computes

the mean energy consumption of consumers living in a detached home grouped by

district, for districts where over 100 consumers answered the poll and the poll stops

after having globally received at least 50.000 answers. The semantics of the query

are the same as those of a stream relational query [Abadi et al. 2003]. Only the smart

meter of customers who opt-in for this service will participate in the computation.

Needless to say that the querier, that is the distribution company, must be prevented

to see the raw data of its customers for privacy concerns9.

In other scenarios where TDSs are seldom connected (e.g., querying mobile

PCEHR), the time to collect the data is probably going to be quite large. Therefore

the challenge is not on the overall response time, but rather to show that the query

computation on the collected data is tractable in reasonable time, given local

resources.

8 As stated in the introduction, we do not consider joins between data stored in different TDSs in this

article, the solution to this specific problem being addressed in [To et al. 2015a]. However, there is no

restriction on the queries executed locally by each TDS.
9 At the 1HZ granularity provided by the French Linky power meters, most electrical appliances have a

distinctive energy signature. It is thus possible to infer from the power meter data inhabitants activities

[Lam et al. 2007].

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:5

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Also note that unless specified otherwise, our semantics make the Open World
Assumption: since we assume that data is not replicated over TDS, many true tuples

will not be collected during the specified period and/or due to the limit, both indicated

in the SIZE clause. Hence, the SIZE clause is mandatory, since having a complete

answer is contradictory with the open world assumption. Under the closed world

assumption (in which all TDS are always connected to the infrastructure), one can

replace the keyword SIZE by ALL to collect all available data.

2.2 Asymmetric Computing Architecture

The architecture we consider is decentralized by nature. It is formed by a large set of

low power TDSs embedded in secure devices. Despite the diversity of existing

hardware platforms, a secure device can be abstracted by (1) a Trusted Execution

Environment and (2) a (potentially untrusted but cryptographically protected) mass

storage area (see Fig. 2)10. E.g., the former can be provided by a tamper-resistant

microcontroller while the latter can be provided by Flash memory. The important

assumption is that the TDS code is executed by the secure device hosting it and thus

cannot be tampered, even by the TDS holder herself. Each TDS exhibits the following

properties:

High Security. This is due to a combination of factors: (1) the microcontroller

tamper-resistance, making hardware and side-channel attacks highly difficult, (2)

the certification of the embedded code making software attacks also highly difficult,

(3) the ability to be auto-administered, in contrast with traditional multi-user

servers, precluding DBA attacks, and (4) the fact that the device holder cannot

directly access the data stored locally (she must authenticate and can only access

data according to her own privileges). This last point is of utmost importance because

it allows the definition of distributed protocols where data is securely exchanged

among TDSs with no confidentiality risk.

Low Availability. The Secure Device is physically controlled by its owner who may

connect or disconnect it at will, providing no availability guarantee.

Modest Computing Resource. Most Secure Devices provide modest computing

resources (see section 8) due to the hardware constraints linked to their tamper-

resistance. On the other hand, a dedicated cryptographic co-processor usually

handles cryptographic operations very efficiently (e.g., AES and SHA).

Fig. 2. Trusted Data Servers

Hence, even if there exist differences among Secure Devices (e.g., smart tokens are

more robust against tampering but less powerful than TrustZone devices), all provide

much stronger security guarantees combined with a much weaker availability and
computing power than any traditional server.

10 For illustration purpose, the secure device considered in our experiments is made of a tamper-resistant microcontroller

connected to a Flash memory chip.

39:6 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 3. The Asymmetric Architecture

Since TDSs have limited storage and computing resources and they are not

necessarily always connected, an external infrastructure, called hereafter Supporting
Server Infrastructure (SSI), is required to manage the communications between

TDSs, run the distributed query protocol and store the intermediate results produced

by this protocol. Because SSI is implemented on regular server(s), e.g., in the Cloud,

it exhibits the same low level of trustworthiness, high computing resources, and

availability.

The computing architecture, illustrated in Fig. 3 is said asymmetric in the sense

that it is composed of a very large number of low power, weakly connected but highly

secure TDSs and of a powerful, highly available but untrusted SSI.

2.3 Threat Model

TDSs are the unique elements of trust in the architecture and are considered honest.
As mentioned earlier, no trust assumption needs to be made on the TDS holder

herself because a TDS is tamper-resistant and enforces the access control rules

associated to its holder (just like a car driver cannot tamper the GPS tracker

installed in her car by its insurance company or a customer cannot gain access to any

secret data stored in her banking smartcard).

We primarily consider honest-but-curious (also called semi-honest) SSI (i.e., which

tries to infer any information it can but strictly follows the protocol), concentrating on

the prevention of confidentiality attacks. We additionally discuss (see Appendix A)

how to extend our protocols with safety properties to detect attacks conducted by

malicious SSI (i.e., which may tamper the protocol with no limit, including denial-of-

service), although the probability of such attacks is supposed to be much lower

because of the risk of an irreversible political/financial damage and even the risk of a

class action against the SSI.

The objective is thus to implement a querying protocol so that (1) the querier can

gain access only to the final result of authorized queries (not to the raw data

participating in the computation), as in a traditional database system and (2)

intermediate results stored in SSI are obfuscated. Preventing inferential attacks by

combining the result of a sequence of authorized queries as in statistical databases

and PPDP work (see section 3) is orthogonal to this study.

3. RELATED WORKS

This work has connections with related studies in different domains, namely

protection of outsourced (personal) databases, statistical databases and PPDP, SMC

and finally secure aggregation in sensor networks. We review these works below.

Security in outsourced databases. Outsourced database services or DaaS

[Hacigumus et al. 2002] allow users to store sensitive data on a remote, untrusted

server and retrieve desired parts of it on request. Many works have addressed the

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:7

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

security of DaaS by encrypting the data at rest and pushing part of the processing to

the server side. Searchable encryption has been studied in the symmetric-key

[Amanatidis et al. 2007] and public-key [Bellare et al. 2007] settings but these works

focus mainly on simple exact-match queries and introduce a high computing cost.

Agrawal et al. [2004] proposed an order preserving encryption (OPE) scheme, which

ensures that the order among plaintext data is preserved in the ciphertext domain,

supporting range and aggregate queries, but OPE relies on the strong assumption

that all plaintexts in the database are known in advance and order-preserving is

usually synonym of weaker security. The assumption on the a priori knowledge of all

plaintext is not always practical (e.g., in our highly distributed database context,

users do not know all plaintexts a priori), so a stateless scheme whose encryption

algorithm can process single plaintexts on the fly is more practical. Bucketization-

based techniques [Hacigumus et al. 2002, Hore et al. 2012] use distributional

properties of the dataset to partition data and design indexing techniques that allow

approximate queries over encrypted data. Unlike cryptographic schemes that aim for

exact predicate evaluation, bucketization admits false positives while ensuring all

matching data is retrieved. A post-processing step is required at the client-side to

weed out the false positives. These techniques often support limited types of queries

and lack of a precise analysis of the performance/security tradeoff introduced by the

indexes. To overcome this limitation, the work in [Damiani et al. 2003] quantitatively

measures the resulting inference exposure. Other works introduce solutions to

compute basic arithmetic over encrypted data, but homomorphic encryption [Paillier

1999] supports only range queries, fully homomorphic encryption [Gentry 2009] is

unrealistic in terms of time, and privacy homomorphism [Hacigumus et al. 2004] is

insecure under ciphertext-only attacks [Mykletun, and Tsudik 2006]. Hence, optimal

performance/security tradeoff for outsourced databases is still regarded as the Holy

Grail. Recently, the Monomi system [Tu et al. 2013] has been proposed for securely

executing analytical workloads over sensitive data on an untrusted database server.

Although this system can execute complex queries, there can be only one trusted

client decrypting data, and therefore it cannot enjoy the benefit of parallel

computing. Another limitation of this system is that to perform the GROUP BY

queries, it encrypts the grouping attributes with deterministic encryption, allowing

frequency-based attacks.

Statistical Database and PPDP. Statistical databases (SDB) [Fayyoumi and

Oommen 2010] are motivated by the desire to compute statistics without

compromising sensitive information about individuals. This requires trusting the

server to perform query restriction or data perturbation, to produce the approximate

results, and to deliver them to untrusted queriers. Thus, the SDB model is

orthogonal to our context since (1) it assumes a trusted third party (i.e., the SDB

server) and (2) it usually produces approximate results to prevent queriers from

conducting inferential attack [Fayyoumi and Oommen 2010]. For its part, Privacy-

Preserving Data Publishing [Fung et al. 2010] provides a non trusted user with some

sanitized data produced by an anonymization process such as k-anonymity, l-
diversity or differential privacy to cite the most common ones [Fung et al. 2010].

Similarly, PPDP is orthogonal to our context since it again assumes a trusted third

party (i.e., the publisher) and produces sanitized data of lower quality to match the

information exposure dictated by a specific privacy model. The work in [Allard et al.
2014] tackles the first limitation by pushing the trust to secure clients but keeps the

objective of producing sanitized releases. Contrary to these works, our paper targets

39:8 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

the execution of general SQL queries, considers a traditional access control model

and does not rely on a secure server.

Secure Multi-party Computation. Secure multi-party computation (SMC) allows N

parties to share a computation in which each party learns only what can be inferred

from their own inputs (which can then be kept private) and the output of the

computation. This problem is represented as a combinatorial circuit which depends

on the size of the input. The resulting cost of a SMC protocol depends on the number

of inter-participant interactions, which in turn depends exponentially on the size of

the input data, on the complexity of the initial function, and on the number of

participants. Despite their unquestionable theoretical interest, generic SMC

approaches are impractical where inputs are large and the function to be computed

complex. Ad-hoc SMC protocols have been proposed [Kissner and Song 2005] to solve

specific problems/functions but they lack of generality and usually make strong

assumptions on participants’ availability. Hence, SMC is badly adapted to our

context.

Secure Data Aggregation. Wireless sensor networks (WSN) [Alzaid et al. 2008]

consist of sensor nodes with limited power, computation, storage, sensing and

communication capabilities. In WSN, an aggregator node can compute the sum,

average, minimum or maximum of the data from its children sensors, and send the

aggregation results to a higher-level aggregator. WSN have some connection with our

context regarding the computation of distributed aggregations. However, contrary to

the TDS context, WSN nodes are highly available, can communicate with each other

in order to form a network topology to optimize calculations (In fact, TDSs can

collaborate to form the topology through SSI, but because of the weak connectivity of

TDSs, forming the topology is inefficient in term of time). Other work [Castelluccia et
al. 2005] uses additively homomorphic encryption for computing aggregation function

on encrypted data in WSN but fails to consider queries with GROUP BY clauses. Liu

et al. [2010] protects data against frequency-based attacks but considers only point

and range queries.

As a conclusion, and to the best of our knowledge, our work is the first proposal

achieving a fully distributed and secure solution to compute aggregate SQL queries

over a large set of participants.

4. BASIC QUERYING PROTOCOL

This section presents the protocol to compute Select-From-Where queries. This

protocol is simple yet very useful in practice, since many queries are of this form. We

also use it to help the reader get used to our approach. We tackle the more difficult

Group By clause in section 5.

4.1 Core infrastructure

Our querying protocols share common basic mechanisms to make TDSs aware of the

queries to be computed and to organize the dataflow between TDSs and queriers such

that SSI cannot infer anything from the queries and their results.

Query and result delivery: queries are executed in pull mode. A querier posts its

query to SSI and TDSs download it at connection time. To this end, SSI can maintain

personal query boxes (in reference to mailboxes) where each TDS receives queries

directed to it (e.g., get the monthly energy consumption of consumer C) and a global

query box for queries directed to the crowd (e.g., get the mean of energy consumption
per month for people living in district D). Result tuples are gathered by SSI in a

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:9

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

temporary storage area. A query remains active until the SIZE clause is evaluated to

true by SSI, which then informs the querier that the result is ready.

Dataflow obfuscation: all data (queries and tuples) exchanged between the querier

and the TDSs, and between TDSs themselves, can be spied by SSI and must

therefore be encrypted. However, an honest-but-curious SSI can try to conduct

frequency-based attacks [Liu et al. 2010], i.e., exploiting prior knowledge about the

data distribution to infer the plaintext values of ciphertexts. Depending on the

protocols (see later), two kinds of encryption schemes will be used to prevent

frequency-based attacks. With non-deterministic (aka probabilistic) encryption,

denoted by nDet_Enc, several encryptions of the same message yield different

ciphertexts while deterministic encryption (Det_Enc for short) always produces the

same ciphertext for a given plaintext and key [Bellare et al. 2007]. Whatever the

encryption scheme, symmetric keys must be shared among TDSs: we note kQ the

symmetric key used by the querier and the TDSs to communicate together and kT the

key shared by TDSs to exchange temporary results among them. We can choose

either a different kQ per querier, or a different kQ per query. Note that these keys

may also change over time and the way they are delivered to TDSs (and how much

this costs) is discussed more deeply in section 6.

4.2 Select-From-Where statements

Let us first consider simple SQL queries of the form:

SELECT <attribute(s)> FROM <Table(s)> [WHERE <condition(s)>] [SIZE <size
condition(s)>]

These queries do not have a GROUP BY or HAVING clause nor involve aggregate

functions in the SELECT clause. Hence, the selected attributes may (or may not)

contain identifying information about the individuals. Though basic, these queries

answer a number of practical use-cases, e.g., a doctor querying the embedded

healthcare folders of her patients, or an energy provider willing to offer special prices

to people matching a specific consumption profile. To compute such queries, the

protocol is divided in two phases (see Fig. 4):

Collection phase: (step 1) the querier posts on SSI a query Q encrypted with kQ, its

credential ₡ signed by an authority and S the SIZE clause of the query in cleartext so

that SSI can evaluate it; (step 2) targeted TDSs11 download Q when they connect;

(step 3) each of these TDSs decrypts Q, checks ₡, evaluates the AC policy associated

to the querier and computes the result of the WHERE clause on the local data; then

each TDS either sends its result tuples (step 4), or a small random number of dummy

tuples12 when the result is empty or the querier has not enough privilege to access

these local data (step 4'), non-deterministically encrypted with kT. The collection

phase stops when the SIZE condition has been reached (i.e., the total number of

collected encrypted tuples is S)13. The result of the collection phase is actually the

result of the query, possibly complemented with dummy tuples. We call it Covering

Result.

11Connected TDSs actually download all queries and decrypt them to check whether they can contribute to them or not.

The SSI cannot perform this task since queries are encrypted.
12 The objective is to hide which TDSs satisfy the Where clause of the query in the case SSI and Querier collude.
13 The production of dummy tuples may slightly impact the evaluation of the SIZE clause. The Querier must thus oversize

this parameter according to his perception of the selectivity of the query and the percentage of TDSs opting-out for the
query. If this over sizing turns out to be insufficient, the query could need to be rerun. Note anyway that the SIZE limit is a

coarse parameter in the open world assumption.

39:10 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Filtering phase: (step 5) SSI partitions the Covering Result with the objective to

let several TDSs manage next these partitions in parallel. The Covering Result being

fully encrypted, SSI sees partitions as uninterpreted chunks of bytes; (step 6)

connected TDSs download these partitions. These TDSs may be different from the

ones involved in the collection phase; (step 7) each of these TDS decrypts the

partition and filters out dummy tuples; (step 8) each TDS sends back the true tuples

encrypted with key kQ to SSI, which finally concatenates all results and informs the

querier that she can download the result (step 9).

Fig. 4. Select-From-Where querying protocol

Informally speaking, the accuracy, security and efficiency properties of the protocol

are as follows:

Accuracy. Since SSI is honest-but-curious, it will deliver to the querier all tuples

returned by the TDSs. Dummy tuples are marked so that they can be recognized and

removed after decryption by each TDS. Therefore the final result contains only true

tuples. If a TDS goes offline in the middle of processing a partition, SSI resends that

partition to another available TDS after a given timeout so that the result is

complete. As discussed in Appendix A, accuracy is more difficult to achieve in the

case of malicious SSI.

Security. Since SSI does not know key kQ, it can decrypt neither the query nor the

result tuples. TDSs use nDet_Enc for encrypting the result tuples so that SSI can

neither launch any frequency-based attacks nor detect dummy tuples. There can be

two additional risks. The first risk is that SSI acquires a TDS with the objective to

get the cryptographic material. As stated in section 2, TDS code cannot be tampered,

even by its holder. Whatever the information decrypted internally, the only output

that a TDS can deliver is a set of encrypted tuples, which does not represent any

benefit for SSI. The second risk is if SSI colludes with the querier. For the same

reason, SSI will only get the same information as the querier (i.e., the final result in

clear text and no more).

Efficiency. The efficiency of the protocol is linked to the frequency of TDSs

connection and to the SIZE clause. Both the collection and filtering phases are run in

parallel by all connected TDSs and no time-consuming task is performed by any of

them. As the experiment section will clarify, each TDS manages incoming partitions

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:11

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

in streaming because the internal time to decrypt the data and perform the filtering

is significantly less than the time needed to download the data.

While important in practice, executing Select-From-Where queries in the Trusted

Cells context shows no intractable difficulties and the main objective of this section

was to present the query framework in this simple context. Executing Group By

queries is far more challenging. The next section will present different alternatives to

tackle this problem. Rather than trying to get an optimal solution, which is context

dependent, the objective is to explore the design space and show that different

querying protocols may be devised to tackle a broad range of situations.

5. GROUP BY QUERIES

The Group By clause introduces an extra phase: the computation of aggregates of

data produced by different TDSs, which is the weak point for frequency-based

attacks. In this section, we propose several protocols, discussing their strong and

weak points from both efficiency and security points of view.

5.1 Generic query evaluation protocol

Let us now consider general SQL queries of the form14:

SELECT <attribute(s) and/or aggregate function(s)> FROM <Table(s)> [WHERE
<condition(s)>] [GROUP BY <grouping attribute(s)>] [HAVING <grouping
condition(s)>][SIZE <size condition(s)>]

These queries are more challenging to compute because they require performing

set-oriented computations over intermediate results sent by TDSs to SSI. The point

is that TDSs usually have limited RAM, limited computing resources and limited

connectivity. It is therefore unrealistic to devise a protocol where a single TDS

downloads the intermediate results of all participants, decrypts them and computes

the aggregation alone. On the other hand, SSI cannot help much in the processing

since (1) it is not allowed to decrypt any intermediate results and (2) it cannot gather

encrypted data into groups based on the encrypted value of the grouping attributes,

denoted by AG={Gi}, without gaining some knowledge about the data distribution.

This would indeed violate our security assumption since the knowledge of AG

distribution opens the door to frequency-based attacks by SSI: e.g. in the extreme

case where AG contains both quasi-identifiers and sensitive values, attribute linkage

would become obvious. Finally, the querier cannot help in the processing either since

she is only granted access to the final result, and not to the raw data.

To solve this problem, we suggest a generic aggregation protocol divided into three

phases (see Fig. 5):

Collection phase: similar to the basic protocol.

Aggregation phase:(step 5) SSI partitions the result of the collection phase; (step

6) connected TDSs (may be different from the ones involved in the collection phase)

download these partitions; (step 7) each of these TDS decrypts the partition,

eliminates the dummy tuples and computes partial aggregations (i.e., aggregates

data belonging to the same group inside each partition); (step 8) each TDS sends its

partial aggregations encrypted with kT back to SSI; depending on the protocol (see

next sections), the aggregation phase is iterative, and continues until all tuples

belonging to the same group have been aggregated (steps 6', 7', 8'); The last iteration

14 For the sake of clarity, we concentrate on the management of distributive, algebraic and holistic aggregate functions

identified in [Locher 2009] as the most prominent and useful ones.

39:12 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

produces a Covering Result containing a single (encrypted) aggregated tuple for each

group.

Fig. 5. Group By querying protocol

Filtering phase: this phase is similar to the basic protocol except that the role of

step 11 is to eliminate the groups which do not satisfy the HAVING clause instead of

eliminating dummy tuples.

The rest of this section presents different variations of this generic protocol,

depending on which encryption scheme is used in the collection and aggregation

phases, how SSI constructs the partitions, and what information is revealed to SSI.

Each solution has its own strengths and weaknesses and therefore is suitable for a

specific situation. Three kinds of solutions are proposed: secure aggregation, noise-

based, and histogram-based. They are subsequently compared in terms of privacy

protection (Section 7) and performance (Section 8).

5.2 Secure Aggregation protocol

This protocol, denoted by S_Agg and detailed in Algorithm 1, instantiates the generic

protocol as follows. In the collection phase, each participating TDS encrypts its result

tuples using nDet_Enc (i.e., nEkT(tup)) to prevent any frequency-based attack by SSI.

The consequence is that SSI cannot get any knowledge about the group each tuple

belongs to. Thus, during step 5, tuples from the same group are randomly distributed

among the partitions. This imposes the aggregation phase to be iterative, as

illustrated in Fig. 6. At each iteration, TDSs download encrypted partitions (i.e., Ωe)

containing a sequence of (AG, Aggregate) value pairs ((City, Energy_consumption) in

the example), decrypt them to plaintext partitions (i.e., Ω ← nEkT-1(Ωe)), aggregate

values belonging to the same grouping attributes (i.e., Ωnew = Ωold⨢ Ω), and sends

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:13

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

back to SSI an (usually smaller) encrypted sequence of (AG, Aggregate) value pairs

where values of the same group have been aggregated. SSI gathers these partial

aggregations to form new partitions, and so on and so forth until a single partition

(i.e., Ωfinal) is produced, which contains the final aggregation.

ALGORITHM 1. Secure Aggregation: S_Agg (kQ, kT, Q, α)

Input: (TDS’s side): The cryptographic keys (kQ, kT), query Q from Querier.

(SSI’s side): reduction factor α (α ≥ 2).
Output: The final aggregation Ωfinal.

Notations: encrypted partial aggregation Ωe; Total number of partitions ne
Ω

Non-deterministic encryption/decryption with key kT nEkT()/nEkT
-1();

The aggregation operator ⨢ to aggregate tuples having the same AG;

begin Collection phase
 Each connected TDS sends a tuple of the form tupe = nEkT(tup) to SSI
end

begin Aggregation phase

 SSI side
repeat
 Randomly choose tupe or Ωe to form partitions
 repeat
 Send these partitions to connected TDSs
 until all partitions in SSI have been sent
 Receive Ωe from TDSs
until ne

Ω = 1
send term←true to TDS

 TDSs side
term ← false
while (term = false)
 Reset Ω = 0
 Receive partition from SSI
 Decrypt partition: tup ← nEkT

-1(tupe); (or Ωe): Ω←nEkT
-1(Ωe)

 Add to its partial aggregation: Ω = Ω⨢ tup ; or Ωnew = Ωold⨢ Ω
 Encrypt its partial aggregation: Ωe← nEkT(Ω)
 Send Ωe to SSI
endwhile

end
 Filtering phase //evaluate HAVING clause
return nEkQ(Ωfinal) by SSI to Querier;

Accuracy. The requirement for S_Agg to terminate is that TDSs have enough

resources to perform partial aggregations. Each TDS needs to maintain in memory a

data structure called partial aggregate which stores the current value of the

aggregate function being computed for each group. Each tuple read from the input

partition contributes to the current value of the aggregate function for the group this

tuple belongs to. Hence the partial aggregate structure must fit in RAM (or be

swapped in stable storage at much higher cost). If the number of groups is high (e.g.,

grouping on a key attribute) and TDSs have a tiny RAM, this may become a limiting

factor. In this case, FLASH memory can be used to store large intermediate results,

at the cost of swapping.

39:14 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 6. (iterative partial) aggregation

Security. In all phases, the information revealed to SSI is a sequence of tuples or

value pairs (i.e., tupe and Ωe) encrypted non-deterministically (nDet_Enc) so that SSI

cannot conduct any frequency-based attack.

Efficiency. The aggregation process is such that the parallelism between TDSs

decreases at each iteration (i.e., α =
N1
TDS

N2
TDS = ⋯ =

N
n-1
TDS

Nn
TDS, with 𝑁𝑖

𝑇𝐷𝑆 being the number of

TDSs that participate in the ith partial aggregation phase), up to having a single TDS

producing the final aggregation (i.e., 𝑁𝑛
𝑇𝐷𝑆 = 1). The cost model is proposed in section

8 to find the optimal value for the reduction factor 𝛼. Note again that incoming

partitions are managed in streaming because the cost to download the data

significantly dominates the rest.

Suitable queries. Because of the limited RAM size, this algorithm is applicable for

the queries with small G such as Q1: SELECT AVG(Cons) FROM Power P, Customer
C WHERE C.City=’Paris’ and C.cid=P.cid GROUP BY C.district (Paris has only 20

districts) or Q2: SELECT COUNT(*) FROM Customer C WHERE 25 < C.Age and
C.Age < 45 GROUP BY C.Gender.

5.3 Noise-based protocols

In these protocols, called Noise_based and detailed in Algorithm 2, Det_Enc is used

during the collection phase on the grouping attributes AG. This is a significant

change, since it allows SSI to help in data processing by assembling tuples belonging

to the same groups in the same partitions. However, the downside is that using

Det_Enc reveals the distribution of AG to SSI. To prevent this disclosure, the

fundamental idea is that TDSs add some noise (i.e., fake tuples) to the data in order

to hide the real distribution. The added fake tuples must have identified

characteristics, as dummy tuples, such that TDSs can filter them out in a later step.

The aggregation phase is roughly similar to S_Agg, except that the content of

partitions is no longer random, thereby accelerating convergence and allowing

parallelism up to the final iteration. Two solutions are introduced to generate noise:

random (white) noise, and noise controlled by complementary domains.

Random (white) noise solutions. In this solution, denoted Rnf_Noise, nf fake tuples

are generated randomly then added. TDSs apply Det_Enc on AG, and nDet_Enc on

ĀG (the attributes not appearing in the GROUP BY clause). However, because the

fake tuples are randomly generated, the distribution of mixed values may not be

different enough from that of true values especially if the disparity in frequency

among AG is big. To overcome this difficulty, a large quantity of fake tuples (nf>>1)

must be injected to make the fake distribution dominate the true one.

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:15

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

ALGORITHM 2. Random noise: Rnf_Noise (kQ, kT, Q, nf)

Input: (TDS’s side): the cryptographic keys (kQ, kT), query Q from Querier.

Output: The final aggregation Ωfinal.

Notation: EkT()/EkT
-1() deterministic encryption/decryption with key kT

begin Collection phase
 Each connected TDS sends (nf + 1) tuples of the form tupe = (EkT(AG),nEkT(ĀG) to SSI
end

begin Aggregation phase

 SSI side
repeat
 Group data with the same EkT(AG) to form partitions

 repeat
 Send these partitions to connected TDSs
 until all partitions in SSI have been sent
 Receive [EkT(AG),nEkT(AGG)] from TDSs
until ne

Ω = 1
send term←true to TDS

 TDSs side
term ← false
while (term = false)
 Reset [AG, AGG] = 0

 Receive partition from SSI
 Decrypt tupe: AG← EkT

-1(Ae
G); ĀG← nEkT

-1(Āe
G)

 Filter false tuples
 Compute aggregate for AG: [AG, AGG]
 Encrypt aggregate: [EkT(AG),nEkT(AGG)]
 Send [EkT(AG),nEkT(AGG)] to SSI
 endwhile

end
 Filtering phase //evaluate HAVING clause
return nEkQ(Ωfinal) to Querier by SSI;

Noise controlled by complementary domains. This solution, called C_Noise,

overcomes the limitation of Rnf_Noise by generating fake tuples based on the prior

knowledge of the AG domain cardinality. Let us assume that AG domain cardinality is

nd (e.g., for attribute Age, nd ≈ 130), a TDS will generate nd - 1 fake tuples, one for

each value different from the true one. The resulting distribution is totally flat by

construction. However, if the domain cardinality is not readily available, a

cardinality discovering algorithm must be launched beforehand (see section 5.4).

Accuracy. True tuples are grouped in partitions according to the value of their AG

attributes so that the aggregate function can be computed correctly. Fake tuples are

eliminated during the aggregation phase by TDSs thanks to their identified

characteristics and do not contribute to the computation.

Security. Although TDSs apply Det-Enc on AG, AG distribution remains hidden to

SSI by injecting enough white noise such that the fake distribution dominates the

true one or by adding controlled noise producing a flat distribution.

Efficiency. TDSs do not need to materialize a large partial aggregate structure as

in S_Agg because each partition contains tuples belonging to a small set of (ideally

one) groups. Additionally, this property guarantees the convergence of the

aggregation process and increases the parallelism in all phases of the protocol.

However, the price to pay is the production and the elimination afterwards of a

39:16 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

potentially very high number of fake tuples (the value is algorithm and data

dependent).

Suitable queries. Rnf_Noise with small nf is suitable for the queries in which there

is no wide disparity in frequency between AG such as Q3: SELECT COUNT(Child)
FROM Customer C GROUP BY C.Name HAVING COUNT(Child) <3. In contrast,

the white noise solution with big nf is suitable for queries with big disparity such as

Q4: SELECT COUNT(*) FROM Customer C GROUP BY C.Salary because the

number of very rich people (i.e, salary > 1 M€/year) is much less than that of people

having average salary. For the C_Noise, in term of the feasibility, because the

process of calculating aggregation is divided among connected TDSs in a distributed

and parallel way, better balancing the loads between TDSs, this protocol is applicable

not only for the queries where G is small (e.g., Q1, Q2) but also for those with big G,

such as Q5: SELECT AVG(Cons) FROM Customer C WHERE C.Age>20 GROUP BY
C.Age (because the Age’s domain is 130 at maximum). However, considering the

efficiency, because the number of fake tuples is proportional to G, this solution is

inappropriate for the queries with very big G (e.g., Q4) when it has to generate and

process a large amount number of fake tuples.

5.4 Equi-depth histogram-based protocol

Getting a prior knowledge of the domain extension of AG allows significant

optimizations as illustrated by C_Noise. Let us go one step further and exploit the

prior knowledge of the real distribution of AG attributes. The idea is no longer to

generate noisy data but rather to produce a uniform distribution of true data sent to

SSI by grouping them into equi-depth histograms, in a way similar to [Hacigumus et
al. 2002]. The protocol, named ED_Hist, works as follows. Before entering the

protocol, the distribution of AG attributes must be discovered and distributed to all

TDSs. This process needs to be done only once and refreshed from time to time

instead of being run for each query. The discovery process is similar to computing a

Count function on Group By AG and can therefore be performed using one of the

protocol introduced above. During the collection phase, each TDS uses this

knowledge to calculate nearly equi-depth histograms that is a decomposition of the

AG domain into buckets holding nearly the same number of true tuples. Each bucket

is identified by a hash value giving no information about the position of the bucket

elements in the domain. Then the TDS allocates its tuple(s) to the corresponding

bucket(s) and sends to SSI couples of the form (h(bucketId), nDet_Enc(tuple)). During

the partitioning step of the aggregation phase, SSI assembles tuples belonging to the

same buckets in the same partitions. Each partition may contain several groups since

a same bucket holds several distinct values. The first aggregation step computes

partial aggregations of these partitions and returns to SSI results of the form

(Det_Enc(group), nDet_Enc(partial aggregate)). A second aggregation step is required

to combine these partial aggregations and deliver the final aggregation.

Accuracy. Only true tuples are delivered by TDSs and they are grouped in

partitions according to the bucket they belong to. Buckets are disjoint and partitions

contain a small set of grouping values so that partial aggregations can be computed

by TDSs.

Security. SSI only sees a nearly uniform distribution of h(bucketId) values and

cannot infer any information about the true distribution of AG attributes. Note that

h(bucketId) plays here the same role as Det_Enc(bucketId) values but is cheaper to

compute for TDSs.

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:17

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

ALGORITHM 3. Histogram-based: ED_Hist (kQ, kT, Q)

Input: (TDS’s side): the cryptographic keys (kQ, kT), query Q from Querier.

Output: The final aggregation Ωfinal.

Call distribution discovering algorithm to discover the distribution
begin Collection phase
 Each connected TDS sends a tuple of the form tupe = (h(AG),nEkT(ĀG)) to SSI.
 // h(AG) is the mapping function applied on the AG.
end

begin First aggregation phase

 SSI side
Group tupe with the same h(AG) to form partitions
repeat
 Send these partitions to connected TDSs
until all partitions in SSI have been sent
send term←true to TDS

 TDSs side
term← false
while (term = false)
 Reset[AGi, AGGi] = 0
 Receive partition from SSI
 Decrypt tupe: AG← h-1(Ae

G); ĀG← nEkT
-1(Āe

G)
 Compute aggregate for h(AG): [AGi, AGGi]
 Encrypt aggregate: [EkT(AGi),nEkT(AGGi)]
 Send [EkT(AGi),nEkT(AGGi)] to SSI
endwhile

end

begin Second aggregation phase

 SSI side
repeat
 Group data with the same EkT(AG) to form partitions
 repeat
 Send these partitions to connected TDSs
 until all partitions in SSI have been sent
 Receive [EkT(AG),nEkT(AGG)] from TDSs
until ne

Ω = 1
send term←true to TDS

 TDSs side
term ← false
while (term = false)
 Reset[AG, AGG] = 0;
 Receive partition from SSI
 Decrypt tupe: AG← EkT

-1(Ae
G); AGG ← nEkT

-1(AGGe)
 Compute aggregate for only group AG: [AG, AGG]
 Encrypt aggregate: [EkT(AG),nEkT(AGG)]
 Send [EkT(AG),nEkT(AGG)] to SSI
endwhile

end
 Filtering phase //evaluate HAVING clause
return nEkQ(Ωfinal) to Querier by SSI;

Efficiency. TDSs do not need to materialize a large partial aggregate structure as

in S_Agg because each partition contains tuples belonging to a small set of groups

during the first phase and to a single group during the second phase. As for C_Noise,

this property guarantees convergence of the aggregation process and maximizes the

parallelism in all phases of the protocol. But contrary to C_Noise, this benefit does

not come at the price of managing fake tuples.

39:18 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Suitable queries. This solution is suitable for both kinds of queries (i.e., with small

G like Q1, Q2 and big G like Q4, Q5) both in terms of efficiency (because it does not

handle fake data) and feasibility (because it divides the big group into smaller ones

and assigns the tasks for TDSs).

This section shows that the design space for executing complex queries with

Group By is large. It presented three different alternatives for computing these

queries and provided a short initial discussion about their respective accuracy,

security and efficiency. Sections 8 and 9 compare in a deeper way these alternatives

in terms of performance while Section 7 summarizes a comparison of these same

alternatives in terms of security. The objective is to assess whether one solution

dominates the others in all situations or which parameters are the most influential in

the selection of the solution best adapted to each context.

6. PRACTICAL ISSUES

This section discusses complementary issues that are not core of the protocols but

play an important role in ensuring that the protocols work in practice. These issues

include: (i) how to manage the shared keys among TDSs and Querier; (ii) how to

enforce the access control in the TDSs context; and (iii) how to calibrate the dataset

subset.

6.1 Key Management

Our protocols rely heavily on the use of symmetric key cryptography. This section

explains how these keys (kQ for Querier-TDS communication and kT for inter-TDS

communication) can be managed and shared in a secure way.

State-of-the-Art. Group key exchange (GKE) protocols can be roughly classified into

three classes: centralized, decentralized, and distributed [Rafaeli and Hutchison

2003]. In centralized group key protocols, a single entity is employed to control the

whole group and is responsible for distributing group keys to group members. In the

decentralized approaches, a set of group managers is responsible for managing the

group as opposed to a single entity. In the distributed method, group members

themselves contribute to the formation of group keys and are equally responsible for

the re-keying and distribution of group keys. Their analysis [Rafaeli and Hutchison

2003] made clear that there is no unique solution that can satisfy all requirements.

While centralized key management schemes are easy to implement, they tend to

impose an overhead on a single entity. Decentralized protocols are relatively harder

to implement and raise other issues, such as interfering with the data path or

imposing security hazards on the group. Finally, distributed key management, by

design, is simply not scalable. Hence it is important to understand fully the

requirements of the application to select the most suitable GKE protocol.

Overview of Key Management. There are numerous ways to share the keys between

TDSs and Querier depending on which context we consider.

In the closed context, we assume that all TDSs are produced by the same provider,

so the shared key kT can be installed into TDSs at manufacturing time. If Querier

also owns a TDS, and only one key kQ is used per querier, then it can be installed at

manufacturing time as well. Otherwise (i.e. if we want to support one kQ per query),

Querier must create a private/public key and can use any GKE to exchange key kQ.

An illustrative scenario for the closed context can be: patients and physicians in a

hospital get each a TDS from the hospital, all TDSs being produced by the same

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:19

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

manufacturer, so that the required cryptographic material is preinstalled in all TDSs

before queries are executed.

In an open context, a Public Key Infrastructure (PKI) can be used so that queriers

and TDSs all have a public-private key pair. When a TDS or querier registers for an

application, it gets the required symmetric keys encrypted with its own public key.

Since the total number of TDS manufacturers is assumed to be very small (in

comparison with the total number of TDSs) and all the TDSs produced by the same

producer have the same private/public key pair, the total number of private/public

key pairs in the whole system is not big. Therefore, deploying a PKI in our

architecture is suitable since it does not require an enormous investment in

managing a very large number of private/public key pairs (i.e., proportional to the

number of TDSs). PKI can be used to exchange both keys kQ and kT for both Querier

cases i.e. owning a token or not. In the case we want to exchange kT, we can apply the

above protocol for kQ with Querier being replaced by one of the TDSs. This TDS can

be chosen randomly or based on its connection time (e.g., the TDS that has the

longest connection time to SSI will be chosen).

An illustrative scenario for the open context can be: TDSs are integrated in smart

phones produced by different smart phone producers. Each producer has many

models and we assume that it installs the same private/public key on each model. In

total, there are about one hundred models in the current market, so the number of

different private/public keys is manageable. The phone’s owner can then securely

take part in surveys such as: what is the volume of 4G data people living in Paris

consume in one month, group by network operators (Orange, SFR…).

In PKI, only one entity creates the whole secret key, and securely transfers it to

the others. In the distributed key agreement protocols, however, there is no

centralized key server available. This arrangement is justified in many situations—

e.g., in peer-to-peer or ad hoc networks where centralized resources are not readily

available or are not fully trusted to generate the shared key entirely. Moreover, an

advantage of distributed protocols over the centralized protocols is the increase in

system reliability, because the group key is generated in a shared and contributory

fashion and there is no single-point-of-failure [Lee et al. 2006]. Group AKE protocols

are essential for secure collaborative (peer-to-peer) applications [Lee et al. 2006]. In

these circumstances, every participant wishes to contribute part of its secrecy to

generate the shared key such that no party can predetermine the resulting value. In

other words, no party is allowed to choose the group key on behalf of the whole group.

These reasons lead to another way to exchange the shared key between TDSs and

Querier in the open context. In this way, GKE protocols [Wu et al. 2011, Amir et al.
2004, Wu et al. 2008] can be used so that Querier can securely exchange the secret

contributive key to all TDSs. Some GKE protocols [Amir et al. 2004] require a

broadcast operation in which a participant sends part of the key to the rest. These

protocols are not suitable for our architecture since TDSs communicate together

indirectly through SSI. This incurs a lot of operations for SSI to broadcast the

messages (i.e., O(n2), with n is the number of participants). Other protocols [Wu et al.
2008] overcome this weakness by requiring that participants form a tree structure to

reduce the communication cost. Unfortunately, SSI has no knowledge in advance

about TDSs thus this tree cannot be built. The work in [Wu et al. 2011] proposes a

protocol with two rounds of communications and only one broadcast operation.

However, this protocol still has the inherent weakness of the GKE: all participants

must connect during the key exchange phase. This characteristic does not fit in our

architecture since TDSs are weakly connected. Finally, the Broadcast Encryption

39:20 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Scheme (BES) [Castelluccia et al. 2005] requires that all participants have a shared

secret in advance, preventing us from using it in a context where TDSs are produced

by different manufacturers.

In consequence, we propose an adaptive GKE scheme, fitting our architecture as

follows.

The Adaptive Key Exchange Protocol.Based on the decisional and computational

Diffie-Hellman (CDH) assumptions, we propose a GKE protocol in [To et al. 2015b] in

which each participant contributes a secret to the shared key. In the first step, each

TDS generates a secret and sends it to Querier. Then, Querier selects a random

number and computes a secret. The shared key is generated using these contributive

secrets and broadcast to TDSs. Finally, upon receiving the message, only the TDSs

who can compute the secret can decrypt the message and compute the shared key.

The security of the proposed GKE comes from the difficulty of the CDH problem

and the one-way hash functions. Formally, there are five notions of security [Bresson

and Manulis 2007] used as the standards to evaluate the security of a GKE protocol:

Authenticated key exchange (AKE), Forward/backward secrecy, Contributiveness,

Universal Composability (UC), and Mutual Authentication (MA). As detailed in [To

et al. 2015b], our proposed GKE satisfies AKE security, forward/backward secrecy,

and contributiveness and can also achieve MA-security at an additional cost of only

two communication rounds.

The resulting protocol has three advantages over other GKEs in literature. First,

it does not require that all TDSs connect at the same time to form the group, the

connection of a single TDS per manufacturer being enough. The encrypted kT could

be stored temporarily on SSI so that the offline TDS can get it as soon as it comes

online and still take part in the protocol (i.e., using its private key to compute the

secret, then the shared key). Second, even if a TDS opts out of a SQL query in the

collection phase, it can still contribute to the parallel computation in the aggregation

phase. With a traditional distributed key exchange, any TDS disconnected during

setup will require a new key exchange to take place. With our protocol, each TDS

contributes to part of the shared secret key, the only requirement is that at least one

TDS per manufacturer participates in step 1 to contribute to the secret value

representing this manufacturer. Third, in terms of performance, this protocol

requires only 2-round of communications. Interested readers can refer to technical

report [To et al. 2015b] for detail analysis of the computation comparison of this GKE

with other related works.

In conclusion, our way of managing encryption keys can accommodate any

situation, open or closed context, central PKI or fully distributed GKE, making our

protocols very versatile.

6.2 Enforcing Access Control

Contrary to statistical databases or PPDP works where the protection resides on the

fact that aggregate queries or anonymized releases do not reveal any information

linkable to individuals, we consider here traditional SQL queries and a traditional

access control model where subjects (either users, roles or applications) are granted

access to objects (either tables or views). In the fully decentralized context we are

targeting, this impacts both the definition of the access control (AC for short) and its

enforcement.

AC policies can be defined and signed by trusted authorities (e.g., Ministry of

Health, bank consortium, consumer association). As for the cryptographic material,

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:21

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

such predefined policy can be either installed at burn time or be downloaded

dynamically by each TDS using the key exchange protocols discussed in section 6.1.

In more flexible scenarios, users may be allowed to modify the predefined AC policy

to personalize it or to define it from scratch. The latter case results in a decentralized

Hippocratic database [Agrawal et al. 2002] in the sense that tuples belonging to a

same table vertically partitioned among individuals may be ruled by different AC

policies. Lastly, each individual may have the opportunity to opt-in/out of a given

query. Our query execution protocol accommodates this diversity by construction,

each TDS checking the querier's credentials and evaluating the AC policy locally

before delivering any result (either true or dummy tuples depending on the AC

outcome).

But how can AC be safely enforced at TDS side? The querier's credentials are

themselves certified by a trusted party (e.g., a public organization or a company

consortium delivering certificates to professionals to testify their identity and roles).

TDSs check the querier's credentials and evaluates the AC policies thanks to an AC

engine embedded on the secure chip, thereby protecting the control against any form

of tampering. Details about the implementation of such a tamper-resistant AC

module can be found in [Anciaux et al. 2009].

6.3 Collecting Data

In scenarios where TDSs are seldom connected (e.g., TDSs hosting a PCEHR), the

collection phase of the querying protocol may be critical since its duration depends on

the connection rate of TDSs. However, many of these scenarios can accommodate a

result computed on a representative subset of the queried dataset (e.g., if Querier

wants to find out the average salary of people in France with the total population of

65 millions, it is reasonable to survey only a fraction of the population). The question

thus becomes how to calibrate the dataset subset? Larger subsets slow down the

collection phase while smaller subsets diminish the accuracy and/or utility of the

results. To determine if a sample population accurately portrays the actual

population, we can estimate the sample size required to determine the actual mean

within a given error threshold [Cochran 1977].

We propose to use the Cochran’s sample size formula [Cochran 1977] to calculate

the required sample size as follow:

𝑠𝑝𝑜𝑝𝑒𝑠𝑡 =
𝜑2 ∗ ζ

2 ∗ (
𝑝𝑜𝑝𝑚

𝑝𝑜𝑝𝑚−1
)

𝜆2 + (𝜑2 ∗
ζ
2

𝑝𝑜𝑝𝑚−1
)

with popm the size of the actual population, λ the user selected error rate, φ the user

selected confidence level, and ζ the standard deviation of the actual population. The

meaning of each parameter in this formula is explained below.

The error rate λ (sometimes called the level of precision) is the range in which the

true value of the population is estimated to be (e.g., if a report states that 60% of

people in the sample living in Paris have salary greater than 1300 EUR/month with

an error rate of ±5%, then we can conclude that between 55% and 65% of Parisian

earn more than 1300 EUR/month).

The confidence level φ is originated from the ideas of the Central Limit Theorem

which states that when a population is repeatedly sampled, the average value of the

attribute obtained by those samples approaches to the true population value.

Moreover, the values obtained by these samples are distributed normally around the

real value (i.e., some samples having a higher value and some obtaining a lower score

than the true population value). In a normal distribution, approximately 95% of the

39:22 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

sample values are within two standard deviations of the true population value (e.g.,

mean).

The degree of variability ζ of the dataset refers to the distribution of attributes in

the population. A low standard deviation indicates that the data points tend to be

very close to the expected value; a high standard deviation indicates that the data

points are spread out over a large range of values. The more heterogeneous a

population, the larger the sample size required to obtain a given level of precision

and vice versa.

To take into account the fact that some TDS’s holders may opt out of the query, let

us call optout the percentage of TDSs that opt out of the survey. Then, the required

sample size we need to collect in the collection phase is:

𝑆 =
1

1 − 𝑜𝑝𝑡𝑜𝑢𝑡
∗ 𝑠𝑝𝑜𝑝𝑒𝑠𝑡

Among the three parameters, λ and φ are user selected but ζ is data-dependent.

Cochran [1977] listed four ways of estimating population variances for sample size

determinations: (1) take the sample in two steps, and use the results of the first step

to determine how many additional responses are needed to attain an appropriate

sample size based on the variance observed in the first step data; (2) use pilot study

results; (3) use data from previous studies of the same or a similar population; or (4)

estimate or guess the structure of the population assisted by some logical

mathematical results. Usually, φ = 1.96 (i.e., within two standard deviations of the

mean of the actual population) is often chosen in statistics to reflect 95% confidence

level. In the experiment, because ζ is data-dependent, we will vary this parameter to

see its impact to S. We also vary the error rate reflecting Querier’s preference.

7. INFORMATION EXPOSURE ANALYSIS

7.1 Security of Basic Encryption Schemes

In cryptography, indistinguishability under chosen plaintext attack (IND-CPA) [Katz

and Lindell. 2007] is considered as a basic requirement for most provably secure

cryptosystems. While nDet_Enc is considered to be IND-CPA [Arasu et al. 2014], the

maximum level of security for Det_Enc is PRIV [Bellare et al. 2007], which is a

weaker notion of security than IND-CPA, due to the lack of randomness in cipertext.

Then, it is important to understand how much (quantitatively) less (more) secure the

Noise_based and ED_Hist are, in compare with nDet_Enc (Det_Enc). To address this

question, we use two ways to measure the security level of Noise_based and ED_Hist,
given nDet_Enc as the highest bound of security level. Each way corresponds to each

increasing level of adversary’s knowledge. In the first level, we assume that

adversary does not know the distribution within a bucket of equi-depth histogram

but only the global distribution (section 7.2). In the higher level, we address stronger

attackers with more knowledge in which he knows the probability distribution of the

values within each bucket (section 7.3).

7.2 Information Exposure with Coefficient

To quantify the confidentiality of each algorithm, we measure the information

exposure of the encrypted data they reveal to SSI by using the approach proposed in

[Damiani et al. 2003] which introduces the concept of coefficient to assess the

exposure. To illustrate, let us consider the example in Fig. 7 where Fig. 7a is taken

from [Damiani et al. 2003] and Fig. 7b is the extension of [Damiani et al. 2003]

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:23

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

applied in our context. The plaintext table Accounts is encrypted in different ways

corresponding to our proposed protocols. To measure the exposure, we consider the

probability that an attacker can reconstruct the plaintext table (or part of the table)

by using the encrypted table and his prior knowledge about global distributions of

plaintext attributes.

Fig. 7. Encryptions and IC tables

Although the attacker does not know which encrypted column corresponds to

which plaintext attribute, he can determine the actual correspondence by comparing

their cardinalities. Namely, she can determine that IA, IC, and IB correspond to

attributes Account, Customer, and Balance respectively. Then, the IC table (the table

of the inverse of the cardinalities of the equivalence classes) is formed by calculating

the probability that an encrypted value can be correctly matched to a plaintext value.

For example, with Det_Enc, P(α = Alice) = 1 and P(κ = 200) = 1 since the attacker

knows that the plaintexts Alice and 200 have the most frequent occurrences in the

Accounts table (or in the global distribution) and observes that the ciphertexts α and
κ have highest frequencies in the encrypted table respectively. The attacker can infer

with certainty that not only α and κ represent values Alice and 200 (encryption
inference) but also that the plaintext table contains a tuple associating values Alice

and 200 (association inference). The probability of disclosing a specific association

(e.g., <Alice,200>) is the product of the inverses of the cardinalities (e.g., P(<α,κ> =
<Alice,200>) = P(α = Alice)× P(κ = 200) = 1). The exposure coefficient Ԑ of the whole

table is estimated as the average exposure of each tuple in it:

Here, n is the number of tuples, k is the number of attributes, and ICi,j is the value

in row i and column j in the IC table. Let’s Nj be the number of distinct plaintext

values in the global distribution of attribute in column j (i.e., Nj≤ n).

,

1 1

1 kn

i j

i j

IC
n


 

 

39:24 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Using nDet_Enc, because the distribution of ciphertexts is obfuscated uniformly,

the probability of guessing the true plaintext of α is P(α = Alice) = 1/5. So, ICi,j = 1/Nj

for all i, j, and thus the exposure coefficient of S_Agg is:

For the nearly equi-depth histogram, each hash value can correspond to multiple

plaintext values. Therefore, each hash value in the equivalence class of multiplicity

m can represent any m values extracted from the plaintext set, that is, there are

different possibilities. The identification of the correspondence between hash and

plaintext values requires finding all possible partitions of the plaintext values such

that the sum of their occurrences is the cardinality of the hash value, equating to

solving the NP-Hard multiple subset sum problem [Ceselli et al. 2005]. We consider

two critical values of collision factor h (defined as the ratio G/M between the number

of groups G and the number M of distinct hash values) that correspond to two

extreme cases (i.e., the least and most exposure) of ɛED_Hist: (1) h = G: all plaintext

values collide on the same hash value and (2) h = 1: distinct plaintext values are

mapped to distinct hash values (i.e., in this case, the nearly equi-depth histogram

becomes Det_Enc since the same plaintext values will be mapped to the same hash

value).

In the first case, the optimal coefficient exposure of histogram is:

because ICi,j = 1/Nj for all i, j. For the second case, the experiment in [Ceselli et al.
2005] (where they generated a number of random databases whose number of

occurrences of each plaintext value followed a Zipf distribution) varies the value of h

to see its impact to ɛED_Hist. This experiment shows that the smaller the value of h, the

bigger the ɛED_Hist and ɛED_Hist reaches maximum value (i.e., max(ɛED_Hist) ≈ 0.4) when h

= 1.

For Noise_based algorithms, when nf = 0 (i.e., no fake tuples), Rnf_Noise becomes

Det_Enc and therefore it has maximum exposure in this case. If nf is not big enough,

since each TDS generates very few fake tuples, the transformed distribution cannot

hide some ciphertexts with remarkable (highest or lowest) frequencies, increasing the

exposure. The bigger the nf, the lower the probability that these ciphertexts are

revealed. Exceptionally, when the noise is not random (but controlled by domain

cardinality of AG), C_Noise has better exposure since all ciphertexts have the same

frequency (ICi,j = 1/Nj for all i, j):

𝜀𝐶_𝑁𝑜𝑖𝑠𝑒 =
1

(𝑛𝑓 + 1) ∗ 𝑛
∑ ∏𝐼𝐶𝑖,𝑗

𝑘

𝑗=1

(𝑛𝑓+1)∗𝑛

𝑖=1

=
1

𝑛𝑑 ∗ 𝑛
∑ ∏

1

𝑁𝑗

𝑘

𝑗=1

𝑛𝑑∗𝑛

𝑖=1

= 1/∏ 𝑁𝑗
𝑘

𝑗=1

The exposure coefficient gets the highest value when no encryption is used at all

and therefore all plaintexts are displayed to attacker. In this case, ICi,j = 1 ∀ i, j, and

thus the exposure coefficient of plaintext table is (trivially):

_

1 1 1

1 1
1/

k kn

S Agg j

i j jj

N
n N


  

  

jN

m

 
 
 

_

1

min() 1/
k

ED Hist j

j

N


 

_

1 1

1
1 1

kn

P Text

i jn


 

 

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:25

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig 8. Information exposure among protocols

The information exposures among our proposed solutions are summarized in Fig.

8. In conclusion, S_Agg is the most secure protocol. To reach the same highest

security level as S_Agg, other protocols must pay a high price. Specifically, Rnf_Noise

has to generate a very large amount of noise regardless of the value of G; C_Noise

also incurs large noise if G is big; and ED_Hist must have a significant collision

factor. Hence, as usual, there exists a trade-off between security and performance

and the expected balance can be reached in each protocol by tuning a specific

parameter (i.e., amount of noise in Rnf_Noise and C_Noise or number of histograms

in ED_Hist).

7.3 Privacy Measure using Variance

In this section, we propose a stronger assumption that the adversary A possesses

more knowledge of encrypted dataset than the previous section: A knows the entire
bucketization scheme and the exact probability distribution of the values within each

bucket. For example, given that bucket B has 10 elements, we assume A knows that:

3 of them have value 85, 3 have value 87 and 4 have value 95, say. However, since

the elements within each bucket are indistinguishable, this does not allow A to map

values to elements with absolute certainty. Then, the A’s goal is to determine the

precise values of sensitive attributes of some (all) individuals (records) with high

degree of confidence. Eg: What is the value of salary field for a specific tuple? [Hore

et al. 2004] proposes the Variance of the distribution of values within a bucket B as

its measure of privacy guarantee. They first define the term Average Squared Error
of Estimation (ASEE) as follows.

Definition ASEE: Assume a random variable XB follows the same distribution as

the elements of bucket B and let PB denote its probability distribution. For the case of

a discrete (continuous) random variable, we can derive the corresponding probability

mass (density) function denoted by pB. Then, the goal of the adversary A is to

estimate the true value of a random element chosen from this bucket. We assume

that A employs a statistical estimator for this purpose which is, itself a random

variable, X’B with probability distribution P’B.

In other words, A guesses that the value of X’B is xi, with probability p’B(xi). If

there are N values in the domain of B, then we define Average Squared Error of
Estimation (ASEE) as:

𝐴𝑆𝐸𝐸(𝑋𝐵 , 𝑋𝐵
′) = ∑∑𝑝𝐵

′ (𝑥𝑖)

𝑁

𝑖=1

𝑁

𝑗=1

∗ 𝑝𝐵(𝑥𝑗) ∗ (𝑥𝑖 − 𝑥𝑗)
2

Theorem [Hore et al. 2004]: ASEE(X, X’) = Var(X) + Var(X’) + (E(X) - E(X’))2 where
X and X’ are random variables with probability mass (density) functions p and p0,
respectively. Also Var(X) and E(X) denote variance and expectation of X respectively.

Proof: refer to [Hore et al. 2004].

Note that unlike coefficient exposure, the smaller value of ASEE implies the

bigger security breach because the distance between guessed values and actual

values is smaller, and vice versa. So the adversary tries to minimize ASEE as much

as he can. From the theorem above, it is easy to see that A can minimize ASEE(XB,

39:26 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

X’B) in two ways: 1) by reducing Var(X’B) or 2) by reducing the absolute value of the

difference E(XB) - E(X’B). Therefore, the best estimator of the value of an element

from bucket B that A can get, is the constant estimator equal to the mean of the

distribution of the elements in B (i.e., E(XB)). For the constant estimator X’B, Var(X’B)
= 0. Also, as follows from basic sampling theory, the “mean value of the sample-

means is a good estimator of the population (true) mean”. Thus, A can minimize the

last term in the above expression by drawing increasing number of samples or,

equivalently, obtaining a large sample of plaintext values from B. However, note that

the one factor that A cannot control (irrespective of the estimator he uses) is the true

variance of the bucket values, Var(XB). Therefore, even in the worst case scenario

(i.e., E(X’B) = E(XB) and Var(X’B) = 0), A still cannot reduce the ASEE below Var(XB),

which, therefore, forms the lowest bound of the accuracy achievable by A. Hence, the

data owners try to bucketize data in order to maximize the variance of the

distribution of values within each bucket. These two cases corresponds to the two

extreme cases of nearly equi-depth histogram (when h = 1 and h = G) as analyzed

below.

When h = 1 (Det_Enc), since each bucket contains only the same plaintext values,

and with the assumption above about additional knowledge of adversary, he can

easily infer that the expected value of X’B equals to that of XB: E(X’B) = E(XB). For the

variance, with h = 1, the variance of X’B gets the minimum value Var(X’B) = 0

(because variance measures how far a set of numbers is spread out, a variance of zero

indicates that all the values are identical). In this case, the value of ASEE equals to

the lowest bound Var(XB).
When h = G, since all plaintext values collide on the same hash value, the

difference between E(X’2B) – (E(X’B))2 is big, leading to the big value of Var(X’B). So,

the value of ASEE approaches highest bound.

As you can see, although the coefficient exposure and average squared error of
estimation are different ways to measure privacy of equi-depth histogram depending

on the adversary’s knowledge, they give the same result.

8. ANALYTICAL COST MODEL

This section proposes an analytical cost model for the evaluation of our protocols. We

calibrate this model with basic performance measurements performed on a real

hardware platform (see section 8.3). We also show in section 9 that this model is

accurate when compared to real measures on a real system composed of a set of

TDSs. Thus the objective of this section is to provide an analytical model to assess

the efficiency of the deployment of a TDSs based infrastructure for a given

application without having to set up such a costly experiment.

8.1 Metrics of interest

The metrics of interest in this evaluation are the following:

 MaxPTDS: The maximum number of TDSs concurrently needed in the

computation. In different phases of the protocol, the optimal number of TDSs

needed for the parallel computation varies and can exceed the number of

connected TDSs available at that time (i.e., demanding resource is greater

than available resource), reducing the parallelism degree. Nonetheless, this

value should be considered to measure the parallelism level of the protocol.

 LoadQ: Global resource consumption for evaluating a query Q, expressed as

the total size of data that all TDSs and SSI have to process. This metric

reflects the scalability of the solution in terms of capacity of the system to

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:27

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

manage a large set of queries in parallel and/or a large set of TDSs to be

queried. It also provides a global view of the resource consumption (i.e., the

bigger LoadQ, the more resource spent to process that data).

 LoadAVG: Average load of all participating TDSs in the computation. While

LoadQ reflects the global resource consumption, this metric reflects the local

resource consumption (i.e., how much load that each TDS has to incur locally

in average).

 LoadMAX: Maximum load of participating TDSs in the computation. Each TDS

that participates in the computation incurs different load because the same

TDS can participate in different steps of the protocol if connection time of

that TDS is long enough. LoadMAX reflects the possible worst case of load that

a TDS can incur. This is important to measure the feasibility of the protocol.

If LoadMax is too large, maybe no TDS will ever connect for long enough.

 LoadBL: Load balance among participating TDSs in the parallel computation.

It is measured as the ratio of LoadMAX/LoadAVG. It reflects the protocol’s

ability to evenly divide and deliver the parallel tasks to connected TDSs.

 TQ: query response time, reflecting the responsiveness of the protocol. Since

the time in the collection phase is application-dependent and is similar for all

protocols, and since the time in the filtering phase is also similar for all

protocols, TQ focuses on the time spent on the aggregation phase, which is

actually the most complex phase.

 Tlocal: Average time that each participating TDS spends to compute the query.

This metric reflects the feasibility of the solution because the longer this

time, (1) the lower the probability that TDS stays connected during this time

and (2) the higher the burden for an individual to accept participating in

distributed queries.

 sRAM: Size of RAM required in each participating TDS for the computation.

The above metrics can be classified into: (i) Local resource consumption, reflecting

the resource consumed locally in each TDS; (ii) Global resource consumption,

reflecting the global resource needed for the whole system to answer a query. The

weight associated to each of these metrics is context-dependent, as discussed in

Section 8.6. These metrics are computed based on the following main parameters

which reflect the characteristics and resources of the architecture:

 Nt total number of encrypted tuples sent to SSI by TDSs (without loss of

generality, we consider in the model that each TDS produces a single tuple in

the collection phase, hence Nt reflects also the number of TDSs participating

in the collection phase);
 PTDS: total number of TDSs that participate in the computation (depending on

the protocol, not all connected TDSs may be involved in a computation);
 G number of groups;
 st size of an encrypted tuple (this size depends on the schema of the database,

number of attributes needed in the query, and size of each attribute);
 Tt time spent by each TDS to process one tuple (including transfer,

cryptographic and aggregation time);

 Ni
TDSnumber of TDSs that participate in the ith partial aggregation phase

(protocol dependent);
 α, nNB, nED, reduction factors in the aggregation phase in S_Agg, Noise_based

and ED_Hist respectively;
 nf number of fake tuples per true tuple in Noise_based protocols;
 h average number of groups corresponding to each hash value in ED_Hist.

39:28 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

8.1.1 Secure Aggregation protocol

Because the aggregation phase is iterative, the time spent in this phase is the total

time for all iterative steps. In the first step of this phase, the time required to

download data from SSI and return temporary result is:

𝑡1 =
𝑁𝑡

𝑁1
𝑇𝐷𝑆 ∗ 𝑇𝑡 (since there are total Nt number of tuples which are evenly divided to

𝑁1
𝑇𝐷𝑆 connected TDSs); 𝑡1

′ = 𝐺 ∗ 𝑇𝑡 (since each TDS returns at most G tuples).

Similarly, in step i of the aggregation phase, we have:

𝑡𝑖 =
𝑁𝑖−1
𝑇𝐷𝑆

𝑁𝑖
𝑇𝐷𝑆 ∗ 𝐺 ∗ 𝑇𝑡; 𝑡𝑖

′ = 𝐺 ∗ 𝑇𝑡 (i = 2 –n), with n is the total number of iterative steps in

this phase.

For simplicity, we assume that the reduction factor α in every step is similar:

𝛼 =
𝑁𝑡/𝐺

𝑁1
𝑇𝐷𝑆 =

𝑁1
𝑇𝐷𝑆

𝑁2
𝑇𝐷𝑆 = ⋯ =

𝑁𝑛−1
𝑇𝐷𝑆

𝑁𝑛
𝑇𝐷𝑆.

Since 𝑁𝑛
𝑇𝐷𝑆 = 1 (there is only one TDS who computes the final aggregation), the

number of iterative steps is 𝑛 = ⌈log𝛼
𝑁𝑡

𝐺
⌉

The computation time of S_Agg is the total time of all iterative steps:

𝑇𝑄
𝑆_𝐴𝑔𝑔

=∑(𝑡𝑖 + 𝑡𝑖
′) = [(𝛼 + 1) log𝛼

𝑁𝑡
𝐺
] ∗ 𝐺 ∗ 𝑇𝑡

𝑛

𝑖=1

To find the optimal time for aggregation phase, let f(α) = (α + 1)logα(Nt/G) (if Nt and G

are fixed, the computation time of S_Agg is a function of α and therefore its optimal

value depends on α)

We have:
df

dα
=

α*lnα-(α+1)

α*(lnα)2
*ln (

Nt

G
)

Solving the equation
𝑑𝑓

𝑑𝛼
= 0 gives α ≈ 3.6.

We call αop = 3.6 the optimal reduction factor (i.e., 𝑇𝑄
𝑆_𝐴𝑔𝑔

 gets the minimum value

when αop = 3.6).

These other metrics are calculated as follows:

In each step, the participating TDSs reduces α times:𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

= ∑ 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=1 =
𝑁𝑡

𝐺
∗ ∑ 𝛼−𝑖𝑛

𝑖=1

The first step requires the most number of TDSs: 𝑀𝑎𝑥𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

=
𝑁𝑡

𝛼𝐺

The total size of data in all iterative steps:

𝐿𝑜𝑎𝑑𝑄
𝑆_𝐴𝑔𝑔

= (𝑁𝑡 + 𝛼𝐺∑𝑁𝑖
𝑇𝐷𝑆

𝑛

𝑖=2

+ 𝐺∑𝑁𝑖
𝑇𝐷𝑆

𝑛

𝑖=1

) ∗ 𝑠𝑡

 = (1 + 2∑ 𝛼−𝑖𝑛
𝑖=1) ∗ 𝑁𝑡 ∗ 𝑠𝑡

The maximum load of the TDS that participates in all iterative steps:

𝐿𝑜𝑎𝑑𝑀𝐴𝑋
𝑆_𝐴𝑔𝑔

= (𝑛 + 1)𝛼𝐺 × 𝑠𝑡

The average load of each TDS can be calculated by dividing the total load of all TDSs

by the total number of participating TDSs:

𝐿𝑜𝑎𝑑𝐴𝑉𝐺
𝑆_𝐴𝑔𝑔

=

{

(𝑁𝑡 + 𝛼𝐺 ∑ 𝑁𝑖

𝑇𝐷𝑆𝑛
𝑖=2)

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔 × 𝑠𝑡 , 𝑖𝑓 𝑃𝑇𝐷𝑆

𝑆_𝐴𝑔𝑔
< 𝑁𝑡

(𝑁𝑡 + 𝛼𝐺 ∑ 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=2)

𝑁𝑡
× 𝑠𝑡 , 𝑖𝑓 𝑃𝑇𝐷𝑆

𝑆_𝐴𝑔𝑔
≥ 𝑁𝑡

Finally, the average time of each TDS is the division of total time by total number of

TDSs: 𝑇𝑙𝑜𝑐𝑎𝑙
𝑆_𝐴𝑔𝑔

=
(𝑁𝑡+𝛼𝐺 ∑ 𝑁𝑖

𝑇𝐷𝑆𝑛
𝑖=2)∗𝑇𝑡

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔 .

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:29

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

8.1.2 Noise_based protocols

Because all tuples belonging to one group may spread over multiple partitions, the

aggregation phase includes two steps.

In the first step, each group contains (nf + 1) * Nt / G tuples in average, and we

assume that there are nNB TDSs handling tuples belonging to one group. The time

required to download data from SSI and return temporary result in this step is:

𝑡1 =
(𝑛𝑓+1)∗𝑁𝑡

𝑛𝑁𝐵∗𝐺
∗ 𝑇𝑡 ; 𝑡1

′ = 𝑇𝑡 ;

In the second step, each TDS receives nNB tuples belonging to one group to compute

the final aggregation, so the time required is:

𝑡2 = 𝑛𝑁𝐵 ∗ 𝑇𝑡 ; 𝑡2
′ = 𝑇𝑡 ;

The computation time of Rnf_Noise is:

𝑇𝑄
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = (𝑛𝑁𝐵 +

(𝑛𝑓 + 1) ∗ 𝑁𝑡

𝑛𝑁𝐵 ∗ 𝐺
+ 2) ∗ 𝑇𝑡

Apply the Cauchy’s inequality, we have:

𝑛𝑁𝐵 +
(𝑛𝑓 + 1) ∗ 𝑁𝑡

𝑛𝑁𝐵 ∗ 𝐺
≥ 2 ∗ √

(𝑛𝑓 + 1) ∗ 𝑁𝑡

𝐺

The computation time of Rnf_Noise gets optimal value when the optimal reduction

factor is: 𝑛𝑁𝐵 = √
(𝑛𝑓+1)∗𝑁𝑡

𝐺
 .

𝑃𝑇𝐷𝑆
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = (𝑛𝑁𝐵 + 1) ∗ 𝐺

𝑀𝑎𝑥𝑃𝑇𝐷𝑆
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = 𝑛𝑁𝐵 ∗ 𝐺

𝐿𝑜𝑎𝑑𝑄
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = [(𝑛𝑓 + 1) ∗ 𝑁𝑡 + 2𝑛𝑁𝐵 ∗ 𝐺 + 𝐺] ∗ 𝑠𝑡

𝐿𝑜𝑎𝑑𝑀𝐴𝑋
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = (

(𝑛𝑓 + 1) ∗ 𝑇𝑡𝑢𝑝𝑙𝑒

𝑛𝑁𝐵 ∗ 𝐺
+ 𝑛𝑁𝐵) ∗ 𝑠𝑡

𝐿𝑜𝑎𝑑𝐴𝑉𝐺
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = {

𝑛𝑁𝐵 × 𝑠𝑡 , 𝑖𝑓 𝑃𝑇𝐷𝑆
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 < 𝑁𝑡

((𝑛𝑓 + 1) × 𝑁𝑡 + 𝑛𝑁𝐵 × 𝐺)𝑠𝑡

𝑁𝑡
 , 𝑖𝑓 𝑃𝑇𝐷𝑆

𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 ≥ 𝑁𝑡

𝑇𝑙𝑜𝑐𝑎𝑙
𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 = 𝐿𝑜𝑎𝑑𝐴𝑉𝐺

𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒 ×
𝑇𝑡
𝑠𝑡

8.1.3 Histogram-based protocol

Let’s h be the average number of groups corresponding to each hash value. By

applying the Cauchy’s inequality and the same mechanism as in Rnf_Noise, the

optimal computation time is:

𝑇𝑄(𝑜𝑝)
𝐸𝐷_𝐻𝑖𝑠𝑡 = (3 ∗ √

ℎ∗𝑁𝑡

𝐺

3
+ ℎ + 2) ∗ 𝑇𝑡 when the reduction factors in each step are: 𝑛𝐸𝐷 =

√(
ℎ∗𝑁𝑡

𝐺
)
23

 ; 𝑚𝐸𝐷 = √
ℎ∗𝑁𝑡

𝐺

3

Then, the other metrics are based on these factors as follows:

𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 = (

𝑛𝐸𝐷
ℎ
+𝑚𝐸𝐷 + 1) ∗ 𝐺

𝑀𝑎𝑥𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 = 𝑚𝑎𝑥 {

𝑛𝐸𝐷
ℎ
× 𝐺,𝑚𝐸𝐷 × 𝐺}

𝐿𝑜𝑎𝑑𝑄
𝐸𝐷_𝐻𝑖𝑠𝑡 = (𝑁𝑡 + 2𝑛𝐸𝐷 ∗ 𝐺 + 2𝑚𝐸𝐷 ∗ 𝐺 + 𝐺) ∗ 𝑠𝑡

𝐿𝑜𝑎𝑑𝑀𝐴𝑋
𝐸𝐷_𝐻𝑖𝑠𝑡 = (

ℎ × 𝑁𝑡
𝑛𝐸𝐷 × 𝐺

+
𝑛𝐸𝐷
𝑚𝐸𝐷

+𝑚𝐸𝐷) × 𝑠𝑡

39:30 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

𝐿𝑜𝑎𝑑𝐴𝑉𝐺
𝐸𝐷_𝐻𝑖𝑠𝑡 =

{

(𝑁𝑡 + 𝑛𝐸𝐷 ∗ 𝐺 + 𝑚𝐸𝐷 ∗ 𝐺)𝑠𝑡

(
𝑛𝐸𝐷

ℎ
+𝑚𝐸𝐷 + 1)𝐺

 , 𝑖𝑓 𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 < 𝑁𝑡

(𝑁𝑡 + 𝑛𝐸𝐷 ∗ 𝐺 + 𝑚𝐸𝐷 ∗ 𝐺)𝑠𝑡
𝑁𝑡

 , 𝑖𝑓 𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 ≥ 𝑁𝑡

𝑇𝑙𝑜𝑐𝑎𝑙
𝐸𝐷_𝐻𝑖𝑠𝑡 =

(𝑁𝑡 + 𝑛𝐸𝐷 ∗ 𝐺 + 𝑚𝐸𝐷 ∗ 𝐺) ∗ 𝑇𝑡
(𝑛𝐸𝐷/ℎ + 𝑚𝐸𝐷 + 1) ∗ 𝐺

Note that this is just a subset of the complete cost model which can be found in the

technical report [To et al. 2013].

8.2 Sample size in the collection phase

Let us consider a nation-wide study, taking the population of France, popm = 65*106,

as a representative example. We fix φ = 1.96 for 95% confidence level (the most

popular value used in statistics). We assume there are 10% people who do not want

to answer the query (i.e., optout = 10%). We vary two parameters to see their impact

to the sample size required in the collection phase: λ = 0.05, 0.01, 0.005, 0.002, 0.001;

the variance ζ2 = 5, 10, 20, 50, 100.

Fig. 11. Estimated sample size

As shown in Fig. 11, the higher the precision of the query result and the bigger the

variability of the dataset, the higher the number of data we need to collect and

therefore the longer the collection time that querier has to wait for and vice versa.

For instance, if the querier wants 0.2% precision and the dataset has high variability,

he has to wait until almost all the dataset is collected. However, if the querier

queries low variable dataset, or if he does not want high precision, collecting only

10% or even 1% of the population is enough. Note that our system also supports

opinion poll quota methods.

8.3 Unit test

To calibrate our model, we performed unit tests on the development board presented

in Fig. 12a. This board exhibits hardware characteristics representative of secure

tokens-like TDSs, including those provided by Gemalto (the smartcard world leader),

our industrial partner. This board has the following characteristics: the

microcontroller is equipped with a 32 bit RISC CPU clocked at 120 MHz, a crypto-

coprocessor implementing AES and SHA in hardware (encrypting or decrypting a

block of 128bits costs 167 cycles), 64 KB of static RAM, 1 MB of NOR-Flash and is

connected to a 1 GB external NAND-Flash and to a smartcard chip hosting the

cryptographic material. The device can communicate with the external world through

USB full speed. The speed in theory is 12 Mbps but the real speed measured with the

device is around 7.9 Mbps.

0
5

10
15
20
25
30
35
40
45
50
55
60
65

5 10 20 50 100Sa
m

p
le

 s
iz

e
 (

M
ill

io
n

s)

Variance

λ =0.05 λ =0.01
λ =0.005 λ =0.002
λ =0.001

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:31

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

a) b)

Fig. 12. Hardware device & its internal time consumption

We measured on this device the performance of the main operations influencing

the global cost, that is: encryption, decryption, hashing, communication and CPU

time, and put these numbers as constants in the formulas. Fig. 12b depicts the

internal time consumption of this platform to manage partitions of 4KB. The transfer

cost dominates the other costs due to the network latencies. The CPU cost is higher

than cryptographic cost because (1) the cryptographic operations are done in

hardware by the crypto-coprocessor and (2) TDS spends CPU time to convert the

array of raw bytes (resulting from the decryption) to the number format for

calculation later. Encryption time is much smaller than decryption time because only

the result of the aggregation of each partition needs to be encrypted.

Other TDSs (e.g., smart meters) may be more powerful than smart tokens,

although client-based hardware security is always synonym of low power. Anyway, as

this section will make clear, the internal time consumption turns out not to be the

limiting factor. Hence our choice of considering low-power TDSs in this experiment is

expected to broaden our conclusions.

8.4 Performance comparisons

In this study, we concentrate on the performance of Group By queries since they are

the most challenging to compute. We vary the dataset size (Nt varies from 5 to 65

million), the number of groups (G varies from 1 to 106) as well as the number of TDSs

participating in the computation as a percentage of all TDSs connected at a given

time (varying from 1% to 100%). For each study, we fix two parameters and vary the

others. When the parameters are fixed, Nt=106, G=103,st=16b, Tt=16μs, h=5 and the

percentage of TDS connected is 10% of Nt. We also compute and use the optimal

value for all reduction factors as well as for Ni
TDS. In the figures, we plot two curves

for Rnf_Noise protocols, R2_Noise (nf = 2) and R1000_Noise (nf = 1000) to capture the

impact of the ratio of fake tuples. We summarize below the main conclusions of the

performance evaluation. A more detailed study is provided in a technical report [To

et al. 2013].

In what follows, we study each of the aspects of the protocol that seem important.

We draw conclusions on the use cases for each protocol in section 8.6.

Parallelism requirement (MaxPTDS).Fig. 13a presents MaxPTDS with varied G.

Since S_Agg does not need too many TDSs for parallel computing, the demand of

connected TDSs for computation is almost satisfied. Unlike S_Agg, the other

solutions need a lot of TDSs for the parallel computation, and when G increases to a

specific point, the available resource does not meet these demands, reducing the

parallel deployment of these solutions. In Fig. 13b, when G is not too big (i.e.,

39:32 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

G=1000), most of the protocols can fully deploy the parallel computation (except

R1000_Noise).

Resource consumption (LoadQ). Fig. 13c and 13d show LoadQ respectively in terms

of G and Nt. Not surprisingly, the total load of Noise_based protocols is highest

because of the extra processing incurred by fake tuples. However, nf depends only on

Nt, so when G increases, the total load of Noise_based protocols remains constant.

Other protocols generate much lower and roughly comparable loads. In general, in

Fig. 13d, LoadQ increases steadily due to the increase of Nt.

a)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

M
ax

P
TD

S

G

S_Agg R2_Noise
R1000_Noise C_Noise
ED_Hist available TDSs

b)

0
1
2
3
4
5
6
7
8
9

5 15 25 35 45 55 65

M
ax

P
TD

S
(m

ill
io

n
s)

Nt (millions)

d)

10

100

1000

10000

100000

1000000

5 15 25 35 45 55 65

Lo
a

d
Q

 (
M

b
yt

es
)

Nt (millions)
e)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Si
ze

 (
b

yt
es

)

G

g)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Si
ze

 (
b

yt
es

)

G

h)

100

1000

10000

100000

5 15 25 35 45 55 65

Si
ze

 (
M

b
yt

es
)

Nt (millions)

i)

0

5

10

15

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
G

c)

10

100

1000

10000

100000

1E+01E+11E+21E+31E+41E+51E+6

Lo
a

d
Q

 (
M

b
yt

es
)

G

f)

0

0,1

0,2

0,3

0,4

0,5

0,6

5 15 25 35 45 55 65

Si
ze

 (
M

b
yt

es
)

Nt (millions)

j)

0

2

4

6

8

10

5 15 25 35 45 55 65

Nt (millions)

k)

0,0001

0,001

0,01

0,1

1

10

100

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

TQ
 (

se
co

n
d

)

G
l)

0

0,2

0,4

0,6

0,8

5 15 25 35 45 55 65

TQ
 (

se
co

n
d

)

Nt (millions)

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:33

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 13. Performance evaluations

Maximum load (LoadMAX). The maximum load of a particular TDS is illustrated in

Fig. 13e. In S_Agg, when G increases, due to the increasing size of partial

aggregation, each TDS has to process bigger aggregation, resulting in the increase of

LoadMAX. Also, when G increases, the number of participating TDSs decreases, so

each participating TDS has to incur higher load. For others, when G increases, since

Nt remains unchanged, the number of tuples in each group decreases and the number

of participating TDSs increases. Consequently, each TDS processes less tuples, and

thus LoadMAX decreases. In other words, the parallel level in this case is high,

reducing the maximum load that a particular TDS incurs. In Fig. 13f, when Nt

increases, the number of participating TDSs also increases proportionally. So, in

general, the LoadMAX remains stable except a slight increase in R1000_Noise and

C_Noise.

Average load (LoadAVG). Fig. 13g is the average load of every participating TDS. In

S_Agg, since the total load stays almost constant and the number of participating

TDSs declines steeply when G increases, the average load goes up. In the R1000_Noise
and C_Noise, the high total load is constant and all available connected TDSs

participate in the computation when G varies from 103-106, thus every TDSs incur

the same amount of load. For the rest, LoadAVG decreases when G increases, because

there is more number of participating TDSs but the total load is almost unchanged.

In Fig. 13h, although C_Noise has higher LoadQ than S_Agg, the number of

participating TDSs in S_Agg is much less than that in C_Noise, and therefore the

LoadAVG of C_Noise is less than that of S_Agg.

Load balance (LoadBL). Fig. 13i and 13j presents the load balance of solutions.

Because of the low parallelism, S_Agg is the most unbalanced protocol. R2_Noise

divides the load evenly among participating TDSs. ED_Hist has worse load balance

m)

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1E+01E+11E+21E+31E+41E+51E+6

Tl
o

ca
l (

se
co

n
d

)

G
n)

0
0,02
0,04
0,06
0,08

0,1
0,12
0,14
0,16
0,18

5 15 25 35 45 55 65

Tl
o

ca
l (

se
co

n
d

)

Nt (millions)

o)

0,01

0,1

1

10

100

1000

10000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

N
u

m
b

er
 o

f
q

u
er

ie
s

an
sw

er
ed

 in
 1

 s
e

co
n

d

G

p)

1

10

100

1000

10000

5 15 25 35 45 55 65

N
u

m
b

er
 o

f
q

u
er

ie
s

an
sw

er
ed

 in
 1

 s
e

co
n

d

Nt (millions)
q)

1E-05

0,0001

0,001

0,01

0,1

1

10

100

1E+01E+11E+21E+31E+41E+51E+6

TQ
 (

se
co

n
d

)

G

available TDS = 1% Nt

r)

1E-05

0,0001

0,001

0,01

0,1

1

10

100

1E+01E+11E+21E+31E+41E+51E+6

TQ
 (

se
co

n
d

)

G

available TDS = 100% Nt

s)

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7
1E+8

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Si
ze

 (
b

yt
es

)

G

Actual RAM size

t)

0

5

10

15

20

25

30

35

40

5 15 25 35 45 55

TQ
 (

se
co

n
d

)

Nt (millions)

SC (G=1)

SC (G=100)

SC (G=1000)

SC (G=10000)

Plaintext

Paillier

DES

39:34 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

than R2_Noise since each TDS has to process a partition including h groups while in

R2_Noise a partition composes of only one group.

Query response time (TQ). Fig. 13k shows the impact of G over TQ. In all protocols

but S_Agg, TQ depends on the total number of tuples in each group (resp. bucket for

ED_Hist) because all groups (resp. buckets) are processed in parallel. Hence, when G

increases while Nt remains constant, the number of tuples in each group (resp.

bucket) decreases and so does TQ. In S_Agg, when G increases, the size of each

partial aggregation increases accordingly, and so does the time to process it and in

consequence, so does TQ. Fig. 13l shows that, for ED_Hist, when Nt increases, the

number of TDSs which can be mobilized for processing increases accordingly, leading

to a minimal impact on execution time. This statement is true also for Rnf_Noise

protocols with the difference that the greater number of fake tuples generates extra

work which is not entirely absorbed by the increase of parallelism. For S_Agg, the

number of iterative steps increases with Nt and so does TQ.
Local execution time (Tlocal). Fig. 13m and 13n plot the average execution time of

every participating TDSs varying G and Nt respectively. It shows that all protocols

benefit from an increase of G except S_Agg. This is due to the fact that, in S_Agg, less

TDSs can participate in the parallel computation, and therefore each TDS has to

process a higher load of bigger partial aggregations. Other protocols benefit from the

fact that the computing load is shared evenly between TDSs. Fig. 13n shows that all

protocols but Noise_based protocols are insensitive to an increase of Nt again thanks

to independent parallelism. The bad behavior of Noise_based protocols is explained

by the fact that the number of fake tuples increases linearly with Nt and this

increased load cannot be entirely absorbed by parallelism because the number of

TDSs available for the computation is bounded in this setting by 10% of the

participating TDSs.

Throughput. In general, throughput is the amount of work that a computer can do

in a given period of time. Applied in our case, throughput is measured as the number

of queries that our distributed system can answer in a given time period, reflecting

the efficiency of our protocols (cf., Fig. 13o and 13p). In Fig. 13o, when G increases,

the number of participating TDSs for each query increases and the execution time for

each query does not reduce considerably, resulting in the reduction of throughput for

all solutions. The throughput of S_Agg, however, increases because PTDS reduces

much faster than the execution time for each query when G increases. In Fig. 13p,

when Nt increases, the throughput remains constant for all solutions due to the

proportional increase of participating TDSs. The ED_Hist solution has the highest

throughput because it needs least participating TDSs and shortest execution time for

each query. For S_Agg, although the response time for each query is long, the PTDS is

very low, resulting in high throughput. For the R1000_Noise, since it not only demands

very high number of PTDS (to process fake tuples), but also responses slowly for each

query, its throughput is worst.
Elasticity issues. A distributed and parallel system is said to be elastic if it can

mobilize smoothly a variable part of its computing resources to meet run time

requirements. Fig. 13q, r, k measures the elasticity of all protocols by varying the

computing resource and assessing its impact on TQ. The computing resource is

materialized here by the number of TDSs which can be mobilized to contribute to a

given computation. It is expressed by a percentage of the TDSs contributing to the

collection phase. Fig. 13q (resp. Fig. 13r, Fig. 13k) considers scarce (resp. abundant,

intermediate) computing resource in the sense that only 1% (resp. 100%, 10%) of the

TDSs contributing to the collection phase contributes to the rest of the query

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:35

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

computation. Comparing these figures shows that, when the resource is scarce, the

parallel computation is not completely deployed, resulting in a longer time to answer

the query and vice-versa. Since S_Agg does not depend on the number of available

TDSs (but on G and on the memory size of TDS), its performance is not impacted by a

fluctuation of the resource available. In other words, S_Agg has lowest elasticity.

Memory size. Fig. 13s details the memory’s size required for the computation in

each TDS when G is varied. Because the only factor that impacts the memory’s size

requirement is G but not Nt, we assess this metric by varying only G. The

Noise_based solutions require least memory because each partition sent to TDS

contains tuples belonged to only one group due to the Det_Enc, and thus TDSs store

only one group in memory regardless of the value of G. The ED_Hist requires more

memory because each TDS needs to process the partition having the same hash value

and each hash value corresponds to multiple (i.e., h) groups in the first aggregation

phase. The S_Agg needs highest memory because each TDS has to store the whole

partial aggregation (which includes many groups) in the RAM. So, when G increases,

the memory needed for storing the whole aggregation also increases linearly. When G

is too big (i.e., G >1000), the sRAM exceeds the actual RAM’s size of TDS, and thus

S_Agg is not feasible in this case15.

8.5 Comparison with State of the Art

In order to provide a baseline comparison in terms of performance (and not security),

Fig. 13t compares the performance of S_Agg, our most secure solution, with server-

based solutions working on encrypted data. We consider the performance of two well-

known encryption schemes, a symmetric one (i.e., DES) and a homomorphic one (i.e.,

Paillier [Paillier 1999]), as measured in [Ge and Zdonik 2007]. In DES method, each

value is decrypted on the server and the computation is performed on the plaintext.

Clearly this method is not a viable solution in our security model, because the

database server must have access to the secret key or plaintext to answer the query,

violating the security requirements. In Paillier's method, the secure modern

homomorphic encryption scheme, which typically operates on a much larger

(encryption) block size (say 2K bits) than single numeric data values, is used to

densely pack data values in an encryption block. Then, the database server performs

the computation directly on ciphertext blocks which are then passed back to a trusted

agent (i.e., the Key Holder) to perform a final decryption and simple calculation of

the final result. The strength of this method is due to the dense packing of values to

reduce the number of modular multiplications and the minimization of the number of

expensive decryption operations. We refer to the author’s experimentations, which

were run on now outdated hardware16, since both methods were implemented in C-

Store17which was run on a Linux workstation with an AMD Athlon-64 2Ghz

processor and 512 MB memory [Ge and Zdonik 2007]. We also compare its

performance with C-Store using no encryption at all. We ran an AVG query varying

G and the database size. The result (Fig. 13t) shows that, with homomorphic

encryption scheme (generalized Paillier), C-Store runs slightly faster than using DES

for encryption due to the saving in the decryption cost during execution. It turns out

that S_Agg outperforms DES and Paillier when the number of grouping attributes is

15Swapping between FLASH memory and RAM is used in this case
16 However, this hardware is still orders of magnitude superior to the secure tokens we use.
17 http://db.csail.mit.edu/projects/cstore/

39:36 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

small (i.e., G ≤ 1000) since it can exploit the parallel calculation of TDSs to speed up

the computation and becomes worse after this threshold.

Although these algorithms are a little dated, the objective is simply to provide a

baseline comparison, to show the effectiveness of our approach and demonstrates the

strength of large-scale parallel computation even when modest hardware is available

on the participant's side. Fig. 13t matches this objective explicitly.

8.6 Conclusion: Trade-off between criteria

Fig.14 summarizes and complements the experimental results described above

through a qualitative comparison of our proposed protocols over all criteria of interest

to perform a choice.

Fig. 14. Comparison among solutions

Each axis can be interpreted as follows. Local resource consumption axis refers to

Tlocal metrics and compares the protocols in terms of feasibility, i.e., is the resource

consumed by a single TDS compatible with the actual computing power of the

targeted TDSs. This question is particularly relevant for low-end TDSs (e.g., smart

tokens) and of lesser interest for high-end TDSs. S_Agg is at the worst extremity of

this axis because the final aggregation must be done by a single TDS while ED_Hist
occupies the other extremity thanks to its capacity to evenly share the load among all

TDSs. That also explains why in Load Balance axis ED_Hist better balances the load

among TDSs than S_Agg. Noise_based protocols are in between because they also

share the load evenly but at the price of managing a large number of fake tuples.

Note that the relative position of S_Agg and ED_Hist is reversed in the Global

Resource Consumption and Satisfied Level of Parallel Deployment axis which refers

to LoadQ and MaxPTDS metrics and compares the scalability of the protocols in terms

of number of parallel queries which can be computed and their ability of fully parallel

computation, respectively. Indeed, the total number of TDSs mobilized by S_Agg for

one single query computation is much smaller than that of ED_Hist. Regarding the

Responsiveness axis, the relative ordering of S_Agg and ED_Hist actually differs

Load Balance
worst best

S_Agg R1000_Noise C_Noise ED_Hist R2_Noise

Feasibility, Local Resource Consumption
worst best

S_Agg, R1000_Noise C_Noise R2_Noise ED_Hist

Responsiveness (large G)
worst best

S_Agg R1000_Noise C_Noise R2_Noise ED_Hist

Responsiveness (small G)
worst best

R1000_Noise C_Noise R2_Noise ED_Hist S_Agg

Global Resource Consumption,Satisfied Level of Parallel Deployment
worst best

R1000_Noise C_Noise ED_Hist R2_Noise S_Agg

Confidentiality
worst best

Cleartext Noise_based, ED_Hist S_Agg

Elasticity
worst best

S_Agg R2_Noise ED_Hist C_Noise R1000_Noise

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:37

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

depending on G. According to Fig. 13, S_Agg outperforms ED_Hist for small G

(smaller than 10) and is dominated by ED_Hist for larger G. Finally, Elasticity axis

is a direct translation of the conclusions drawn in Section 8.4 and Confidentiality

axis recalls the conclusion of Section 7.

This figure makes clear that Noise_based protocols are always dominated either

by S_Agg or ED_Hist and should be avoided. However, choosing between the other

two depends on the application’s characteristics, and Fig. 14 should be used to decide.

Let us consider a first scenario where individuals manage their data (e.g., their

medical folder) using a secure Personal Data Server embedded in a smart token-like

TDS [Allard et al. 2010]. In such a scenario, individuals are likely to connect their

TDS seldom, for short periods of time (e.g., when visiting a doctor) and would prefer

to save resource for executing their own tasks rather than being slowed down by the

computation of external queries. According to Fig. 14, ED_Hist best matches the

above requirements. Conversely, let us consider a smart metering platform composed

of power meter-like TDSs, connected all the time and mostly idle. In this case, TDSs’

owners do not care how much resources are monopolized to compute queries and the

primary concern is for the distribution company to maximize the capacity to perform

global computation. S_Agg is more appropriate in this case. In short, ED_Hist and

S_Agg are the two best solutions and the final choice depends on the weight

associated to each axis for a given application.

9. PERFORMANCE MEASUREMENTS ON REAL HARDWARE

To test the accuracy of our proposed cost models given in previous section, we

compare the values taken from experiments conducted on real hardware with that of

the cost models.

9.1 Experiment Setting

This section experimentally verifies the proposed cost models using 20 ZED secure

tokens18 (Fig. 15) playing the role of a pool of TDSs used during the processing phase

(i.e., after the collection phase has been performed). The experiment is tested on a

Centrino Core 2 Duo PC with 2.4 Ghz CPU and 4Gbytes RAM, playing the role of

SSI. The 20 ZED tokens communicate with the PC through USB port (Fig. 16). We

verify our cost models on (i) Query response time (TQ), (ii) Resource consumption

(LoadQ), (iii) Local execution time (Tlocal) and (iv) Load balance (LoadBL) among

tokens. The low number of tokens has an influence on a certain number of results,

but overall our prototype demonstrates that the cost model is accurate.

Fig. 15. ZED Token (front & back)

18 These secure tokens are used in different universities and FabLabs in France and will be soon distributed under an open-
hardware license. In terms of hardware resources, they share many commonalities with the development board described in

Section 8.3.

39:38 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

The prediction accuracy is measured as the error between actual and estimated

values in answering a query. Specifically, let act be the actual values when running

on real tokens and est be the estimated values when applying our proposed cost

model, we adopt the following error rate definition [Tao et al. 2003]:

𝐸𝑟𝑟 =
|𝑒𝑠𝑡 − 𝑎𝑐𝑡|

𝑎𝑐𝑡

Fig. 16. Twenty tokens running parallel

Similar to the performance comparison done with the cost model in the previous

section, we vary two parameters (i.e., G and Nt) to see its impact to the error rate.

When Nt varies up to one million, G is fixed at 100, and when G varies from 50 to 400

groups, Nt is fixed to one million tuples.

9.2 Comparison

In the following figures, for each metric, the first graph represents the real absolute

value measured using the 20 ZED tokens while the second graph represents the

relative error between these real values and the values predicted by the cost model.

This second graph captures the accuracy of our cost model.

The first set of experiments verifies the correctness of the query response time.

Figure 17a plots TQ varying G. The Noise protocol has the longest execution time due

to fake tuples, and S_Agg runs longer than ED_Hist since each token has to process

large partial aggregation. This observation is similar to that in figure 13k, giving a

maximum estimation error under 7% in figure 17b. When Nt varies, TQ increases

linearly in figure 17c, similarly to figure 13l. However, the increase rate of figure 17c

is bigger than that of figure 13l because in the case of 20 participating tokens,

parallelism is not fully deployed due to the limited number of tokens. On the

contrary, in figure 13l where we have many participating TDSs, the parallel

computation is completely deployed, resulting in a lower increase rate when the data

load increases. The maximum error is around 10% in figure 17d.

Figures 17 e-h show the resource consumption error rate. Similar to figure 13c, all

protocols in figure 17e incur constant loads (except a very small increase in case of

S_Agg) when G varies because the total number of tuples is fixed. This gives a very

low error rate for ED_Hist and Noise protocols (around 2%) and a rather low error

rate for S_Agg (less than 8%). Similarly, the variation of Nt yields the linear increase

of LoadQ in both figures 13d and 17g, giving an accurate result (around 2%-3% error)

in figure 17h.

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:39

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 17. Performance and error rate

a)

0

20

40

60

80

100 200 300 400 500

TQ
 (

se
co

n
d

)

G

SAgg

Noise

EDHist

b)

0%

1%

2%

3%

4%

5%

6%

7%

100 200 300 400 500

G
c)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

TQ
 (

se
co

n
d

)

Nt (*10^5)

d)

0%

2%

4%

6%

8%

10%

1 2 3 4 5 6 7 8 9 10

Nt (*10^5)

e)

0

10

20

30

40

50

60

100 200 300 400 500
Lo

a
d

Q
 (

M
b

yt
es

)
G

f)

0,0%

2,0%

4,0%

6,0%

8,0%

100 200 300 400 500
G

g)

0

20

40

60

1 2 3 4 5 6 7 8 9 10

Lo
a

d
Q

 (
M

b
yt

es
)

Nt (*10^5)
h)

0%

1%

2%

3%

4%

1 2 3 4 5 6 7 8 9 10
Nt (*10^5)

i)

0

20

40

60

80

100 200 300 400 500

Tl
o

ca
l (

se
co

n
d

)

G

j)

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

100 200 300 400 500

G

m)

0,96

0,98

1

1,02

1,04

1,06

1,08

100 200 300 400 500
G

n)

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

100 200 300 400 500
G

o)

0,9

0,95

1

1,05

1,1

1,15

1 2 3 4 5 6 7 8 9 10

Nt (*10^5)

k)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

Tl
o

ca
l

(s
e

co
n

d
)

Nt (*10^5)

l)

0%

2%

4%

6%

8%

10%

12%

1 2 3 4 5 6 7 8 9 10

Nt (*10^5)

p)

0%

1%

2%

3%

4%

1 2 3 4 5 6 7 8 9 10

Nt (*10^5)
q)

0

200

400

600

800

1000

1 2 4 8 16

TQ
 (

se
co

n
d

)

number of tokens

r)

0

2

4

6

8

10

12

1 2 4 8 16

Sp
ee

d
u

p

number of tokens

39:40 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 17 i-l depicts the error rate on local execution time. Except the small linear

increase of S_Agg in figure 17i, Noise and ED_Hist remain constant. This contradicts

the decreasing trend of Noise and ED_Hist in figure 13m when G varies. This can be

explained again by the limited number of tokens. If the global data load keeps

unchanged, and the number of tokens remains at twenty, each token processes the

same amount of data in average even when G varies (except for S_Agg since the size

of the aggregations depends on G). In contrast, when G increases in figure 13m, the

number of participating tokens also increases, reducing the average connecting time

for each token to process less load. Notice that when G increases over 1000 in figure

13m, the Tlocal of C_Noise and R1000_Noise also remains constant since the number of

connecting TDSs is less than the required TDSs to fully deploy parallel computation.

We believe this explanation reinforces the credibility of our cost model since this

trend repeats in figure 17i. When varying Nt, all protocols increase linearly in the

experiment (figure 17k), while they remain unchanged in the cost model (figure 13n),

except for Noise protocols. The reason of this difference is that when the total load

increases while the number of tokens remain fixed (figure 17k), or when the number

of tokens increases but does not meet the demand for an optimal parallel computing

(Noise protocols in figure 13n), each token has to connect longer to process a bigger

load. This is not the case for S_Agg and ED_Hist in the cost model since the increase

rate of total load is less than that of connecting TDSs (in the cost model we assume

that the percentage of connected TDSs is 10% of Nt).

Figure 17m displays the error rate of load balance among tokens. Since the total

load is divided evenly among twenty tokens, the load balance remains at

approximately 1 because all twenty tokens incur nearly the same load, yielding

extremely accurate prediction (with maximum error less than 2% in figure 17n,

except for S_Agg). Similarly, when Nt varies in figure 17o, Noise and ED_Hist have

better load balance than S_Agg since some tokens in S_Agg have to process big

aggregations to produce the final result. This observation conforms to the figure 13j

where S_Agg has also the most unbalanced load among protocols.

As a summary of this section, although we can measure some differences between

the cost model predictions and the real measurements, the error rate remains around

few percents and the trends of all graphs in figure 17 are similar to the trends

observed in figure 13. We believe the differences arise mostly from the inability to

fully deploy the parallel computation due to limited connecting TDSs in the

experiments. We plan on experimenting on larger sets of tokens in the future.

9.3 Scalability of the System

To test the ability of our system to scale up to millions of tokens in real life

applications, we measure its speedup when increasing the number of tokens.

Specifically, the speedup of our system is measured as follow:

S(n) = T(1)/T(n)
with T(n)being the execution time using n tokens.

We vary the number of tokens to measure the execution time in figure 17q. From

that, we calculate the speedup when doubling the number of tokens each time.
In figure 17r, the speedup approaches 12x when we use 16 tokens. When the

number of tokens doubles, the average speedup ratios of S_Agg, Noise and EDHist
are 1.82, 1.81 and 1.83 respectively. These speedup ratios let us expect that our

system should be able to scale to millions of tokens (given an equivalent increase in

power of the SSI) in real applications with reasonable execution time and speedup.

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:41

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

This result is not surprising considering that all protocols exhibit mainly

independent parallelism.

10. CONCLUSION

An ever increasing amount of personal data is collected and ends-up on servers.

Decentralized architectures, devised to help individuals better protect their privacy,

hinder global treatments and queries, impeding the development of services of great

interest. This article presents a first attempt to fill this gap. It capitalizes on secure

hardware advances promising soon the presence of a Trusted Execution Environment

at low cost in any client device (trackers, smart meters, sensors, cell phones and

other personal devices).

Based on this statement, we have proposed new query execution protocols to

compute general SQL queries while maintaining strong privacy guarantees. The

objective was not to find the most efficient solution for a specific problem but rather

to perform a first exploration of the design space. We proposed three very different

protocols and compared them according to different axes. The encouraging conclusion

is that a good performance/security trade-off can be found in many situations and

that the proposed protocols can scale up to nation-wide contexts.

We expect that this work will pave the way for the definition of future fully

decentralized privacy-preserving querying protocols. The main research directions we

foresee are: (1) extend the threat model to (a small number of) compromised TDSs

and (2) perform performance study on large scale TDS platforms. The on-going

deployment of very large TDS platforms (e.g., the Linky power meters installed by

EDF in France or the growing interest for PCEHR hosted in secure tokens) would

enable point (2) while providing a strong motivation to investigate issue (1).

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors wish to thank Anne Cantaut from INRIA-SECRET team and Matthieu

Finiasz from CryptoExperts for their help in defining and proving the security of our

GKE protocol, and Philippe Bonnet from University of Copenhagen for fruitful

discussions on this paper.

REFERENCES

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker,

Nesime Tatbul, and Stan B. Zdonik. 2003. Aurora: a new model and architecture for data stream management. VLDB

Journal 12, 2 (August 2003), 120-139. DOI:http://dx.doi.org/10.1007/s00778-003-0095-z

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2002. Hippocratic databases. In Proceedings of the

28th International Conference on Very Large Data Bases (VLDB’02). VLDB Endowment, Hong Kong, 143-154.
DOI:http://dx.doi.org/10.1016/B978-155860869-6/50021-4

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004. Order-preserving encryption for numeric

data. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’04). ACM

Press, New York, NY, 563-574. DOI: http://dx.doi.org/10.1145/1007568.1007632

Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le Folgoc, Benjamin Nguyen, Philippe Pucheral,
Indrajit Ray, Indrakshi Ray and Shaoyi Yin. 2010. Secure Personal Data Servers: a Vision Paper. In Proceedings of the

36th International Conference on Very Large Data Bases (VLDB’10). VLDB Endowment, Singapore, 25-35.

DOI:http://dx.doi.org/10.14778/1920841.1920850

Tristan Allard, Benjamin Nguyen, and Philippe Pucheral. 2014. MetaP: Revisiting Privacy-Preserving Data Publishing

using Secure Devices. Distributed and Parallel Databases 32, 2 (June 2014), 191-244.

DOI:http://dx.doi.org/10.1007/s10619-013-7122-x

Hani Alzaid, Ernest Foo, and Juan G. Nieto. 2008. Secure Data Aggregation in Wireless Sensor Networks: A Survey. In

Proceedings of the 6th Australasian Information Security Conference (AISC’08). 93-105.

39:42 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Georgios Amanatidis, Alexandra Boldyreva, and Adam O'Neill. 2007. Provably-secure schemes for basic query support in

outsourced databases. In DBSec. Lecture Notes in Computer Science,volume 4602, Springer. 14-30.

DOI:http://dx.doi.org/10.1007/978-3-540-73538-0_2

Yair Amir, Yongdae Kim, Cristina Nita-Rotaru, and Gene Tsudik. 2004. On the performance of group key agreement

protocols. ACM Transactions on Information and System Security (TISSEC). 7, 3 (August 2004), 457-488.
DOI:http://dx.doi.org/10.1145/1015040.1015045

Nicolas Anciaux, Luc Bouganim, and Philippe Pucheral. 2009. Hardware Approach for Trusted Access and Usage Control.

Handbook of research on Secure Multimedia Distribution (Chapter A). IGI Global.

Nicolas Anciaux, Philippe Bonnet, Luc Bouganim, Benjamin Nguyen, Philippe Pucheral and Iulian Sandu-Popa. 2013.

Trusted Cells: A Sea Change for Personal Data Services. In CIDR. Asilomar, USA.

Arvind Arasu, Ken Eguro, Raghav Kaushik, and Ravi Ramamurthy. 2014. Querying Encrypted Data (Tutorial). In

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’14). ACM Press,

New York, NY, 1259-1261. DOI:http://dx.doi.org/10.1145/2588555.2588893

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and efficiently searchable encryption. In

CRYPTO. Lecture Notes in Computer Science,volume 4622. 535–552. DOI:http://dx.doi.org/10.1007/978-3-540-
74143-5_30

Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, and David Pointcheval. 2004. Mutual authentication and group

key agreement for low-power mobile devices. Computer Communications. 27, 17 (November, 2004), 1730-1737.
DOI:http://dx.doi.org/10.1016/j.comcom.2004.05.023

Emmanuel Bresson and Mark Manulis. 2007. Malicious Participants in Group Key Exchange: Key. Control and

Contributiveness in the Shadow of Trust. In ATC, 395–409. DOI:http://dx.doi.org/10.1007/978-3-540-73547-2_41

Emmanuel Bresson, Mark Manulis and Joerg Schwenk. 2007. On Security Models and Compilers for Group Key

Exchange Protocols. IWSEC. 4752, 292–307. DOI:http://dx.doi.org/10.1007/978-3-540-75651-4_20

Claude Castelluccia, Einar Mykletun, and Gene Tsudik. 2005. Efficient Aggregation of Encrypted Data in Wireless Sensor

Networks. In Mobiquitous. 109-117. DOI:http://dx.doi.org/10.1109/MOBIQUITOUS.2005.25

Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati. 2005. Modeling and assessing inference exposure in encrypted databases. ACM TISSEC 8, 1 (Feb. 2005),

119-152. DOI:http://dx.doi.org/10.1145/1053283.1053289

William Gemmell Cochran. 1977. Sampling Techniques. John Wiley, 3rd edition.

Ernesto Damiani , Sabrina De Capitani di Vimercati , Sushil Jajodia , Stefano Paraboschi, and Pierangela Samarati. 2003.
Balancing confidentiality and efficiency in untrusted relational DBMSs. In ACM CCS. ACM Press, New York, NY,

93-102. DOI:http://dx.doi.org/10.1145/948109.948124

Ebaa Fayyoumi and B. John Oommen. 2010. A survey on statistical disclosure control and micro-aggregation techniques

for secure statistical databases. Software: Practice and Experience. 40, 12 (November 2010), 1161-1188.

DOI:http://dx.doi.org/10.1002/spe.v40:12

The World Economic Forum. 2012. Rethinking Personal Data: Strengthening Trust. (May 2012). Retrieved March 3, 2016

from http://www.weforum.org/reports/rethinking-personal-data-strengthening-trust

Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-Preserving Data Publishing: A survey of

Recent Developments. ACM Computing Surveys 42, 4 (June 2010), 1-53.

DOI:http://dx.doi.org/10.1145/1749603.1749605

Tingjian Ge, and Stan Zdonik. 2007. Answering aggregation queries in a secure system model. In Proceedings of the 33rd

International Conference on Very Large Data Bases (VLDB’07). VLDB Endowment, Vienna, 519–530.

Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC. Maryland, 169-178.

DOI:http://dx.doi.org/10.1145/1536414.1536440

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. 1984. Journal of Computer and System Sciences 28, 2 (April
1984), 270–299. DOI:http://dx.doi.org/10.1016/0022-0000(84)90070-9

Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing SQL over encrypted data in database service
provider model. In ACM SIGMOD. ACM Press, New York, NY, 216-227.

DOI:http://dx.doi.org/10.1145/564691.564717

Hakan Hacigümüs, Balakrishna R. Iyer, and Sharad Mehrotra. 2004. Efficient execution of aggregation queries over
encrypted relational databases. In DASFAA. Korea, 125-136. DOI:http://dx.doi.org/10.1007/978-3-540-24571-1_10

Bijit Hore, Sharad Mehrotra, and Gene Tsudik. 2004. A Privacy-Preserving Index for Range Queries. In VLDB’04. VLDB
Endowment, 223-235.

Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012. Secure multidimensional range queries over
outsourced data. VLDB Journal 21, 3 (August 2011), 333-358. DOI:http://dx.doi.org/10.1007/s00778-011-0245-7

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography: Principles and Protocols. Chapman and

Hall/CRC

Jonathan Katz and Ji Sun Shin. 2005. Modeling Insider Attacks on Group Key-Exchange Protocols. In Proceedings of the

12th ACM Conference on Computer and Communications Security (CCS’05), 180–189.
DOI:http://dx.doi.org/10.1145/1102120.1102146

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:43

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Lea Kissner and Dawn Song. 2005. Privacy-Preserving Set Operations. In Advances in Cryptology (CRYPTO’05). 241–

257. DOI:http://dx.doi.org/10.1007/11535218_15

H.Y. Lam, G.S.K. Fung, and W.K. Lee. 2007. A Novel Method to Construct Taxonomy Electrical Appliances Based on

Load Signatures. IEEE Transactions on Consumer Electronics 53, 2 (May 2007), 653-660.

DOI:http://dx.doi.org/10.1109/TCE.2007.381742

P.P.C. Lee, J.C.S.Lui, D.K.Y. Yau. 2006. Distributed collaborative key agreement and authentication protocols for

dynamic peer Groups. ACM Transactions onNetworking 14, 2, 263-276.

DOI:http://dx.doi.org/10.1109/TNET.2006.872575

Hongbo Liu and Hui Wang and Yingying Chen. 2010. Ensuring Data Storage Security against Frequency-based Attacks in

Wireless Networks. In DCOSS. California, 201-215. DOI:http://dx.doi.org/10.1007/978-3-642-13651-1_15

Thomas Locher. 2009. Foundations of Aggregation and Synchronization in Distributed Systems. Ph.D. Dissertation. ETHZ

University, Zurich. DISS. ETH NO. 18249. ISBN 978-3-86628-254-4.

Yves-Alexandre de Montjoye, Samuel S Wang, Alex Pentland, Dinh Tien Tuan Anh, Anwitaman Datta. 2012. On the

Trusted Use of Large-Scale Personal Data. IEEE Data Eng. Bull. 35, 4, 5-8.

Einar Mykletun, and Gene Tsudik. 2006. Aggregation queries in the database-as-a-service model. In DBSec. France, 89-
103. DOI:http://dx.doi.org/10.1007/11805588_7

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT. 223-238.
DOI:http://dx.doi.org/10.1007/3-540-48910-X_16

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: protecting

confidentiality with encrypted query processing. In ACM SOSP. New York, 85-100.
DOI:http://dx.doi.org/10.1145/2043556.2043566

Sandro Rafaeli and David Hutchison. 2003. A Survey of Key Management for Secure Group Communication. ACM
Computing Surveys 35, 3 (September 2003), 309-329. DOI:http://dx.doi.org/10.1145/937503.937506

StreamSQL. 2015. Retrieved March 3, 2015 from : http://www.streambase.com/developers/docs/latest/streamsql/

Yufei Tao, Jimeng Sun, and Dimitris Papadias. 2003. Analysis of predictive spatiotemporal queries. ACM Transactions on

Database Systems (TODS). 28, 4 (Dec. 2003), 295–336. DOI:http://dx.doi.org/10.1145/958942.958943

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2013. Secure Global Protocol in Personal Data Server. SMIS

Technical report. INRIA, France.

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2014a. Privacy-Preserving Query Execution using a
Decentralized Architecture and Tamper Resistant Hardware. In EDBT. Athens, 487-498.

DOI:http://dx.doi.org/10.5441/002/edbt.2014.44

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2014b. SQL/AA : Executing SQL on an Asymmetric

Architecture. PVLDB 7, 13 (August 2014), 1625-1628. DOI:http://dx.doi.org/10.14778/2733004.2733046

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2015a. TrustedMR: A Trusted MapReduce System based on
Tamper Resistance Hardware. In CoopIS. Rhodes, 38-56. DOI:http://dx.doi.org/10.1007/978-3-319-26148-5_3

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2015b. Key Exchange Protocol in the Trusted Data Servers
Context.SMIS Technical report. INRIA, France.

Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013. Processing analytical queries over

encrypted data. PVLDB. 6, 5 (March 2013), 289–300. DOI:http://dx.doi.org/10.14778/2535573.2488336

Bing Wu, Jie Wu, and Mihaela Cardei. 2008. A Survey of Key Management in Mobile Ad Hoc Networks. In Handbook of

Research on Wireless Security. IGI Global, 479-499. DOI:http://dx.doi.org/10.4018/978-1-59904-899-4.ch030

Tsu-Yang Wu, Yuh-Min Tseng, and Ching-Wen Yu. 2011. Two-round contributory group key exchange protocol for

wireless network environments. In EURASIP Journal on Wireless Communications and Networking 2011, 1 (June

2011), 1-8. DOI:http://dx.doi.org/10.1186/1687-1499-2011-12

INRIA, LIRIS, UVSQ, GEMALTO, CryptoExperts, CG78. 2012. Use cases and functional architecture specification.

KISS deliverable ANR-11-INSE-0005-D1, 21/12/2012. France.

http://www.informatik.uni-trier.de/~ley/db/journals/debu/debu35.html#MontjoyeWP12

39:44 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Online Appendix to:
Private and Scalable Execution of SQL Aggregates on a Secure

Decentralized Architecture 

QUOC-CUONG TO, Inria and University of Versailles St-Quentin, PRiSM lab

BENJAMIN NGUYEN, INSA Centre Val de Loire, LIFO lab

PHILIPPE PUCHERAL, Inria and University of Versailles St-Quentin, PRiSM lab

A. SAFETY PROPERTIES AGAINST MALICIOUS ATTACKER

The protocols presented in this paper protect against confidentiality attacks

conducted by honest-but-curious adversary. Additional counter-measures must be

integrated in the protocols to defeat malicious attackers. Indeed, a malicious SSI

could try to tamper with the intermediate results produced during the query

execution, either to mislead the querier or to gain some benefit (e.g., save computing

and storage resources) from skipping part of the computation. Hence, the integrity of

the final result must be made controllable by the Querier. Checking the integrity of

an outsourced query result sums up to checking data authenticity, data freshness

and query completeness.

Authenticity means that the query result is generated from original database

tuples. Authenticity is generally achieved by attaching a signature to a tuple or part

of a tuple. As the signature is unforgeable by anyone who does not own the key, any

TDS can check signatures produced by any other TDS.

Freshness means that the query result is computed over the latest version of the

tuples. Since the query is executed directly in the client’s side (TDS), the tuples

returned in the collection phase are guaranteed to be up-to-date. However, SSI must

be prevented from replacing fresh encrypted tuples sent by TDSs by old tuples

resulted from previous queries by attaching the session id to the tuples.

Completeness means that all tuples participating to the collection phase are

reflected once, and only once (hence completeness encompass accuracy in our

definition), in the result. To ensure completeness, we must prevent duplicate and

delete actions from malicious attackers. These actions are hard to detect since this

requires having a global view of the dataset.

In order for the TDS and the querier to check authenticity, freshness and

completeness, extra information, called hereafter security information, has to be

produced by the TDSs and bind both to the tuples produced during the collection

phase and to the partitions produced during the aggregation phase. We introduce

below the set of properties required to enforce authenticity, freshness and

completeness and detail the associated security information and security test

performed on it.

Let us call Гe ← {tupe} the set of encrypted tuples collected in the collection phase.

Each tuple tupe  Гe follows the format:

tupe ← (c, id) with tupe.c ← nEk(tup), and tupe.id ← nEk(identifier) with tup is the

plaintext tuple and identifier is the identity of tup. We assume that identifiers are

unique in the whole system, e.g., by concatenated the local tuple identifier with the

TDS identifier.

© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:45

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Each encrypted partition/aggregation Ωei contains a set of tuples’ identifiers it is

supposed to contain, called Ω-set, denoted as Ωei.ID, and the total number of tuples

contributed to that aggregation, denoted as Ωei.ψ.

Definition 1 (Origin safety property). The Origin safety property guarantees that a

tuple originates from a real TDS as target of a given query itself identified by Qid.

Origin is considered as a proof of authenticity and freshness. To enforce this

property, each tuple embeds a signature, denoted σ, which is the result of signing the

encrypted tuple concatenated to its encrypted identifier and query identifier: tup.σ ←

sign(tupe.c || tupe.id || Qid).

As previously said, completeness is significantly harder to achieve since it requires

building a global view of the collected dataset and be able to detect any delete and

copy action on it from an adversary.

Delete actions means removing encrypted tuples from partitions or even removing

complete partitions during the execution, making the final result incomplete. These

actions reduce the size of the encrypted dataset to be processed. We use the Quantity

Preservation safety property to prevent this kind of attack. Basically, this safety

property preserves the number of tuples to be processed from the beginning of the

protocol until the final step.

Definition 2 (Quantity Preservation safety property). Aggregations or partitions

respect Quantity Preservation if ∑ |Ω𝑖
𝑒 . ψ| = 𝑆

𝑝
𝑖=1 with p being the total number of

aggregations/partitions, and S the value in SIZE clause of the query.

Thank to this property, if SSI drops any tuple or partition during the execution,

the total number of tuples for this query will be less than the required number,

making this action detectable. Similarly, this property also prevents duplicate

actions augmenting the number of tuples. However, it doesn’t prevent a malicious

SSI to delete arbitrary d encrypted tuples from a partition, and then copy another d

existing encrypted tuples from this (or another) partition to replace them. This action

satisfies both the Origin safety property (SSI does not forge any new tuples) and

Quantity Preservation safety property (since the total number of tuples remains

unchanged). However, it still makes the final result incorrect due to the difference

between deleted tuples and duplicated ones. Replace actions (i.e., replacing a deleted

tuple by a duplicated one) can be either intra-partition (tuples are replaced into their

own partition) or inter-partition (the destination partition is different from the source

partition). Intra-partition replace actions can be easily detected by checking the

unicity of tuple identifiers within each partition. The Identifier Unicity safety

property (Definition 3) serves this purpose.

Definition 3 (Identifier Unicity safety property) Let tupe ∈ Ωei be a tuple in the

partition/aggregation Ωei. Partition/Aggregation Ωei respects the Identifier Unicity

safety property if for every pair of tuples tupej, tupek∈Ωei, tupej.id = tupek.id ⇒ j = k.

Detecting inter-partition replace actions is more difficult and requires organizing

the set of tuples such that each identifier is authorized to be part of a single partition

(partitions intersections are empty). To this end, we define for each partition the set

of identifiers it is supposed to contain, called Ω-set, denoted by Ωei.ID. The Mutual

Exclusion safety property (Definition 4) ensures that no Ωei.ID overlaps, and the

Membership safety property (Definition 5) ensures that each identifier must appear

in the partition to which it is supposed to belong. As a result, Mutual Exclusion and

Membership together guarantee that each identifier actually appears within a single

partition (as stated in the Lemma).

39:46 .

ACM Transactions on Database Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Definition 4 (Mutual Exclusion safety property) Partitions respect Mutual

Exclusion if for every pair of partitions Ωei, Ωej, i ≠ j ⇒ Ωei.ID∩ Ωej.ID = Ø.

Definition 5 (Membership safety property) A partition respects Membership if for

every tuple tupej ∈ Ωei, then tupej.id ∈ Ωei.ID.

Lemma. Enforcing together the Identifier Unicity, Mutual Exclusion, and

Membership safety properties is necessary and sufficient to guarantee the absence of

any (intra/inter-partition) replace action.

Proof We start by showing the sufficiency of these properties. First, Identifier

Unicity is sufficient to preclude by itself intra-partition replace actions (recall that

the authenticity of a tuple and its identifier is guaranteed by the Origin safety

property). Second, assume that a given tuple tupe has been copied into two distinct

partitions. Only the Ω-set of one of them contains tupe identifier because otherwise

Mutual Exclusion would be contradicted. Consequently there must be one partition's

Ω-set that does not contain tupe identifier. But this clearly contradicts the

Membership safety property. As a result, Membership and Mutual Exclusion are

together sufficient to preclude inter-partition replace actions.

We now show the necessity of these properties. First, since a distinct identifier is

assigned to each tuple, the absence of intra-partition replace results immediately in

the satisfaction of the Identifier Unicity property. Second, the absence of inter-

partition replace implies that the partitioning is correct so that: (1) the Mutual

Exclusion property is satisfied in that Ω-sets do not overlap (recall that a distinct

identifier is assigned to each tuple) and (2) the Membership property too in that each

tuple appears in the partition which Ω-set contains its identifier. □

Implementation Sketches.

The implementations of the Origin and Identifier Unicity safety properties are

straightforward: when receiving a partition to compute, the given TDS simply checks

the signatures of tuples and the absence of duplicate identifier19.

The other properties are harder to check because they concern the complete

dataset. We thus add an header in each partition to contain the summary

information of that partition.

First, the header contains Ωei-ψ, the total number of tuples contributing to the

aggregation Ωei. Every times a TDS receives partitions from SSI and computes the

new aggregation, it cumulates all Ωei-ψ belonging to these partitions and stores the

result in the header of the new aggregation. Note that only the TDS that combines

the last partitions into the final result can check that ∑ |Ω𝑖
𝑒 . ψ| = 𝑆

𝑝
𝑖=1 . But since a

TDS does not know if he is calculating the final or intermediate result, he cannot

check the Quantity Preservation safety property. Only when the final result is

delivered to Querier, who knows for sure that he is obtaining the final result, this

property (Ωefinal.ψ = S) can be checked.

Second, the header also contains Ωei.ID, the set of identifiers of all tuples in the

partition Ωei. In every step of the protocol, when the partitions are accumulated, TDS

also makes a union between these lists. When making this union, TDS can detect

only the partial inter-partition replace actions in which these actions happen among

the partitions that TDS is handling. Similar to Ωei-ψ, it is impossible for a TDS to

detect the full inter-partition replace actions unless that TDS is handling the last

19 In general, the identifier can be implemented simply by letting secure devices generate a random number. It has to be big

enough with respect to the number of tuples to collect in order to make collisions improbable so that in the rare collision
cases the recipient simply keeps one of the colliding tuples. For example, around 5 billion numbers have to be generated to

reach 50% chance collision with a 64-bits random number.

Private and Scalable Execution of SQL on a Secure Decentralized Architecture39:47

ACM Transactions on Database Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

partitions to create the Ωefinal. Therefore, it is Querier, who obtains the Ωefinal, which

can check the full inter-partition replace actions.

While the extra-cost of these verifications has not been evaluated yet, it relies on

rather simple tests compared to the usual complexity of checking the integrity of

outsourced query results.

